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Abstract

Some engineering problems ranging from blood flow to river flow, from
internal combustion engines to electronic devices have been recently mod-
elled by coupling problems with different space dimensions (geometrical
multiscale method). In this paper we focus on a new approch, where differ-
ent levels of detail of the problem at hand stem from a different selection
of the dimension of a suitable function space. The coarse and fine models
are thus identified in a straightforward way. Moreover this approach lends
itself to an automatic model adaptive strategy. The approach is addressed
on a 2D linear advection-diffusion reaction problem.

1 Motivations

Many engineering problems of practical interest, even though formulated in 3D,
exhibit a spatial dimension predominant over the others. This is the case, for in-
stance, of river dynamics, blood flow problems or internal combustion engines. In
these cases, it is sometimes possible to resort to downscaled models where only
the dominant space dependence is considered (e.g., the Euler equations come
from a 1D approximation of blood flows). Nevertheless the simplifying assump-
tions at the basis of these models can fail locally, essentially where “transversal”
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dynamics are relevant (e.g., a lake in a river network, an aneurysm in a blood
vessel). Ideally, in correspondence with these configurations, one would like to
locally enhance the 1D approximation via a proper higher-dimensional enrich-
ment. In the so-called geometrical multiscale approach these enrichments consist
of 2D or 3D models. Here we follow a different strategy. We simplify the refer-
ence problem (the full model) by tackling in a different manner the dependence
of the solution on the leading direction and on the transverse ones. The former
is spanned by a classical piecewise polynomial basis. The latter are expanded
into a modal basis. We end up with a real hierarchy of simplified models (the
reduced models), distinguishing one another for the different number of modal
transversal functions. From a computational view-point, independently of the
dimension of the full problem, the reduced formulation leads us to a system of
1D problems (associated with the leading direction), coupled by the transversal
information. In this work we present preliminary results of this approach applied
to a 2D elliptic framework.
A similar approach can be found in [1, 2, 4, 5], though confined to a thin domain
setting. Our proposal is potentially more effective than these approaches, as our
reduced model is a system of 1D (rather than 2D) problems, also for a 3D full
problem.

2 The full problem

Let us consider a linear advection diffusion reaction (ADR) problem. For the sake
of simplicity we assume the computational domain Ω in R

2 and homogeneous
Dirichlet boundary conditions.
Let µ ∈ L∞(Ω), with µ ≥ µ0 > 0, the diffusivity coefficient, b = (b1, b2)

T ∈
[L∞(Ω)]2 the convective field and σ ∈ L∞(Ω) the reaction coefficient. We assume
∇ · b ∈ L∞(Ω). Moreover for the well-posedness of the problem we assume
−1

2∇ ·b+ σ ≥ 0 a.e. in Ω. Finally, let f ∈ L2(Ω) be the forcing term. Standard
notation for the Sobolev spaces as well as for the spaces of functions bounded
a.e. in Ω is adopted.
The weak formulation of the problem reads: find u ∈ V = H1

0 (Ω) s.t.

∫

Ω
µ∇u · ∇v dxdy +

∫

Ω

(
b · ∇u+ σu

)
v dxdy =

∫

Ω
fv dxdy ∀v ∈ V. (1)

Furthermore we assume that the domain Ω can be represented as a 2D fiber
bundle, i.e.

Ω =
⋃

x∈Ω1D

γx, (2)

where Ω1D is a supporting one-dimensional domain, while γx ⊂ R represents the
1D (transversal) fiber associated with x ∈ Ω1D. In practice we distinguish in Ω
a leading direction, associated with Ω1D, and a secondary transversal direction,
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Figure 1: The map ψx

represented by the fibers γx. This choice finds its justification in the hydro-
dynamic as well as haemodynamic applications we are interested in, where the
dominant direction is provided by the blood or the water main stream, respec-
tively (see Fig. 1, left).

We map domain Ω into a reference domain Ω̂, where the analysis is easier. For
this purpose, for any x ∈ Ω1D, we introduce the map ψx : γx → γ̂1 between the
generic fiber γx ⊂ R and a 1D reference fiber γ̂1. The domain Ω̂ is identified as
the rectangle with sides of length |Ω1D| and |γ̂1|. The map ψx thus simply acts
on the fiber length (see Fig. 1). Throughout the paper we denote with z = (x, y)
and ẑ = (x̂, ŷ) the generic point in Ω and the corresponding point in Ω̂ via the
map ψx, respectively, where x ≡ x̂ ∈ Ω1D while ŷ = ψx(y) ∈ γ̂1, with y ∈ γx.
A predominant role in the applications of our interest is played by the so-called
affine map, given by ŷ = ψx(y) = L(x)−1

[
y−g

]
, where L(x) = |γx| is the length

fiber while g is a suitable shift factor. In particular when L(x) = L = constant,
the physical domain Ω itself coincides with a rectangle.

3 The reduced setting

The fiber structure introduced on the domain Ω is the starting point in defining
the dimensional reduction. We resort to different function spaces along the sup-
porting fiber Ω1D rather than the transversal ones γx, in the spirit of a model
anisotropy.
In more detail, we associate with Ω1D the function space V1D ≡ H1

0 (Ω1D), whose
functions account for the homogeneous Dirichlet boundary conditions on ∂Ω1D.
On the transversal reference fiber we introduce a modal basis {ϕk}, with k ∈ N,
where ϕk : γ̂1 → R and {ϕk} is assumed L2(γ̂1)-orthonormal. The functions ϕk
take into account the boundary conditions on ∂Ωγ =

⋃
x∈Ω1D

∂γx. The transver-
sal function space is therefore given by Vbγ1 = span{ϕk}.
Different choices can be pursued for the modal functions ϕk (see [3], Remark
1). Here we adopt trigonometric functions, according to a classical Fourier ex-
pansion.

By properly combining the space V1D with the modal basis {ϕk}k, we define the
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reduced space, for any fixed a priori m ∈ N,

Vm =

{
vm(x, y) =

m∑

k=0

ϕk(ψx(y)) ṽk(x), with ṽk ∈ V1D

}
. (3)

The L2(γ̂1)-orthogonality of the modal functions implies that the frequency co-
efficients ṽk in (3) are

ṽk(x) =

∫

bγ1

vm(x, ψ−1
x (ŷ))ϕk(ŷ) dŷ, with k = 0, . . . ,m. (4)

Convergence of an approximation um to (1) stems essentially from the follow-
ing assumptions: i) the conformity of the reduced space Vm in V , i.e. that
Vm ⊂ V , ∀m ∈ N; ii) the spectral approximability of Vm in V , namely that

lim
m→+∞

(
inf

vm∈Vm

‖v − vm‖V

)
= 0, for any v ∈ V . These two requirements ba-

sically lead to proper regularity assumptions on the map ψx as well as on the
spaces V1D and Vbγ1 (for further details, see [3]). Throughout the paper we
assume that these two hypotheses are fulfilled.

3.1 The ADR reduced form

The reduced formulation of the ADR equation (1) entails solving such a problem
on the subspace Vm of V in (3).
Thus, for any m ∈ N, we can state the so-called ADR reduced problem: find
um ∈ Vm such that
∫

Ω
µ∇um ·∇vm dxdy+

∫

Ω

(
b ·∇um+σum

)
vm dxdy =

∫

Ω
fvm dxdy ∀vm ∈ Vm.

(5)
The well-posedness as well as the strong consistency of this formulation are guar-
anteed by assumption i) above.
Actually the reduced formulation (5) amounts to solving a system of (m + 1)
coupled 1D problems, with coefficients computed on the reference fiber γ̂1. For
this purpose we introduce the Jacobian J (ŷ) =

(
∂ψx(y)/∂y

)
|
y=ψ−1

x (by) associated

with the map ψx. Moreover we define D(ŷ) =
(
∂ψx(y)/∂x

)
|
y=ψ−1

x (by), represent-
ing a deformation index of the current domain Ω with respect to the reference
one.
Let us exploit in (5) the representation um(x, y) =

∑m
j=0 ũj(x)ϕj(ψx(y)) of

um as a function of Vm and identify the test function vm with vm(x, y) =
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ϑ(x)ϕk(ψx(y)), for any ϑ ∈ V1D and any k = 0, . . . ,m, to get

m∑

j=0

[ ∫

Ω
µ(x, y)∇

(
ũj(x)ϕj(ψx(y))

)
· ∇

(
ϑ(x)ϕk(ψx(y))

)
dxdy (6)

+

∫

Ω

(
b(x, y) · ∇

(
ũj(x)ϕj(ψx(y))

)
+ σ(x, y)ũj(x)ϕj(ψx(y))

)
ϑ(x)ϕk(ψx(y)) dxdy

]

=

∫

Ω
f(x, y)ϑ(x)ϕk(ψx(y)) dxdy.

We analyze separately the different terms. Moving from the gradient expansion

∇
(
w(x)ϕs(ψx(y))

)
= ϕs(ψx(y))

[
dw(x)
dx

0

]
+ w(x)ϕ′

s(ψx(y))

[
∂ψx(y)
∂x

∂ψx(y)
∂y

]
, (7)

with ϕ′
s(ψx(y)) = dϕs(ψx(y))/dψx(y), for s = 0, . . . ,m, and w ∈ V1D, we rewrite

the diffusive contribution in (6) as the sum of 1D diffusive-, convective-, and
reactive-terms with respect to the unknowns ũj, since

∫

Ω1D

{( ∫

γx

µ(x, y)ϕj(ψx(y))ϕk(ψx(y)) dy
) dũj(x)

dx

dϑ(x)

dx
(8)

+
( ∫

γx

µ(x, y)ϕj(ψx(y))ϕ
′
k(ψx(y))

∂ψx(y)

∂x
dy

) dũj(x)

dx
ϑ(x)

+
( ∫

γx

µ(x, y)ϕ′
j(ψx(y))ϕk(ψx(y))

∂ψx(y)

∂x
dy

)
ũj(x)

dϑ(x)

dx

+
( ∫

γx

µ(x, y)ϕ′
j(ψx(y))ϕ

′
k(ψx(y))

{[∂ψx(y)
∂x

]2
+

[∂ψx(y)
∂y

]2}
dy

)
ũj(x)ϑ(x)

}
dx.

Similarly, we recast the convective term in (6) as the sum of a 1D convective
and a 1D reactive term:

∫

Ω1D

{( ∫

γx

b1(x, y)ϕj(ψx(y))ϕk(ψx(y)) dy
) dũj(x)

dx
ϑ(x) (9)

+
( ∫

γx

ϕ′
j(ψx(y))ϕk(ψx(y))

[
b1(x, y)

∂ψx(y)

∂x
+ b2(x, y)

∂ψx(y)

∂y

]
dy

)
ũj(x)ϑ(x)

}
dx.

Finally the reactive contribution in (6) leads to a reactive term with respect to
the ũj ’s:

∫

Ω1D

( ∫

γx

σ(x, y)ϕj(ψx(y))ϕk(ψx(y)) dy
)
ũj(x)ϑ(x) dx. (10)

In practice all the integrals above on γx, as well as the forcing term in (6),
are computed on the reference fiber γ̂1, by properly exploiting the map ψx (i.e.
both the Jacobian J (ŷ) and the deformation index D(ŷ)). A straightforward
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arrangement of the terms in (8), (9) and (10) allows us to reformulate problem
(5) as follows: for j = 0, . . . ,m, find ũj ∈ V1D such that, ∀ϑ ∈ V1D,

m∑

j=0

{ ∫

Ω1D

[
r̂ 1,1
kj (x)

dũj(x)

dx

dϑ(x)

dx︸ ︷︷ ︸
(I)

+ r̂ 1,0
kj (x)

dũj(x)

dx
ϑ(x) + r̂ 0,1

kj (x) ũj(x)
dϑ(x)

dx︸ ︷︷ ︸
(II)

+ r̂ 0,0
kj (x) ũj(x)ϑ(x)

︸ ︷︷ ︸
(III)

]
dx

}
=

∫

Ω1D

[ ∫

bγ1

f(x, ψ−1
x (ŷ))ϕk(ŷ)

∣∣J−1(ŷ)
∣∣ dŷ

]
ϑ(x) dx,

(11)

with k = 0, . . . ,m, where

r̂ s,t
kj (x) =

∫

bγ1

r s,tkj (x, ŷ)
∣∣J−1(ŷ)

∣∣ dŷ, for s, t = 0, 1, (12)

and

r 1,1
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕk(ŷ),

r 0,1
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕ′
j(ŷ)ϕk(ŷ)D(ŷ),

r 1,0
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕ

′
k(ŷ)D(ŷ) + b1

(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕk(ŷ),

r 0,0
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕ′
j(ŷ)ϕ

′
k(ŷ)

{[
D(ŷ)

]2
+

[
J (ŷ)

]2
}

+

σ
(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕk(ŷ) + ϕ′

j(ŷ)ϕk(ŷ)
{
b1

(
x, ψ−1

x (ŷ)
)
D(ŷ) + b2

(
x, ψ−1

x (ŷ)
)
J (ŷ)

}
.

Notice that in (11) the dependence of the reduced solution um on the main
stream and on the transversal directions is split: coefficients r̂ s,t

kj essentially col-
lect the transversal contribution to the domain Ω1D. We still recognize in (11)
an ADR problem, the terms (I), (II) and (III) representing the diffusive, convec-
tive and reactive contribution, respectively.
From (8), (9) and (10) it is easy to see that the conversion from the full to
the reduced framework is not one to one. Indeed a purely diffusive (advective)
full term also yields reduced advective-reactive (reactive) contributions. The
possible self-adjointness of the full problem is thus usually lost in the reduced
framework. This property can be preserved in a few cases by a proper choice of
the map ψx and of the reduced space Vm (see [3]).
From a computational viewpoint, solving (11) requires dealing with a small num-
ber of coupled 1D problems, provided that the modal index m is small enough.
This is likely more convenient than solving the full problem (1).
Finally we point out that the computation of the r̂ s,t

kj ’s in (12) simplifies consid-
erably under particular assumptions on the data, e.g. for constant coefficients
µ, b, σ, or when the map ψx is affine (see [3] for the details).
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4 Finite element approximation of the reduced prob-

lem

Formulation (11) can be understood as a model semidiscretization of the full
problem (1), the transversal direction being discretized via the modal basis {ϕk}.
With a view to a full discretization of (1), we introduce a partition Th of Ω1D

into sub-intervals Kj = (xj−1, xj) of width hj = xj −xj−1, and set h = maxj hj.
We associate with Th a finite element space V h

1D ⊂ V1D, with dim(V h
1D) = Nh,

such that a standard density hypothesis of V h
1D in V1D is guaranteed.

The discrete reduced formulation is thus represented by system (11) solved on the
subspace V h

1D of V1D, the test function ϑ coinciding now with the generic basis
function ϑl of the finite element space, for l = 1, . . . ,Nh. Moreover, by expanding
the unknown coefficients ũhj in terms of the basis {ϑi}

Nh

i=1 itself and by properly
varying the indices k and l, we get a linear system with a (m+1)Nh×(m+1)Nh

block matrix A. All the Nh×Nh-blocks share the sparsity pattern proper of the
adopted 1D finite element approximation, with the consequent benefits both in
storing and solving the associated algebraic system.

5 Numerical assessment

We look for a reliable and sufficiently accurate approximation of the full solution
u to (1) by properly selecting the reduced space Vm in (3), namely the modal
index m. The choice of m represents a crucial issue. It should be a trade-off
between the needs to capture the main features of u and to contain the compu-
tational cost.
We adopt here a heuristic strategy where we first fix the index m = 0 and then
we gradually increase such a value, while keeping it constant along the whole
domain Ω1D.
Let us focus on a purely diffusive differential problem exhibiting a heterogeneity
in the corresponding source term. We solve the Poisson problem on the do-
main Ω = (0, 2) × (0, 1), completed with homogeneous Dirichlet boundary con-
ditions. The forcing term is localized in 3 circular regions of Ω, the function f in
(1) coinciding with the characteristic function χD1∪D2∪D3

, with D1 =
{
(x, y) :

(x− 1.5)2 + (y − 0.5)2 ≤ 0.01
}
, D2 =

{
(x, y) : (x− 0.5)2 + (y − 0.25)2 ≤ 0.01

}

and D3 =
{
(x, y) : (x− 0.5)2 +(y− 0.75)2 ≤ 0.01

}
. The associated full solution

exhibits a peak in correspondence with each of the areas Di, for i = 1, 2, 3 (see
Fig. 2, top-left). Figure 2 gathers the reduced solutions corresponding to differ-
ent choices for the modal index m. In particular it is evident the expected failure
of the reduced solution u2 (Fig. 2, top-right) to detect the two peaks of u along
the straight line x = 0.5. On the contrary u2 already matches the exact value in
correspondence with the peak in D1 (notice the different scales). Nevertheless
the reliability of um increases as m gets larger (Fig. 2, middle and bottom row).
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Figure 2: Full solution u and reduced solutions u2, u4, u6, u8, u9 (top-bottom,
left-right)

These preliminary results confirm the convergence expected from classical
Galerkin theory with the fulfillment of the assumptions i) and ii) in Sect. 3.
It is worth pointing out that, even if a purely diffusive full model leads to an
advective-diffusive-reactive reduced problem, the latter does not seem to suffer
from convective or reactive numerical instabilities if D(ŷ) is small enough, since
the convective-reactive terms are weighted by the diffusive coefficient µ itself
(see [3]).

6 Conclusions and future developments

The preliminary numerical results in Sect. 5 suggest that the proposed dimen-
sional reduction could be a reasonable approach for containing computational
costs, in particular when both the domain and the problem at hand exhibit a
“main stream direction”. Many aspects deserve to be investigated. First of all
the extension of the reduced approach to more complex problems (e.g., Oseen,
Navier-Stokes equations). A second issue is the set-up of a mathematically sound
procedure for selecting the proper modal index m. A possible approach could
be based on the comparison between um and um+ , with m+ > m. We investi-
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gate extensively this issue in [3]. An alternative solution is based on a domain
decomposition approach, where different values of m are used in different parts
of Ω ([3]): for instance, in the example of Fig. 2, a smaller value of m could suf-
fice on the right half of the domain but not in the left half. In perspective this
approach is suited to being coupled with a proper a posteriori modeling error
analysis to get an automatic tool able to detect the most appropriate value m in
the different parts of the domain in the spirit of a model dimension adaptivity.
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[2] I. Babuška and Ch. Schwab, A posteriori error estimation for hierar-
chic models of elliptic boundary value problems on thin domains, SIAM J.
Numer. Anal., 33 (1996), pp. 221–246.

[3] A. Ern, S. Perotto and A. Veneziani, Hierarchical model reduction:
a domain decomposition approach, in preparation.
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