
MOX-Report No. 16/2022

Substructured Two-grid and Multi-grid Domain
Decomposition Methods

G. Ciaramella, T. Vanzan

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

Noname manuscript No.
(will be inserted by the editor)

Substructured Two-grid and Multi-grid Domain
Decomposition Methods

G. Ciaramella · T. Vanzan

Received: date / Accepted: date

Abstract Two-level Schwarz domain decomposition methods are very power-
ful techniques for the efficient numerical solution of partial differential equations
(PDEs). A two-level domain decomposition method requires two main compo-
nents: a one-level preconditioner (or its corresponding smoothing iterative method),
which is based on domain decomposition techniques, and a coarse correction step,
which relies on a coarse space. The coarse space must properly represent the er-
ror components that the chosen one-level method is not capable to deal with. In
the literature, most of the works introduced efficient coarse spaces obtained as
the span of functions defined on the entire space domain of the considered PDE.
Therefore, the corresponding two-level preconditioners and iterative methods are
defined in volume.

In this paper, we use the excellent smoothing properties of Schwarz domain
decomposition methods to define, for general elliptic problems, a new class of
substructured two-level methods, for which both Schwarz smoothers and coarse
correction steps are defined on the interfaces (except for the application of the
smoother that requires volumetric subdomain solves). This approach has several
advantages. On the one hand, the required computational effort is cheaper than
the one required by classical volumetric two-level methods. On the other hand,
our approach does not require, like classical multi-grid methods, the explicit con-
struction of coarse spaces, and it permits a multilevel extension, which is desirable
when the high dimension of the problem or the scarce quality of the coarse space
prevents the efficient numerical solution. Numerical experiments demonstrate the
effectiveness of the proposed new numerical framework.

G. Ciaramella
Politecnico di Milano, Italy
E-mail: gabriele.ciaramella@polimi.it

T. Vanzan
CSQI Chair, École Polytecnique Fédérale de Lausanne, Switzerland
E-mail: tommaso.vanzan@epfl.ch

2 G. Ciaramella, T. Vanzan

1 Introduction

Domain decomposition (DD) methods are powerful divide-and-conquer strategies
that permit the solution of linear systems of equations, generally discrete partial
differential equation (PDE) problems, by efficient parallelization processes [20,48,
52]. Over the course of the time, several different parallel DD strategies have been
developed; see [28] for an elegant review with a historical flavor. The first idea
of parallelizing a Schwarz method goes back to P.L. Lions, who introduced the
classical parallel Schwarz method [47]. This method is based on Dirichlet trans-
mission conditions and its discrete version is proved to be equivalent to the famous
Restricted Additive Schwarz (RAS) method [28], which was discovered much later
in [6]. Similar to RAS is the famous Additive Schwarz (AS) method introduced
in [54]. Even though both RAS and AS are based on Dirichlet transmission con-
ditions, they are not equivalent methods; see, e.g., [24] for a detailed comparison
analysis. If different transmission conditions are used, one obtains different DD
methods, like the optimized Schwarz method [27,36], the Neumann-Neumann (or
FETI) method [52,9], the Dirichlet-Neumann method [48,7], etc. The main draw-
back of these classical one-level DD methods is that they are not (weakly) scalable,
since their convergence generally deteriorates when the number of subdomains in-
creases; see, e.g., [20,52,7]. Only in few cases a particular scalability behavior has
been proved and investigated [7,10–12,16,17]. To overcome this scalability issue, a
coarse correction step is usually used. This leads to “two-level DD methods”. In the
literature, with “two-level DD method” one refers to either a two-level precondi-
tioner [1,2,4,3,19,21,23,25,26,33,39,45,44,49,50,55], or to a two-level stationary
method [8,9,14,22,30–32,34,35,37]. While in the first class one seeks for a coarse-
space matrix to add to the one-level DD preconditioner, in the second class the
goal is to design a correction step, where the residual equation is solved on a coarse
space. This second class follows an idea similar to the one of multi-grid methods
[42].

For any given one-level DD method (stationary or preconditioning), the choice
of the coarse space influences very strongly the convergence behavior of the cor-
responding two-level method. For this reason, the main focus of all the references
mentioned above is the definition of different coarse spaces and new strategies to
build coarse space functions, leading to efficient two-level DD stationary and pre-
conditioning methods. Despite the mentioned references consider several one-level
DD methods and different partial differential equation (PDE) problems, it is still
possible to classify them in two main groups. These depend on the idea governing
the definition of the coarse space. To explain it, let us consider a DD iterative
method (e.g., RAS) applied to a well-posed PDE problem. Errors and residuals
of the DD iterative procedure have generally very special forms. The errors are
predominant in the overlaps and are harmonic, in the sense of the underlying PDE
operator, in the interior of the subdomains (excluding the interfaces). The residuals
are predominant on the interfaces and zero outside the overlap. For examples and
more details, see, e.g., [32,15,14]. This difference motivated, sometimes implicitly,
the construction of different coarse spaces. On the one hand, many references use
different techniques to define coarse functions in the overlap (where the error is
predominant), and then extend them on the remaining part of the neighboring
subdomains; see, e.g., [19,21,23,25,26,44,45,49,50]. On the other hand, in other
works the coarse space is created by first defining basis functions on the interfaces

Substructured Multi-grid DD Methods 3

(where the residual is non-zero), and then extending them (in different ways) on
the portions of the neighboring subdomains; see, e.g., [1,2,8,9,14,30,33,32,34,35,
44,37]. For a good, compact and complete overview of several of the different coarse
spaces, we refer to [44, Section 5]. For Helmholtz and time-harmonic equations, we
refer to [3,4,39], where the coarse space is based on a (volumetric) coarse mesh.
For other different techniques and other related discussions see, e.g., [20,22,30,31,
40,55].

The starting point of this work is related to an important property of Schwarz
methods: one-level Schwarz iterative methods are generally very efficient smoothers;
see, e.g., [27,10,13,37] and references therein. This property was already discussed
in [42, Chapter 15], where Schwarz methods are used as classical smoothers in the
context of multi-grid methods or to define local defect corrections; see, e.g., [41,
37]. In these frameworks, Schwarz methods are used to smooth and correct the
approximation in some subdomains of the entire computational domain. However,
as we already mentioned, after one Schwarz smoothing iteration, the residuals are
generally predominant on the interfaces and in some cases even zero outside the
interfaces. This remark is the key starting point of our work. We introduce for
the first time so-called two-level and multi-level DD substructured methods. We
call these methods Geometric 2-level Substructured (G2S) method and Geomet-
ric Multi-level Substructured (GMS) method. The term “substructured” indicates
that iterations and coarse correction steps are defined on the interfaces (or more
precisely on the substructures1) of the domain decomposition (note that volumetric
subdomains solves are still required to apply the smoother). With this respect, our
methods are defined in the same spirit as two-level methods whose coarse spaces
are extensions in volume of interfaces basis functions: they attempt to correct the
residual only where it is truly necessary. The G2S method is essentially a two-grid
parallel Schwarz method defined on the substructures, for which the coarse correc-
tion is performed on coarser interface grids. The GMS is the extension of the G2S
to a multi-level framework. In other words, by the G2S and GMS methods, we pro-
pose a new methodology that attempts the best use of Schwarz smoothers in the
context of two-grid and multi-grid methods. Direct numerical experiments show
that these methods converge in less iterations than classical two-grid methods de-
fined in volume and using a Schwarz smoother. In many cases, this improvement in
terms of iteration number is significantly high. Moreover, our new methods have,
in addition, other advantages. On the one hand, like classical multi-grid methods,
the G2S method does not require the explicit construction of coarse spaces, and
it permits a multilevel extension, which is desirable when the dimension of the
coarse space becomes too large. On the other hand, since the entire solution pro-
cess is defined on the substructures, less memory storage is required and it is not
necessary to store the entire approximation array on each point of the (discrete)
domain. For a three-dimensional problem with mesh size h, a discrete substructure
array is of size O(1/h2). This is much smaller than O(1/h3), which is the size of an
array corresponding to an approximation in volume. For this reason, the resulting

1 Notice that the term “substructured” refers very often to DD methods that are defined
on non-overlapping subdomains; see, e.g., [48,52]. However, in this work it indicates methods
that are purely defined on the interfaces, independently of the type of (overlapping or non-
overlapping) decomposition of the domain; see, e.g., [27, Section 5]. Here, we consider an
overlapping domain decomposition.

4 G. Ciaramella, T. Vanzan

Ω

Ωj

Ωj

Sj

Fig. 1: Decomposition of a rectangular Ω into nine overlapping subdomains (left),
and representation of the substructure Sj for the central subdomain (right).

interface restriction and prolongation operations are generally much cheaper and
the dimension of the coarse space is much smaller.

This paper is organized as follows. In Section 2, we formulate the classical
parallel Schwarz method in a substructured form. This is done at the continuous
level and represents the starting point for the G2S method introduced in Section
3, where also a convergence analysis is presented for two subdomains in 2d. In
Section 4, we discuss implementation details and multilevel extensions of the G2S
method. Extensive numerical experiments are presented in Section 5, where the
robustness of the proposed methods with respect to mesh refinement and physical
parameters is studied. Finally, we present our conclusions in Section 6.

2 Substructured Schwarz domain decomposition methods

Consider a bounded Lipschitz domain Ω ⊂ Rd for d ∈ {2, 3}, a general second-
order linear elliptic operator L and a function f ∈ L2(Ω). Our goal is to introduce
new domain-decomposition based methods for the efficient numerical solution of
the general linear elliptic problem

Lu = f in Ω, u = 0 on ∂Ω, (1)

which we assume to be uniquely solved by a u ∈ H1
0 (Ω).

To formulate our methods, we need to fix some notation. Given a bounded set
Γ with boundary ∂Γ , we denote by ρΓ (x) the distance of x ∈ Γ from ∂Γ . The

space H
1/2
00 (Γ) is then defined as

H
1/2
00 (Γ) := {v ∈ H1/2(Γ) : v/ρ

1/2
Γ ∈ L2(Γ)}, (2)

and it is also known as the Lions-Magenes space; see, e.g., [46,48,51]. Equivalently,

H
1/2
00 (Γ) can be defined as the space of functions in H1/2(Γ) such that their

extensions by zero to a superset Γ̃ of Γ are in H1/2(Γ̃); see, e.g., [51].

Next, consider a decomposition of Ω into N overlapping Lipschitz subdomains
Ωj , that is Ω = ∪j∈IΩj with I := {1, 2, . . . , N}. For any j ∈ I, we define the
set of neighboring indexes Nj := {` ∈ I : Ωj ∩ ∂Ω` 6= ∅}. Notice that j /∈ Nj ,
and ∪j∈INj = I. Given a j ∈ I, we introduce the substructure of Ωj defined
as Sj := ∪`∈Nj

(
∂Ω` ∩ Ωj

)
, that is the union of all portions of ∂Ω` intersecting

Substructured Multi-grid DD Methods 5

with Ωj with ` ∈ Nj .2 The sets Sj are open and their closures are Sj = Sj ∪ ∂Sj ,
with ∂Sj := ∪`∈Nj

(
∂Ωj ∩∂Ω`

)
. The substructure of Ω is defined as S := ∪j∈ISj .

Fig. 1 provides an illustration of substructures corresponding to a commonly used
decomposition of a rectangular domain. We denote by E0j : L2(Sj) → L2(S) the
extension by zero operator. Now, we consider a set of continuous functions χj :
Sj → [0, 1], j = 1, . . . , N , such that

χj(x) ∈


(0, 1] for x ∈ Sj ,
{1} for x ∈ Sj \ ∪`∈Nj

S`,
{0} for x ∈ ∂Sj \ ∂Ω,

and
∑
j∈I E

0
j χj ≡ 1, which means that the functions χj form a partition of

unity. Further, we assume that the functions χj , j ∈ I, satisfy the condition

χj/ρ
1/2
Sj

∈ L∞(Sj). This is satisfied, for example, in the case of Fig. 1 with
piecewise linear partition of unity function χj .

For any j ∈ I, we define Γ int
j := ∂Ωj ∩

(
∪`∈Nj

Ω`
)

and introduce the following
trace and restriction operators

τj : H1(Ωj)→ H1/2(Sj) and τ intj : H1/2(S)→ H1/2(Γ int
j).

It is well known that (1) is equivalent to the domain decomposition system (see,
e.g., [48])

Luj = fj in Ωj , uj =
∑
`∈Nj

E0` (χ`τ`u`) on Γ int
j , uj = 0 on ∂Ωj \ Γ int

j , (3)

where fj ∈ L2(Ωj) is the restriction of f onΩj . Notice that χ`τ`u` lies inH
1/2
00 (S`),

E0` (χ`τ`u`) ∈ H1/2(S). Moreover, for ` ∈ Nj , it holds that τ intj E0` (χ`τ`u`) ∈
H

1/2
00 (Γ int

j) if Γ int
j (∂Ωj , and τ intj E0` (χ`τ`u`) ∈ H1/2(Γ int

j) if Γ int
j = ∂Ωj .

Given a j ∈ I such that ∂Ωj \ Γ int
j 6= ∅, we define the extension operator

Ej : H
1/2
00 (Γ int

j)×L2(Ωj)→ H1(Ωj) as w = Ej(v, fj), where w solves the problem

Lw = fj in Ωj , w = v on Γ int
j , w = 0 on ∂Ωj \ Γ int

j (4)

for a v ∈ H
1/2
00 (Γ int

j). Otherwise, if Γ int
j ≡ ∂Ωj , we define Ej : H1/2(Γ int

j) ×
L2(Ωj)→ H1(Ωj) as w = Ej(v, fj), where w solves the problem

Lw = fj in Ωj , w = v on Γ int
j , (5)

for a v ∈ H1/2(Γ int
j).

The domain decomposition system (3) can be then written as

uj = Ej(0, fj) + Ej
(
τ intj

∑
`∈Nj

E0` (χ`τ`u`), 0
)
, j ∈ I. (6)

If we define vj := χjτjuj , j ∈ I, then system (6) becomes

vj = gj +
∑
`∈Nj

Gj,`(v`), j ∈ I, (7)

2 Notice that the substructure of a subdomain is sometimes called “skeleton”; see, e.g., [17].

6 G. Ciaramella, T. Vanzan

where gj := χjτjE(0, fj) and the operators Gj,` : H
1/2
00 (S`) → H

1/2
00 (Sj) are

defined as
Gj,`(·) := χjτjEj

(
τ intj E0` (·), 0

)
. (8)

System (7) is the substructured form of (3). The equivalence between (3) and (7)
is explained by the following theorem.

Theorem 1 (Relation between (3) and (7)) Let uj ∈ H1(Ωj), j ∈ I, solve

(3), then vj := χjτjuj, j ∈ I, solve (7). Let vj ∈ H1/2
00 (Sj), j ∈ I, solve (7), then

uj := Ej(τ intj

∑
`∈Nj

E0` (v`), fj), j ∈ I, solve (3).

Proof The first statement is proved before Theorem 1, where the substructured
system (7) is derived. To obtain the second statement, we use (7) and the definition
of uj to write vj = χjτjEj(τ intj

∑
`∈Nj

E0` (v`), fj) = χjτjuj . The claim follows by

using this equality together with the definitions of uj and Ej .

Take any function w ∈ H1
0 (Ω) and consider the initialization u0j := w|Ωj

, j ∈ I.
The parallel Schwarz method (PSM) is then given by

Lunj = fj in Ωj , u
n
j =

∑
`∈Nj

E0` (χ`τ`u
n−1
`) on Γ int

j , unj = 0 on ∂Ωj \ Γ int
j , (9)

for n ∈ N+, and has the substructured form

vnj = gj +
∑
`∈Nj

Gj,`(v
n−1
`), j ∈ I, (10)

initialized by v0j := χjτju
0
j ∈ H

1/2
00 (Sj). Notice that the iteration (10) is well posed

in the sense that vnj ∈ H
1/2
00 (Sj) for j ∈ I and n ∈ N. Equations (10) and (7) allow

us to obtain the substructured PSM in error form, that is

enj =
∑
`∈Nj

Gj,`(e
n−1
`), j ∈ I, (11)

for n ∈ N+, where enj := vj−vnj , for j ∈ I and n ∈ N. Equation (7) can be written

in the matrix form Av = b, where v = [v1, . . . , vN]>, b = [g1, . . . , gN]> and the
entries of A are

[A]j,j = Id,j and [A]j,` = −Gj,`, j, ` ∈ I, j 6= `, (12)

where Id,j are the identities on L2(Sj), j ∈ I. Similarly, we define the operator G
as

[G]j,j = 0 and [G]j,` = Gj,`, j, ` ∈ I, j 6= `,

which allows us to write equations (10) and (11) as vn = Gvn−1 + b and en =
Gen−1, respectively, where vn := [vn1 , . . . , v

n
N]> and en := [en1 , . . . , e

n
N]>. Notice

that G = I− A, where I := diagj=1,...,N (Id,j). Moreover, we wish to remark that
neither the operator A nor G is necessarily symmetric.

If the iteration vn = Gvn−1 +b converges, then the limit is the solution to the
problem Av = b. From a numerical point of view, this is not necessarily true if the
(discretized) subproblems (9) are not solved exactly. For this reason, we assume
in what follows that the subproblems (9) are always solved exactly.

Substructured Multi-grid DD Methods 7

3 G2S: Geometric two-level substructured DD method

In this section, we introduce our G2S method. The main drawback of many two-
level DD methods (including our two-level G2S method) is that the dimension
of the coarse space can grow for increasing number of subdomains. This situation
becomes even worse if the basis functions are not “good enough”, a fact that would
require an even larger dimension of the coarse space. In this case, the extension
from two-level to multi-level framework would be suitable. These comments lead to
the following questions. Is it possible to avoid the explicit construction of a coarse
space? Is there any practical way to implicitly define a coarse space? Can one
define a framework in which an extension of the two-level method to a multi-level
framework is possible and easy?

In this section, we answer the above questions by introducing the so-called
Geometric 2-level Substructured (G2S) method, which is a two-grid-type method
(allowing a multi-grid generalization). This is detailed in Section 3.1. The corre-
sponding convergence analysis for a two-subdomain case is presented in Section
3.2.2.

3.1 Description of the G2S method

Let us consider a discretization of the substructures such that Sj is approximated

by a mesh of Nj points, j ∈ I. The discrete substructures are denoted by SNj

j ,
j ∈ I. An example is given in Figure 2 (left). Moreover, we set Ns :=

∑
j∈I Nj .

Ωj Ωj

Fig. 2: Left: The subdomain Ωj as in Figure 1, its substructure Sj (blue lines)

and the corresponding discrete substructure SNj

j (black circles). Right: The coarse

discrete substructure SMj

j is marked by red crosses.

The corresponding finite-dimensional discretization of the operators Gj,` in (8) are
denoted by Gh,j,` ∈ RNj×N` . Similarly as in (12), we define the block operators

Ah ∈ RN
s×Ns

and Gh ∈ RN
s×Ns

as

[Ah]j,j = Ih,j , [Ah]j,` = −Gh,j,`, j, ` ∈ I, j 6= `,

[Gh]j,j = 0, [Gh]j,` = Gh,j,`, j, ` ∈ I, j 6= `,
(13)

where Ih,j ∈ RNj×Nj are identity matrices. Notice that Ah = Ih − Gh, where
Ih = diag(Ih,1, . . . , Ih,N). Therefore, the substructured problem Av = b becomes

Ahv = bh,

8 G. Ciaramella, T. Vanzan

Algorithm 1 Two-level substructured domain decomposition method

Require: v0 (initial guess)
1: vn = Ghv

n−1 + bh, n = 1, . . . , n1 (DD pre-smoothing steps)
2: r = bh −Ahvn1 (compute the residual)
3: Solve A2hvc = Rr (solve the coarse problem)
4: v0 = vn1 + Pvc (coarse correction)
5: vn = Ghv

n−1 + bh, n = 1, . . . , n2 (DD post-smoothing steps)
6: Set v0 = vn2 (update)
7: Repeat from 1 to 6 until convergence

where bh = [bh,1, . . . ,bh,N], and the PSM is then

vn = Ghv
n−1 + bh. (14)

The matrices Gh and Ah = Ih − Gh are not necessarily symmetric and never
assembled explicitly. Instead their action of given vectors is computed directly.
Notice that the computation of the action of Gh,j,` on a given vector requires a
subdomain solve. We insist on the fact that this subdomain solve is performed
exactly. Furthermore, if the discrete PSM (14) converges, then ρ(Gh) < 1 and the
matrix Ah is invertible.

Next, we introduce coarser discretizations SMj

j , j ∈ I, where the jth substruc-
ture is discretized with Mj < Nj points. An example is given in Figure 2 (right).
The total number of discrete coarse points is Ms :=

∑
j∈IMj . For each j ∈ I we

introduce restriction and prolongation matrices Rj ∈ RMj×Nj and Pj ∈ RNj×Mj .
These could be classical interpolation operators used, e.g., in multi-grid methods.
If for example Sj is a one-dimensional interval, then the prolongation matrix can
be chosen as

Pj :=


1
2

1 1
2

· · ·
1
2

1 1
2
· · ·

1
2
· · ·
· · · 1

2
· · · 1

2
1 1

2


>

, (15)

and the corresponding restriction matrix would be the full weighting restriction
operator Rj := 1

2P
>
j . The global restriction and prolongation matrices are defined

as R := diag(R1, . . . , RN) ∈ RM
s×Ns

and P := diag(P1, . . . , PN) ∈ RN
s×Ms

. The
restriction of Ah on the coarse level is then defined as A2h := RAhP . Notice that
this matrix can be either precomputed exactly or assembled in an approximate
way. For more details see Section 4.1.

Remark 1 Notice that, for the definition of the G2S method, fine and coarse meshes

need not to be nested and the sets SMj

j need not to coincide on overlapping areas.
In this manuscript, we work with nested meshes. The case of non-nested meshes is
beyond the scope of this paper and will be the subject of future work. Moreover,
it is natural to include cross points in both fine and coarse discrete substructures,
since these are generally the corners of the (overlapping) subdomains (see, e.g.,
Fig. 2 and 7).

The G2S procedure is defined by the following Algorithm 1, where n1 and n2

are the numbers of the pre- and post-smoothing steps. This is a classical two-grid
type iteration, but instead of having the classical grids in volume, we consider

Substructured Multi-grid DD Methods 9

Ω

Ω1 Ω2

h

S2S1

P←−

R
−→

Ω

Ω1 Ω2

2h

S2S1

Fig. 3: Two-subdomain decomposition, substructures and their discretizations.

two discrete levels on the substructures. This has the advantage of performing all
restriction and interpolation operations of smaller coarse problems. More details
are given in Section 4.1. We insist on the fact that the G2S method does not
require the explicit construction of a coarse space Vc, but it exploits directly a
discretization of the interfaces. Moreover, it is clear that a simple recursion allows
us to embed the G2S method into a multi-grid framework. Further implementation
details are discussed in Section 4.

Formally, one iteration of our G2S method can be represented as

vnew = Gn2

h (Ih − PA−1
2hRAh)Gn1

h vold + M̃bh, (16)

where M̃ is a matrix which acts on the right-hand side vector bh and which can
be regarded as the preconditioner corresponding to our two-level method. In error
form, the iteration (16) becomes

enew = The
old with Th := Gn2

h (Ih − PA−1
2hRAh)Gn1

h ,

where enew := v − vnew and eold := v − vold.

3.2 Analysis of the G2S method

In this section, we analyze the convergence of the G2S method. To do so, we recall
our model problem (1) and assume a two-subdomain decomposition Ω = Ω1 ∪Ω2

such that the two substructures S1 and S2 are two segments of the same length
L̃. Notice that in this case the substructures coincide with the interfaces. An ex-
ample for Ω equal to a rectangle is given in Figure 3. For a given ` ∈ N+, ` ≥ 2,
we discretize (1) using a uniform grid of Nh = 2` − 1 points on each substructure

(without counting the two points on ∂Ω) so that the grid size is h = L̃
Nh+1 . Notice

that Nh = N1 = N2, where Nj are used in Section 3.1 to denote the number
of discretization points of the substructures. We also introduce a coarser mesh

of Nc = 2`−1 − 1 points on each substructure and mesh size hc = L̃
Nc+1 . We

define the geometric prolongation operator P ∈ R2Nh×2Nc as P := diag(P̃ , P̃),

where P̃ = P1 = P2 is the matrix given in (15). The operator R ∈ R2Nc×2Nh

is defined as R := diag(R̃, R̃), where R̃ is the full weighting restriction matrix

R̃ := 1
2 P̃
>. Due to the special decomposition into two subdomains, let us simplify

the notation defining Gh,1 := Gh,1,2 and Gh,2 := Gh,2,1, that is the action of Gh,j

10 G. Ciaramella, T. Vanzan

represents a subdomain solution in the j-th subdomain. We suppose that the op-
erators Gh,1 and Gh,2 have eigenvectors ψψψk with eigenvalues ρj(k), k = 1, . . . , Nh,
j = 1, 2. Here, ψψψk are discrete Fourier modes given by (ψψψk)j = sin(kπhj), for
j, k = 1, . . . , Nh. Notice that ψψψ>` ψψψk = δ`,k

Nc+1
2 , with δ`,k the Kronecker delta.

It is well-known that the actions of R̃ and P̃ on the combination of a low-
frequency mode ψψψk with its high-frequency companion ψψψk̃, with k̃ = Nh − k + 1,
are

R̃
[
ψψψk ψψψk̃

]
= φφφk

[
c2k −s2k

]
, P̃φφφk = (c2kψψψk − s

2
kψψψk̃) =

[
ψψψk ψψψk̃

] [c2k
−s2k

]
, (17)

where ck = cos(kπ h2), sk = sin(kπ h2) for k = 1, . . . , Nc and (φφφk)j = sin(kπ2hj),

for k = 1, . . . , Nh+1
2 − 1 and j = 1, . . . , Nh+1

2 − 1 = Nc (notice that the two points
on ∂Ω are excluded); see, e.g., [42,13]. The vectors φφφk are Fourier modes on the
coarse grid. As before, the coarse matrix is A2h = RAhP , and the G2S iteration
operator is Th = Gn2

h (I − PA−1
2hRAh)Gn1

h .

In the following subsections, we prove that G2S method is well posed and
convergent. Well-posedness follows by the invertibility of the coarse matrix A2h,
which is proved in Section 3.2.1 along with an interpretation of the G2S method. A
detailed convergence analysis is presented in Section 3.2.2, where sharp estimates
of the spectral radius of Th are derived under certain assumptions. Finally, in
Section 3.2.3 we discuss the relations between our G2S method and a classical
two-grid method in volume using the PSM as a smoother.

3.2.1 Interpretation of G2S as a general two-level method

Let us begin by considering any invertible matrix U ∈ R2Nc×2Nc and compute

Th = Gn2

h (I − PA−1
2hRAh)Gn1

h

= Gn2

h (I − PUU−1(RAhP)−1UU−1RAh)Gn1

h

= Gn2

h (I − PUU−1[U(U−1RAhPU)U−1]−1UU−1RAh)Gn1

h

= Gn2

h (I − PU(U−1RAhPU)−1U−1RAh)Gn1

h

= Gn2

h (I − P̂ Â−1
2h R̂Ah)Gn1

h =: T̂h,

(18)

where P̂ := PU , R̂ = U−1R and Â2h := R̂AhP̂ .

Let us define the orthogonal matrices Φ = 2
Nc+1 [φφφ1, . . . ,φφφNc

] and U := diag(Φ,Φ),

and the operators P̂ := PU , R̂ = U>R3 and Â2h := R̂AhP̂ . Notice that the
columns of P̂ := PU are the vectors spanning the space

Vc = (spank=1,...,Nc
{P̃φφφk})

2 = (spank=1,...,Nc
{c2kψψψk − s

2
kψψψk̃})

2 ⊂ R2Nh , (19)

where the relation (17) is used. This means that the G2S method can be written

as a two-level method characterized by an iteration operator T̂h defined via the

3 Notice that (P̂)> = U>P> = 2U>R = 2R̂, since R̃ = 1
2
P̃>.

Substructured Multi-grid DD Methods 11

prolongation and restriction operators P̂ and R̂. Moreover, in this case the actions
of P̂ and R̂ on two vectors can be expressed by

P̂

[
v
w

]
=

[
Nc∑
k=1

(v)kP̃φφφk,
Nc∑
k=1

(w)kP̃φφφk

]>
,

R̂

[
f
g

]
=
[
〈12 P̃φφφ1, f〉, · · · , 〈12 P̃φφφNc

, f〉, 〈12 P̃φφφ1,g〉, · · · , 〈12 P̃φφφNc
,g〉
]>

,

(20)

for any v,w ∈ RNc and any f ,g ∈ RNh , where 〈·, ·〉 denotes the usual Euclidean
scalar product.

Now, we turn our attention to the matrix A2h, whose invertibility is proved in
the following lemmas.

Lemma 1 (Invertibility of a coarse operator Ac) Let (Xj , 〈·, ·〉j), j = 1, 2
be two inner-product spaces. Define the space X := X2 × X1 endowed with the
inner product 〈(a, b), (c, d)〉 := 〈a, c〉2 + 〈b, d〉1 for all (a, b), (c, d) ∈ X . Consider
some bases {ψj`}`∈N ⊂ Xj, j = 1, 2. Let Vc be a finite-dimensional subspace of X
given by the span of the basis vectors (ψ2

1 , 0), . . . , (ψ2
m, 0) and (0, ψ1

1), . . . , (0, ψ1
m),

for a finite integer m > 0. Let PVc
be the orthogonal projection operator onto Vc.

Consider an invertible operator A : X → X and the matrix Ac = RAP ∈ R2m×2m,
where P and R are defined as

P
[
v
w

]
:=

[
m∑
k=1

(v)kψ
2
k,

m∑
k=1

(w)kψ
1
k

]>
,

R
[
f
g

]
:=
[
〈ψ2

1 , f〉2, · · · , 〈ψ2
m, f〉2, 〈ψ1

1 , g〉1, · · · , 〈ψ1
m, g〉1

]>
.

(21)

Then Ac has full rank if and only if PVc
(Av) 6= 0 ∀v ∈ Vc \ {0}.

Proof We first show that if PVc
(Av) 6= 0 for any v ∈ Vc \ {0}, then Ac = RAP

has full rank. This result follows from the rank-nullity theorem, if we show that
the only element in the kernel of Ac is the zero vector. To do so, we recall the
definitions of P and R given in (21). Clearly, Pz = 0 if and only if z = 0. For
any z ∈ R2m the vector Pz is in Vc. Since A is invertible, then APz = 0 if and
only if z = 0. Moreover, by our assumption it holds that PVc

(APz) 6= 0. Now, we
notice that Rw 6= 0 for all w ∈ Vc \ {0}, and Rw = 0 for all w ∈ V ⊥c , where
V ⊥c denotes the orthogonal complement of Vc in X with respect to 〈·, ·〉. Since
(X , 〈·, ·〉) is an inner-product space, we have APz = PVc

(APz) + (I − PVc
)(APz)

with (I − PVc
)(APz) ∈ V ⊥c . Hence, RAPz = RPVc

(APz) 6= 0 for any non-zero
z ∈ R2m.

Now we show that, if Ac = RAP has full rank, then PVc
(Av) 6= 0 for any

v ∈ Vc \ {0}. We proceed by contraposition and prove that if there exists a v ∈
Vc \ {0} such that Av ∈ V ⊥c , then Ac = RAP has not full rank. Assume that
there is a v ∈ Vc \ {0} such that Av ∈ V ⊥c . Since v is in Vc, there exists a nonzero
vector z ∈ R2m such that v = Pz. Hence APz ∈ V ⊥c . We can now write that
Acz = R(APz) = 0, which implies that Ac has not full rank.

Lemma 2 (Invertibility of A2h) Assume that ρ1(k), ρ2(k) ∈ [0, 1) for all k and

that ρ1(k) ≥ ρ1(k̃) and ρ2(k) ≥ ρ2(k̃) for any k = 1, . . . , Nc and k̃ = Nh − k + 1.
The matrix A2h := RAhP ∈ R2Nc×2Nc has full rank.

12 G. Ciaramella, T. Vanzan

Proof Since A2h = UÂ2hU
>, it is enough to show that Â2h is invertible. To do so,

we recall that Â2h = R̂AhP̂ and we wish to prove that for any z ∈ Vc \ {0} (with
Vc defined in (19)) it holds PVc

(Ahz) 6= 0 and then invoke Lemma 1. Here the
orthogonality is understood with respect to the classical scalar product of R2Nh .
First, it is possible to show that the orthogonal complement of Vc is

V ⊥c = (spank=1,...,Nc
{c−2
k ψψψk + s−2

k ψψψk̃,ψψψ(Nh+1)/2})
2.

Notice that dim(Vc) = 2Nc, dim(V ⊥c) = 2(Nc+1), and dim(Vc)+dim(V ⊥c) = 2Nh,
since Nh = 2Nc + 1.

Since the vectors spanning Vc in (19) are orthogonal, we have PVc
(w) = P̂ P̂>w

for any w ∈ R2Nh , Since P̂ has full rank, to prove that PVc
(Ahz) 6= 0 for any

z ∈ Vc \ {0} it is sufficient to show that P̂>Ahv 6= 0 holds for any column v of P̂ ,

that is any element of the form [(P̃φφφk)> , (P̃φφφ`)
>]>. Therefore, we use (17) and

compute

Ah

[
P̃φφφk
P̃φφφ`

]
= Ah

[
c2kψψψk − s2kψψψk̃
c2`ψψψ` − s2`ψψψ ˜̀

]
=

[
c2kψψψk − s2kψψψk̃ − (ρ1(`)c2`ψψψ` − ρ1(˜̀)s2`ψψψ ˜̀)
c2`ψψψ` − s2`ψψψ ˜̀− (ρ2(k)c2kψψψk − ρ2(k̃)s2kψψψk̃)

]

=

[
P̃φφφk − ρ1(`)P̃φφφ` − (ρ1(`)− ρ1(˜̀))s2`ψψψ ˜̀
P̃φφφ` − ρ2(k)P̃φφφk − (ρ2(k)− ρ2(k̃))s2kψψψk̃

]
,

(22)

for any k, ` = 1, . . . , Nc, where k̃ = Nh−k+1 and ˜̀= Nh−`+1, for k, ` = 1, . . . , Nc.
Now, a direct calculation shows that

s2kψψψk̃ = − s4k
s4k + c4k

P̃φφφk︸ ︷︷ ︸
PVc (s

2
kψψψk̃

)

+
1

s−4
k + c−4

k

(c−2
k ψψψk + s−2

k ψψψk̃)︸ ︷︷ ︸
P
V⊥c

(s2kψψψk̃
)

,

for any k = 1, . . . , Nc. Inserting this equality into (22), multiplying to the left

with [(P̃φφφk)> , (P̃φφφ`)
>] and using (17) together with the orthogonality relation

ψψψ>` ψψψk = δ`,k
Nc+1

2 , we obtain for k 6= ` that

[
P̃φφφk
P̃φφφ`

]>
Ah

[
P̃φφφk
P̃φφφ`

]
= ‖P̃φφφk‖

2
2 + ‖P̃φφφ`‖

2
2 6= 0.

Similarly, for k = ` we obtain that

[
P̃φφφk
P̃φφφ`

]>
Ah

[
P̃φφφk
P̃φφφ`

]
=
(

2−(ρ1(k)−ρ2(k))+
s4k(ρ2(k)−ρ2(k̃)+ρ1(k)−ρ1(k̃))

s4k+c4k

)
‖P̃φφφk‖

2
2.

A direct calculation using the assumptions on ρj(k) shows that this is nonzero.

Substructured Multi-grid DD Methods 13

3.2.2 Convergence of the G2S method

The previous section focused on the well-posedness of the method. In particular, we
proved Lemma 2 that guarantees that A2h is invertible and that the G2S method
is well posed. In this section, our attention is turned to the analysis of the G2S
convergence behavior. This is performed by studying the spectral properties of the
G2S iteration operator. Our first key result is the following technical lemma.

Lemma 3 Consider the G2S matrix Th := Gn2

h (I − PA−1
2hRAh)Gn1

h . The action

of Th on

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
is given by

Th

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
G̃k, (23)

where G̃k := Dn2(k)(Dn1(k)− V (k)Λ−1
2 (k)Λ1(k)) with

Λ1(k) := V (k)>H(k)Dn1(k), Λ2(k) := V (k)>H(k)V (k),

V (k) :=


c2k 0
−s2k 0

0 c2k
0 −s2k

 , H(k) :=


1 0 −ρ1(k) 0

0 1 0 −ρ1(k̃)
−ρ2(k) 0 1 0

0 −ρ2(k̃) 0 1

 ,
and Dn(k) is given by

Dn(k):=


π(k)n 0 0 0

0 π(k̃)n 0 0
0 0 π(k)n 0

0 0 0 π(k̃)n

, Dn(k):=


0 0 π21(k,n) 0

0 0 0 π21(k̃,n)
π12(k,n) 0 0 0

0 π12(k̃,n) 0 0


for n even and for n odd, respectively, whose entries are π(k) := (ρ1(k)ρ2(k))1/2,

π12(k, n) := ρ1(k)
n−1
2 ρ2(k)

n+1
2 , and π21(k, n) := ρ1(k)

n+1
2 ρ2(k)

n−1
2 .

Proof We consider the case in which both n1 and n2 are even. The other cases
can be obtained by similar arguments. Since n1 is even, we have that

Gn1

h =

[
(Gh,1Gh,2)n1/2 0

0 (Gh,2Gh,1)n1/2

]
.

Because of the relation (Gh,1Gh,2)n1/2ψψψk = (Gh,2Gh,1)n1/2ψψψk = π(k)n1ψψψk, where

π(k) := (ρ1(k)ρ2(k))1/2, we get

Gn1

h

[
ψψψkψψψk̃ 0 0
0 0 ψψψkψψψk̃

]
=

[
ψψψkψψψk̃ 0 0
0 0 ψψψkψψψk̃

]
π(k) 0 0 0

0 π(k̃) 0 0
0 0 π(k) 0

0 0 0 π(k̃)


n1

=

[
ψψψkψψψk̃ 0 0
0 0 ψψψkψψψk̃

]
Dn1(k).

14 G. Ciaramella, T. Vanzan

Similarly, we obtain that Gn2

h

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
Dn2(k). Moreover,

direct calculations reveal that

Ah

[
ψψψkψψψk̃ 0 0
0 0 ψψψkψψψk̃

]
=

[
ψψψkψψψk̃ 0 0
0 0 ψψψkψψψk̃

] 1 0 −ρ1(k) 0

0 1 0 −ρ1(k̃)
−ρ2(k) 0 1 0

0 −ρ2(k̃) 0 1

=

[
ψψψkψψψk̃ 0 0
0 0 ψψψkψψψk̃

]
H(k)

(24)

and

R

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
φφφk 0
0 φφφk

] [
c2k −s2k 0 0
0 0 c2k −s2k

]
=

[
φφφk 0
0 φφφk

]
V (k)>, (25)

where we used (17). It follows that RAhG
n1

h

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=
[
φφφk 0
0 φφφk

]
Λ1(k). Let us

now study the action of the coarse matrix A2h on
[
φφφk 0
0 φφφk

]
. We use (17), (24) and

(25) to write

A2h

[
φφφk 0
0 φφφk

]
= RAhP

[
φφφk 0
0 φφφk

]
= RAh

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
V (k)

= R

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
H(k)V (k) =

[
φφφk 0
0 φφφk

]
V (k)>H(k)V (k).

Thus, we have A2h

[
φφφk 0
0 φφφk

]
=
[
φφφk 0
0 φφφk

]
Λ2(k), and since A2h is invertible by Lemma

2, we get [
φφφk 0
0 φφφk

]
= A−1

2h

[
φφφk 0
0 φφφk

]
Λ2(k). (26)

A direct calculation reveals that the eigenvalues of Λ2(k) are λ1,2 = c4k + s4k ±√
(c4kρ1(k) + s4kρ1(k̃))(c4kρ2(k) + s4kρ2(k̃)) and they are nonzero for k = 1, . . . , Nc.

Hence, Λ2(k) is invertible and, using (26), we get

A−1
2h

[
φφφk 0
0 φφφk

]
Λ1(k) = A−1

2h

[
φφφk 0
0 φφφk

]
Λ2(k)Λ−1

2 (k)Λ1(k) =

[
φφφk 0
0 φφφk

]
Λ−1

2 (k)Λ1(k),

Summarizing our results and using the definition of Th, we conclude that

Th

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
Dn2(k)

Dn1(k)−


c2k 0
−s2k 0

0 c2k
0 −s2k

Λ−1
2 (k)Λ1(k)


and our claim follows.

Using Lemma 3, it is possible to factorize the iteration matrix Th. This factor-
ization is obtained in the following theorem.

Substructured Multi-grid DD Methods 15

Theorem 2 (Factorization of the iteration matrix Th) There exists an in-

vertible matrix Q such that Th = QG̃Q−1, where the G2S iteration matrix Th is
defined in Lemma 3 and

G̃ =


G̃1

. . .

G̃Nc

γ1(Nh+1
2)

γ2(Nh+1
2)

 ,

where the matrices G̃k ∈ R4×4 are defined in Lemma 3 and γj(
Nh+1

2) depend on

n1, n2 and the eigenvalues ρj(
Nh+1

2) of Gh,j, for j = 1, 2.

Proof We define the invertible matrix

Q :=

[
ψψψ1 ψψψNh

0 0 · · · ψψψNc
ψψψNc+2 0 0 ψψψ Nh+1

2

0

0 0 ψψψ1 ψψψNh
· · · 0 0 ψψψNc

ψψψNc+2 0 ψψψ Nh+1

2

]
.

Equation (23) says that Th

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
=

[
ψψψk ψψψk̃ 0 0
0 0 ψψψk ψψψk̃

]
G̃k, for every k =

1, . . . , Nc = Nh+1
2 − 1 and k̃ = Nh − k + 1. Moreover, the frequency ψψψ Nh+1

2

is

mapped to zero by the restriction operator, R

[
ψψψNh+1

2

0

0 ψψψNh+1

2

]
= 0, and we get

Th

[
ψψψNh+1

2

0

0 ψψψNh+1

2

]
=Gn2

h G
n1

h

[
ψψψNh+1

2

0

0 ψψψNh+1

2

]
=

[
γ1(Nh+1

2)ψψψNh+1

2

0

0 γ2(Nh+1
2)ψψψNh+1

2

]
,

where the expressions of γ1(Nh+1
2) and γ2(Nh+1

2) depend on n1 and n2. For in-

stance, if n1+n2 is an even number, then γ1(Nh+1
2) = γ2(Nh+1

2) := (ρ1(Nh+1
2)ρ2(Nh+1

2))
n1+n2

2 .

Hence, we conclude that ThQ = QG̃ and our claim follows.

The factorization of Th proved in Theorem 2 allows one to obtain accurate
convergence results of a G2S method. Clearly, an optimal result would be a direct
calculation of the spectral radii of the matrices G̃k. However, this is in general a
difficult task that requires cumbersome calculations. Nevertheless, in Theorem 3
we obtain an explicit expression for the spectral radii of G̃k under some reasonable
assumptions that are in general satisfied in case of Schwarz methods and symmetric
decompositions; see, e.g., [29, Section 3]. Notice also that Theorem 3 guarantees
that only one (pre- or post-) smoothing step is necessary for the G2S method to
converge.

Theorem 3 Assume that 1 > ρ1(k) = ρ2(k) = ρ(k) ≥ 0 for any k and that ρ(k)
is a decreasing function of k. The convergence factor of the G2S method is

ρG2S(Th) = max
k∈{1,...,Nc,

Nh+1

2
}

(
c4k(1− ρ(k))ρ(k̃)n1+n2 + s4k(1− ρ(k̃))ρ(k)n1+n2

c4k(1− ρ(k)) + s4k(1− ρ(k̃))

)
< 1.

16 G. Ciaramella, T. Vanzan

Proof The convergence factor of the G2S is given by the spectral radius of the
iteration matrix Th. Theorem 2 implies that

ρG2S(Th) = max
{

max
k∈{1,...,Nc}

ρ(G̃k), γ1

(
Nh + 1

2

)
, γ2

(
Nh + 1

2

)}
.

Regardless of the values of n1 and n2, direct calculations show that the matrices
G̃k have four eigenvalues:

λ1(k) = λ2(k) = 0,

|λ3(k)| = c4k(1− ρ(k))ρ(k̃)n1+n2 + s4k(1− ρ(k̃))ρ(k)n1+n2

c4k(1− ρ(k)) + s4k(1− ρ(k̃))
,

|λ4(k)| = c4k(1 + ρ(k))ρ(k̃)n1+n2 + s4k(1 + ρ(k̃))ρ(k)n1+n2

c4k(1 + ρ(k)) + s4k(1 + ρ(k̃))
.

Moreover, we observe that

|λ3(k)|−|λ4(k)| = 2c4ks
4
k(ρ(k)− ρ(k̃))(ρ(k)n1+n2 − ρ(k̃)n1+n2)

((ρ(k) + 1)c4k + s4k(ρ(k̃) + 1))((1− ρ(k))c4k + s4k(1− ρ(k̃)))
≥ 0,

where we used the monotonicity of ρ(k). On the other hand, since ρ1(k) = ρ2(k) =
ρ(k), we have γ1(Nh+1

2) = γ2(Nh+1
2) = ρ(Nh+1

2)n1+n2 . Therefore, we have that

max

{
max

k∈{1,...,Nc}
ρ(G̃k),ρ

(
Nh+1

2

)n1+n2

}
=max

{
max

k∈{1,...,Nc}
|λ3(k)|,ρ

(
Nh+1

2

)n1+n2

}
,

and the result follows by observing that λ3
(
Nh+1

2

)
= ρ

(
Nh+1

2

)n1+n2 , since ρ(k̃) =

ρ(k) for k = Nh+1
2 .

3.2.3 Two-level substructured and volumetric methods

At this stage, it is fair to pose the following questions: What is the difference
between our G2S and other two-level DD methods? Is our G2S different from a
classical two-grid method that uses a PSM as smoother? Is there any relation
between these two apparently similar approaches? The answers are given in this
section.

LetAvu = f be a discretization of our problem (1). In particular,Av ∈ RN
v×Nv

is the discretization of the elliptic operator L, while u ∈ RN
v

and f ∈ RN
v

are
the discrete counterparts of the solution u and the right-hand side function f .
Consider the following splittings of the matrix Av:

Av =

[
A1 E1R̂1

× ×

]
=

[
× ×

E2R̂2 A2

]
,

where Aj ∈ RN
a
j ×N

a
j for j = 1, 2. Notice that these correspond to a two-subdomain

decomposition. We assume that Av, A1 and A2 are invertible. The matrices R̂1 ∈
RN1×(Nv−Na

1) and R̂2 ∈ RN2×(Nv−Na
2) are restriction operators that take as input

vectors of sizes Nv−Na
1 and Nv−Na

2 and returns as output substructure vectors

Substructured Multi-grid DD Methods 17

of sizes N1 (substructure S1) and N2 (substructure S2). The two matrices E1 ∈
RN

a
1×N1 and E2 ∈ RN

a
2×N2 are extension by zero operators. In order to obtain a

discrete substructured problem, we introduce the augmented system

Aaua = fa, (27)

where Aa =
[
A1 E1R1

E2R2 A2

]
, ua =

[
u1

u2

]
, and fa =

[
f1
f2

]
, with Aj ∈ RN

a
j ×N

a
j and

uj , fj ∈ RN
a
j , for j = 1, 2. The matrices R1 ∈ RN1×Na

2 and R2 ∈ RN2×Na
1 are

restriction operators that map volume vectors, of sizes Na
2 (second subdomain)

and Na
1 (first subdomain), respectively, to substructure vectors, of sizes N1 (sub-

structure S1) and N2 (substructure S2), respectively. Notice that RjR
>
j = INj

,
with INj

the identity of size Nj , for j = 1, 2. Moreover, we define Ns := N1 +N2

and Na := Na
1 +Na

2 .
The substructure vectors v21 := R1u2 and v12 := R2u1 solve the discrete

substructured system

Ah

[
v12

v21

]
=

[
R2A

−1
1 f1

R1A
−1
2 f2

]
, (28)

where Ah =

[
IN2

R2A
−1
1 E1

R1A
−1
2 E2 IN1

]
. The vectors v12 and v21 are restrictions on

the substructures S2 and S1 of the solution vectors u1 and u2, and (28) is the
substructured form of (27). Notice that (28) is the discrete counterpart of the
substructured problem (10).

The block-Jacobi method applied to (27) and (28) leads to the iteration ma-
trices

Ga =

[
0 −A−1

1 E1R1

−A−1
2 E2R2 0

]
and Gh =

[
0 −R2A

−1
1 E1

−R1A
−1
2 E2 0

]
,

where Gh is the discretization of G, as denoted in Sections 3.1 and 3.2.
Let us now introduce the matrices

D :=

[
A−1

1 0

0 A−1
2

]
, T̃ :=

[
R2 0
0 R1

]
and Ẽ :=

[
0 E1

E2 0

]
.

It is easy to verify the relations

T̃ T̃> = INs , AhT̃ = T̃DAa, Ga = −DẼT̃ and GhT̃ = T̃Ga. (29)

In particular, the relation T̃ T̃> = INs is trivial, and AhT̃ = T̃DAa can be obtained
by calculating

T̃DAa=

[
R2 0
0 R1

][
A−1

1 0

0 A−1
2

][
A1 E1R1

E2R2 A2

]
=

[
R2 0
0 R1

][
INa

1
A−1

1 E1R1

A−1
2 E2R2 INa

2

]
=

[
R2 R2A

−1
1 E1R1

R1A
−1
2 E2R2 R1

]
=

[
IN2

R2A
−1
1 E1

R1A
−1
2 E2 IN1

][
R2 0
0 R1

]
=AhT̃ .

A similar calculation allows us to obtain that GhT̃ = T̃Ga.
Since the matrices Gh and Ga are two different representations of the PSM,

one expects that their spectra coincide. This is shown in the next lemma.

18 G. Ciaramella, T. Vanzan

Lemma 4 The matrices Gh ∈ RN
s×Ns

and Ga ∈ RN
a×Na

have the same nonzero
eigenvalues, that is σ(Gh) = σ(Ga) \ {0}.

Proof Recalling the structure of Ga, one can clearly see that rank(Ga) = Ns,
because the matrices EjRj have rank Nj for j = 1, 2. Hence, Ga has Ns nonzero
eigenvalues. Take any eigenvector v ∈ RN

a

of Ga with eigenvalue λ 6= 0. We note
that T̃v 6= 0, otherwise we would have Gav = −DẼT̃v = 0, which contradicts the
hypothesis λ 6= 0. Using the last relation in (29), we write GhT̃v = T̃Gav = λT̃v.

Hence (T̃v, λ) is an eigenpair of Gh. Since this holds for any eigenpair (v, λ) of
Ga, the result follows.

Let us now consider arbitrary restriction and prolongation operators Rs and
Ps (with Rs = P>s). The corresponding discrete substructured two-level iteration
matrix is then given by

G2L
h :=

[
INs − Ps(RsAhPs)−1RsAh

]
Gh. (30)

Our goal is to find a volumetric two-level iteration operator G2L
a that has the

same spectrum of G2L
h . Such a volumetric operator must be formulated for the

augmented system (27) and based on the iteration matrix Ga. Let us recall (29)
and compute

G2L
h T̃ =

[
INs − Ps(RsAhPs)−1RsAh

]
GhT̃

=
[
INs − Ps(RsAhPs)−1RsAh

]
T̃Ga

=
[
T̃ − Ps(RsAhPs)−1RsAhT̃

]
Ga

= T̃
[
INa − T̃>Ps(RsAhPs)−1RsAhT̃

]
Ga

= T̃
[
INa − T̃>Ps(RsAhT̃ T̃>Ps)−1RsT̃DAa

]
Ga

= T̃
[
INa − T̃>Ps(RsT̃DAaT̃>Ps)−1RsT̃DAa

]
Ga

= T̃
[
INa − Pa(RaDAaPa)−1RaDAa

]
Ga = T̃G2L

a ,

where Pa := T̃>Ps, Ra := RsT̃ = P>a and

G2L
a :=

[
INa − Pa(RaDAaPa)−1RaDAa

]
Ga. (31)

We obtained that G2L
h T̃ = T̃G2L

a . Similarly as in the proof of Lemma 4, one
can show that σ(G2L

h) = σ(G2L
a) \ {0}. This means that we have found a two-level

volumetric iteration operator that is spectrally equivalent to our substructured
two-level operator. Moreover, for any invertible matrix U ∈ RN

a×Na

we can repeat
the calculations done in (18), to obtain

G2L
a =

[
INa − P̃a(R̃aDAaP̃a)−1R̃aDAa

]
Ga, (32)

where P̃a = PaU and R̃a = U−1Ra (with R̃a = P̃>a if U is orthogonal). This
means that there exist many two-level DD methods in volume that are equivalent
to our substructured two-level methods. We can summarize the obtained result in
the following theorem.

Substructured Multi-grid DD Methods 19

5 10 15 20

10
-6

10
-4

10
-2

5 10 15 20

10
-6

10
-4

10
-2

Fig. 4: Spectral radii of the matrices G2L
h , Ĝ2L

a and G2L
RAS and corresponding to

` = 5 (left) and ` = 6 (right).

Theorem 4 (Volumetric formulation of substructured methods) Con-
sider the substructured two-level iteration operator G2L

h given in (30) and denote
its spectrum by σ(G2L

h). For any invertible matrix U ∈ RN
a×Na

, the spectrum of
the matrix G2L

a given in (32) satisfies the relation σ(G2L
h) = σ(G2L

a) \ {0}.

The matrix G2L
a has a special structure. Since D is the block-Jacobi precon-

ditioner for the augmented system (27), one can say that G2L
a corresponds to a

two-level method applied to the preconditioned system DAaua = Dfa, in a similar
spirit of the smoothed aggregation method defined in [5, Section 2].

Let us now focus on the question: what is the relation between our G2S method
and a two-grid (volumetric) method that uses the same smoother (PSM)? A two-
grid method in volume applied to the augmented system (27), would correspond

to an iteration operator Ĝ2L
a of the form

Ĝ2L
a =

[
INa − P̂a(R̂aAaP̂a)−1R̂aAa

]
Ga.

Natural choices for P̂a and R̂a are the usual (volumetric) restriction and prolon-
gation operators. For example, for a one-dimensional problem a natural choice is
the prolongation matrix P̂a given in (15) and R̂a = 1

2P
>
a . On the other hand, our

prolongation operator Pa := T̃>Ps is an extension by zero of a coarse substructure
vector to a fine volumetric vector. Moreover, Ra := RsT̃ restricts a fine volumetric
vector v to a coarse substructure vector by only interpolating the components of
v belonging to the (fine) substructures. Another crucial difference is that G2L

a is

constructed on DAa, while Ĝ2L
a is obtained using the matrix Aa. Therefore, Ĝ2L

a

is constructed on the original augmented system Aaua = fa, while G2L
a is defined

over the preconditioned system DAaua = Dfa.
These facts indicate clearly that our method is by far distant from a classical

volumetric two-grid method that uses the PSM as smoother. This is also confirmed
by the numerical results shown in Figure 4, where the spectral radii of three
different two-level iteration matrices are depicted. In particular, we consider the
Laplace problem defined on a unit square Ω (of side L̃ = 1). This domain is
decomposed into two overlapping rectangles of width L = 1

2 +δ. Hence, the length
of the overlap is 2δ. This problem is discretized using a classical second-order
finite-difference scheme with a uniform grid of size h = 1

Nh+1 , where Nh = 2` − 1.

20 G. Ciaramella, T. Vanzan

The length of the overlap is δ = (Nov + 1)h, for some positive odd integer Nov.

We consider three different two-level iterations matrices G2L
h , Ĝ2L

a and G2L
RAS . The

first one G2L
h is the iteration matrix corresponding to our G2S method. The second

one Ĝ2L
a is the iteration matrix of a two-level method applied on the augmented

volumetric system (27). In both cases, the same classical Schwarz method is used as
smoother. The third matrix G2L

RAS is the iteration operator of a classical two-grid
method applied to the volumetric system Avu = f and using as smoother the RAS
method. In all cases, restriction and prolongation operators correspond to linear
interpolation matrices (as in (15)) and to the full weighting restriction matrices,
respectively. Indeed, for our G2S method these are one-dimensional operators,
while for the other two methods they are two-dimensional operators. In particular,
for the augmented system these interpolation and restriction operators take into
account the non-zero values of the discrete functions on the substructures. For the
two-level RAS method, they are obtained by a two-dimensional extension of (15).

In Figure 4, we show the spectral radii of G2L
h , Ĝ2L

a and G2L
RAS , obtained

by a direct numerical computation, as a function of Nov, hence the size of the
overlap. The two figures correspond to two different discretizations. It is clear that
our G2S method outperforms the other two methods, which have also very small
contraction factors. Moreover, by comparing the two plots, we observe that the
coarse correction makes all the methods very robust with respect to the number
of discretization points.

4 Implementation details and multilevel algorithm

In Section 4.1, after having explained pro and cons of substructured and volume
two-level methods, we reformulate Algorithm 1 in equivalent forms, which are
essential to make our method computationally efficient. In Section 4.2, we explain
how to extend our G2S method to a multi-grid strategy.

4.1 A practical form of two-level substructured methods

One of the advantages of our new substructured framework is that a large part
of the computations are performed with objects (vectors, matrices, arrays, etc.)
that are defined on the substructures and hence have very small sizes if compared
to their volumetric counterparts. This is clear if one carefully studies Algorithm
1, where for example the products Rr and Pvc are performed on substructure
vectors. In volumetric two-level methods, the same prolongation and restriction
operators involve volume entities, thus their application is more costly and they
might be generally more difficult to implement due to the higher dimensions.

We now compare the computational costs of one iteration of the G2S and of
a 2-grid method in volume that uses the same smoother. Let Nv be the size of
the volume problem and Ns the size of the substructured problem (Ns � Nv).
The size of each subdomain volume problem is Nsub. The coarse spaces are of
dimension Ms for the G2S method and Mv for the volume method. The restriction
and prolongation operators in volume are denoted by Rv and Pv. For simplicity
we assume n1 = 1, n2 = 0.

The computational costs of one iteration are reported in Table 1. The first

Substructured Multi-grid DD Methods 21

G2S G2S C.C. Volume two-level Volume C.C.

vn+
1
2 = Ghv

n + bh O(γc(Nsub)) u
n+ 1

2
v = Nunv +M−1bv O(γc(Nsub))

rn+
1
2 = bh −Ahvn+

1
2 O(γc(Nsub)) r

n+ 1
2

v = bv −Avu
n+ 1

2
v O((Nv)γm)

vn+1
c = A−1

2h (Rrn+
1
2) O(γs(Ms)) un+1

vc = A−1
vc (Rvr

n+ 1
2

v) O(γv(Mv))

vn+1 = vn+
1
2 + Pvn+1

c O(Ns) un+1
v = u

n+ 1
2

v + Pvu
n+1
vc O(Nv)

Table 1: Computational cost (C.C.) per iteration. Notice that the smoother in
volume is written as a standard stationary method based on the splitting Av =
M −N .

row of this table corresponds to the smoothing step performed by G2S and a
DD method in volume. Since we assumed that both strategies use the same
DD smoother, their computational costs coincide and are equal to O(γc(Nsub)),
where γc depends on the choice of the linear solver. For example, for a Poisson
problem, one has γc(Nsub) = Nsub log(Nsub) if a fast Poisson solver is used, or
γc(Nsub) = bNsub for sparse banded matrices with bandwidth b; see, e.g., [38]. For
a general problem, the complexity of sparse direct solvers is a power of Nsub, which
depends on the dimension. Moreover, one could consider the precomputation of
the factorization of the subdomain matrices and just using forward and backward
substitutions along the iterations.

For simplicity, we assume that restriction and prolongation operations are clas-
sical nodal operations whose computational costs are supposed to grow linearly
with the dimension of the problem. Notice that since Ns � Nv, assuming that
the same interpolation method is used, the cost in the substructured case is much
lower than the corresponding cost in volume; see last row in Table 1.

Let us now discuss the third row of Table 1, which corresponds to the solution
of the coarse problems. Since the dimension of the substructured coarse space is
smaller, the G2S could require much less computational effort in the solution of
the coarse problem. We remark that on the one hand, the coarse matrix A2h is
typically block sparse, where the block structure is related to the connectivity
among the subdomains (namely the jth block-row of Gh has a sparsity pattern
governed by the set Nj). Furthermore, for a large class of PDE problems, these
blocks admit very accurate low-rank approximations that can make the solution
process more efficient; see, e.g., [43] and references therein. On the other hand, Avc
is typically a sparse matrix, whose sparsity pattern depends on the discretization
method used (e.g., finite differences, finite elements, etc). In both cases there exist
sophisticated algorithms for the solution of the corresponding linear systems; see,
e.g., [38,18,43] and references therein. For this reason, we use the two functions γs
and γv to indicate the computational cost of the coarse solvers. A general direct
comparison in this sense is problem dependent, it could be very complicated, and
it is beyond the scope of this paper. Nevertheless, we provide in Section 5.1 a
detailed analysis for a specific test case.

Let us now turn our attention to the second row of Table 1, which corresponds
to the computation of the residual. Here, a volumetric method requires O((Nv)γm)
operations, where γm depends on the sparsity structure of Av. For example, if Av
is a second-order finite-difference matrix, then γm = 1. In contrast to this favorable
situation, the computation of the residual for a G2S method requires the action of

22 G. Ciaramella, T. Vanzan

Algorithm 2 G2S-B1

Require: v0 and P̃ = GhP .
1: v1 = Ghv

0 + bh,
2: w = Ghv

1,
3: r = bh − v1 + w,
4: vc = A−1

2h Rr,

5: v0 = v1 + Pvc,
Iterations:

6: v1 = w + P̃vc + bh,
7: w = Ghv

1,
8: r = bh − v1 + w,
9: vc = A−1

2h Rr,

10: v0 = v1 + Pvc,
11: Repeat 6 to 10 until convergence.

Algorithm 3 G2S-B2

Require: v0 and P̃ = GhP .
1: v = Ghv

0,
2: r = bh − v0 + v,
3: vc = A−1

2h Rr,

4: v0 = w + P̃vc + bh ,
5: Repeat 1 to 5 until convergence.

Ah on a vector vn+
1
2 , which in turn requires a subdomain solve that is assumed

to cost O(γc(Nsub)) (as discussed above). Hence, two smoothing steps are needed
by the G2S method. If we could avoid this extra cost, then all the other steps of
the G2S methods are cheaper since they are performed on arrays of much smaller
sizes. Moreover, we wish to remark that, as we are going to see in Section 5, the
G2S method requires in general less iterations than the corresponding method in
volume. Hence, if we could avoid one of the two smoothing applications in each
iteration, we would get a method which is faster in terms of iterations and com-
putational cost per iteration. To avoid one of the two applications of the smoother
in the G2S method, we exploit the special form of the matrix Ah = Ih −Gh and
propose two new versions of Algorithm 1. These are called G2S-B1 and G2S-B2
and given by Algorithms 2 and 3. These substructured algorithms require only one
smoothing step per iteration. Hence, they are potentially cheaper than a two-grid
method using the same smoother. Moreover, it turns out that G2S and G2S-B1 are
equivalent and they have the same spectral properties of G2S-B2. These relations
are proved in the following theorem.

Theorem 5 (Equivalence between G2S, G2S-B2 and G2S-B1)

(a) Algorithm 2 generates the same iterates of Algorithm 1.
(b) Algorithm 3 corresponds to the stationary iterative method

vn = Gh(Ih − PA−1
2hRAh)vn−1 + M̃bh,

where Gh(Ih − PA−1
2hRAh) is the iteration matrix and M̃ the relative precon-

ditioner. Moreover, Algorithm 3 and Algorithm 2 have the same convergence
behavior.

Proof For simplicity, we suppose to work with the error equation and thus bh = 0.
We call ṽ0 the output of the first five steps of Algorithm 2 and v̂0 the output of
Algorithm 1. Then given an initial guess v0, we have

ṽ0 = v1 + Pvc = v1 + PA−1
2hR(−v1 + w)

= Ghv
0 + PA−1

2hR(−AhGhv0) = (Ih − PA−1
2hRAh)Ghv

0 = v̂0.

Substructured Multi-grid DD Methods 23

To verify that steps 6-10 of G2S-B1 are equivalent to an iteration of Algorithm 1,
let v0,k−1 := v1,k−1 + Pvc be the output on line 10 of the (k − 1)-th iteration of
the G2S-B1 algorithm. Then the smoothing step on line 6 of the k-iteration reads

v1,k = Ghv
0,k−1 + bh = Ghv

1,k−1 +GhPvc + bh = wk−1 + P̃vc + bh,

where we use the definition of P̃ and the quantity wk−1 computed at the previous
iteration. Steps 7-8 are just the residual computation using the identity Ah =
I−Gh and the remaining steps are standard. For the second part of the Theorem,
we write one iteration of Algorithm 3 as

v1 = w + P̃vc = Ghv
0 +GhPA

−1
2hR(−Ahv0) = Gh(Ih − PA−1

2hRAh)v0.

Hence, Algorithm 3 performs a post-smoothing step instead of a pre-smoothing
step as Algorithm 2 does. The method still has the same convergence behavior
since the matrices Gh(Ih − PA−1

2hRAh) and (Ih − PA−1
2hRAh)Gh have the same

eigenvalues4.

Notice that Algorithm 2 requires for the first iteration two applications of the
smoothing operator Gh. The next iterations, given by Steps 6-10, need only one
application of the smoothing operator Gh. Theorem 5 (a) shows that Algorithm 2
is equivalent to Algorithm 1. This means that each iteration of Algorithm 2 after
the first one is computationally less expensive than one iteration of a volume two-
level DD method. Since two-level DD methods perform generally few iterations,
it could be important to get rid of the expensive first iteration. For this reason,
we introduce Algorithm 3, which overcomes the problem of the first iteration.
Theorem 5 (b) guarantees that Algorithm 3 is exactly a G2S method with no pre-
smoothing and one post-smoothing step. Moreover, it has the same convergence
behavior of Algorithm 2.

We wish to remark that, the reformulations G2S-B1 and G2S-B2 require to
store the (substructured) matrix P̃ := GhP . This matrix is anyway computed in
a pre-computation phase to assemble the coarse matrix A2h = RAhP = RP −
RGhP = RP −RP̃ . Hence, no extra cost is required. These implementation tricks
can be readily generalized to a general number of pre- and post-smoothing steps.

Concerning the specific implementation details for the G2S, we remark that
one can lighten the off-line assembly of the matrix A2h = RAhP , using instead
the matrix

Ã2h :=

[
I2h,2 −G2h,1

−G2h,2 I2h,1

]
, (33)

which corresponds to a direct discretization of A on the coarse level. Moreover,
since our two-level method works directly on the interfaces, we have more freedom
in the discretization of the smoothing operators on each level. For instance, one
could keep the corresponding volume mesh close to the substructures, while having
a coarser grid away from them. This strategy would follow a similar idea of the
methods discussed in, e.g., [15] and references therein.

4 Given two matrices A and B, AB and BA share the same non-zero eigenvalues.

24 G. Ciaramella, T. Vanzan

Algorithm 4 Geometric multilevel substructured DD method - GMS(u0,b,`)

1: if ` = `min, then
2: set v0 = A−1

`min
b. (direct solver)

3: else
4: vn = G`(v

n−1,b), n = 1, . . . , n1 (DD pre-smoothing steps)
5: r = b−A`vn1 (compute the residual)
6: vc =GMS(0, R``−1r, `− 1). (recursive call)

7: v0 = vn1 + P ``−1vc (coarse correction)

8: vn = G`(v
n−1,b), n = 1, . . . , n2 (DD post-smoothing steps)

9: Set v0 = vn2 (update)
10: end if
11: return u0.

4.2 GMS: Extension to multilevel framework

The solution of large problems can be challenging using classical two-level methods
in volume. This is mainly due to the dimension of the coarse space, which can still
be too large in volume to be solved exactly. In our substructured framework,
the size of the substructured coarse matrix corresponds to the number of degrees
of freedom on the coarse substructures, and thus it is already much smaller if
compared to the volume case (see Section 5.1 for a comparison of their sizes in a
concrete model problem). However, there might be problems for which the direct
solution of the coarse problem is inconvenient also in our substructured framework.
For instance, if we considered multiple subdomains, then we would have several
substructures and therefore the size of the substructured coarse matrix increases.

The G2S is suitable to a multilevel generalization following a classical multigrid
strategy [42]. Given a sequence of grids on the substructures labeled from the coars-
est to the finest by {`min, `min+1, . . . , `max}, we denote by P ``−1 andR``−1 the inter-
polation and restriction operators between grids ` and `−1. To build the substruc-
tured matrices on the different grids we have two possible choices. The first one
corresponds to the standard Galerkin projection. Being A`max

the substructured
matrix on the finest grid, we can define the coarse matrices A` := R`+1

` A`+1P
`+1
` ,

for ` ∈ {`min, `min + 1, . . . , `max− 1}. The second choice consists in defining A` di-
rectly as the discretization of (12) on the grid labeled by `, and corresponds exactly
to (33) for the two-grid case. The two choices are not equivalent. On the one hand,
the Galerkin approach leads to a faster method in terms of iterations. However,
the Galerkin matrices A` do not have the block structure as in (12). For instance,
A`max−1 = R`max

`max−1A`max
P `max

`max−1 = R`max

`max−1P
`max

`max−1−R
`max

`max−1G`max
P `max

`max−1. Thus,

the identity matrix is replaced by the sparse matrix R`max

`max−1P
`max

`max−1. On the other
hand, defining A` directly on the current grid ` as in (33) leads to a minimum
increase of the iteration number, but it permits to preserve the original block-
diagonal structure (which is important if one wants to use G2S-B1 and G2S-B2).
The difference between the two approaches is also studied by numerical experi-
ments in Section 5.

In spite of the choice for A`, we define the geometric multilevel substructured
DD method (GMS) in Algorithm 4, which is a substructured multi-grid V-cycle.

Substructured Multi-grid DD Methods 25

5 Numerical experiments

In this section, we demonstrate the effectiveness of our new computational frame-
work by extensive numerical experiments. These experiments have two main pur-
poses. On the one hand, we wish to validate the theoretical results of Section 3.1,
while discussing the implementation details of Section 4.1 and comparing our new
method with other classical existing methods, like a two-grid method in volume
using RAS as smoother. This is the focus of Section 5.1, where a Poisson problem
on two-dimensional and three-dimensional boxes is considered. Both convergence
rates and computational times are studied.

On the other hand, we wish to show the effectiveness of our new methods
in case of multiple-subdomain decompositions and for classical test problems. In
particular, in Section 5.2 we consider a multiple-subdomain decomposition for
a classical Poisson problem, while in Section 5.3 a diffusion problem with highly
jumping diffusion coefficients is solved. For the efficient solution of these two prob-
lems different discretization methods are required. These are the finite-difference
method, for the classical Poisson problem, and the finite-volume method, in case
of jumping diffusion coefficients. These two methods require different definitions
of restriction and prolongation operators. We thus sketch some implementation
details of our algorithms for a regular decomposition. In both cases, the robust-
ness of our methods for increasing number of subdomains is studied and compared
to classical two-grid and multi-grid methods defined in volume and using RAS as
smoother. The obtained numerical results show clearly, and particularly for the
jumping diffusion coefficient case, that our methods converge in less iterations
than the classical two-level RAS method. In Sections 5.1 and 5.2, all the methods
are used as iterative solvers, without any Krylov acceleration, while in Section 5.3
we test their efficiency as preconditioners for GMRES.

5.1 Laplace equation on 2D and 3D boxes

We first consider the Poisson equation −∆u = f with homogeneous Dirichlet
boundary condition. The geometry of the domain and its decomposition are shown
in Figure 3, where Ω is decomposed into two overlapping rectangles Ω1 = (−1, δ)×
(0, 1) and Ω2 = (−δ, 1)×(0, 1). The length of the overlap is 2δ. On each subdomain,
we use a standard second-order finite difference scheme based on a uniform grid
of Ny = 2` − 1 interior points in direction y and Nx = Ny interior points in
direction x. Here, ` is a positive integer. The grid size is denoted by h. The overlap
is assumed to be δ = hNov, where Nov represents the number of interior points in
the overlap in direction x.

The results of our numerical experiments are shown in Figures 5. All figures
show the decay of the relative errors with respect to the number of iterations. To
study the asymptotic convergence behavior of the G2S and compare it with the
theoretical results of Section 3.2, all methods are stopped if the relative error is
smaller than the very low tolerance 10−12.

The problem is solved by the classical parallel Schwarz method, a classical two-
grid and a three-grid method using RAS as smoother (“2L-RAS” and “3L-RAS”
in the figures), the G2S method, and its extension to three-grid denoted by G3S.
For the G2S method, we further distinguish two cases: “G2S” indicates the G2S

26 G. Ciaramella, T. Vanzan

0 5 10 15
10

-15

10
-10

10
-5

10
0

0 5 10 15
10

-15

10
-10

10
-5

10
0

0 2 4 6 8
10

-15

10
-10

10
-5

10
0

0 5 10 15
10

-15

10
-10

10
-5

10
0

0 5 10 15
10

-15

10
-10

10
-5

10
0

0 2 4 6
10

-15

10
-10

10
-5

10
0

Fig. 5: Convergence curves for ` = 6, Nov = 4 (top row), Nov = 8 (bottom row).

method using the coarse matrix A2h := RAhP , while “G̃2S” refers to the G2S
method using the coarse matrix obtained by a direct discretization of A on the
coarse grid (instead of A2h := RAhP), see (33) and the discussion in Section (4.2).

For the G2S and G̃2S methods, we use the one-dimensional linear interpolation
operator P = diag(P1, P2), where the expression of Pj , j = 1, 2 is given in (15),
and R = 1

2 (P)> (as explained in Section 3.1 and Figure 3). For 2L-RAS, we use the
classical full weighting restriction and interpolation operators, PV = kron(Px, Py),
RV = 1

4P
>
V , where Px, Py are one-dimensional interpolation operators of the same

form of (15).

The left panels of Figures 5 validate the theoretical convergence factor obtained
in Theorem 3. The center panels compare the classical one-level PSM, the G2S
and G̃2S method and the 2L-RAS method. The slower performance of 2L-RAS
with respect to G2S can be traced back to the interpolation step. This operation
breaks the harmonicity of the obtained correction, which therefore does not lie any
more in the space of the error; see, e.g., [34]. One could use interpolators which
extend harmonically the correction inside the overlapping subdomains although
this would increase significantly the computational cost of each iteration. We refer
also to [37] for a similar observation. Further notice that, while the G2S coarse
space has dimension about Ny, the one corresponding to the 2L-RAS method has
dimension aboutNxNy/4 ≈ N2

y/2� Ny. In the setting of Figure 5, the dimensions
of the coarse spaces of G2S and 2L-RAS are about 60 and 1900, respectively. Notice
that, the convergence of G̃2S is comparable to 2L-RAS, hence a little slower than
G2S, but the assembly of the coarse matrix is cheaper.

The right panels compare the convergence behavior of the two-grid methods,
G2S and 2L-RAS, with their three-level variants. We remark that the addition of
a third level does not result in a noticeable convergence deterioration.

Next, we are interested in computational times and in numerically validat-
ing the computational cost presented in Table 1. To do so, we consider a three-
dimensional box Ω = (−1, 1)×(0, 1)×(0, 1) decomposed into two overlapping sub-
domains Ω1 = (−1, δ)×(0, 1)×(0, 1) and Ω2 = (−δ, 1)×(0, 1)×(0, 1). We solve the
problem (up to a tolerance of 10−6 on the relative error) using the G2S method,

Substructured Multi-grid DD Methods 27

(volume) G2S G2S-B1 G2S-B2 2L-RAS
539 4 4 4 6
6075 5 5 5 6
56699 5 5 4 6
488187 4 4 4 6

Table 2: Number of iterations performed by the different methods and for different
number of degrees of freedom.

(volume) G2S G2S-B1 G2S-B2 2L-RAS
539 0.014 (0.004) 0.008 (0.002) 0.006 (0.002) 0.009 (0.005)
6075 0.1346 (0.027) 0.082 (0.016) 0.083 (0.016) 0.106 (0.03)
56699 2.040 (0.408) 1.2282 (0.246) 0.818 (0.204) 1.367 (0.228)
488187 53.2873 (13.321) 33.309 (6.662) 26.687 (6.671) 43.635 (7.272)

Table 3: Computational times performed by the different methods. In parentheses
we indicate the computational time per iteration.

its equivalent forms G2S-B1 and G2S-B2, introduced in Section 4.1, and 2L-RAS.
The length of the overlap is δ = hNov, where h is the grid size and Nov is fixed to
4. Hence the overlap is proportional to the grid size. The experiments have been
performed on a workstation with a processor Intel Core i9-10900X CPU 3.7GHz
and with 32GB of RAM. The subdomain problems are solved sequentially using
the Matlab backslash command, which calls a direct solver for sparse banded
matrices (with small band density threshold) with almost linear complexity. The
smoothing steps have the same cost for both 2L-RAS and G2S implementations,
and it permits to better remark the advantages of the substructured methods in the
coarse step and the prolongation/restriction steps. The results are shown in Tables
2 and 3. The G2S method outperforms 2L-RAS in terms of iteration numbers and
computational times. To better understand why the G2S method is faster and to
validate the computational cost analysis presented in Table 1, Figures 6 show the
computational time spent by the G2S and 2L-RAS methods in the different steps
of a two-level method. As expected, the smoothing step requires the same effort
in both methods. This is shown in Figure 6 (left). In Figure 6 (right) we compare
the computational times required by one coarse correction step performed by the
two methods. The two curves corresponds to the same volumetric dimensions of
the problem (as in Table 3), but the coarse space dimensions corresponding to
G2S and 2L-RAS are different. This means that, the kth point (circle) from the
left of the G2S curve has to be compared with the kth point (cross) from the left
of the 2L-RAS curve. It must also be said that for both cases we use the Matlab
backslash command. This is clearly a choice more favorable for the 2L-RAS coarse
problem (which is sparse and banded). A different and more appropriate solver for
the G2S coarse matrix exploiting the block-sparse structure (see, e.g., [38]) could
lead to further improvement of these computational times.

5.2 Decompositions into many subdomains

In this section, we consider a square domain Ω decomposed into M ×M nonover-
lapping square subdomains Ω̃j , j = 1, . . . ,M2 = N . Each subdomain Ω̃j contains

28 G. Ciaramella, T. Vanzan

10
2

10
3

10
4

10
5

10
6

N
sub

10
-3

10
-2

10
-1

10
0

10
1

S
e
c
o
n
d
s G2S

2L-RAS

Linear

Quadratic

10
1

10
2

10
3

10
4

10
5

Size coarse problems

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

S
e
c
o
n
d
s

G2S

2L-RAS

Linear

Quadratic

Fig. 6: Time in seconds spent by the G2S and 2L-RAS methods in the smoothing
step (left) and in the coarse solver step (right).

Nsub = (2` − 1)2 interior degrees of freedom. Extending the subdomains Ω̃j by
Nov points, we obtain the overlapping subdomains Ωj with overlap δ = 2Novh. On

each subdomain Ωj , we locate the discrete substructure SNj

j , marked with blue
lines in Figure 7, which is made by four (one-dimensional) segments. For each dis-

Ω̃j

Ωj Ωj

Fig. 7: An interior nonoverlapping subdomain Ω̃j is enlarged by Nov = 2 points

in each direction. The discrete substructure SNj

j is denoted by a blue line. On the

right panel, the coarse discrete substructure SMj

j is marked by red crosses.

crete substructure SNj

j , the interpolation operator Pj acts block-wise on each one-

dimensional interval, i.e. Pj = diag{P̃1, P̃2, P̃3, P̃4}, where each P̃k, k = 1, . . . , 4,

corresponds to the prolongation matrix (15). We remark that using P̃k implies
assuming that on the boundary of Sj the function attains zero. This holds since

on each substructure vj ∈ H
1
2
00(Sj), due to the partition of unity.

The results of our numerical experiments are reported in Figure 8. The left
panel shows the dependence of the spectral radius on the size of the overlap for
the different methods and N = 16, ` = 5. We then study the robustness of the
method with respect to an increasing number of subdomains. We first keep the
size of each subdomain fixed, Nsub = (25− 1)2, and thus we consider larger global
problems as N grows. Then, we fix a global domain Ω with approximately 17 ·103

interior degrees of freedom, and we get smaller subdomains as N grows. In both

Substructured Multi-grid DD Methods 29

cases, we observe that the spectral radius of both 2L-RAS and G2S does not
deteriorate as the number of subdomains increases.

5 10 15 20
10

-3

10
-2

10
-1

10
0

0 20 40 60
10

-3

10
-2

10
-1

10
0

0 20 40 60
10

-3

10
-2

10
-1

10
0

Fig. 8: Dependence of spectral radius on the overlap (left) and robustness of the
two-level methods when increasing the number of subdomains for subdomains with
same size (center) and global problem fixed (right).

We further compare G2S, 2LRAS and Geometric MultiGrid (GMG) for the so-
lution of the Poisson equation −∆u = 1. We decompose Ω into N = 9 and N = 16
subdomains and set Nov = 2. Table 4 reports the number of iterations and com-
putational times to reach a relative tolerance of 10−6. For the G2S method, we
preassembled the coarse matrix. Concerning GMG, we implemented a V-cycle with

`−Nv G2S 2L-RAS GMG
7-146689 3 (0.31) 3 (0.42) 6 (0.22)
8-588289 3 (0.68) 3 (1.34) 6 (0.97)
9-2356225 3 (2.29) 3 (5.94) 6 (4.06)

`−Nv G2S 2L-RAS GMG
7-261121 3 (0.50) 3 (0.72) 6 (0.44)
8-1046529 3 (1.64) 3 (2.57) 6 (1.73)
9-4190209 3 (5.98) 3 (11.38) 6 (7.30)

Table 4: Number of iterations and seconds (in brackets) required by the G2S,
2L-RAS and GMG methods to reach a tolerance of 10−6. The left table refers to
N = 9, while the right table to N = 16.

two pre- and post-smoothing steps using a damped Jacobi smoother with optimal
damping parameter ω = 4/5 [53]. The coarsest level of GMG corresponds to ` = 3
and the size of the coarse matrix is 961. Concerning the implementation of the
DD methods, the subdomain problems are solved in parallel, using the Matlab
parallel Toolbox. The G2S method is implemented according to Algorithm 3. The
sizes of the G2S coarse matrices are 3096, 6168, 12312 for ` = 7, 8, 9, respectively.
For both G2S and GMG, we compute once for all the LU decompositions of the
corresponding coarse matrices as their size is small. The cost of the LU decompo-

30 G. Ciaramella, T. Vanzan

sitions is included in the computational times reported. Table 4 shows the G2S is
competitive with GMG.

5.3 Diffusion problem with jumping diffusion coefficients

In this section, we test our method for the solution of a diffusion equation−div(α∇u) =
f in a square domain Ω := (0, 1)2 with f := sin(4πx) sin(2πy) sin(2πxy). The do-
main Ω is decomposed into 16 non-overlapping subdomains.

We suppose α = 1 everywhere except in some channels where α takes the
values 102, 104 and 106. We consider two configurations represented in Figure 9.

-4

-3

-2

-1

0

1

2

10
-3

Fig. 9: Decomposition of Ω into 16 subdomains with two different patterns of
channels (left and center). The yellow regions correspond to large values of the
diffusion coefficient. The blue-green area shows the nonoverlapping decomposition.
The right panel shows the solution of the equation with the central pattern.

We use a finite-volume discretization, where each non-overlapping subdomain
is discretized with Nsub = 22` cells and it is enlarged by Nov cells to create an
overlapping decomposition with overlap δ = 2Novh. We further assume that the
discontinuities of the diffusion coefficient are aligned with the edges of the cells
and they do not cross any cell. The mapping between the fine and coarse mesh is
illustrated in Figure 10. At the volume level, the restriction operator maps four fine
cells to a single coarse cell by averaging the four cell values and the interpolation
operator is its transpose. At the substructured level, the restriction operator maps
two fine cells to a single coarser cell by averaging. The interpolation operator splits
one coarse cell to two fine cells assigning the same coarse value to each new cell.

Ωj

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

Ωj

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•
•
•
•

←−
P

−→
R

•

•

•

•

Fig. 10: Illustration of the action of the restriction operator in volume (left) and
of the restriction and interpolation operators on a one-dimensional substructure
(right).

Substructured Multi-grid DD Methods 31

dimVc 456 840 1608

α Nv 4096 16384 65536
102 4 (17) 4 (16) 4 (16)
104 4 (18) 4 (16) 4 (16)
106 6 (17) 5 (17) 5 (16)

dimVc 456 840 1608

α Nv 4096 16384 65536
102 4 (19) 4 (19) 4 (18)
104 5 (20) 5 (19) 4 (18)
106 6 (20) 6 (19) 7 (18)

Table 5: Number of iterations performed by the G2S and 2L-RAS (in brackets)
methods with Nov = 2 and for different values of jumps of α and different numbers
of degrees of freedom Nv. The dimension of the substructured coarse space is
dimVc. The left table refers to the two channels configuration and the right table
to the multiple channels one.

10 20 30

Iterations

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

G2S

2L-RAS

10 20 30

Iterations

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

G2S

2L-RAS

10 20 30

Iterations

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

G2S

2L-RAS

Fig. 11: Convergence curves for ` = 5, Nov = 2 for the two channels configuration.
The parameter α is equal to 102 (left), 104 (center), 106 (right).

It still holds that the interpolation operator is the transpose of the restriction
operator.

In this setting, we study the robustness of the G2S method with respect to the
mesh size and the amplitudes of the jumps of α and we compare it to the 2L-RAS
method. In Table 5 we report the number of iterations to reach a relative error of
Tol = 10−6. Both methods are used as iterative solvers. The iterations performed
by the G2S method are the numbers on the left in each cell of the table, while the
iterations of the 2L-RAS are the numbers in brackets on the right. We can observe
that the G2S outperforms 2L-RAS. Figures 11 show the convergence curves for a
fixed mesh size and three different values of α. These results show that the G2S
method is robust both with respect to the jumps of the diffusion coefficient and
the mesh size, and that it outperforms the 2L-RAS method.

Now, we study the performance of G2S and 2L-RAS as preconditioners for
GMRES. Table 6 reports the number of iterations when both methods are used
to accelerate GMRES. We further specify the final size of the Krylov subspaces.
GMRES preconditioned by the G2S method builds a much smaller Krylov sub-
space as the system and preconditioner have dimensions equal to the size of the
substructured space.

32 G. Ciaramella, T. Vanzan

6 Conclusions

In this work we introduced a new framework of two-level and multi-level substruc-
tured DD methods, namely the G2S method and its extension called GMS method.
These are formulated on the substructures of the considered overlapping domain
decomposition. Under certain reasonable hypotheses, for 2 subdomains in 2d, we
proved that the G2S method is well posed and convergent, and we also estimated
the corresponding convergence factor. The effectiveness of our new methods is
confirmed by extensive numerical experiments, where elliptic PDE problems with
possibly highly jumping diffusion coefficients are efficiently solved.

References

1. Aarnes, J., Hou, T.Y.: Multiscale domain decomposition methods for elliptic problems
with high aspect ratios. Acta Math. Appl. Sin. 18(1), 63–76 (2002)

2. Bjorstad, P., Gander, M.J., Loneland, A., Rahman, T.: Does SHEM for Additive Schwarz
work better than predicted by its condition number estimate? Domain Decomposition
Methods in Science and Engineering XXIV, LNCSE, Springer –(–), 129–138 (2018)

3. Bonazzoli, M., Dolean, V., Graham, I., Spence, E., Tournier, P.H.: Domain decomposition
preconditioning for the high-frequency time-harmonic maxwell equations with absorption.
Mathematics of Computation 88(320), 2559–2604 (2019)

4. Bonazzoli, M., Dolean, V., Graham, I.G., Spence, E.A., Tournier, P.H.: Two-level precon-
ditioners for the helmholtz equation. In: Domain Decomposition Methods in Science and
Engineering XXIV. Springer International Publishing (2018)

5. Brezina, M., Manteuffel, T., McCormick, S., Ruge, J., Sanders, G.: Towards adaptive
smoothed aggregation (αSA) for nonsymmetric problems. SIAM J. Sci. Comput. 32(1),
14–39 (2010)

6. Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comp. 21(2), 792–797 (1999)

7. Chaouqui, F., Ciaramella, G., Gander, M.J., Vanzan, T.: On the scalability of classical
one-level domain-decomposition methods. Vietnam J. Math. 46(4), 1053–1088 (2018)

8. Chaouqui, F., Gander, M.J., Santugini-Repiquet, K.: A coarse space to remove the loga-
rithmic dependency in Neumann–Neumann methods. In: Domain Decomposition Methods
in Science and Engineering XXIV, pp. 159–167. Springer International Publishing, Cham
(2018)

9. Chaouqui, F., Gander, M.J., Santugini-Repiquet, K.: A local coarse space correction lead-
ing to a well-posed continuous Neumann-Neumann method in the presence of cross points.
In: Domain Decomposition Methods in Science and Engineering XXV, pp. 83–91. Springer
International Publishing, Cham (2020)

10. Ciaramella, G., Gander, M.J.: Analysis of the parallel Schwarz method for growing chains
of fixed-sized subdomains: Part I. SIAM J. Numer. Anal. 55(3), 1330–1356 (2017)

dimK 0.03 (0.38) 0.05 (1.17) 0.1 (4.71)

α Nv 4096 16384 65536
102 3 (8) 3 (8) 3 (8)
104 3 (8) 3 (8) 3 (8)
106 3 (8) 3 (8) 3 (8)

dimK 0.03 (0.38) 0.05 (1.17) 0.1 (4.71)

α Nv 4096 16384 65536
102 3 (9) 3 (8) 3 (8)
104 3 (9) 3 (8) 3 (8)
106 3 (9) 3 (8) 3 (8)

Table 6: Number of iterations performed by GMRES preconditioned by G2S and
2L-RAS (in brackets) with Nov = 2 and for different values of jumps of α and
different numbers of degrees of freedom Nv. The dimension of the final Krylov
subspace is dimK and expressed in megabytes. The left table refers to the two
channels configuration and the right table to the multiple channels one.

Substructured Multi-grid DD Methods 33

11. Ciaramella, G., Gander, M.J.: Analysis of the parallel Schwarz method for growing chains
of fixed-sized subdomains: Part II. SIAM J. Numer. Anal. 56 (3), 1498–1524 (2018)

12. Ciaramella, G., Gander, M.J.: Analysis of the parallel Schwarz method for growing chains
of fixed-sized subdomains: Part III. Electron. Trans. Numer. Anal. 49, 201–243 (2018)

13. Ciaramella, G., Gander, M.J.: Iterative Methods and Preconditioners for Systems of Linear
Equations. Fundamentals of Algoriths. SIAM (2022)

14. Ciaramella, G., Gander, M.J., Halpern, L., Salomon, J.: Methods of reflections: relations
with Schwarz methods and classical stationary iterations, scalability and preconditioning.
The SMAI journal of computational mathematics 5, 161–193 (2019)

15. Ciaramella, G., Gander, M.J., Mamooler, P.: The domain decomposition method of Bank
and Jimack as an optimized Schwarz method. In: Domain Decomposition Methods in
Science and Engineering XXV, pp. 285–293. Springer International Publishing, Cham
(2020)

16. Ciaramella, G., Hassan, M., Stamm, B.: On the scalability of the parallel Schwarz method
in one-dimension. In: Domain Decomposition Methods in Science and Engineering XXV,
pp. 151–158. Springer International Publishing, Cham (2020)

17. Ciaramella, G., Hassan, M., Stamm, B.: On the scalability of the Schwarz method. The
SMAI journal of computational mathematics 6, 33–68 (2020)

18. Davis, T.A.: Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2).
Society for Industrial and Applied Mathematics, USA (2006)

19. Dohrmann, C.R., Klawonn, A., Widlund, O.B.: A family of energy minimizing coarse
spaces for overlapping Schwarz preconditioners. In: Domain Decomposition Methods in
Science and Engineering XVII, pp. 247–254 (2008)

20. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Methods.
SIAM, Philadelphia, PA (2015)

21. Dolean, V., Nataf, F., Scheichl, R., Spillane, N.: Analysis of a two-level Schwarz method
with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Meth. in Appl.
Math. 12(4), 391–414 (2012)

22. Dubois, O., Gander, M.J., Loisel, S., St-Cyr, A., Szyld, D.B.: The optimized Schwarz
method with a coarse grid correction. SIAM J. Sci. Comput. 34(1), 421–458 (2012)

23. Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition precon-
ditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model.
Numer. Anal. 46(5), 1175–1199 (2012)

24. Efstathiou, E., Gander, M.J.: Why Restricted Additive Schwarz converges faster than
Additive Schwarz. BIT Numerical Mathematics 43(5), 945–959 (2003)

25. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in
high-contrast media. Multiscale Model. Sim. 8(4), 1461–1483 (2010)

26. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high
contrast media: Reduced dimension coarse spaces. Multiscale Model. Sim. 8(5), 1621–1644
(2010)

27. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
28. Gander, M.J.: Schwarz methods over the course of time. Electron. Trans. Numer. Anal.

31, 228–255 (2008)
29. Gander, M.J.: On the influence of geometry on optimized schwarz methods. SeMA Journal

53(1), 71–78 (2011)
30. Gander, M.J., Halpern, L., Repiquet, K.: A new coarse grid correction for RAS/AS. In:

Domain Decomposition Methods in Science and Engineering XXI, pp. 275–283. Springer
(2014)

31. Gander, M.J., Halpern, L., Santugini-Repiquet, K.: On optimal coarse spaces for domain
decomposition and their approximation. In: Domain Decomposition Methods in Science
and Engineering XXIV, pp. 271–280. Springer International Publishing, Cham (2018)

32. Gander, M.J., Loneland, A.: SHEM: An optimal coarse space for RAS and its multiscale
approximation. In: Domain Decomposition Methods in Science and Engineering XXIII,
pp. 313–321. Springer (2017)

33. Gander, M.J., Loneland, A., Rahman, T.: Analysis of a new harmonically enriched multi-
scale coarse space for domain decomposition methods. preprint arXiv:1512.05285 (2015)

34. Gander, M.J., Song, B.: Complete, optimal and optimized coarse spaces for additive
Schwarz. In: Domain Decomposition Methods in Science and Engineering XXIV. Springer
(2018)

35. Gander, M.J., Van Criekingen, S.: New coarse corrections for optimized restricted additive
Schwarz using PETSc. In: Domain Decomposition Methods in Science and Engineering
XXV, pp. 483–490. Springer International Publishing, Cham (2020)

34 G. Ciaramella, T. Vanzan

36. Gander, M.J., Vanzan, T.: Heterogeneous optimized Schwarz methods for second order
elliptic PDEs. SIAM Journal on Scientific Computing 41(4), A2329–A2354 (2019)

37. Gander, M.J., Vanzan, T.: Multilevel optimized Schwarz methods. SIAM Journal on
Scientific Computing 42(5), A3180–A3209 (2020)

38. Golub, G.H., Van Loan, C.F.: Matrix Computations (Fourth Edition). Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD
(2013)

39. Graham, I., Spence, E., Vainikko, E.: Domain decomposition preconditioning for high-
frequency helmholtz problems with absorption. Mathematics of Computation 86(307),
2089–2127 (2017)

40. Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs.
Numer. Math. 106(4), 589–626 (2007)

41. Hackbusch, W.: Local Defect Correction Method and Domain Decomposition Techniques,
pp. 89–113. Vienna (1984)

42. Hackbusch, W.: Multi-Grid Methods and Applications. Series in Computational Mathe-
matics. Springer Berlin Heidelberg (2013)

43. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, 1st edn. Springer Pub-
lishing Company, Incorporated (2015)

44. Heinlein, A., Klawonn, A., Knepper, J., Rheinbach, O.: Multiscale coarse spaces for over-
lapping Schwarz methods based on the ACMS space in 2D. Electron. Trans. Numer. Anal.
48, 156–182 (2018)

45. Klawonn, A., Radtke, P., Rheinbach, O.: FETI-DP methods with an adaptive coarse space.
SIAM J. Numer. Anal. 53(1), 297–320 (2015)

46. Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications
(Vol I). Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin
Heidelberg (1972)

47. Lions, P.L.: On the Schwarz alternating method. I. First international symposium on
domain decomposition methods for partial differential equations pp. 1–42 (1988)

48. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equa-
tions. Numerical Mathematics and Scientific Computation. Oxford Science Publications
(1999)

49. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two-
level domain decomposition preconditioner for systems of PDEs. C. R. Math. 349(23),
1255 – 1259 (2011)

50. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust
coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer.
Math. 126(4), 741–770 (2014)

51. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of
the Unione Matematica Italiana. Springer Berlin Heidelberg (2007)

52. Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory, Series
in Computational Mathematics, vol. 34. Springer, New York (2005)

53. Trottenberg, U., Ulrich Trottenberg, C., Oosterlee, C., Schuller, A., Brandt, A., Oswald,
P., Stüben, K.: Multigrid. Elsevier Science (2001)

54. Widlund, O., Dryja, M.: An additive variant of the Schwarz alternating method for the
case of many subregions. Tech. rep., Department of Computer Science, Courant Institute
(1987)

55. Zampini, S., Tu, X.: Multilevel balancing domain decomposition by constraints deluxe
algorithms with adaptive coarse spaces for flow in porous media. SIAM J. Sci. Comput.
39(4), A1389–A1415 (2017)

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

14/2022 Zappon, E.; Manzoni, A.; Quarteroni A.
Efficient and certified solution of parametrized one-way coupled problems
through DEIM-based data projection across non-conforming interfaces

15/2022 G. Ciaramella, T. Vanzan
Spectral coarse spaces for the substructured parallel Schwarz method

13/2022 Grasselli, M.; Parolini, N.; Poiatti, A.; Verani, M.
Non-isothermal non-Newtonian fluids: the stationary case

12/2022 Antonietti, P.F.; Dassi, F.; Manuzzi, E.
Machine Learning based refinement strategies for polyhedral grids with
applications to Virtual Element and polyhedral Discontinuous Galerkin
methods

11/2022 Sampaoli, S.; Agosti, A.; Pozzi, G.; Ciarletta,P.
A toy model of misfolded protein aggregation and neural damage
propagation in neudegenerative diseases

09/2022 Corti, M.; Zingaro, A.; Dede', L.; Quarteroni, A.
Impact of Atrial Fibrillation on Left Atrium Haemodynamics: A
Computational Fluid Dynamics Study

10/2022 Fresca, S.; Manzoni, A.
Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models

08/2022 Gobat, G.; Opreni, A.; Fresca, S.; Manzoni, A.; Frangi, A.
Reduced order modeling of nonlinear microstructures through Proper
Orthogonal Decomposition

07/2022 Sinigaglia, C.; Quadrelli, D.E.; Manzoni, A.; Braghin, F.
Fast active thermal cloaking through PDE-constrained optimization and
reduced-order modeling

06/2022 Pozzi, G.; Grammatica, B.; Chaabane, L.; Catucci, M.; Mondino, A.; Zunino, P.; Ciarletta, P.
T cell therapy against cancer: a predictive diffuse-interface mathematical
model informed by pre-clinical studies

	qmox16-copertina
	mox-202231414214
	qmox16-terza_di_copertina

