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Abstract

In this paper we present some recent numerical studies on fluid-
structure interaction problems in the presence of free surface flow. We
consider the dynamics of a rowing boat, simulated as a rigid body. We
focus on an approach based on formulating the floating body prob-
lem as an inequality constraint on the water elevation. A splitting
procedure is used to develop an efficient numerical scheme where the
inequality constraint is imposed only on a wave like equation repre-
senting an hydrostatic approximation of the hydrodynamic equations.
Numerical tests demostrate the effectiveness of the proposed proce-
dure.

1 Introduction

The use of computational fluid dynamics (CFD) in boat design is tradi-
tionally based on potential flow theory, even if in the last years the use of
Reynolds Averaged Navier-Stokes (RANS) codes has become increasingly
more common. The role of CFD is of particular importance whenever per-
formance optimisation is critical, such as in competition boats, where even
a small advantage may be crucial. An overview on the numerical techniques
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for ship hydrodynamics may be found in [5, 4] and, more specifically, their
relevance for high performance sailing boat in [14].

In this field, most of the numerical investigations aim to assess the boat
characteristics at a given fixed configuration. Furthermore, they usually
compute a steady state solution, even if sometimes this is reached through
pseudo time stepping. Yet, simulating the full dynamics of a boat may
be of great importance [1, 15]. We mention two cases: high performance
sailing boats and rowing sculls. In the former, the accurate simulation of
the dynamics may allow for a better trimming of the boat [1, 16], better
evaluating wave resistance [13] and in perspective the assessment of its per-
formance during manoeuvring. For a competition rowing scull, accounting
for the dynamics effects is even more important. Indeed, because of the
periodic action at the oars and the movement of the oarsmen on the boat
the motions of the scull is very complex and characterised by horizontal ac-
celerations/decelerations, sinking and dipping. These secondary movements
generate waves which dissipate part of rowers energy, which could be better
spent to move the boat forward.

In this paper, we will give an account of some current research in this
class of problems by focusing on a numerical model based on the solution of
quasi-3D Navier-Stokes equations with free surface [11], where the presence
of the boat is modelled through an inequality constraint. We show how the
method is able to reproduce the general wave patterns of a moving scull.

2 A variational approach to the floating body prob-

lem

We will consider the free-surface Navier-Stokes equations where part of the
surface is subject to a constraint which is meant to represents the external
surface of a boat. More precisely, we will consider for any t ∈ (0, T ), with
T > 0, the domain

Ω(t) = {(x = (x, y, z) ∈ R
3 : (x, y) ∈ ω, z ∈ (−h, η(x, y, t))}

sketched in Fig. 1 is occupied by a fluid, being η the description of the free
surface of the fluid (measured with respect to the unperturbed water depth).
The part of the boundary of Ω corresponding to the free surface is denoted
by

Γs(t) = {x ∈ R
3 : (x, y) ∈ ω, z = η(x, y, t)}.

Here, ω is an open bounded connected subset of R
2 and we are implicitly

assuming that the free surface can be represented by a function of (x, y), i.e
no wave breaking occurs during the motion. The bottom surface is

Γb = {x ∈ R
3 : (x, y) ∈ ω, z = −h},
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where h indicates the depth of the bottom surface (again measured with
respect to the unperturbed water level) which, for the sake of simplicity, is
assumed to be constant. The remaining portion of ∂Ω(t) is the far field

Γf (t) = {x ∈ R
3 : (x, y) ∈ ∂ω, z ∈ (−h, η(x, y, t))}.

Clearly, ∂Ω(t) = Γ̄s(t) ∪ Γ̄b ∪ Γ̄f (t)) at any time t.

Γb

Γs(t)

Γf

ΓΦ(t)

Ω(t)

z

y

x

ω

γΨ(t)

y

x

Figure 1: The 3D computational domain (top) and its projection on the
horizontal plane ω (bottom). The shadowed figure in the bottom picture
represents the projection of the immersed part of the boat on the fluid
surface, it is then part of ω.

We now consider a continuous function

Ψ : ω × [0, T ] → R (1)

which is meant to represent the external surface of the hull of a boat, suitably
extended to cover all ω (see Fig.2). We want to simulate the presence of
a floating boat by constraining the free surface η to be at any time below
Ψ. The evolution of Ψ will be normally given by the interaction of the fluid
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with the floating boat, yet in the following we assume that Ψ is given and
that the (possibly empty) set

γΨ(t) = {(x, y) ∈ ω : Ψ(x, y, t) = η(x, y, t)} (2)

is always strictly included in ω for all t ∈ [0, T ]. This is clearly an “a-priori”
assumption, since η is one of our unknowns (and also Ψ when is obtained
from the solution of a fluid-structure interaction problem). Yet, for many
practical situations it is fulfilled whenever Ψ and ω are properly chosen.

η

Ψ

ω γΨ

Figure 2: A two dimensional view of the constrained problem. η is con-
strained to remain below Ψ at any time.

In our case, γΨ(t) will denote the horizontal projection of the “submerged
surface” of the boat

ΓΨ(t) = {(x, y) ∈ γΨ(t), z = Ψ(x, y, t)},

while U and p denote the velocity and the pressure (scaled with the density),
respectively. If D = {(x, t) : t ∈ (0, T ), x ∈ Ω(t)} we have that U : D → R

3

and p : D → R.
Furthermore, we put into evidence the x and y components of the velocity

by writing
U = (u, w) = (ux, uy, w),

and indicating by ∇xy and divxy the gradient and the divergence operator
in the (x, y) plane, respectively. The flow equations governing this problem
may be conveniently written by introducing a Lagrange multiplier λ : ω ×
(0, T ) → R+ and solving for a.o. t ∈ (0, T ), the following system for the
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unknown U , p, η and λ,

DU

Dt
+ divσ(U ) + ∇p − g = 0

div U = 0
in Ω(t),

∂η

∂t
+ ux

∂η

∂x
+ uy

∂η

∂y
− w = 0

λ(η − Ψ) = 0, λ ≥ 0, η − Ψ ≤ 0
in ω.

(3)

with the additional dynamic condition

(σ(U ) + pI) · n − λn = 0, on Γs(t), (4)

being n the outward normal of ∂Ω(t). This condition implies that the ex-
ternal pressure acting on the free surface Γs(t) \ΓΨ(t) is constant and equal
to zero.

Here, g = −gez is the gravity acceleration, while σ denotes the viscous
contribution to the internal stress, which in our case may be taken equal to
σ(U) = −ν∇U , being ν the water kinematic viscosity, assumed constant.

We have indicated by
DU

Dt
=

∂U

∂t
+ (U · ∇)U the material derivative.

In deriving the first two equations in (3) we have assumed that the water
density ρ is constant, and we have eliminated it from the equations by
scaling. Let us note that the support of λ(t) is always contained in γΨ(t).

System (3) has to be complemented with proper boundary conditions on
Γf (t) and Γb, which will be detailed later on, as well as initial conditions on
U and η.

We now exploit the special shape of the domain to operate on (3). First,
we decompose the pressure as

p(x, t) = g(η(x, y, t) − z) + q(x, t) + λ(x, t), (5)

where q is the so called “hydrodynamic correction” (see [11]), while g(η− z)
is the hydrostatic part.

Furthermore, we integrate the continuity equation along the z direction
by imposing U ·n = 0 on Γb and exploiting the kinematic interface condition,
to obtain

Du

Dt
− ν△u + g∇xyη − ν

∂u

∂z
+ ∇xyλ + ∇xyq = 0

Dw

Dt
− ν△w +

∂q

∂z
= 0

in Ω(t),

divxy u +
∂w

∂z
= 0

∂η

∂t
+ divxy

∫ η

−h

u dz = 0

λ(η − Ψ) = 0, λ ≥ 0, η − Ψ ≤ 0

in ω.

(6)
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The dynamic condition on Γs(t) becomes σ(U ) · n = 0, i.e. ∂U
∂n

= 0. We
have assumed, as usual in this type of derivations, that the dynamic pressure
q is zero on Γs(t). As a result, the Lagrange multiplier λ may be understood
as the pressure field exerted on the water surface by the presence of the
boat.

We wish now to solve this problem numerically. To this purpose we first
reduce it to a simpler problem, more amenable to numerical analysis, by
performing the integration in time.

2.1 Characteristic treatment of the time derivative

We subdivide the time interval [0, T ] into N sub-intervals of width ∆t and
we denote with tn = n∆t the n-th time step. The subscript n denotes
the approximation at t = tn of the various time-dependent quantities. The
method of characteristics consists in performing the following approximation

DU

Dt
(x, tn+1) ≃ U (x, tn+1) − U(X((x, tn+1; tn), tn))

∆t
, (7)

where X((x, tn+1; tn), tn) is obtained by solving the following time backward
differential problem for each x ∈ Ω(t),







dX

dτ
(x, tn+1; tn+1 − τ) = −U(X(x, tn+1; tn+1 − τ), tn+1 − τ), τ ∈ (0,∆t),

X(x, tn+1; tn+1) = x.

More details on this technique may be found in [11] or in [3]. We will now
use the short hand notation Xn to indicate X((x, tn+1; tn), tn)) and replace
(6) with the approximation

un+1 − un(Xn)

∆t
− ν△un+1 + g∇xyη

n+1 + ∇xyλ
n+1 + ∇xyq

n+1 = 0

wn+1 − wn(Xn)

∆t
− ν△wn+1 +

∂qn+1

∂z
= 0

divxy un+1 +
∂wn+1

∂z
= 0

in Ωn+1,

ηn+1 − ηn

∆t
+ divxy

∫ ηn+1

−h

un+1 dz = 0

λn+1(ηn+1 − Ψn+1) = 0, λ ≥ 0, ηn+1 − Ψn+1 ≤ 0

in ω,

(8)
where the quantities at time tn are assumed to be known.

This system of equations can be further modified by adopting an operator
splitting strategy analogous to the one employed in the well-known Chorin-
Temam scheme [6] for incompressible fluid dynamics. More precisely, we
first perform a hydrostatic step, which computes an intermediate velocity
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field ũ, as well as λn+1 and ηn+1 by solving the system

ũ − un(Xn)

∆t
− ν△ũ − ν

∂2ũ

∂z2
+ g∇xyη

n+1 + ∇xyλ
n+1 = 0 in Ωn+1

ηn+1 − ηn

∆t
+ divxy

∫ ηn+1

−h

ũ dz = 0

λn+1(ηn+1 − Ψn+1) = 0, λ ≥ 0, ηn+1 − Ψn+1 ≤ 0

in ω,

(9)
followed by a correction step for the actual computation of the solution

un+1 − ũ

∆t
+ ∇xyq

n+1 = 0

divxy un+1 +
∂wn+1

∂z
= 0

wn+1 − wn(Xn)

∆t
− ν△wn+1 +

∂qn+1

∂z
= 0,

(10)

in Ωn+1.
It is possible to neglect the hydrodynamics pressure term q, using the

so-called hydrostatic approximation. In that case we set q = 0 everywhere,
un+1 = ũ and we solve only the second equation in (10) to obtain the vertical
component of the velocity. Another possible approximation is to neglect the
term −ν△ũ in the first equation of (9), this has important consequence in
the regularity of the solution (see [8] and [9]) and in the numerical scheme.

For what matters at the moment is to notice that with this splitting
the unilateral constraint is imposed on a simpler set of equations. We now
consider on how to apply the constraint in practise.

2.2 Enforcing the constraint in the hydrostatic step

Let us consider (9) in more detail. We note that the problem is non-linear
because the domain Ωn+1 is unknown, as it depends on ηn+1. In order to
avoid a complex iterative procedure, we linearize the problem by computing
a first approximation of Ωn+1 based on a full explicit treatment of the free
surface evolution. In practise, we first solve

η∗ = ηn + ∆tdivxy

∫ ηn

−h

un dz

and use it for the approximation of the domain at time tn+1. The actual
domain at time tn+1 will be calculated at the end of the step from the
computed values of ηn+1. We now rewrite (9) where, for the sake of notation,
we drop the superscript (n + 1) and the bar, and we set α = (∆t)−1.

The problem is to find u, η and λ which satisfy

αu − ν△u − ν ∂2u
∂z2 + g∇xyη + ∇xyλ = fu in Ω,

αη + divxy

∫ η∗

−h

u dz = fη in ω,
(11)

7



under the constraints

λ(η − Ψ) = 0, λ ≥ 0, η − Ψ ≤ 0, in ω, (12)

being Ψ a given function. We have set fu = αun(Xn) and fη = αηn. The
boundary conditions are

∂u

∂n
= 0 on Γs

u = 0 on Γb ∪ Γf .
(13)

It may be recognised tat we are facing a classical saddle point problem
which may be solved by duality techniques. For a given η and λ in L2(ω)
the first equation in (11) with boundary conditions (13) is well posed with
u ∈ V = {v ∈ [H1(Ω)]2, v = 0 on Γb ∪ Γf}.

More precisely, for a given φ ∈ V ′ we indicate with y = F(z) the element
of V which satisfies (in the sense of distribution) the equation

αy − ν△y − ν
∂2y

∂z2
= fu + φ

in Ω, with boundary condition ∂y
∂n

= 0 on Γs. The map F is an isomor-
phism between V ′ and V . Therefore, (11) may be formally written in the
equivalent form

αη + divxy

∫ η∗

−h

F−1(−g∇xyη − ∇xyλ) dz = fη, in ω, (14)

which, for a given λ, provides an equation for η only. It may be verified that
(14) is in fact akin to a wave equation for η and efficient numerical solution
strategies may be devised for it [11]. We are now ready to state the Uzawa
algorithm for our constrained problem.

For a given ǫ > 0, ρ > 0 and λ(0) ∈ L2(ω), with λ(0) ≥ 0, solve

αη(k+1) + divxy

∫ η∗

−h

F−1(−g∇xyη
(k+1) − ∇xyλ

(k)) dz = fη, in ω,

and set
λ(k+1) = max(λ(k) + ρ(η(k+1) − Ψ), 0),

for k = 0, 1, . . ., until ||λ(k+1) − λ(k)||L2(ω) ≤ ǫ.
The final iterate is used for the approximation of ũ, λn+1 and ηn+1.

Finally, we either perform the full correction step (10), or, if we are making
the hydrostatic assumption, we just compute the new w using the second
equation in (10).
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2.3 The model for the dynamics of a rowing scull

To compute the boat dynamics we need to couple between the fluid solver
with and an algorithm for the structural dynamics.

Here the boat is modelled as a rigid body and following [1, 2] we have
considered two orthogonal Cartesian reference frames. The inertial reference
system (O, x, y, z) and a body-fixed reference system (S, xb, yb, zb), whose
origin is the boat centre of mass S, which translates and rotates with the
boat. The xy plane in the inertial reference system is parallel to the undis-
turbed water surface and the z−axis points upward. The body-fixed xb-axis
is directed from bow to stern and yb is positive starboard.

The dynamics of the boat in the 6 degrees of freedom is described by the
equations of linear and angular momentum, which in the inertial reference
frame are given by

M S̈ = F (15)

and
RIR−1Φ̇ + Φ×RIR−1Φ = MG, (16)

respectively. Here, M is the boat mass, S̈ is the linear acceleration of the
centre of mass, F is the resultant of the external forces acting on the boat, Φ̇
and Φ are the angular acceleration and velocity, respectively. Finally, MG

is the moment with respect to G acting on the boat, I is the tensor of inertia
of the boat about the body-fixed reference system axes and R = R(Φ) is
the transformation matrix between the body-fixed and the inertial reference
system (see [1] for details).

We here consider the application of the model to the dynamics of a
rowing scull. A scull is a competition rowing boat where the oarsmen (also
called scullers) hold both left and right oars and act on them synchronously,
see Figure 3. The problem is made difficult by the strong unsteadiness of

s 1 s 2 s 3 s 4
V

g1 g2 g3 g4

s1f s2 s3 s4

p1 p2 p3 p4

c
G

c
G

X

Z

X

Y

f f f

Figure 3: An actual scull (coaxless quad) on the left and its model on the
right

the motion and the interaction with the free surface. Indeed, the varying
forces at the oars and, even more importantly, the inertial forces due to the
movement of the rowers (who slide over the boat during the rowing action)
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superimpose to the mean motion a complex system of secondary movements.
The latter induce an additional drag, mainly because of the gravitational
waves radiating from the boat. Their account can be useful during the design
process of a new boat and to understand the effects of different rowing styles
or crew composition.

Because of the characteristics of a scull, we can assume as a first approx-
imation that the motion takes place in the xy plane. This implies a great
simplification of (16), which reduces to a scalar equation, being Φ = φey.

The data we have usually available are the forces at the oarlocks F oj
,

inferred from measurements taken on rowing machines, and the movement
of the rowers. Here, j runs over the number of rowers. The latter can be
extracted from a kinematic model of the rower and measurements taken
using video imaging techniques[12], and is usually given as the position
gij = gij(t) of the centre of mass in the boat reference frame of portions of
the body of the athlete (e.g. arm, forearm, legs, etc.), with corresponding
mass mij (usually taken from anatomic tables as function of the sex, age
and weight of the athlete). Here i runs over the number of parts into which
the body has been subdivided. If we consider the system formed by the
boat and the rowers, we need to provide the force exerted by the rowers on
the oar as well, in the following indicated by F hj

. This force can be easily
computed using a model of the oar action, therefore it is here assumed as
given. We omit all details of the derivation of the model, which is rather
standard and can be found in [7], and we provide only the final result. Let
us indicate with

R =





cos φ 0 − sinφ
0 1 0

sin φ 0 cos φ



 , O =





− sin φ 0 − cos φ
0 1 0

cos φ 0 − sin φ



 .

the rotation matrix and its derivative w.r.t. φ, and with M the mass of the
boat. We have that

(M +
∑

i,j

mij)S̈ + O(
∑

i,j

mijgij)φ̈ + R
∑

j,j

mijg̈ij + 2O(
∑

i,j

mijġij)φ̇

−R(
∑

i,j

mijgij)φ̇
2 =

n
∑

j=1

F oj
+

n
∑

j=1

F hj
+ (M +

∑

i,j

mij)g + F Flow (17a)
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and

R(
∑

i,j

mijgij) × S̈ + (IY Y +
∑

i,j

mij|gij |2)φ̈ (17b)

+ 2(
∑

i,j

mijRgij ×Oġij)φ̇ = −R
∑

i,j

mijgij ×Rg̈ij

+ R
n

∑

j=1

gsj
× F sj

+ R
n

∑

j=1

gmj
× F mj

R
∑

i,j

mijgij × g + MFlow,

where the indexes i and j run from the number of body parts and the
number of rowers, respectively. The dependence on t of the various terms is
understood.

Equations (17) form a system of three nonlinear second order ordinary
differential equations in the variables (Sx, Sz, φ), that must be complemented
with a suitable fluid dynamic model in order to compute F Flow and MFlow

and close the problem. For instance, the model proposed in the previous
sections.

2.4 More realistic boundary conditions

We need to make the boundary conditions on Γb and Γf more realistic. On
the bottom, we normally prescribe a friction condition through a Chézy
coefficient cd. Being the bottom flat it corresponds on setting

w = 0 ν
∂u

∂z
= cd|u|u, on Γb,

the non-linear term in the right-hand side being discretized in time in a semi-
explicit fashion. On the far field, we employ a first order linear radiation
condition for the elevation, i.e. we impose

∂η

∂t
+

√

gh
∂η

∂n
= 0, onΓf (t),

which is approximated by using an extrapolation technique akin to the char-
acteristic treatment of the time-derivative already illustrated. The modifi-
cations to the numerical scheme are straightforward.

3 The interaction between the boat and the water

The scull dynamic model and the flow model have to interact. In particular
the forces F Flow and the angular momentum MFlow acting on the boat
depend on the flow solution. However, the dynamic condition (4) implies a
zero tangential component of the normal stresses on the boat surface, while
the normal component is simply given by λ. Therefore, the proposed fluid
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dynamics model is able to compute correctly pressure induced forces, but
neglects the viscous drag. Yet, for elongated geometries like a scull the
viscous drag F D(U ) = −R(U)ex

1 can be estimated by standard empirical
formula, which are quite accurate. Therefore, we may write that

F Flow =

∫

ΓΨ

λndγ + F D(U) =

∫

ω

λ

[

∂Ψ

∂x
,
∂Ψ

∂x
, 1

]T

dxdy + F D(U ).

We have here exploited the fact that the normal the surface ΓΨ is given
by n = (

√

1 + |∇xyΨ|2)−1[∂Ψ
∂x

, ∂Ψ
∂y

, 1]T and, for the sake of completeness we
have given the general formula, while in the case of a scull the y component
of F Flow is zero because of symmetry considerations. An analogous formula
may be obtained for the computation of the couple MFlow induced by the
action of the flow. We have also implicitly used the fact that λ = 0 outside
the area where the boat is present.

The boat dynamical system describes the position of the boat and thus
implicitly defines the function Ψ. Let B0 = {(xb, yb, zb), (xb, yb) ∈ B ⊂
R

2, zb = r̂b
0(x

b, yb)} be the parametric description of the boat external sur-
face (the skin) in the boat reference frame, usually provided by means of
analytic functions. We first extend r̂b with continuity to the whole R

2 in a
suitable way, and let r̂b indicate this extension. The extended boat geometry
at time t can then be described as B(t) = {(x, y, z), (x, y)R2, z = r(x, y, t))
where

r(x, y, t) = Sz(t) + tan φ(t)[x − Sx(t)] + cos−1 φ(t)r̂b(R(φ(t))[x − S(t)]).

Finally, Ψ can be taken as r restricted to ω.

4 Numerical results

When considering the dynamics of the scull, the value of Ψ at each time
step is given by solving equations (17), where the hydrodynamic forces are
computed by integrating the surface stress provided by the Navier-Stokes
model just presented.

For the space discretisation we have adopted a finite element scheme
which employs Raviart-Thomas RT0 triangular elements in the (x, y) plane
for u and standard P 1 elements for w. The elevation η, as well as the
multiplier λ, is approximated by a piecewise constant function (i.e. P0 finite
elements). Details are given in [11].

We have implemented a simple time integration procedure of the coupled
problem. We evolve from time step tn to tn+1 as follows:

• the body position is integrated explicitly using the fluid dynamic forces
F n

Flow and Mn
Flow computed from the flow solution at time stem tn;

1In fact the drag is also a function of the submerged surface.
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Length [m] Breadth [m] Height [m] Mass [kg] Iyy [kg m2]

6 0.8 0.6 400 930

• once the approximation Ψn+1 of the constraining surface is available,
we solve the fluid dynamic problem using the Uzawa algorithm;

• once ηn+1, λn+1, and Un+1 have been obtained we move to the next
time step.

This explicit scheme is subject to an absolute stability condition. Yet, the
time steps required to capture the rather fast dynamics of the generated
waves has been found to be within the stability bounds, at least for the
computations carried out so far.

The numerical results presented in the following section have been ob-
tained using the hydrostatic assumption i.e. the flow solution is computed
neglecting the hydrodynamic pressure term q.

4.1 Sinking and pitching motions

For all the following dynamic simulation the scull has been approximated
by a semi-ellipsoid. Its geometric, mass and inertia characteristics are sum-
marised in table 4.1.

The first simulation is a pure sinking motion: the hull is free to move
in the z direction subject to its weight. The initial position is at the centre
of a square basin of edge length 15m. At time t = 0 the body is steady
at z = 0.6m over the free surface. The motion, represented in figure is a
sequence of damped oscillations and after a few seconds the vertical position
levels off at z = 0.30m. The asymptotic sinking is in good agreement with
the theoretical equilibrium position of z = 0.325m.

Pure pitching motion was also simulated: vertical position was fixed and
a non-zero initial pitch angle θ0 = 1.5◦ was assigned. As in the sinking
motion, oscillations damps out and pitch angle tends to its zero equilibrium
value. Damping is considerably lower compared to the previous simulation,
due to the smaller wave amplitude generated. This is also in accordance to
experience. Figures 4 represents the wave pattern generated by sinking and
pitching motion, respectively (beware: colour scales are different).

4.2 Reproducing mean motion wave pattern

A further test concerns the wave pattern generated by the advancing motion
on free surface. In shallow water regime, i.e. for H < 2v2/g, theory predicts

for bow and stern waves a semi-angle β = asin
( c

v

)

where the wave speed

c is constant in the hydrostatic assumption and equal to
√

gh (see [10]).
Setting h = 3m this angle turns out to be 64.7◦.
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Figure 4: Wave pattern for sinking (left) and pitching motion (right)

Figure 5: The wave pattern generated and its expected angle

In figure 5 the predicted angle is overlaid on the calculated wave pattern
(colour scale is proportional to free surface elevation). The agreement is
satisfactory demonstrating the effectiveness of the procedure.

4.3 An example with the full dynamics

We have here considered a coaxless quad scull. The first picture in Fig. 6
illustrates the wave pattern generated by the boat moving at the constant
mean velocity, computed using the model given in Section 2. The second
and third pictures illustrate that obtained at the instant of the catch and
at the release, when the full dynamics of the boat is considered. We have
assumed a stroke period of 1.5 seconds.

Figure 6: The surface wave pattern for the mean motion (left) and at two
different time instants obtained using the full boat dynamics
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The alteration to the wave pattern caused by the secondary motions is
evident. Comparison with experimental data is currently under way. So far,
we have carried out only qualitative assessment comparing the wave pattern
with that obtained from video recording, with good agreement.

4.4 A final detail

The numerical model described so far has a practical disadvantage. As the
boat moves it will eventually reach the boundary of the computational do-
main. As a consequence, to simulate the boat during a race for reasonably
long periods we may need a rather large ω, with an increase in the com-
putational costs. We have successfully overcome this problem by re-writing
the flow equations in a non-inertial reference system with origin on the boat
centre of mass S, and axis directions kept fixed. What is needed is the
addition of the inertial forces and some changes in the boundary conditions
in the flow equations. In this way the variations in γΨ are only due to the
sinking and pitching motion, while the boat centre remains fixed. For the
sake of brevity we have not reported here the modified equations even if the
last computations here shown have been indeed computed this way.
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