MODELLISTICA E CALCOLO SCIENTIFICO

MODELING AND SCIENTIFIC COMPUTING

MOX-Report No. 15/2026

Block encoding of sparse matriceswith a periodic diagonal structure

Zecchi, A. A.; Sanavio, C.; Cappelli, L.; Perotto, S.; Roggero, A.; Succi, S.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



Block encoding of sparse matrices with a periodic
diagonal structure

Alessandro Andrea Zecchi®, Claudio Sanavio?, Luca Cappelli®, Simona Perotto’,
Alessandro Roggero*5 and Sauro Succi?

February 13, 2026

IMOX - Dipartimento di Matematica
Politecnico di Milano
Piazza L. da Vinci, 32, 1-20133 Milano, Italy

alessandroandrea.zecchi@polimi.it

2Fondazione Istituto Italiano di Tecnologia,
Center for Life Nano-Neuroscience at la Sapienza,

Viale Regina Elena 291, 00161 Roma, Italy

3 Dipartimento di Fisica dell’Universita di Trieste,
Via Tiepolo 11, 34131 Trieste, Italy

4 Physics Department, University of Trento,
Via Sommarive 14, 38123 Trento, Italy

5 INFN-TIFPA Trento Institute of Fundamental Physics and Applications,
Via Sommarive 14, 38123 Trento, Italy

Abstract

Block encoding is a successful technique used in several powerful quantum al-
gorithms. In this work we provide an explicit quantum circuit for block encoding
a sparse matrix with a periodic diagonal structure. The proposed methodology is
based on the linear combination of unitaries (LCU) framework and on an efficient
unitary operator used to project the complex exponential at a frequency w multiplied
by the computational basis into its real and imaginary components. We demonstrate
a distinct computational advantage with a O(poly(n)) gate complexity, where n is
the number of qubits, in the worst-case scenario used for banded matrices, and O(n)
when dealing with a simple diagonal matrix, compared to the exponential scaling of
general-purpose methods for dense matrices. Various applications for the presented
methodology are discussed in the context of solving differential problems such as
the advection-diffusion-reaction (ADR) dynamics, using quantum algorithms with
optimal scaling, e.g., quantum singular value transformation (QSVT). Numerical
results are used to validate the analytical formulation.



1 Introduction

The quantum computing paradigm harnesses the features of quantum mechanics to per-
form computations [1] and is rapidly advancing toward practical applications in many
research areas. Several quantum algorithms, including recent innovative developments,
outperform conventional classical methods and offer significant speedup for various prob-
lems [2, 3]. Moreover, many important quantum algorithms share ideas and techniques
that are typically used as subroutines to perform a specific task. For instance, the quan-
tum Fourier transform is used for both the Shor’s algorithm, which aims at finding the
prime factors of an integer, and the Harrow—Hassidim—Lloyd algorithm, the latter used
for finding the solution of a linear system [4].

A powerful subroutine known as block encoding emerged in the context of Hamil-
tonian simulation through qubitization [5]. Block encoding enables numerous complex
matrix operations on quantum computers and has become a fundamental tool in de-
veloping new algorithms. This technique is widely used in quantum applications for
chemistry, linear algebra, optimization, and simulating physical systems, and can be
used to encode a possibly non-unitary matrix as a sub-block of a larger unitary oper-
ator [6, 7, 8]. Here we briefly recall the main mathematical aspects. Given a matrix
A € C?"*2?" we define the unitary matrix Uy € C2""*2"™ that provide a block encoding
of A with m ancillary qubits, as

Ua = (1)
The elements * guarantee the unitarity of U while the scaling factor «, also called sub-
normalization, ensures that ||A/a|| <1 [9] where || - || is the usual spectral matrix norm.
Therefore, the scaling factor must satisfy the following inequality a > ||A||, but usually a
lower scaling is favorable since the efficiency of many quantum algorithms improves as «
reduces. Finding a block encoding scheme with a = ||A|| for a generic matrix A remains
an open problem.

Recognizing the significance of block encoding has motivated extensive research on
optimizing its construction for various classes of matrices [10, 11, 12]. For dense matri-
ces, i.e., with almost all elements different from zero, typically occurring when loading
classical data, there has been extensive research [11] also regarding the quantum ran-
dom access memory query model [13]. A method, named FABLE, to generate fast
approximate quantum circuits for dense matrices was proposed by [14] and subsequently
extended for unstructured sparse matrices [15]. Block encoding can be also used for
ladder operators acting on fermionic and bosonic modes, and can be a powerful tool for
simulating quantum field theories [16].

However, currently available methods for block encoding sparse matrices often lack
the ability to efficiently exploit specific structural regularities [9]. These patterns arise
frequently in engineering applications, for instance, when modeling second-order elliptic
differential problems with periodic coefficients.

In this work we introduce a new block encoding method based on the LCU frame-
work for sparse matrices with a periodic structure. In particular, we focus on sparse
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banded matrices and provide an explicit quantum circuit that can be easily extended
to any periodic signal with a given number of frequency components. This method
effectively exploits the periodicity of the matrices improving efficiency with respect to
known methods and it is based on a specific unitary based on the complex exponential
at a particular frequency which can be easily linked to sinusoidal functions representing
its real and imaginary part. In Section 2 the proposed methodology is presented and
characterized for a single frequency while the extension to sparse banded matrices is
considered in Section 3 along with the case with a more general periodic structure de-
composed into different frequencies. Various applications are analyzed in Section 4 in the
context of solving an elliptic partial differential equation (PDE) problem on a quantum
computer. A paradigmatic example is provided by the classical dynamical behavior of
ADR differential equation with periodically varying coefficients. The numerical results
are presented in Section 5. Finally, we discuss the outlooks and conclusions of our work
in Section 6.

2 Quantum circuit

In this section, we describe the general idea behind our framework and provide a de-
tailed analysis of the quantum circuit for block encoding sparse matrices with a periodic
structure on the main diagonal. We follow standard conventions used in the quantum
computing literature, writing quantum states in the Dirac notation |-) and using stan-
dard quantum gates. For the binary representation of an integer k € N we employ the
little-endian convention with k = k,—1 - 2" 1+ -+ k; - 21 + ko - 20 and where ko denotes
the least significant bit. The qubit associated to the least significant bit appears at the
bottom in quantum circuit diagrams.

2.1 Diagonal sinusoidal matrix

We start by considering two diagonal matrices C(w, ¢), S(w, ¢) € RNXN  where N = 2"
with n being the number of working qubits, characterized by oscillating components with
frequency w € R, such that:

Clw,¢)i; = cos((i— 1w+ ¢)si; (2)
S(w.@)i; = sin((i— Dw + ¢)di), (3)
where 6;; is the Kronecker delta function for the matrix indices i,j = 1,...,N and

¢ € R is a phase term. We consider w taking values in [0, 27) as it does not change
the overall result. In our construction, we take advantage of the fact that these two
matrices are the real and imaginary components of a diagonal unitary operator such
that (C(w, ¢) +iS(w, ¢))ij = ei((i_l)‘*’+¢)6ij = V(w, ¢) with i being the imaginary unit.
In particular, this operator can be written as

V(w, ¢) = e'diag (1, el e B | ei(N_l)“’) , (4)
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with ¢ being a global factor acting as a phase shift for the cosine and sine components.
Without loss of generality, we set from now on ¢ = 0, thus writing in V,C and S only
the dependence on w. The unitary operator V(w) acts on the computational basis state
|k) as

V(w) [k)y = ¢ * [k) (5)

where k can be expanded in binary as k = Z;;l k429 with k, € {0,1}. Substituting this
expression of k into (5) we can write that

n—-1
i iw YLk 24 i q
¢k = 1@ g0 ka?? — l_l e'wka?! (6)
q=0
and since the term has been factored into a product over bits, the unitary operator V can
be implemented as a sequence of single-qubit rotations about the Z axis, i.e., of phase
gates

-1

V(w) = HP(Z"w), (7)

n
q=0

using the definition P(6) = diag(1, ¢'?). The corresponding circuit is depicted in Figure
1, and requires a number of single qubit phase gates equal to the number of qubits and,
therefore, it can be regarded as highly efficient and attainable on a near term quantum
device. Clearly, if a phase angle 6 is sufficiently small, the gate’s effect on the quantum
state becomes negligible, allowing it to be discarded during circuit optimization [17, 18].
Hence, in some cases, many phase gates can be removed without significantly affecting
the result, further reducing the computational cost of the operator. For instance, for
small frequencies w < 27/N, we can approximate the unitary V(w) with error at most €
rotating only the leading O(log(1/€)) qubits. This type of diagonal operator has already
been studied for the Generalized Quantum Signal Processing (GQSP) framework to
synthesize diagonal matrices using a Fourier decomposition into polynomials of V(w)
[19]. In that case, the operator was designed only for powers of the primitive N-th root
of unity, i.e., e'P ¥ with p being an integer, to implement convolution operators in the
quantum Fourier basis. Conversely, in our case the focus is on building a block encoding
of a periodic real matrix, extending subsequently the result to a linear combination of
operators with different, and arbitrary, frequencies.

The interference produced by the Hadamard gates allows us to isolate the real and
imaginary components of the unitary V(w). This construction leads to the following
result.

Theorem 1 Let w € R and let V(w) = V(w,0) be the diagonal unitary operator defined
in Equation (4). The unitary Uc () acting on n+ 1 qubits, defined as

Uc(w) = (H& DI V()" (|0) (0 @ V(2w) + 1) (1| @ )(H @ 1), (8)
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Figure 1: Quantum circuit to implement the diagonal unitary operator (4) using n phase
gates.

is an ezxact block encoding of the diagonal matriz C(w) = C(w, 0) defined in Equation (2)
with sub-normalization factor @« =1 and m = 1 ancilla qubit.

The proof follows from the direct application of the unitary operators and the identity
V(w)' = V(-w). If we consider an ancilla qubit initialized in |0) with a working register
of size n having an arbitrary initial state |), as depicted in Figure 2, the resulting overall
state corresponds to the superposition

|¥1) = 10)C(w)|¢) +i[1)S(w)[). (9)

The state |¥1), depending on the result of the measurement performed on the ancilla
qubit, collapses into either the state C(w)|y¥) or the state S(w)|¥) on the working qubits
up to a global phase.

10) —— — 1) —{H] T [H]

|
Uc(w) = |
) — — W) V() [ V() [+

Figure 2: Block encoding circuit of the diagonal matrix C defined in Equation (2).

We remark that by recovering the dependency on the phase factor ¢ it is possible to
retrieve the more general expressions of Equations (2) and (3). In addition, it is sufficient
to add a Pauli-Y gate to the ancilla qubit to obtain

Y eI [¥1) =Y(0)C(w)|¢) +i1)S(w)¥)) = |0) S(w) [¢¥) +i|1) C(w) [¥) (10)



thus achieving a block encoding of the sine matrix S(w) associated with the |0) state of
the ancilla qubit.

The probability of the two outcomes of Equation (9) depends on the initial state |).
If we write the state as |¢) = ZkN:_Ol crlk), with ZkN:_Ol lcx|? = 1, then the probability of
measuring the state |0) is pg = ZkN:_Ol |ck|? cos?(kw), while the probability of measuring
1) is p1 = 1= po = Xp" lekl? sin? (kw).

Employing the trigonometric identity cos(x)? = 1/2(1 + cos(2x)) it is also possible
to write pg = 1/2 +1/2 Z;{v: _01 |ck|? cos(2kw) which shows that the probability oscillates
around an average value of 1/2 and depends both on the initial coefficients ¢; and on the
frequency w. The probability pg is shown in Figure 3 for an initial uniform distribution
(or superposition) with all equal coefficients, while for a single computational basis state
k it oscillates exactly as pg = cos(kw)?. Instead, for a generic distribution the probability
oscillates between 0 and 1 with an interference-like pattern.

1.0
0.81
0.61
IS
0.4
e .uniforrh.
0.21 basis
-------- generic
0.0 " . .
0 s n 3n 2n
2 2

Figure 3: Probability po of successfully applying the proposed block encoding for dif-
ferent values of w and different choices of the initial state ¢, the uniform distribution
(solid), the computational basis case (dashed) and a generic distribution (dotted). The
quantum register of ¢ consists of 4 qubits.

We point out that the proposed circuit for block encoding a diagonal non unitary
matrix (see Figure 2) has the advantage of requiring less controlled multi-qubit opera-
tions with respect to other schemes designed for more general matrices[20]. The circuit
in Figure 2 can be implemented straightforwardly using 3n phase gates and 2n CNOT
gates [21]. An even simpler implementation requiring only n phase gates instead can be
obtained using the implementation shown in Figure 4.
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Figure 4: Alternative block encoding circuit of the diagonal matrix C defined in Equation
(2). The CNOT gates have one control and n targets.

2.2 Shift permutation matrices

The left L and right R shift permutation matrices are defined as follows

0 o oo 1] 0 1 -+ - 0]

1 0 0 -0 00 1 .0
L=|: 1 " . i, R=|t o . . 1. (11)

: T, . “. . : : 1

o 0 - 1 0] 10 0

These operators correspond to the addition and subtraction arithmetic operations
modulo N and can be used to apply a shift to a diagonal matrix. The shift operators
can be constructed in a straightforward way following the circuit in Figure 5 using a
sequence of multi-qubit controlled Toffoli gates. In this case the depth is quadratic in n
and the number of Toffoli gates scales as O(n?), using a single dirty (without requiring
re-initialization) ancilla qubit [22]. Further savings can be achieved using the approach
applied to the quantum adder in [23] which requires n — 1 clean ancilla qubits but has a
Toffoli cost of only O(n).

By iteratively applying s times one of these operators, i.e., R® or L*, further shifts to
right or the left, respectively, can be achieved, while appending one of these operators
to the working register of the circuit defined in Figure 2 is an effective strategy to shift
the periodic structures of Equations (2) and (3). For instance, the result of applying the
right shift operator to the matrix C(w) is

[0 cos(w) 0
0 0 cos(2w) . 0
RC(w)=|: ¢ : : (12)

: : cos((N - 1w)
1 0 0
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Figure 5: Shift circuits for a quantum register of size 4.

3 Block encoding of sparse matrices with a periodic struc-
ture

We consider a sparse banded matrix M € RV*VN | again with N = 2", whose off-diagonal
configuration is Toeplitz with wrap-around and with an arbitrary structure on the main
diagonal, namely

—mn 9 0 a1 ]
a1 mog 0
M=o a1 2 (13)
@2
a2 0 @ MmyN|

This kind of matrix can arise when dealing with a directed cyclic graph with different
weights for each vertex, or when dealing with the algebraic form resulting from the finite
discretizations of partial differential equations with periodic boundary conditions [24, 25].

It is well known that by using the Linear Combinations of Unitary operations (LCU)
framework, originally developed in [26], it is possible to decompose any operator O into
a sum of J unitary matrices U, each one weighted by a real positive coefficient a;, for
j=0,1,...,J -1, as

J-1
0=> aU;. (14)
j=0

In particular, the linear combination is achieved using a unitary state preparation op-
erator PREP, and its inverse PREP'. More precisely, we can define the state preparation
operator, acting onto a data register of [log,(J)] qubits as

J-1
—
PREP|0) = ) \/;’m,
Jj=0

being a proper normalization coefficient. In order to obtain the full

(15)

J-1

with a = =0 @j



operator O we also need a SELECT unitary defined as

J-1
SELECT = ' |j){j|eU; , (16)
Jj=0

so that we can write a rescaled version of our operator as follows

g = (0|(PREP)" (SELECT) (PREP)|0) . (17)

If the matrix M has a periodic structure on the main diagonal, we can employ the
matrix C(w) defined in Equation (2), and the left and right shift permutation matrices,
to construct the following LCU, involving four positive real coefficients

M = apC(w) + a1 L + a2R + a3l. (18)

In this case the resulting matrix is defined as in Equation (13) but with diagonal
entries given by
miy = agcos((i — 1w+ ¢)+as3, i=1,...,N. (19)

The quantum circuit depicted in Figure 6, is a block encoding of M using three ancillary
qubits: one for the block encoding of C(w) (see Theorem 1), and two for encoding the
LCU coefficients into an appropriate quantum state. Post-selecting the ancillary qubits
in the state |000) implements the desired matrix transformation.

|d) —— —
10) —— Um(w) — =
) —— —
|d1>:|0> o o PY -
PREP I I PREPT
|do)=|0) ——— T [ -
|0)
Uc(w) J_‘
) -~ [L—R]

Figure 6: Block encoding of a sparse banded matrix with a periodic structure employing
LCU.

This quantum circuit can be considered efficient as the gate complexity is O(n?)
as seen from the analysis above where we have fully characterized its various compo-
nents. The dominant cost is the implementation of the SELECT circuit which requires J



multiply-controlled operations. The controlled version of Uc () can be obtained by con-
trolling the V(w) unitary in Figure 4 from the two ancilla qubits. This can be done easily
by adding two Toffoli with target an additional clean ancilla, n additional rotations and
2n CNOT gates controlled on the added ancilla. When using the unitary incrementer
circuit from [23] to implement the shift operators L and R, their controlled version can
be implemented using a constant number of additional gates. Finally, the Toffoli cost of
implementing the sequence controls needed for the SELECT operation can be brought
down to only O(J) using the unary iteration scheme proposed in [27], which organizes
these controls into a ladder structure to optimize circuit depth. We also remark that for
this block encoding scheme it is also possible to modify the quantum circuit to zero out
the @ in the (1, N)-th entry of M and the a9 in the (N, 1)-th entry of M, obtaining a
tridiagonal matrix following the procedure explained in [9].

We provide for sake of concreteness a simple example with n = 2 working qubits,
w = /2 and using PREP = H® H, therefore with a; = 1/4, Vj for which the resulting
matrix is simply given by

cos(0) +1 1 0 1
1 1 cos(m/2) +1 1 0
M= 4 0 1 cos(m) + 1 1 ’ (20)
1 0 1 cos(3m/2) + 1

with the full circuit implementation given by Figure 6.

3.1 Fourier decomposition: periodic structure with more than one fre-
quency

If we consider a generic signal it is possible to employ Fourier analysis to decompose
it into its basic components. Employing this tool it is possible to express the original
signal as a linear combination of periodic components at different frequencies. The same
concept can be applied for the elements of a generic diagonal matrix. In particular, using
the LCU framework it is also possible to extend the previous results to include matrices
defined as in (13), that exhibit a periodic structure with multiple frequencies. To in-
troduce this concept for diagonal matrices, let us consider only two different frequencies
w1, w9 and without any phase factor term. In this case, the general matrix with cosines
on the diagonal can be written using a weighted combination with two coefficients. More
generally, if we consider a signal consisting of p cosines with different frequencies an LCU
with p terms corresponds to

p-1
D U (21)
7=0

with a complexity of O(plog N). This result is a generalization of the GQSP framework
[19] since it can express the frequency w not necessarily as a root of unity 27/N. We can
reformulate this result including also sine waves. In particular, given a generic T—periodic
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real function expressed as a trigonometric series with appropriate coefficients

flx)= % + Z [an cos (Q%nx) + b, sin (Q%nx)] , (22)

n=1

it is possible to implement a block encoding of the N X N diagonal matrix A such that

Alx) = f(x) ), (23)

using an LCU employing block encodings of the cosine and sine matrix defined in Equa-
tions (2) and (3). The proposed methodology can be more efficient than the one used
in GQSP which relies on a signal decomposition into a d—degree polynomial of V(w)
requiring O(dlog N) 1 and 2 qubits gates. The two methods are equivalent when w can
be written as an integer multiplied by the root of unity 27/N. However, in the more
general case, the order d needed for the GQSP-based approach can be much larger than
the order p required by our method. A simple example is for a matrix proportional to
C(nN/(N + 1)) requiring only p = 1 for our method, which then costs O(log(N)), but
for GQSP the cost becomes O(N log(N)) due to the need to use a d = N polynomial.
It remains to be explored whether this approach can be generalized using matrix access
oracles [9] and whether that would result in a computational advantage. Specifically, an
open research question is whether it is possible to design a oracle to pick between various
frequencies, such that the final block encoded operator represents the sum of different
components.

Let us now discuss the case of periodic matrices of Equation (13). Considering again
only two frequencies, using four positive real coefficients for the LCU it is possible to
write the overall matrix M expanded as

M = agC(w1) + a1 L + aoR + a3C(ws), (24)
with corresponding diagonal entries
my; = agcos((i — Dwy) + azcos((i — 1))we), i=1,...,N. (25)
In Figure 7 it is shown the additional operator required for this case, which needs to be
included in the previous LCU circuit between the PREP and PREP" unitaries.
4 Applications

The simulation of classical systems, in the form of partial differential equations, is of ma-
jor interest for many engineering and scientific applications. Investigating the potential
computational advantage enabled by quantum algorithms in addressing this task is of
substantial importance. In this section we apply the proposed methodology to different
model problems.
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Figure 7: Controlled operation to include another frequency. An additional ancillary
qubit for the block encoding of Uc(.,) is employed.

4.1 Elliptic problem with periodically varying reaction

As a first example, we consider the following one-dimensional elliptic problem with

periodic boundary conditions

-Du” +au=f x€(0,1) (26)
u(0) = u(1)

with a constant diffusion coefficient D = 1 and a positive periodically varying reaction
term a(x) = ag + cos(wx) with ag > 1. We emphasize that the reaction term does not
need to be periodic with period equal to the domain length. This formulation can be
used to find the ground state of a particle in a periodic potential. For simplicity, we
consider also a constant real coefficient for the source term f = 1. Using a centered finite
difference scheme to approximate the second derivative, on a uniform discretization of
spacing h = 1/N inside (0, 1), the problem can be written as a linear system of equations
of dimension N

Au=f, (27)

where w = (u1, ua, -+ ,un)? is the vector of unknowns, f = (1,1,---,1)7 is the right-hand
side vector, and A is the tridiagonal banded matrix

[2 + a; h? -1 0 - -1
-1 24 ash® . . 0
A=1/R*| ¢ | L (28)
: - e -1
-1 0 o =1 2+anh?

We use the notation u; = u(x;),a; = a(x;) for the nodes x; = jh—h, with j =1,2,...,N
and the fact that u(x1) = u(xny+1). This symmetric matrix can be block encoded using
the circuit of Figure 6 and a negative sign to the left and right shift permutation ma-
trices. It is possible to solve this system by employing the QSV'T algorithm for matrix
inversion[28]. More in detail, QSVT requires access to the block encoding of the linear
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system matrix and to prepare an initial state proportional to f. The application of the
matrix A~! is achieved through a spectral transformation to the singular values of A
using a polynomial approximation of the function f(x) = %

4.2 ADR system with periodically varying reaction term

We consider here a prototypical case being the advection-diffusion-reaction system and
discuss the feasibility of a quantum simulation method applying the proposed block
encoding scheme. The ADR model can be used, for instance, in morphogenesis to
describe how biological forms, patterns, and tissue shapes arise through the interaction
of chemical signaling (reaction), molecular spreading (diffusion), and transport by fluid
flow (advection) [29, 30, 31].

We simplify our discussion to a one-dimensional setting of length L, and define the
problem as

%_i(pa_w)—a(cw) —ay x€(0,L),t>0

At Ox 0x ox
¢ (x,0) = g(x) x € (0,L) (29)
¥(0,7) =y (L,1) 1>0

where ¥ (x,t) is the unknown scalar function with initial condition ¥ (x,0) = g(x) and
periodic boundary conditions are set. We consider a constant diffusion coefficient D € RY,
a constant velocity coefficient ¢ € R and a : (0,L) —» R*, a(x) = agp + cos(wx) is a
positive reaction coefficient with a periodic component oscillating with (spatial) period
2n/w. This is an extension of the analysis provided in [32], which considered only
constant coefficients. This model can also be used for the Fokker-Planck equation, where
the statistical distribution of particle velocities evolves under the combined effects of drag
and Brownian diffusion [33]. In addition, if one sets ¢ = 0 and uses quantum imaginary
time evolution [34], this equation describes the unitary dynamics of a wave-packet in a
one-dimensional domain under the influence of an external periodic potential.
Employing a centered finite difference scheme to approximate the derivatives with

respect to the variable x on a uniform distribution of N spatial nodes the problem can
be written in an algebraic form as follows

dip (1)

7 Mvy(t), t>0

$(0) = g(x)

(30)
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where the matrix M is a banded matrix with a periodic structure on the main diagonal

2D
v ag —cos(wx;) if j=i
D c e . .
= if (j=i+1)or (i=Nandj=1)
My = {A° 2 (31)
D
AT it (j=i-1) o (i=1and j=N)
0 otherwise.

It is possible to apply the forward Euler method to numerically solve (30) and obtain
WP(t+ Ar) = (I + AtM) (1) = A(t) (32)
$(0) = g(x)
where here the matrix A is, again, a banded matrix with a periodic structure on the
main diagonal. In order to guarantee stability of the Forward Euler scheme, the time
step Ar must satisfy a CFL condition depending on the diffusion, advection, and reaction
coefficients. Both the matrix M and A can be decomposed as in equation (18).

4.3 ADR system with periodically varying velocity

As a final case we model again the ADR problem (29) in the one-dimensional domain
but now with a periodically varying velocity ¢ = sin(wx) term and constant diffusion
and reaction terms D, a € R*. In this setting the advection term can be written as

oew) _de, o

O0x ox ox

Therefore, the effective reaction term is a + w cos(wx) which can be treated as in the

previous case. By applying again a centered finite difference scheme and the forward
Euler method as in (32), the resulting matrix A is

= w cos(wx)y + sin(a)x)(;—f. (33)

2D
Nl a+wcos(wx;) if j=i

D i i .
sin(wx;) if (j=i+1)or (i=Nandj=1)

— -
Aij = Ax 2Ax (34)
D sin(wx;) e . . .
@4_% if (j=i—1)or (i=1and j=N)
0 otherwise,

and can be written as an LCU
A = apC(w) + a1L + asLS(w) + asR + a4 (—RS(w)) + a5(-1), (35)

where the coefficients {a}?z0 are real numbers depending on the specific values of D and
a.
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5 Numerical simulations

In this section we present numerical results for the proposed methodology and the pre-
viously mentioned applications. Given the periodic matrix C(w) defined in Equation
(2) we compared the proposed methodology to the FABLE method to analyze different
block encoding strategies. As shown in Figure 8, the block encoding of this work Uc ()
has a linear complexity compared to the more general FABLE method which scales ex-
ponentially with respect to the number of qubits n. The linear scaling is replaced for a
banded matrix, defined by the LCU of Equation (18), by a either a linear or quadratic
one depending on the implementation of the L and R matrices.

—— FABLE
4
10 Ucw)
-——-n
103<
(%]
e
8 102 4
10t
100<

Figure 8: Number of operations with respect to the number of qubits n for the block
encoding of the diagonal matrix C(w) using the FABLE library and the block encoding
scheme proposed in this work Uc(,,) for w = 2. The circuit are constructed with Qiskit
and transpiled to a generic quantum hardware counting single and two-qubits gates. The
scale is logarithmic for both axes.

We have numerically verified the proposed methodology using Qiskit and the pyqsp
library to implement the QSVT algorithm. The pyqgsp library serves as a computation-
ally efficient tool to calculate the corresponding phase factors for a given polynomial
transformation of the singular values of the input matrix [35]. In Figures 9 and 10
we compare the QSVT result to the ones achieved by a classical linear system solver
for the problem (26) in two different settings. The first case is with D = 1, w = 2
and a(x) = 1.5 + cos(wx) in a computational grid using N = 8 nodes for the periodic
u(0) = u(1) solution, and the second case employs D = 0.1, w = 1. The pyqgsp library
has been used to find the phase factors for the polynomial approximation of 1/x in the
interval [1/k, 1] using the procedure described in [36] and k = 3 or 4. The second case
achieves a more accurate result with QSVT since the condition number of the matrix is
smaller. To achieve higher accuracy and a lower discrepancy with the classical solution,
a larger value of k should be used since the condition number of the input matrix is high
even for such a coarse spatial discretization.
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Figure 9: Comparison between (normalized) classical result and QSVT simulation for
the elliptic problem (26) with D = 1, w = 2 and a(x) = 1.5 + cos(wx) (a) for the case
k =3 and (b) for the case k = 4. For both cases the relative error in the Euclidean norm
e, has been computed.
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Figure 10: Comparison between (normalized) classical result and QSVT simulation for
the elliptic problem (26) with D = 0.1, w = 1 and a(x) = 1.5 + cos(wx) (a) for the case
k =3 and (b) for the case k = 4. For both cases the relative error in the Euclidean norm
e, has been computed.

For the ADR system we employed again QSVT for the periodically varying reaction
term case tackling different configurations for the reaction term. In the simulations we
take ¢ = 0 and a constant value of the diffusion coefficient D in order to have D/Ax? = 0.2.
In this case the pyqsp library has been used to find the phase factors to implement, for
a given simulation time 7, the polynomial approximation of f(x) = e*' as applied to the
eigenvalues of the matrix M of Equation (31). In Figure 11 the results of the simulations,
for an initial Gaussian profile, are compared to the exact classical simulations computing
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eM! for different times expressed in units of the cell diffusion time 74 = Ax?/D. The state
evolves accordingly to the reaction term modifying its shape with time as expected. Four

cases are shown, in the upper row (a ) with a reaction term of a(x) = 0.1 + 0.01 sin
and (b) with a(x) = 0.1 + 0.01 cos(

a(x) =0.1+0. Olsln( )c)+001 sm( x) and (d) a(x) =0.1- 001SH1( x)+001 sm( 5X).
0.35 0.200 0.35 0.200
----- reaction a(x) — t/tg=0 ----- reaction a(x)
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2
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In the lower row (c ) with reaction of

Figure 11: QSVT simulation (dots) for a periodically varying reaction term without
the advection term ¢ = 0 implementing a block encoding of eM! for the matrix M of
Equation (31), compared with the exact result (solid line) and where the dashed lines
represent the reaction term. The four cases shown are with different reaction terms: (a)
sine wave, (b) cosine wave, (c) sum of two sines reproducing a square wave and (d) sum
of two sines reconstructing a triangular wave.

6 Conclusion

In this work we presented a low volume (circuit depth and size) quantum circuit for
block encoding sparse matrices with an inherent structure. In particular, we exploit
the underlying periodicity to achieve better efficiency than general-purpose methods, a
consistent finding in the block encoding research [37]. For the case of a matrix with a
structure on the main diagonal the circuit achieves a gate complexity that scales linearly
with the number of qubits O(n). The proposed methodology is also capable of handling
signals consisting of different frequency components, making it versatile for a wide range
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of applications. Our work can be considered as a generalization of the GQSP method
where the frequency w is not restricted to integer multiples of 27/N, enabling an effi-
cient way to express generic signals [19]. The advantage of the proposed methodology
compared to the existing literature lies in exploiting appropriately periodicity to reduce
depth and avoid generic sparse or dense encodings. Our approach is particularly advan-
tageous when the signal to be decomposed admits a compact Fourier representation so
that only a small number of terms for the LCU is required. We have demonstrated the
utility of the proposed block encoding through various use cases in simulating classical
dynamics in one spatial dimension.

Despite the positive findings, several points still need to be addressed to further
develop the proposed block encoding approach. For a generic signal to be encoded in a
diagonal non-unitary matrix there is the possibility of a more efficient quantum circuit.
While the LCU method for handling multiple frequencies requires ancilla qubits, which
may limit scalability, alternative approaches may offer reduced resource overhead [38].
Moreover, the sub-normalization factor in the LCU setting, here considered, may be
sub-optimal. A key open problem is the development of a more general framework for
frequency selection, potentially based on matrix-access oracle models.

In summary, our work provides a practical framework for efficiently block encoding
structured sparse matrices on quantum hardware, offering a starting point for simulating
classical and quantum systems with inherent periodicity on quantum computers.
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