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Abstract

In this work, we present a comprehensive framework for the generation and efficient management of
particles in both fully three-dimensional (3D) and depth-averaged Material Point Method (DAMPM)
simulations. Our approach leverages TIFF image data to construct initial conditions for large-scale
geophysical flows, with a primary focus on landslide modeling. We describe the algorithms developed
for particle initialization, distribution, and tracking, ensuring consistency and computational efficiency
across different MPM formulations. The proposed methods enable accurate representation of complex
topographies while maintaining numerical stability and adaptability to diverse material behaviors.
Although the primary application is landslide simulation, the methodologies outlined are broadly ap-
plicable to other fields involving granular flows, fluid-structure interactions, and large-deformation
processes. Performance evaluations demonstrate the efficiency and robustness of our approach, high-
lighting its potential for advancing high-fidelity simulations in geomechanics and beyond.

1 Introduction

The Material Point Method (MPM) is a widely used computational technique, developed in the late
’90s, to solve problems involving large deformations, multiphase interactions, and complex material
behaviors [1, 2]. In MPM, a continuous material body is discretized into a collection of Np material
points (particles), each of which carries all relevant physical properties, such as mass, velocity, stress, and
strain. These properties depend on the specific problem being analyzed and evolve over time according
to governing physical laws [3, 4, 5]. This particle-based representation allows MPM to effectively capture
history-dependent behaviors, such as plasticity and damage accumulation, making it particularly suitable
for problems involving extreme deformations and complex material responses [6, 7, 8, 4, 9, 10].

To facilitate computations, a background grid with Nv nodes is introduced over the computational
domain Ω. The grid can be either Cartesian or non-Cartesian and is used for solving the governing
equations by computing differential terms directly on the grid nodes. Unlike the conventional mesh-
based methods, the MPM grid does not store any historical information about the material but serves
as a computational tool to facilitate numerical operations, after which particle properties are updated,
and the grid is reset at each time step [11].

One of the main advantages of MPM lies in the relatively straightforward manner in which input data,
often derived from digital images such as CT scans, TIFF, or PNG files, can be transformed into initial
data suitable for spatial discretization. Specifically, these input data are used to generate the particles,
which serve as the discrete representation of the continuous domain [12, 13, 14, 15, 10]. This feature
makes MPM particularly appealing in applications where input data originate from imaging techniques,
enabling efficient conversion of geometric and material properties into numerical representations.

A classical approach in the literature for initializing the computational domain consists of mapping
each pixel in the input image to a material point. The material properties are typically inferred from pixel
attributes, such as color or intensity values [11, 16, 17, 18]. This method has been employed in various
contexts, including biomedical simulations and geotechnical applications. However, a major challenge
associated with this approach concerns the resolution of the input image and, consequently, the number
of material points generated for discretization.

In the specific context of geophysical modeling, the initial topographic and geotechnical conditions
are often derived from DTMs generated through satellite interferometry [19, 20, 21, 22, 23, 24, 25]. The
DTMs, typically provided in geoTIFF format, represent the terrain as raster data, where each pixel is
associated with an absolute elevation value. The spatial resolution of such models generally does not
exceed 5 meters per pixel.

When generating a particle system from a TIFF image, it is crucial to ensure that the number of
particles is sufficient for accurate material tracking. Insufficient particle density could compromise the
precision of the simulation, leading to an inaccurate representation of material flow or distribution over
time. Therefore, it is advisable to adopt interpolation or refinement strategies to ensure an optimal
distribution of particles within the simulation space.

In this work we present an efficient and robust algorithm for particle generation in the MPM frame-
work for both the depth-averaged and fully 3D cases. In particular, the paper is organized as follows: in
Section 2, we briefly introduce the classical formulation of the MPM and describe the particle generation
algorithm for the depth-averaged case. Section 3 focuses on the extension to the fully 3D case, where
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we propose a conversion algorithm between the Depth-Averaged MPM (DAMPM) and the fully three-
dimensional formulation, ensuring numerical conservation of mass and momentum. Section 4 presents
numerical validation tests, demonstrating the accuracy and efficiency of the proposed approach. Finally,
in Section 5, we draw conclusions and discuss potential directions for future works.

2 The particle generation in DAMPM

The classical MPM is a numerical approach used to simulate the behavior of continua by discretizing the
material into a set of Np material points. These points serve as carriers of all relevant physical quantities,
such as mass, velocity, and stress. The material is embedded in a computational domain Ω, where a
background grid of Nv nodes is defined. This grid is used for computations involving the differential
terms of the problem, facilitating the numerical solution, see Figure 1a.

(a) A grid is defined over the domain
Ω, while the continuum material is dis-
cretized into a set of Np Lagrangian
particles, each carrying specific physi-
cal properties.

(b) Particle-to-Grid (P2G) proce-
dure: masses and momenta are accu-
mulated onto the corresponding grid
nodes using the finite element basis
functions. This process allows for as-
sembling the nodal forces.

(c) Advective Phase on grid nodes:
nodal accelerations and velocities, il-
lustrated with red arrows, are com-
puted using the nodal momenta and
the total nodal forces.

(d) The G2P procedure. The advec-
tive phase is projected back to the
particles.

(e) Final stage of the method:
once the particle stresses are calcu-
lated, the particle positions and their
depths are updated. This completes
one iteration of the scheme, allowing
the method to restart.

Figure 1: Illustration of the classic MPM algorithm.
.

MPM is a particle-based, semi-Lagrangian method that consists of four main steps. The first step,
known as Particle-to-Grid (P2G), involves transferring mass and momentum from the material points
to the grid nodes using, for instance, the finite element shape functions defined at the nodes (Figure
1b). This step also enables the computation of internal and external forces acting on the material. The
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second step is the advection phase (Figure 1c), where nodal velocities and accelerations are computed
using the accumulated masses, forces, and momenta. The third step, Grid-to-Particle (G2P), updates
the positions, velocities, and stresses of the material points based on the grid data (Figure 1d). Finally,
the last phase advances the simulation in time, resetting the grid in preparation for the next iteration of
the cycle (Figure 1e).

In this Section, we focus on the generation of particles starting from a DTM in TIFF format within
the context of the depth-averaged formulation of the MPM, in which the state variables such as pressure
and velocities are averaged in the vertical direction. In particular, each material point can be assimilated
to a vertical column with a proper height hp and volume Vp. An extensive description of the DAMPM
method can be found in [7, 26, 27].

In a computational framework where a domain Ω is represented by a DTM in TIFF format, the
simplest approach to defining a computational grid is to align each pixel of the TIFF image with a grid
node. This results in a structured mesh composed of square elements.

The generated grid is inherently defined in a 2D space, where the nodes xi, for i ∈ {1, . . . , Nv},
correspond directly to the pixels of the TIFF image. The corresponding elevation values Z(xi) represent
the topographic height at each node xi, as shown in Figure 2.

However, in the context of depth-averaged modeling, these elevation values do not play an active role
in the computational process except through their gradients ∇Z, which contribute to the representation
of terrain-induced effects, such as driving and resisting forces in the governing physical model.

Figure 2: The computational grid is shown with red crosses overlaid on the DTM, which represents the
domain Ω. Each grid node xi of the grid is associated with an elevation value Z(xi) representing the
terrain height.

Regarding the initial condition of the material of interest, it must be discretized using a finite set of
particles p ∈ {1, . . . , Np}, each characterized by physical properties such as mass, velocity, volume, and
stresses. An intuitive and straightforward approach, given that the material positions, elevations, and
initial perimeter are known, is to align the particle positions with the pixels of the TIFF image, thereby
coinciding with the grid nodes xi, as shown in Figure 3.

A critical issue related to the use of this technique is related to the resolution of the available DTM
raster, which, as mentioned in Section 1, typically does not exceed 5 m per pixel when using satellite-
derived data. Constraining the model so rigidly to the DTM resolution can lead to numerical instability
and poor discretization of the continuous material, significantly affecting the accuracy of the simulation.

Another important issue arising from this approach is related to P2G transfer phase within the MPM
framework. Specifically, in a standard grid configuration, each grid node receives mass contributions from
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Figure 3: The continuous material is embedded within the Cartesian grid generated from the DTM of the
area of interest. The continuous material is discretized into a set of particles (green circles) positioned
at the same locations as the grid nodes (red squares), each associated with its own elevation value.

a limited number of particles [28, 9, 29, 30, 31, 32] and when this happens, information loss and numerical
instabilities, such as cell-crossing artifacts, may occur. These considerations are especially crucial in
geomechanical applications, such as landslide modeling, where accurately capturing the evolution of
material displacement and stress distribution is fundamental to reliable predictions.

To mitigate these challenges, we propose a simple technique that enables the generation of the initial
condition on the continuum material with an arbitrary number of particles, starting by the TIFF image.

Let us consider a DTM in TIFF format, as shown in left panel of Figure 4, where the topography Z and
an initial condition Ψ on the material are provided. The process begins by selecting the computational
domain Ω from the DTM and the simplest way to get it is to extract a square pixel region from the
TIFF data. Then, the procedure consists in defining a two-dimensional square grid over Ω, with nodes
xi corresponding to the pixels of the DTM, as shown in the right panel of Figure 4.

Figure 4: Particle generation: starting from the TIFF input file, the region of interest Ψ is delimited
and defined on the grid nodes to get hi (left). Finally, the region of interest is filled with a user-defined
number of particles (right).

At each node xi, the associated elevation hi is extracted to define the topographic surface Z. Addi-
tionally, the gradient ∇Zi at the grid nodes is computed and stored. All information regarding nodes,
elements, and grid spacing can be organized within a structured data variable.

Following the terrain definition, the initial condition on the material is processed by treating Ψ as a
pixel region within Ω. The TIFF data of Ψ is typecast into either a 16-bit unsigned integer or a double-
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Algorithm 1 Particle generation algorithm for DAMPM

Require
DTM in TIFF format data for topography Z and initial condition Ψ on the material.

Do
From DTM, select the computational domain Ω.
Define a 2D square grid for Ω on the pixels of the DTM with xi nodes.
From the nodes xi, select the corresponding elevations hi and define the topography Z.
Compute and store gradient ∇Zi on the grid nodes.

Store all information on nodes, elements and spacing in a struct variable.

Do
Define the initial condition on the material as pixel region Ψ in Ω.
Typecast Ψ as uint16 or double.
Select the boundary domain of Ψ by generating the polygonal line P of ∂Ψ.
Associate to each node xi of Ψ the corresponding height hi (given by the DTM).

Create a user-defined 2D set of Np particles with location xp inside Ψ.
Define the particle initial condition Ψp, by interpolating hi with xp used as query points.
Get the particle elevations hp.

Store in a struct all the info on particle locations xp and elevations hp

Get
Total mass M
Total volume V
Check for conservation of mass and volume with respect to the input data.

For p ∈ {1, ..., Np}
Define physical initial conditions on each particle of Ψp (mass, velocity, stresses, volume, ...).
end

Store all the information on a usable input file (e.g. JSON file, h5 file or CSV file)

precision floating-point format. The boundary domain of Ψ is determined by generating its polygonal
contour ∂Ψ, and each grid node xi belonging to Ψ is assigned a corresponding height hi, as shown in
right panel of Figure 4.

A set ofNp particles is then generated within the region Ψ by defining a user-specified two-dimensional
distribution of points xp. The simplest approach is to sample these points uniformly within Ψ, ensuring
a regular spatial distribution. However, an alternative strategy involves refining the sampling in regions
where the topographic gradient ∇Z is more pronounced, allowing for a higher concentration of particles
in areas with significant elevation variations. Once the particle locations xp are established, the initial
condition Ψp at each particle is defined by interpolating the values of hi, using xp as query points.
This interpolation provides the corresponding particle elevations hp. Figure 9 shows an example of this
procedure. All the relevant information regarding the particle locations xp and elevations hp is stored in a
structured variable. We strongly emphasize that the particles constituting Ψp in the DAMPM framework
are, in fact, columns of material, whose height hp is vertically averaged, in accordance with the depth-
averaged formulation of the model [27, 7, 26]. Figure 5 illustrates the initial discretized condition Ψp

with 1.5 · 104 particles within the domain Ω.
The algorithm proceeds by computing the total mass M and total volume V , verifying the conser-

vation of mass and volume with respect to the input data. The last step of the procedure is to define a
physical initial condition on mass, velocity, stresses, and volume on each particle of Ψp.

Finally, all the processed data is stored in a structured format suitable for numerical simulations,
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Figure 5: Particle-based initial condition Ψp of the continuum material Ψ discretized with 1.6 · 104
particles.

such as a JSON file, HDF5 file, or CSV file. The complete procedure is summarized in Algorithm 1.
We point out that, since the initial mass and volume are evenly distributed among all particles,

their conservation between the continuous material description and the discrete particle representation,
denoted as Ψp, is automatic. In MPM, the mass assigned to each particle remains constant throughout
the entire simulation. This implies that the total mass of the system is simply the sum of the masses of
all particles and is neither lost nor created, thus ensuring mass conservation at the particle level [11, 1, 2].
Furthermore, if the basis functions defined on the grid satisfy the partition of unity property, then the
mass and moments computed on the particles are equal to those computed on the grid nodes [7, 11].

3 A sequential conversion from 2D to 3D

In this Section, we describe a sequential procedure that enables the conversion of the depth-averaged
particle discretization Ψp, represented as columns of material, into a set Ψ3

p of fully three-dimensional
particles. Each of these 3D particles retains its own physical properties, ensuring the conservation of
mass, volume, and momentum throughout the transformation process [33].

Such a conversion approach is particularly relevant in the context of impact scenario analysis, espe-
cially when considering phenomena such as landslides or debris flows. The advantage of transitioning from
a depth-averaged representation to a fully 3D particle-based description lies in the improved quantitative
analysis along the vertical direction. While depth-averaged models provide an efficient approximation of
large-scale flow dynamics [34, 26, 7, 35, 27], they inherently neglect detailed vertical variations, which
can be crucial for accurately capturing impact forces, material redistribution, and localized interactions
with obstacles. A 3D representation allows for a more precise evaluation of these effects, leading to better
predictive capabilities in hazard assessment and mitigation strategies [36, 37, 38, 39].

The algorithm aims to convert depth-averaged particle data into a set of fully three-dimensional
particles while ensuring the conservation of relevant physical quantities. The procedure requires the
input of orography data, denoted as Z, and depth-averaged particle data, including positions, velocities,
stresses, and momenta. The process begins by applying the G2P procedure to map the initial depth-
averaged particles onto the nodal topography Z, obtaining the projected particle elevation Zp. A spacing
parameter r ∈ R+ is then selected to define the vertical separation between the new 3D particles. For
each particle p ∈ {1, ..., Np}, the number of 3D particles forming the vertical column is computed as

Mp =

⌊
∥hp − Zp∥∞

r

⌋
, (1)
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where hp represents the initial height of the depth-averaged particle. If Mp < 1, the minimum value
is enforced as Mp = 1 to ensure at least one 3D particle per column.

The attributes of the newly generated 3D particles are then defined and computed. The elevation of
each new particle i ∈ {1, ...,Mp} is determined by

z3p = Zp +
i− 1

Mp − 1
(hp − Zp), (2)

which distributes the particles uniformly along the vertical axis. The horizontal positions remain
unchanged from the depth-averaged representation, such that x3

p = xp. To ensure numerical conservation,

the mass and volume of each 3D particle are assigned asm3
p =

mp

Mp
and V 3

p =
Vp

Mp
respectively. The velocity

and acceleration components inherit the horizontal components from the depth-averaged particles, while
the vertical counterparts are initially set to zero as

v3
p =

vx,pvy,p
0

 , a3p =

ax,pay,p
0

 . (3)

Finally, the stress tensor is updated according to the applied constitutive model.
After processing, the algorithm ensures data consistency by eliminating possible NaN or infinite

values, verifying mass and momentum conservation, and storing the updated particle information in an
external output file. The complete procedure is summarized in Algorithm 2.

Since the 3D discretization depends on both the horizontal spacing between the columns hx and the
vertical spacing between the 3D particles hz, the error in the conservation of mass and momentum is
O(h2x) and O(hz), respectively. This implies that the error is quadratic with respect to the horizontal
spacing and linear with respect to the vertical spacing. The proof of these estimates, in the context of
the MPM formulation with linear basis functions, is provided in the Section 3.1.

Algorithm 2 2D-3D conversion algorithm

Require
Orography Z
Depth-averaged particle data: positions, velocities, stresses, momenta, ...

Do
Apply the G2P procedure to the nodal topography Z to get the particle projection Zp.
Select a spacing r ∈ R+ between the new particles.

For p ∈ {1, ..., Np}
Compute the number of 3D particles in each column as: Mp = ⌊∥hp−Zp∥∞

r ⌋

IfMp < 1
Mp = 1
EndIf
Define/Compute attributes on the new particles as:
Elevation: z3p = Zp +

i−1
Mp−1(hp − Zp), for i = 1, ...,Mp

Positions: x3
p = xp

Mass and volume: m3
p =

mp

Mp
and V 3

p =
Vp

Mp

Velocities: v3x,p = vx,p, v
3
y,p = vy,p, v

3
z,p = 0

Accelerations: a3x,p = ax,p, a
3
y,p = ay,p, a

3
z,p = 0

Update Stress tensor according to the constitutive model applied.
EndFor

Eliminate possible NaN or Inf values. Check for mass and momentum conservation. Store the
new particle info in an input file (e.g. JSON, csv, h5)
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From a practical perspective, Algorithms 1 and 2 can be coupled to generate useful input data for
the simulation of a runout scenario followed by the impact of landslide events. From a computational
standpoint, it is more efficient to simulate the landslide propagation phase using a depth-averaged solver,
where the initial condition Ψp is generated by Algorithm 1. Subsequently, it is advantageous to apply
Algorithm 2 to convert the depth-averaged representation into a full 3D model for a detailed analysis of
the impact phenomenon.

The application of these two techniques is entirely independent of each other. In fact, the runout
simulation can be performed first, and once it is stopped, the state variables and domain topology can be
collected [33, 40]. At this stage, the depth-averaged output can be converted into a 3D input file for an
external solver. This independence and versatility of the two algorithms constitute additional advantages
of the proposed approach. In Figure 6, an example of the conversion between the DAMPM and 3D MPM
models is shown. Each column of particles, depicted in blue, has been proportionally divided into a set
of 3D particles, in red. For illustrative purposes, the initial condition was discretized with a very limited
number of DAMPM particles.

However, it is evident that a higher concentration of particle columns leads to greater accuracy in
the 3D discretization, thus reducing the loss of information regarding mass, volume, and momentum.

Figure 6: Comparison between DAMPM discretization (with blue dots) of a real landslide final state and
the respective 3D MPM (with red dots).

3.1 Conservation of mass and momenta during the conversion phase

In this Section we prove that Algorithm 2 satisfies the numerical conservation of masses and momentum.
To this end, without losing of generality, we consider only the x-momentum and the mass and, by

following [11], define the error ϵ for both the quantities, respectively as

ϵm =

√∑
p Vp ∥mp −Me,p∥2

Vtot
,

ϵmvx =

√∑
p Vp ∥(mvx)p − (mv)e,p∥2

Vtot
,

(4)

where Vp, mp, (mvx)p are the volumes, masses, x−momentum of the 3D particles respectively while the
quantities Me,p and (mv)e,p are the exact counterparts. In (4), the quantity ∥ · ∥ denotes the Euclidean
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norm, while Vtot is the total volume of the material. We now proceed to estimate the asymptotic trend
of the error ϵm and ϵmvx . It holds

ϵ2m =

∑
p Vp ∥mp −Me,p∥2

Vtot

≤
∑

p Vp ∥mp∥2 +
∑

p Vp∥Me,p∥2

Vtot
.

(5)

We can set mp = ρVp = ρh2x,p hz, where h2x,p and hz are the area of the pth particle, with hx = hy,
and the constant vertical spacing between the 3D material points, respectively.

Moreover, since we are assuming that the mass is equidistributed on each particle p, we can estimate
the particle exact mass as Me,p = Me/Np, where Np is the total number of material points and Me is
the total exact mass. From this, by assuming that the density ρ is constant, it follows that

Me,p =
1

Np

∫
Ω
ρ(x) dx

≃ 1

Np
ρ

Np∑
p=1

h2x,p hz.

=
1

Np
ρhz

Np∑
p=1

h2x,p,

, (6)

since hz does not depend on p and ρ is constant.
Under these hypotheses, by setting hx = maxp hx,p we have

ϵ2m ≤

∑
p Vp |ρ h2x,p hz|2 +

∑
p Vp

∣∣∣ 1
Np

ρ hz
∑

p h
2
x,p

∣∣∣2
Vtot

≤
|ρ|2|hz|2

∑
p Vp

∑
p |h2x,p|2 + |ρ|2 |hz|2

∑
p Vp

∣∣∣ 1
Np

∑
p h

2
x,p

∣∣∣2
Vtot

≤ 2NpV
Vtot

|h2xhz|2 |ρ|2,

(7)

where V = maxp Vp. Hence, ϵm = O(h2x hz).
Regarding the momentum mvx, by setting vx = maxp vx,p, an analogous reasoning shows that

ϵ2mvx
=

∑
p Vp ∥(mvx)p − (mvx)e,p∥2

Vtot

≤
∑

p Vp ∥(mvx)p∥2 +
∑

p Vp∥(mvx)e,p∥2

Vtot

≤ Np V |ρ|2|h2x hz|2∥vx∥2 +Np V |ρ|2|h2x hz|2 ∥ve,p∥2

Vtot

=
2Np V |ρ|2

Vtot
|h2x hz|2 (∥vx∥2 + ∥ve∥2)

≤ 2Np V |ρ|2

Vtot
|h2x hz|2 (2∥ve∥2)

=
4Np V |ρ|2

Vtot
|h2x hz|2 ∥ve∥2,

(8)

Since vx = maxp vx,p ≤ ve and the total exact velocity ve coincides with the particle exact velocity ve,p.
Again, we obtain ϵmvx = O(h2x hz).
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4 Numerical results

In this Section, we present some numerical results on particle generation for DAMPM, starting from
TIFF images. We also demonstrate the application of Algorithm 2 for the conversion to the fully 3D
MPM, with a numerical verification of mass and momentum conservation.

4.1 Depth-averaged particles generation

In this Section, we test Algorithm 1 in an ideal setting where the initial condition Ψ coincides with
the entire domain Ω, which is extracted from a squared TIFF image of size 100 × 100 pixels. Figure 7
illustrates the set Ψ, where the nodes correspond to the pixels of the TIFF image. The initial condition
on hi is defined by the analytical formula

hi(xi, yi) = 1 + 2 exp

[
− 1

150

(
(xi − 50)2 + (yi − 50)2

)]
, (xi, yi) ∈ Ψ. (9)

Figure 7: Initial condition Ψp discretized with a different number of particles. From left to right: 104

(1 particle per pixel), 105 and 106. On the bottom, the polygon ∂Ψ shown in red, with the background
grid, in black.

We applied Algorithm 1 to generate a different number of particles, starting with a number equal to
the total pixels in the image, i.e., 104, and increasing up to 4 million particles, with a CPU time never
exceeding 25 seconds. Figure 7 also shows three configurations of Ψp with a different number of particles,
while the computational time trend is shown in Figure 8, where it can be observed that the execution
time scales linearly with the number of particles.

Naturally, in practical applications, it is not necessary to generate such a high number of particles.
However, the goal of this test was to assess the execution speed of the algorithm under extreme conditions
[33] and these computations have been executed in double precision on a laptop with a 12th Gen Intel
Core i7-1255U processor clocked at 1.70 GHz and 16GB of RAM.

4.2 Application to a real topography

In this Section, we apply Algorithm 1 to generate an initial condition for a landslide mass, defined within
a domain Ω = [0, 1350]× [0, 1200]m2 derived from the TIFF of a real DTM.

The initial resolution of the TIFF is 10 m per pixel; therefore, associating each material point with a
single pixel would result in an excessively coarse distribution and a significant loss of information. Once
the perimeter of the initial condition, highlighted in red in Figure 9 (left), is defined, we apply Algorithm
1 by specifying an arbitrary number of particles, independent of the DTM resolution. To achieve this,
starting from the coordinates of each pixel, we consider the polygonal curve defining the perimeter of the
initial condition Ψ, shown on the right side of Figure 9. We then interpolate the known elevation data
from the DTM using the positions of the newly generated particles (chosen arbitrarily) as query points.

The result is a depth-averaged particle configuration, consisting of columns, on which any physical
quantity required by the chosen constitutive model can be defined. Figure 10 shows the initial condition
Ψp discretized with 1.1 · 104 particles.
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Figure 8: Particle-based initial condition Ψp of the continuum material Ψ discretized with 1.6 · 104
particles.

Figure 9: Particle generation: starting from the TIFF input file, the region of interest Ψ is delimited
and defined on the grid nodes to get hi (left). Finally, the region of interest is filled with a user-defined
number of particles (right).

4.3 Mass and momentum during the conversion phase

The second test we carried out deals with the numerical conservation of both mass and momentum
during the conversion phase between DAMPM simulation and 3D MPM.

To this end, we have considered an idealized scenario in which the computational domain Ω is defined
by the square [0, 5]2 m and the DAMPM initial conditions on height h and velocities v are respectively
given by

h(x, y, 0) = 10− sin(2x) cos(y),

u(x, 0) = 2.001, v(x, 0) = 0.
(10)

We applied Algorithm 2 by varying the number of particles. This can be done by considering different
values for the vertical spacing hz, i.e.

hz = {0.01, 0.001, 0.0001, 0.00005, 0.00001},
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Figure 10: Particle-based initial condition Ψp of the continuum material Ψ after post-processing.

Figure 11: Different layer of discretization for the 3D MPM. From left to right 1.0 · 105, 5.6 · 105 and
2 · 106 particles.

and for the horizontal spacing hx as

hx = {0.02, 0.01, 0.005, 0.0033, 0.0025, 0.0017}.

In Figure 11, different layer configurations are shown for the transition from a depth-averaged ap-
proach to a fully 3D representation, by varying the number of vertical particles inside each column.

The convergence rate can be numerically verified by fixing each time one of the two spacing between
hz and hx and varying the other one.

The top panel of Figure 12, shows the trend of the errors related to the mass and x-momentum with
respect the spacing hz. It can be observed that as the vertical spacing between particles hz decreases,
there is a clear improvement in the accuracy of both mass and momentum measurements. Specifically,
the decreasing trend of both errors follows a linear behavior with respect to hz, reflecting the estimate
obtained in (8).

On the other hand, the bottom panel of Figure 12 shows the trend of the errors ϵm and ϵmvx with
respect to the spacing hx. Even in this case, the theoretical estimate in (7) is verified, since both the
errors follow a quadratic trend, as hx decreases.
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Figure 12: Conservation of masses and momentum during the conversion phase. On the top panel, the
trend of the errors on masses and x-momentum with respect to hz. On the bottom panel, the trend of
the two errors with respect to hx. In both cases, the errors on masses and momenta are expressed in kg
and kg ·m/s, respectively.

4.4 Application to multiscale simulations

In this Section, we show two examples of application to multiscale simulations. The first test deals with
a sliding mass that impacts a rigid barrier over an inclined plane. The second test concerns a runout
simulation of a landslide followed by an impact against a rigid barrier. The code related to the DAMPM
was developed entirely in-house, whereas the one used for the full 3D simulations is a software called
KRATOS Multiphysics developed by [41, 42, 43].

4.4.1 Sliding to the wall

The idealized test we carried out deals with a dam break of a water column along a domain Ω =
[0, 25]× [0, 5]m2 described by the topography

Z(x) =

{
10− 1

3x if x ∈ [0, 10]× [0, 5]

6.67 otherwise
. (11)

The initial conditions on height h and velocities u, v of the sliding material are prescribed as

h(x, 0) =

{
9.5− Z(x) if x ∈ [1.5, 5]× [0, 5]

0 otherwise

u(x, 0) = v(x, 0) = 0, ∀x ∈ Ω.

, (12)

In Figure 14 are depicted the final moments preceding the impact of the water column against a wall
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Figure 13: Sketch of the DAMPM and coupled MPM computational domain in the context of sliding to
the wall test.

Figure 14: Snapshots of three different time steps of the Coupled MPM, at T = 3 s (on the top panel),
T = 3.3 s (central panel) and T = 3.5 s (bottom panel).

located at x = 20, after the conversion from the depth-averaged model to the Coupled model made at
time T = 3 s, which is shown with a red line in Figure 13. The DAMPM simulation was carried out using
7 · 104 particles, and upon conversion to the 3D model, 5.03 · 105 particles were generated. The DAMPM
computational domain has been discretized by using 500 elements, while the coupled MPM counterpart
has about 1.1 · 104 elements.
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As shown in Figure 14, the water mass at time T = 3 s exhibits a constant velocity of approximately
6.8m/s, which aligns with theoretical expectations derived from motion along an inclined plane of about
18◦ with respect to the horizontal line, followed by motion on a frictionless flat domain. After the
impact, occurring at time T = 3.3 s, the water front surges, generating velocity peaks exceeding 20m/s
and surpassing the barrier, reaching a height of nearly 10m.

In the context of a frictionless dam-break, the lack of friction allows the water to propagate with
maximum momentum, leading to a more pronounced stress response upon impact. Principal stresses de-
velop as the kinetic energy of the water front is abruptly transferred to the barrier, inducing compression
and shear effects in the fluid mass. However, the response of the barrier to impact also reveals that the
stresses within the barrier reach similar magnitudes. This indicates a direct and substantial transfer of
forces from the water mass to the barrier, confirming that the barrier is absorbing a significant portion
of the kinetic energy transferred during the impact.

4.4.2 Realistic scenario

We considered a realistic scenario in which the computational domain defined by Ω = [0, 750]×[0, 1000]m2

derived from a DTM in TIFF format. The study area is located on a hill in northern Italy, near Lecco
(LC), which is characterized by complex terrain and natural slopes up to 60◦ − 68◦ prone to landslides,
as shown in the left panel of Figure 15.

Specifically, the qualitative behavior of a mudflow impacting a rigid barrier placed along the path
of the moving mass was investigated. In this case, the sliding material initially occupied a volume of
approximately 5.8 · 103 m3, with a material density ρ set at 1300 kg/m3.

Figure 15: On the left, the colormap of the slope magnitude, in radiants, derived by the DTM data. On
the right, the initial condition Ψ highlighted in red over the computational domain Ω.

The initial conditions Ψ on the material height h and its velocity field v, shown in right panel of
Figure 15, have been defined as

h(x, 0) = 1.02Z(w(x))− Z(w(x))

u(x, 0) = v(x, 0) = 0, ∀x,
, (13)

where w =
{
(x, y) ∈ Ω : (y−550)2

4 + (X−420)2

5 ) ≤ 100
}

and Z coincides with the DTM provided. In this

test we have considered a total simulation time of 38 s.
From a computational perspective, the simulation was initially performed using the DAMPM for the

first 30s, which allowed for a more efficient simulation of the large-scale flow behavior. During this phase,
7.0 · 104 particles were used to represent the mudflow. To better capture the detailed dynamics near the
barrier and the interaction with the complex 3D topography, the simulation was switched to a fully 3D
Coupled MPM model for the remaining 8 s. This conversion resulted in a significantly finer resolution
with 5.6·105 particles. Regarding the domain discretization, we used a cartesian grid with 30351 elements

16



to cover the entire Ω for the DAMPM simulation. For the impact simulation, we considered just a portion
of Ω3D ⊂ Ω consisting in the square Ω3D = [200, 400] × [400, 600] m2, filled with 2.1 · 105 elements, as
shown in the left panel of Figure 16.

Figure 16: Realistic case test. On the left, the juxtaposition of the DAMPM computational domain, in
gray, and the coupled MPM one, in magenta. On the right, an enlargement of the 3D MPM domain,
with the L-shape fixed barrier, in white, and the 3D input landslide.

A rigid L-shaped barrier was strategically placed at the base of the hill, as depicted in the right panel
of Figure 16. This barrier, with a height of 20 meters and a length of 100 meters, was designed to contain
the advancing sliding mass and prevent further damage to the surrounding area. The effectiveness of
the barrier in containing the flow and dissipating the kinetic energy of the mudflow was one of the key
outcomes of this simulation.

Figure 17: Snapshots of three different time steps of the Coupled MPM, at T = 30 s (left panel), T = 33 s
(central panel) and T = 38 s (right panel).

Figure 17 shows different time steps of the front advancement following the conversion to the coupled
model. Specifically, the instances shown are at T = 30 s, T = 34 s and T = 38 s. Although the front
advancement speed was sustained and was estimated to be around 20m/s in the moments just before
the impact, the presence of the barrier prevented the landslide mass from reaching the flat areas at the
base of the hill.
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5 Conclusions

In this work, we have presented a simple yet efficient technique for particle generation in the Depth-
averaged Material Point Method based on DTM data in TIFF format, regardless the resolution of the
data. Additionally, we have introduced a sequential method for converting between the depth-averaged
and fully three-dimensional models within the MPM framework. The proposed approach ensures the
conservation of mass and volume, which has been verified both in the 2D particle generation procedure
and in the conversion process between models. Furthermore, we have validated the developed method-
ologies through a series of numerical tests. Potential improvements to the presented algorithms include
the parallelization of the described procedure and the application of the conversion algorithm using par-
ticle generation techniques that differ from uniform sampling. Instead of relying on predefined spatial
distributions, particle placement and resolution could dynamically adapt based on the local velocity field
and acting forces. This would enhance the accuracy of particle-based methods, particularly in regions
of high gradients or complex flow structures. Additionally, an important potential extension involves
the implementation of inverse coupling techniques, transitioning from the fully 3D formulation to a
depth-averaged representation.
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