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Abstract

Fractures are normally present in the underground and are, for some physical processes,
of paramount importance. Their accurate description is fundamental to obtain reliable
numerical outcomes useful, e.g., for energy management. Depending on the physical and
geometrical properties of the fractures, fluid flow can behave differently, going from a
slow Darcian regime to more complicated Brinkman or even Forchheimer regimes for high
velocity. The main problem is to determine where in the fractures one regime is more
adequate than others. In order to determine these low-speed and high-speed regions, this
work proposes an adaptive strategy which is based on selecting the appropriate constitutive
law linking velocity and pressure according to a threshold criterion on the magnitude of the
fluid velocity itself. Both theoretical and numerical aspects are considered and investigated,
showing the potentiality of the proposed approach. From the analytical viewpoint, we show
existence of weak solutions to such model under reasonable hypotheses on the constitutive
laws. To this end, we use a variational approach identifying solutions with minimizers of an
underlying energy functional. From the numerical viewpoint, we propose a one-dimensional
algorithm which tracks the interface between the low- and high-speed regions. By running
numerical experiments using this algorithm, we illustrate some interesting behaviors of our
adaptive model on a single fracture and small networks of intersecting fractures.

Keywords: fractured porous media, adaptive constitutive law, variational formulation

1 Introduction

Fractures are discontinuities, often assumed planar, along which a rock has been broken due to
a pre-existing stress state, and represent the main conduits for fluid flow. Because of subsequent
mineralization by chemical reactions along the fracture walls, a fracture may be partially or
completely filled by material, substantially altering its physical properties and changing the
fluid circulation. Additional rock deformation may change even more the hydraulic properties
of the fractures. Even if there is not a clear separation of scales for fractures, since generally
they span all sizes, we consider here only fractures at a certain scale leaving the smaller ones
to be part of the rock matrix. A fracture’s size has an impact on its aperture and consequently
on its flow response.

Due to their geometrical complexity, fractures are normally represented as objects of co-
dimension 1, meaning that in a d-dimensional porous medium they are approximated as (d−1)-
surfaces. This approach is normally referred to as discrete fracture model (DFM), see for
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example [8,9,18,20,23,24,34,41], where the physical processes involved are written as a set of
partial differential equations with interface conditions between rock matrix and fractures. The
resulting system is mixed-dimensional partial differential problem as discussed in [15, 16, 26,
29,36]. For some specific problems the contribution of the rock matrix is negligible and can be
omitted, obtaining the so-called discrete fracture network (DFN) models. On this topic, the
reader may refer to [7, 10, 12, 13, 17, 21, 22, 28, 30] and the references therein. Especially in the
presence of complex constitutive equations in the fractures, the authors in [1, 2] showed that
it is possible to separate the contribution of the porous medium from the fracture network
via a Robin-to-Neumann operator. They further showed that in a problem where fractures
are modeled with a non-linear problem while the surrounding porous medium still obeys a
linear law, it is possible to avoid the computationally expensive porous medium in the non-
linear iterations considering only the fracture network. In the present work, we will consider
only fracture networks while keeping in mind the possibility to include the surrounding porous
medium via this approach.

Depending on several aspects, mainly the micro-structure and hydraulic aperture of a
fracture, the flow in the fracture can be classified into different regimes corresponding to
increasing flow rates and corresponding increasing mathematical and numerical difficulties.
In many applications for low flow rates, caused by a combination of filling materials in the
fracture and a relatively low-pressure gradient, Darcy flow can be considered in the fracture
and a reduced model of Darcy-type can be derived, see among others [5, 20, 24–26, 34, 41], in
the lower-dimensional setting. Most of the research so far has been focused on this flow model;
however, its validity is questionable and, to a large extend, it is insufficient for real problems.
For increased flow rates, for example when a fracture is an open and narrow channel or the
packaging of grains is too coarse, viscous effects become important and a Brinkman or Stokes
equation is more coherent as a reduced model to describe the flow; see [35,39]. Finally for high
velocities, because of inertial effects, experiments show deviations from the previous models,
which indicate the need for a non-linear correction term. The authors in [27, 33] proposed a
reduced model based on a Darcy–Forchheimer flow to capture this phenomenon. This effect
is more evident in large objects like faults spanning several hundreds of meters. In all the
lower-dimensional models, the flow in the surrounding rock matrix is still modeled by Darcy’s
law and proper interface conditions are used to couple matrix and fracture flow.

Depending on their nature, fracture networks may exhibit all flow regimes in different
regions separated by transition interfaces and coupled by suitable conditions. The interfaces
can be located using Forchheimer and Reynolds numbers, see [43], which depend on the water
velocity. This is the setting for the present paper, where the positions of the interfaces are
not fixed at the outset of the problem: we obtain a (multi-physics) non-linear free-boundary
problem on the fracture network. We present a mathematical framework that is able to adapt
the constitutive law in accordance with the flow regime. As a simplification, we assume that
only two laws, i.e., two speed regimes, can be prescribed, leaving the case of multiple laws
as a future work. A theoretical analysis is developed along with a numerical algorithm that
tracks the interface. Theoretically, we show existence of solutions to our problem via the
minimization of an underlying energy. We do not show uniqueness since we make the choice to
let the constitutive law linking velocity and pressure on the interface be a free parameter. We
also show that the convex nature of the problem is strongly intertwined with the ”direction”
of the jump between the high-speed and low-speed laws; indeed, if the permeability increases
from low- to high-speed the problem is non-convex, otherwise it is convex. In the former case
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we are forced to restrict our existence result to one space dimension (d = 1). Numerically,
the examples we give with one and more fractures illustrate the quality and applicability of
the proposed algorithm, especially in the non-convex case. In the convex case, the algorithm
often features oscillations between configurations which prevents it from converging. For the
numerical simulations we used the library PorePy [32], a simulation tool written in Python for
fractured and deformable porous media. PorePy is freely available on GitHub along with the
numerical tests proposed in this work.

The paper is organized as follows. In Section 2 we decribe our model, introduce the equa-
tions as well as some notation. In Section 3 we give the rigorous mathematical setting, along
with the assumptions on the constitutive laws and the weak formulation of the problem. Sec-
tion 4 is dedicated to our results on the existence of solutions and their proofs. Section 5
introduces the discrete formulation of the problem and a suitable algorithm to solve it. Nu-
merical examples are reported in Section 6 for increasing geometrical and physical complexity.
The work finishes with conclusions in Section 7.

2 Proposed model

We focus here on a single fracture; see Section 2.2 for a discussion on the model for multiple
intersecting fractures. We identify our fracture with an open, bounded connected set Ω ⊂ Rd
with Lipschitz boundary ∂Ω. We suppose Ω is filled with a fluid of constant density ρ ≡ 1.
Mass conservation in Ω then reads

divu = q, (1)

where u : Ω → Rd is the unknown velocity of the fluid and q : Ω → R a given source term
allowing, for instance, for fluid mass to be exchanged between the fractures and the surrounding
porous medium, or rock matrix. Let Σv,Σp ⊂ ∂Ω be relatively open and such that ∂Ω =
Σv ∪ Σp and Σv ∩ Σp = ∅. To (1) we add the following boundary conditions:{

u · n = u0 on Σv,

p = p0 on Σp,
(2)

where p : Ω→ R is the unknown pressure of the fluid and n is the outward normal unit vector
of ∂Ω. Here, u0 : Σv → R and p0 : Σp → R are given functions setting the conditions on
the boundary on u and p, respectively. We are denoting maps on Ω and their traces on the
boundary ∂Ω by the same notation.

2.1 Velocity-pressure constitutive law

Typically, one couples (1) and (2) with a constitutive relation, or law, between the velocity
field u and the pressure field p via some operator Λ:

Λ(u) = −∇p+ f , (3)

where f is a given body force (e.g., gravity). Examples of laws Λ relating velocity and pressure
via (3) are

ΛS(u) = −∆u, ΛD(u) = K−1u,

ΛB(u) = −∆u+K−1u, ΛDF(u) = K−1u+ α ‖u‖r−2 u,
(4)

where K : Ω → Rd×d is the permeability tensor and α > 0 and r ∈ [2,∞) some parameters.
The notation ‖·‖ stands for the Euclidean norm on Rd. Choosing ΛS gives Stokes’ equation, ΛD
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gives Darcy’s equation, ΛB gives Brinkman’s equation and ΛDF gives the generalized Darcy–
Forchheimer equation (which simplifies into the classical Darcy–Forchheimer when r = 3).

To the authors’ knowledge, a known issue that has not yet found a documented answer
is the case when one needs to choose a combination of laws such as those given as examples
in (4), rather than a single one, i.e., when one needs to couple different velocity-pressure laws
according to some validity criterion which selects the better-adapted law. As already mentioned
in the introduction, this criterion should depend on the speed regime (or Reynolds number) of
the flow. For example, where the Reynolds number is low Darcy’s law ΛD may be preferred,
whereas where it is high the Darcy–Forchheimer law ΛS might be chosen. For this reason, in
this paper we consider the case where we need to choose from two laws Λ1 and Λ2 according
to some threshold speed ū > 0. We expect that generalizing our results to more than two laws
(for example having a low-speed regime, a transitional regime and a high-speed regime) should
not to be difficult. In this setting, the law operator in (3) takes the form

Λ(u) =

{
Λ1(u) whenever ‖u‖ < ū,

Λ2(u) whenever ‖u‖ > ū.
(5)

Being able to impose a law at the interface {‖u‖ = ū} is out of the scope of this paper—we
will therefore consider our problem solved whenever we find a pressure field and a velocity field
such that (1)–(3) and (5) hold. This summarizes as finding functions u and p solving

divu = q on Ω,

Λ(u) = −∇p+ f on Ω,

u · n = u0 on Σv,

p = p0 on Σp,

(6)

where Λ is any law such as in (5). Clearly, when Λ1 6= Λ2, this choice of adaptable law
introduces a discontinuity at ‖u‖ = ū which we shall treat carefully when studying existence
of solutions. We will complete in Section 3.1 the strong formulation (6), which is somewhat
formal since it lacks an interface constitutive relation; indeed, we will introduce a multi-valued
weak setting so as to be able to treat the interface without imposing any given law on it. We
refer the reader to [19] for a multi-valued monotone operator approach for pressure-dependent
permeabilities; note that the operator therein is continuous in velocity.

Remark 2.1. Whenever the boundary piece Σp is such that Vold−1(Σp) = 0, where Vold−1

stands for the (d − 1)-dimensional Lebesgue measure, it is classical to add to (6) a constraint
on the average of the pressure field:

1

|Ω|

∫
Ω
p = $, (7)

for some $ ∈ R. Indeed, this is often required to ensure uniqueness of the pressure field
satisfying Problem (6) when Λ is a classical continuous law. Similarly we will impose (7)
whenever Vold−1(Σp) = 0, so that our problem in this case becomes: find functions u and p
such that 

divu = q on Ω,

Λ(u) = −∇p+ f on Ω,

u · n = u0 on ∂Ω,
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under the constraint (7), where Λ is now given in (5). For ease of discussion, however, we will
often silence (7) and only refer to (6) as being our problem, even when Vold−1(Σp) = 0; this
average condition will nevertheless be naturally encoded in our weak formulation.

We focus in this paper on Darcy-like operator laws, that is, laws involving no derivatives of
the velocity field, so that we need to exclude Stokes’ and Brinkman’s equations as admissible
examples. Under some additional conditions (depending in particular on the ”direction” of
the jump between laws Λ1 and Λ2 at the interface), we show existence of solutions via the
study of an energetic formulation of (6). Indeed, we are able to define an energy functional
on the space of velocity fields whose minimizers satisfy (6). Although we have uniqueness for
this energetic formulation in some conditions (see Section 4), this property does not transfer
to (6)—this is natural since we are not imposing what the velocity-pressure law should be on
the interface. In order to hope for uniqueness, one should either impose an adequate law on
the interface or show that the interface must have zero Lebesgue measure so that it does not
play a role in defining weak solutions. As already mentioned, we do not wish to focus on the
problem of the interface at this stage and leave it to a later work.

2.2 Intersecting fractures

In the case Ω is composed of multiple intersecting fracture branches, forming thus a fracture
network, we can extend the previous model by including suitable conditions at the intersections.
Given Ω we introduce ωi ⊂ Ω to be a fracture branch, with nω 3 i the total number of branches.
Clearly, given two distinct branches ωi and ωj , with i 6= j, we have ω̊i ∩ ω̊j = ∅ and also that
Ω = ∪nω

i=1ω
i.

We consider 2 6 n 6 nω fracture branches that meet at an intersection I whose closure
I = ∩ni=1ω

i. To complete model (6) we impose the following conditions on I:

n∑
i=1

ui · ni = 0 and pi = pj , ∀ i, j = 1, . . . , n, (8)

where with a superscript i we indicate the corresponding object restricted to ωi, and ni is a
unit vector tangent to ωi and pointing to I, in the mono-dimensional case, and in addition
normal to ∂ωi, in the multi-dimensional case. This condition is frequently used, see for instance
[3, 4, 10, 11]. The first condition in (8) is a direct consequence of the conservation of mass at
the intersection, while the second can be derived from each constitutive relation of the form
(3). These conditions do not put any additional difficulties in the analysis and are therefore
considered only in the numerical examples.

It is possible to consider more complex conditions that allow pressure and velocity jump
at the intersection, see among others [8, 16, 25]. However, since this is not our main focus we
keep the simpler interface condition (8).

3 Mathematical setting

We give in this section the rigorous mathematical setting; in particular we introduce the
assumptions on the underlying law operators as well as the weak formulation of our problem.
We shall use the convention to use boldfaced symbols for vectors and vector-valued functions.
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From now on, without loss of generality we take ū to be equal to 1. For a given field
u : Ω→ Rd, we write

Ω1(u) = {x ∈ Ω | ‖u(x)‖ < 1}, Ω2(u) = {x ∈ Ω | ‖u(x)‖ > 1},
Γ(u) = Ω \ (Ω1(u) ∪ Ω2(u)) = {x ∈ Ω | ‖u(x)‖ = 1},

where Ω1(u), Ω2(u) and Γ(u) are what we have already respectively referred to as the low-
speed region, high-speed region and interface (associated with u). Obviously the family C :=
{Ω1(u),Ω2(u),Γ(u)} forms a partition of Ω, and we will refer to C as the configuration of the
problem, especially for the numerics in Sections 5 and 6. We can rewrite these sets in a more
compact form:

Ω1(u) = u−1(B1(0)), Ω2(u) = u−1(E1(0)), Γ(u) = u−1(S1(0)),

where B1(0) and S1(0) stand respectively for the unit open ball and unit sphere in Rd centered
at the origin 0 and E1(0) = Rd \ (B1(0)∪S1(0)). Note that if u is not continuous, then Ω1(u)
and Ω2(u) may not be open.

For all n ∈ [1,∞), m ∈ (0,∞) and A ⊂ Rd measurable we will denote by Ln(A) and
Wm,n(A) the Lebesgue space of measurable functions on A with integrable nth power and the
mth-order Sobolev space associated to Ln(A); we will also write Ln(A) in place of (Ln(A))d.
As usual, in these spaces, equality between two functions is always intended in the almost-
everywhere sense.

3.1 Assumptions on the velocity-pressure laws

In the following, the operator laws Λ1 and Λ2 are assumed to be of the form

Λ1(u) = φ1(‖u‖2)uχΩ1(u) and Λ2(u) = φ2(‖u‖2)uχΩ2(u), (9)

where χA is the characteristic function of any set A ⊂ Rd. The functions φ1, φ2 : [0,∞) →
[0,∞) are continuous and increasing on [0, 1] and [1,∞), respectively. Furthermore, φ2 satisfies
the following assumption: there exist r > 2 and c, C > 0 such that

ca
r−2
2 6 φ2(a) 6 C

(
1 + a

r−2
2

)
for all a > 1. (10)

A recurrent notation we will use is

λ1 := φ1(1) and λ2 := φ2(1),

and will call the difference λ2 − λ1 the interface inverse permeability jump. Symmetrically,
whenever k1 := 1/λ1 and k2 := 1/λ2 are considered (cf. in particular Sections 5 and 6), the
difference k2 − k1 will be called the interface permeability jump. We will see that the sign of
this jump is an important threshold which determines the convexity of the energy functional
underlying the problem. Note that because φ2 is increasing on [1,∞), one must have c 6 λ2

and C > λ2/2 in (10).
Interesting examples that fall into the above requests, in particular satisfying (9) with (10),

are combinations of scalar versions of the Darcy and Darcy–Forchheimer laws ΛD and ΛDF

(cf. (4)), as desired in the first place. Indeed, one is allowed to consider

Λ1(u) = λ1uχΩ1(u) and Λ2(u) = λ2uχΩ2(u),
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that is, φ1 ≡ λ1 and φ2 ≡ λ2, or

Λ1(u) = λ1uχΩ1(u) and Λ2(u) = (λ21 + λ22 ‖u‖)uχΩ2(u).

that is, φ1 ≡ λ1 and φ2(a) = λ21 + λ22
√
a, where λ1, λ2, λ21 and λ22 are positive scalars. In

the former case we would require r = 2, whereas in the latter r = 3.

Remark 3.1. This setting where Λ1 and Λ2 are as in (9) physically restricts us to scalar
permeabilities. More general laws including tensor permeabilities, as motivated in [42], are for
instance given by the following:

Λ1(u) = φ1(λ1u · u)λ1uχΩ1(u)

and analogously for Λ2, where λ1 ∈ Rd×d is a symmetric positive definite matrix encoding a
tensor permeability. Even more general forms are envisageable:

Λ1(u) =

n∑
j=1

φ1,j(λ1,ju · u)λ1,juχΩ1(u),

where the φ1,j and λ1,j are n different law functions and permeability tensors and the dot ·
stands for the Euclidean inner product in Rd. We leave these general laws to a future work. We
claim that the techniques we use in the present paper for scalar laws should extend to tensor
laws without too much difficulty.

We denote by s = r
r−1 the conjugate exponent of r. Thanks to the continuity of φ1 and

the right-hand inequality in (10), we observe that the operators Λ1 and Λ2 map Lr(Ω) into
Ls(Ω). Because we allow for any law on the interface, this invites us to consider the multi-
valued setting where our combined law Λ maps Lr(Ω) into the power set 2L

s(Ω) and is given
by

Λ(u) =


{Λ1(u)} on Ω1(u),

Ls(Ω) on Γ(u),

{Λ2(u)} on Ω2(u),

which can equivalently be written as

Λ(u) = {Λ1(u) + Λ2(u) + hχΓ(u)}h∈Ls(Ω). (11)

Remark 3.2. The existence results that we present in this paper still apply if we consider some
“background” law with tensor permeability. Indeed, our proofs remain essentially untouched if
the combined law Λ in (11) is replaced by

Λ(u) = {β(λu · u)λu+ Λ1(u) + Λ2(u) + hχΓ(u)}h∈Ls(Ω),

where λ ∈ Rd×d is symmetric positive definite and β : [0,∞)→ [0,∞) is a continuous, increas-
ing function such that β + φ2 satisfies (10) in place of φ2.
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3.2 Weak formulation

We fix q ∈ Lr(Ω), u0 ∈ Lr(Σv), p0 ∈W
1
r
,s(Σp) and f ∈ Ls(Ω). Consider the Sobolev space

W̃ 1,s(Ω) =


{
ξ ∈W 1,s(Ω) | 1

|Ω|

∫
Ω
ξ = $

}
if Vold−1(Σp) = 0,{

ξ ∈W 1,s(Ω) | ξ = p0 on Σp

}
if Vold−1(Σp) > 0,

where we recall that Vold−1 is the (d − 1)-dimensional Lebesgue measure. The problem we

shall focus on in the rest of the paper is: find (u, p) ∈ Lr(Ω) × W̃ 1,s(Ω) so that there exists

Λu ∈ Λ(u) such that for all ϕ ∈ Lr(Ω) and ψ ∈ W̃ 1,s(Ω) there holds∫
Ω

Λu ·ϕ = −
∫

Ω
∇p ·ϕ+

∫
Ω
f ·ϕ,∫

Ω
∇ψ · u = −

∫
Ω
qψ +

∫
Σv

u0ψ,
(12)

where we recall that Λ is given in (11). From the linearity of (12) with respect to the pressure

field, we see that by setting f0 = f + ∇(Ep0), with E : W
1
r
,s(Σp) → W 1,s(Ω) any extension

operator being right-inverse of the W 1,s(Ω)-trace operator, and defining the Sobolev space

W 1,s
0 (Ω) =


{
ξ ∈W 1,s(Ω) |

∫
Ω
ξ = 0

}
if Vold−1(Σp) = 0,{

ξ ∈W 1,s(Ω) | ξ = 0 on Σp

}
if Vold−1(Σp) > 0,

the formulation in (12) is equivalent to: find (u, p) ∈ Lr(Ω) ×W 1,s
0 (Ω) so that there exists

Λu ∈ Λ(u) such that for all ϕ ∈ Lr(Ω) and ψ ∈W 1,s
0 (Ω) there holds∫

Ω
Λu ·ϕ = −

∫
Ω
∇p ·ϕ+

∫
Ω
f0 ·ϕ,∫

Ω
∇ψ · u = −

∫
Ω
qψ +

∫
Σv

u0ψ.
(13)

We endow W 1,s
0 (Ω) with the norm ‖ψ‖

W 1,s
0 (Ω)

= ‖∇ψ‖Ls(Ω) for all ψ ∈W 1,s
0 (Ω). We emphasize

here that the well-posedness of (13) is not affected by the choice of the extension E in the
definition of f0.

Thanks to Riesz’s representation theorem, we shall equivalently manipulate functions in
Ls(Ω) as elements of (Lr(Ω))∗, the dual of Lr(Ω). In particular, this means that, given
u ∈ Lr(Ω), operators Λu in Λ(u) will also be seen as maps from Lr(Ω) to (Lr(Ω))∗ ∼ Ls(Ω).
Writing 〈·, ·〉 the dual mapping on Ls(Ω)×Lr(Ω), the weak formulation in (13) of our problem
can be restated as follows: find (u, p) ∈ Lr(Ω)×W 1,s

0 (Ω) so that there exists Λu ∈ Λ(u) such

that for all ϕ ∈ Lr(Ω) and ψ ∈W 1,s
0 (Ω) there holds

〈Λu,ϕ〉 = −〈∇p,ϕ〉+ 〈f0,ϕ〉 ,

〈∇ψ,u〉 = −
∫

Ω
qψ +

∫
Σv

u0ψ.
(14)

Our goal is now to show existence for this weak formulation.
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Remark 3.3. We repeat here that, given the form of the law Λ in (9), we cannot get unique-
ness of solutions—in fact of velocity fields—satisfying (14) since it is embedded in the very
formulation of the problem that any interface velocity-pressure law is admissible. Uniqueness
could be obtained if an appropriate interface law were imposed or if the interface were shown to
be less than d-dimensional and therefore had no contribution in the definition of weak solutions.

4 Existence

We state and prove here our results on existence for Problem (14). As already mentioned, we
will see that our results depend on the sign of the interface inverse permeability jump, λ2−λ1.
The strategy is the following:

1. we reduce Problem (13) on the velocity and pressure fields into an equivalent problem
on the velocity field only (cf. (16) and [6, 40]);

2. we derive an energetic formulation whose minimizers are solutions to this reduced problem
on the velocity field (cf. (20) and [42]);

3. we study the existence of minimizers for this energetic formulation distinguishing the
convex case λ1 6 λ2 from the non-convex case λ1 > λ2 (cf. Theorems 4.7 and 4.8). We
are only able to treat the one-dimensional setting d = 1 when λ1 > λ2.

4.1 Reduction to a problem on the velocity field

Define the maps B : Lr(Ω)→ (W 1,s
0 (Ω))∗ and B∗ : W 1,s

0 (Ω)→ (Lr(Ω))∗ by

B(ϕ)(ψ) = B∗(ψ)(ϕ) = 〈∇ψ,ϕ〉 for all ϕ ∈ Lr(Ω) and ψ ∈W 1,s
0 (Ω), (15)

Let us introduce the set

V = {ϕ ∈ Lr(Ω) | ∀ψ ∈W 1,s
0 (Ω), 〈∇ψ,ϕ〉 = 0},

which satisfies V = Ker(B). We write V ⊥ ⊂ Ls(Ω) the polar subspace of V , that is, V ⊥ =
{g ∈ Ls(Ω) | ∀ϕ ∈ V, 〈g,ϕ〉 = 0}, and Lr(Ω)/V ⊂ Lr(Ω) the quotient space of Lr(Ω) by V .

The following three lemmas are inspired from their equivalents in [6].

Lemma 4.1. The maps B and B∗ in (15) are isomorphisms from Lr(Ω)/V to (W 1,s
0 (Ω))∗ and

from W 1,s
0 (Ω) to V ⊥, respectively.

Proof. By [6, Lemma 2.1], it suffices to show that there exists γ > 0 such that

inf
ψ∈W 1,s

0 (Ω)
ψ 6=0

sup
ϕ∈Lr(Ω)

ϕ6=0

〈∇ψ,ϕ〉
‖ψ‖

W 1,s
0 (Ω)

‖ϕ‖Lr(Ω)

> γ.

To this end, let ψ ∈W 1,s
0 (Ω) with ψ 6= 0. Then, by identifying Ls(Ω) with (Lr(Ω))∗ we get

‖ψ‖
W 1,s

0 (Ω)
= ‖∇ψ‖Ls(Ω) = sup

ϕ∈Lr(Ω)
ϕ6=0

〈∇ψ,ϕ〉
‖ϕ‖Lr(Ω)

,
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so that

1 =
‖ψ‖

W 1,s
0 (Ω)

‖ψ‖
W 1,s

0 (Ω)

= sup
ϕ∈Lr(Ω)

ϕ6=0

〈∇ψ,ϕ〉
‖ψ‖

W 1,s
0 (Ω)

‖ϕ‖Lr(Ω)

.

Taking above the infimum over all ψ ∈W 1,s
0 (Ω) with ψ 6= 0 ends the proof.

Now, via the following two lemmas, we simplify our weak formulation (14) into a problem
restricted to V (cf. (16) below).

Lemma 4.2. There exists a unique û ∈ Lr(Ω)/V such that

〈∇ψ, û〉 = −
∫

Ω
qψ +

∫
Σv

u0ψ for all ψ ∈W 1,s
0 (Ω).

Proof. For all ψ ∈W 1,s
0 (Ω), let

F (ψ) = −
∫

Ω
qψ +

∫
Σv

u0ψ.

Since we are assuming that q ∈ Lr(Ω) and u0 ∈ Lr(Σv), the map F is a well-defined linear
map from W 1,s

0 (Ω) into R, i.e., F ∈ (W 1,s
0 (Ω))∗. By Lemma 4.1, we thus know there exists a

unique û ∈ Lr(Ω)/V such that

〈∇ψ, û〉 = B(û)(ψ) = F (ψ) = −
∫

Ω
qψ +

∫
Σv

u0ψ for all ψ ∈W 1,s
0 (Ω),

which is the desired result.

Lemma 4.3. The weak formulation (14) is equivalent to the following problem: find v ∈ V
such that there exists Λv ∈ Λ(v + û) satisfying

〈Λv,ϕ〉 = 〈f0,ϕ〉 for all ϕ ∈ V , (16)

where û is given by Lemma 4.2.

Proof. We first suppose that (u, p) is solution to Problem (14). Then we decompose u as
u = (u− û) + û =: v + û. By (14), there exists Λv ∈ Λ(u) = Λ(v + û) such that

〈Λv,ϕ〉 = 〈f0,ϕ〉 for all ϕ ∈ V .

Furthermore, for all ψ ∈ W 1,s
0 (Ω) we find 〈∇ψ,v〉 = 〈∇ψ,u〉 − 〈∇ψ, û〉 = 0, so that v ∈ V

and v satisfies Problem (16).
Suppose now that v ∈ V satisfies Problem (16). Then, Λv − f0 ∈ V ⊥. By Lemma 4.1 we

know B∗ is an isomorphism from W 1,s
0 (Ω) to V ⊥, so that there exists a unique p ∈ W 1,s

0 (Ω)
with

〈Λv − f0,ϕ〉 = B∗(−p)(ϕ) = −〈∇p,ϕ〉 for all ϕ ∈ Lr(Ω).

Furthermore, writing u = v + û we get

〈∇ψ,u〉 = 〈∇ψ,v〉+ 〈∇ψ, û〉 = 〈∇ψ, û〉 = −
∫

Ω
qψ +

∫
Σv

u0ψ,

since v ∈ V . We thus have that (u, p) satisfies Problem (14), with p unique.
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4.2 Energetic formulation

We first give the definition of Fréchet subdifferential and strong local minimizer in our setting:

Definition 4.4 (Fréchet subdifferential and strong local minimizer). Let F : V → R. For all
v ∈ V we define the (Fréchet) subdifferential ∂F(v) of F at v by:

gv ∈ ∂F(v) ⇐⇒ gv ∈ V ∗ and ∀ϕ ∈ V, lim inf
δ→0+

F(v + δϕ)−F(v)

δ
> 〈gv,ϕ〉 .

We say that v ∈ V is a (strong) local minimizer of F if there exists η > 0 such that for all
ϕ ∈ V we have F(v + δϕ) > F(v) for all δ ∈ [0, η).

Remark 4.5. The important property of the subdifferential to keep in mind here is that if v ∈ V
is a local minimizer of a functional F : V → R, then 0Ls(Ω) ∈ ∂F(v). When F is convex, the
reverse of this statement is also true: if 0Ls(Ω) ∈ ∂F(v), then V is a local minimizer of F .

We write Ψ: [0,∞)→ R the function given by

Ψ(a) =

{
Φ1(a) for all a 6 1,

Φ2(a) for all a > 1,
(17)

where Φ1,Φ2 : [0,∞) → R are primitives of φ1
2 and φ2

2 (cf. (9)) such that Φ1(1) = Φ2(1) = 0.
We define the dissipation D : V → R by

D(v) =

∫
Ω

Ψ(‖v + û‖2) for all v ∈ V .

Thanks to our assumptions on φ1 and φ2 we easily get that the domain of D is indeed all of V ,
and it is thus a well-defined functional from V into R. Consider the following problem: find
v ∈ V such that there exists gv ∈ ∂D(v) satisfying

〈gv,ϕ〉 = 〈f0,ϕ〉 for all ϕ ∈ V . (18)

The following result holds:

Lemma 4.6. Any solution to Problem (18) is also solution to Problem (16).

Proof. Suppose that v ∈ V is solution to Problem (18). Then we can pick gv ∈ ∂D(v) ⊂ Ls(Ω)
so that (18) holds. By definition, for all ϕ ∈ V we must have

lim inf
δ→0+

D(v + δϕ)−D(v)

δ
> 〈gv,ϕ〉 .

Write V1 the subset of V consisting of the functions which are supported in Ω1(v + û). Then,
for all ϕ ∈ V1, since −ϕ ∈ V1 as well, we get

lim inf
δ→0+

1

δ

∫
Ω1(v+û)

(
Ψ(‖v + δϕ+ û‖2)− Φ1(‖v + û‖2)

)
> 〈gv,ϕ〉

and

lim inf
δ→0+

1

δ

∫
Ω1(v+û)

(
Ψ(‖v − δϕ+ û‖2)− Φ1(‖v + û‖2)

)
> −〈gv,ϕ〉 ,

11



which, by Lebesgue’s dominated convergence theorem and the differentiability of Φ1, yield∫
Ω

Λ1(v + û) ·ϕ =

∫
Ω1(v+û)

φ1(‖v + û‖2)(v + û) ·ϕ > 〈gv,ϕ〉

and

−
∫

Ω
Λ1(v + û) ·ϕ = −

∫
Ω1(v+û)

φ1(‖v + û‖2)(v + û) ·ϕ > −〈gv,ϕ〉 .

All in all we get
〈gv,ϕ〉 = 〈Λ1(v + û),ϕ〉 for all ϕ ∈ V1.

Similarly, denoting by V2 the subset of V consisting of the functions which are supported in
Ω2(v + û), we get

〈gv,ϕ〉 = 〈Λ2(v + û),ϕ〉 for all ϕ ∈ V2.

Thus the function defined by

Λv = Λ1(v + û) + Λ2(v + û) + gv χΓ(v+û)

is such that 〈Λv,ϕ〉 = 〈gv,ϕ〉 for all ϕ ∈ V . Therefore, from (18) we obtain

〈Λv,ϕ〉 = 〈f0,ϕ〉 for all ϕ ∈ V .

Moreover Λv ∈ Λ(v+û), where we recall Λ is in (11). Hence v is solution to Problem (16).

We now define the energy E : V → R associated to D by

E(v) = D(v)− 〈f0,v + û〉 for all v ∈ V . (19)

Let us write ME ⊂ V the, possibly empty, set of local minimizers of E . Consider the following
minimization problem: find v ∈ V such that

v ∈ME . (20)

By Remark 4.5, any solution to Problem (20) is also solution to Problem (18); if E is convex
these problems are actually equivalent. By Lemma 4.6 it therefore suffices to find a solution
to Problem (20) in order to get the desired existence result on our original problem given in
(14). The rest of this section will thus be solely dedicated to solving Problem (20).

4.3 Case λ1 6 λ2

The result we wish to show here is the following:

Theorem 4.7 (Existence and uniqueness when λ1 6 λ2). Suppose that λ1 6 λ2. Then,
Problem (20) has a unique solution.

Proof. Let us prove that the integrand Ψ ◦ ‖·‖2 (cf. (17)) of D is strictly convex. Define the
functions Φ̄1, Φ̄2 : [0,∞)→ R by

Φ̄1(a) =

{
Φ1(a) for all a 6 1,
λ1
2 (a− 1) for all a > 1,

and Φ̄2(a) =

{
λ2
2 (a− 1) for all a 6 1,

Φ2(a) for all a > 1.

12



Then Φ̄1 and Φ̄2 are differentiable with

Φ̄′1(a) =
1

2

{
φ1(a) for all a 6 1,

λ1 for all a > 1,
and Φ̄′2(a) =

1

2

{
λ2 for all a 6 1,

φ2(a) for all a > 1.

Since φ1 and φ2 are increasing on [0, 1] and [1,∞), respectively, and φ1(1) = λ1 and φ2(1) = λ2,
the derivatives Φ̄′1 and Φ̄′2 are also increasing so that Φ̄1 and Φ̄2 are convex. Furthermore,
because λ1 6 λ2 and φ2 is increasing, we have Φ̄′2(a) > Φ̄′1(a) for all a > 1; thus, the fact
that Φ1(1) = Φ2(1) (and so Φ̄1(1) = Φ̄2(1)) yields Φ̄1(a) 6 Φ̄2(a) for all a > 1. Similarly,
we get that Φ̄1(a) > Φ̄2(a) for all a < 1. Let a, b ∈ [0,∞) and t ∈ [0, 1]. If a, b 6 1, then
(1− t)a+ tb 6 1 and

Ψ((1− t)a+ tb) = Φ1((1− t)a+ tb) = Φ̄1((1− t)a+ tb)

6 (1− t)Φ̄1(a) + tΦ̄1(b) = (1− t)Ψ(a) + tΨ(b),

and similarly if a, b > 1. If now a 6 1, b > 1 and (1− t)a+ tb 6 1, then we have

Ψ((1− t)a+ tb) = Φ1((1− t)a+ tb) = Φ̄1((1− t)a+ tb)

6 (1− t)Φ̄1(a) + tΦ̄1(b) 6 (1− t)Φ̄1(a) + tΦ̄2(b) = (1− t)Ψ(a) + tΨ(b),

and similarly if (1− t)a+ tb > 1 or a > 1 and b 6 1. In all cases, we see that

Ψ((1− t)a+ tb) 6 (1− t)Ψ(a) + tΨ(b),

so that Ψ is convex. Note that one could reach the same conclusion using that

Ψ(a) = max(Φ̄1(a), Φ̄2(a)) for all a > 0.

Since φ1 and φ2 are positive on (0, 1) and [1,∞), respectively, we get that Ψ is increasing.
Therefore, the function Ψ ◦ ‖·‖2 is strictly convex.

We now want to use the direct method of the calculus of variations to show that E has in
fact a unique global (and thus local) minimizer. Let (vn)n∈N ⊂ V be a minimizing sequence
for E . Then we know there exists N ∈ N large enough and K > 0 such that E(vn) < K for
all n > N . Without loss of generality we can therefore assume that the sequence (E(vn))n∈N
is bounded by some constant K > 0. Hence, thanks to the left-hand inequality in (10), for all
n ∈ N we have

K > E(vn) =

∫
Ω1(vn+û)

Φ1(‖vn + û‖2) +

∫
Ω2(vn+û)

Φ2(‖vn + û‖2)−
∫

Ω
f0 · (vn + û)

> Φ1(0) |Ω|+ c

r

∫
Ω2(vn+û)

‖vn + û‖r − ‖f0‖sLs(Ω) ‖vn + û‖rLr(Ω)

>
(

Φ1(0)− c

r

)
|Ω|+ c

r
‖vn + û‖rLr(Ω) − ‖f0‖Ls(Ω) ‖vn + û‖Lr(Ω) ,

which shows that the sequence (‖vn‖Lr(Ω))n∈N is bounded. Thus we can extract a subsequence
from (vn)n∈N, still denoted (vn)n∈N which converges weakly to some v ∈ Lr(Ω). Since further
V is weakly closed we in fact have v ∈ V . Because Ψ ◦ ‖·‖2 is convex, the dissipation D is
weakly lower semi-continuous and so is the energy E . We therefore yield

inf
w∈V
E(w) = lim inf

n→∞
E(vn) > E(v) > inf

w∈V
E(w),
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so that E(v) = infw∈V E(w) and v is a global minimizer of E and so v ∈ME .
To show that ME is a singleton it is enough to prove that E is strictly convex. Let v,w ∈ V

and t ∈ (0, 1). Suppose furthermore that v 6= w and write A ⊂ Ω the set where v and w are
different; the Lebesgue measure of A is therefore positive. Note that we must have Ψ(a) 6= 0
for all a 6= 1. Using the strict convexity of Ψ ◦ ‖·‖2 we therefore get

D((1− t)v + tw) =

∫
Ω

Ψ(‖(1− t)v + tw + û‖2) =

∫
Ω

Ψ(‖(1− t)(v + û) + t(w + û)‖2)

= (1− t)
∫

Ω\A
Ψ(‖v + û‖2) + t

∫
Ω\A

Ψ(‖w + û‖2)

+

∫
A

Ψ(‖(1− t)(v + û) + t(w + û)‖2)

< (1− t)
∫

Ω\A
Ψ(‖v + û‖2) + t

∫
Ω\A

Ψ(‖w + û‖2)

+ (1− t)
∫
A

Ψ(‖v + û‖2) + t

∫
A

Ψ(‖w + û‖2)

= (1− t)
∫

Ω
Ψ(‖v + û‖2) + t

∫
Ω

Ψ(‖w + û‖2) = (1− t)D(v) + tD(w),

so that the dissipation D is strictly convex. Consequently, the energy E is also strictly convex
and the proof is over.

4.4 Case λ1 > λ2

This case is more difficult to tackle than the case λ1 6 λ2. Indeed, we lose the convexity of
the integrand Ψ ◦ ‖·‖2 (cf. proof of Theorem 4.7), which by Tonelli’s theorem of functional
analysis means that E is not weakly lower semi-continuous. As a consequence we cannot use
the direct method of the calculus of variations in the weak topology to deduce the existence of
a minimizer of E .

To simplify our task at this point, we shall restrict to the one-dimensional case (i.e., d = 1)
and leave the higher-dimensional case for future investigation. The results we present here
therefore apply to the numerical experiments we present below. The one-dimensional case is
simpler since we can easily characterize the space V depending on the boundary conditions,
as will be clear from the proof of the following theorem:

Theorem 4.8 (Existence and uniqueness when λ1 > λ2). Let d = 1 and suppose that λ1 > λ2.
If Vol0(Σv) = 0, then Problem (20) has a solution. If instead Vol0(Σv) > 0, then Problem (20)
has a unique solution.

Proof. Without loss of generality, take Ω = (0, 1).

Case Vol0(Σv) = 0. First note that here Σp = {0, 1}. Let us characterize V in this case.

To this end, note that any η ∈ V with
∫ 1

0 η = 0 has a primitive in W 1,s
0 ((0, 1)); indeed, the

function ψ : (0, 1)→ R defined by

ψ(x) =

∫ x

0
η for all x ∈ (0, 1)

14



satisfies ψ′ = η and ψ(0) = ψ(1) = 0. Let now v ∈ V and define η ∈ V as

η(x) = v(x)−
∫ 1

0
v for all x ∈ (0, 1),

so that obviously
∫ 1

0 η = 0. Write ψ ∈W 1,s
0 ((0, 1)) a primitive of η and compute, for all ϕ ∈ V ,∫ 1

0

(
v −

∫ 1

0
v

)
ϕ =

∫ 1

0
ηϕ =

∫ 1

0
ψ′ϕ = 0.

Thus v =
∫ 1

0 v and v is constant. Since constant functions clearly belong to V , this shows that
V is in fact the set of all constant functions on (0, 1) and we can identify V with R.

This in particular means that the energy E defined in (19) can be identified with the
following function E : R→ R:

E(α) =

∫ 1

0
Ψ((α+ û)2)− α

∫ 1

0
f0 for all α ∈ R,

where we recall that Ψ is given in (17) and û := û is as in Lemma 4.2. We can use the direct
method of the calculus of variations on E in the Euclidean topology in R. Let (αn)n∈N ⊂ R be
a minimizing sequence for E. Using a similar calculation as in the proof of Theorem 4.7, thanks
to (10) we can show that (αn)n∈N is bounded in R. Therefore, there exists a subsequence of
(αn)n∈N, still denoted by (αn)n∈N, converging to some α ∈ R. By continuity of Ψ and Fatou’s
lemma we get that E is lower semi-continuous on R, so that

inf
β∈R

E(β) = lim inf
n→∞

E(αn) > E(α) > inf
β∈R

E(β),

showing that α is a global minimizer of E and the constant function α belongs to ME .

Case Vol0(Σv) > 0. Note that here Σp ∈ {∅} ∪ {{0}} ∪ {{1}}. Similarly to the previous

case, let us characterize V . Note that any v ∈ V has a primitive in W 1,s
0 ((0, 1)); indeed, the

function ψ : (0, 1)→ R defined for all x ∈ (0, 1) by

ψ(x) =

∫ x

0
v −

∫ 1

0

(∫ y

0
v

)
dy if Σp = ∅,

ψ(x) =

∫ x

0
v −

∫ 1

0
v if Σp = {1},

ψ(x) =

∫ x

0
v if Σp = {0},

satisfies ψ′ = η, and
∫ 1

0 ψ = 0 if Σp = ∅ and ψ(x) = 0 for x ∈ Σp otherwise. Let v ∈ V , write
ψ a primitive of v and compute, for all ϕ ∈ V ,∫ 1

0
vϕ =

∫ 1

0
ψ′ϕ = 0,

so that v = 0. This shows that V = {0}, i.e., V contains only the zero function on (0, 1).
Trivially then, the zero function is the unique global minimizer of the energy E in (19) and ME
is a singleton. Note that in this case the energy is only trivially convex.
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5 Numerical approximation

In this part we present the numerical approximation for the considered problem when d = 1;
we will still keep boldfaced notation for vectors and vector-valued functions for coherence with
most of the previous sections. In particular, in Section 5.1 the algorithm to track the interface
is described. Later in Section 5.2 we describe the discretization adopted for a known interface.
As mentioned in the introduction, for the implementation we have used the flexible framework
of the PorePy library; see [32].

We introduce a mesh Ωh composed of non-overlapping segments E ∈ Ωh that approximate
Ω; we clearly have Ωh = ∪E∈Ωh

E. At the discrete level we can define the approximate config-
uration Ch which is given by the set Ch = {Ω1,h,Ω2,h,Γh}, where respectively Ω1,h ⊂ Ωh and
Ω2,h ⊂ Ωh are the approximations of the domains Ω1 and Ω2. Γh is the approximation of the
interface Γ. Note that for simplicity we are dropping the dependence of these regions on the
velocity field. For each element E we name e1 and e2 its two extremal vertices and hE its
length. We let h = maxE∈Ωh

hE be the mesh size. When more than one fracture is present,
each intersection is respected by the grid. We indicate by (uh, ph) the approximation of (u, p)
for a given mesh.

5.1 Interface tracking algorithm

We suppose that the equations are discretized with a numerical scheme that gives an accurate
enough velocity field. We consider an iterative scheme such that for each step i a tentative

configuration C(i)
h approximates Ch. For a given configuration C(i−1)

h , the proposed algorithm
solves the differential problem obtaining a new velocity field u(i). To speed up the computation,
we evaluate condition (5) only at the extremities of each grid element E. If we obtain opposite
values, we can thus determine the position of an interface in the considered element up to a
given tolerance εΓ. This part can be coded with an embarrassingly parallel workload, speeding

up the algorithm. Having checked all the elements and computed the new configuration C(i)
h ,

the algorithm resets with the new configuration as starting point. The exit strategy considers
the position of Γh for two successive iterations: if their distance is smaller than a given threshold
εΩ, then a stable configuration is reached and the algorithm ends. We summarize in Algorithm
1 the implemented scheme.

We see that with this algorithm we cannot locate multiple interfaces in a single element E;

this is a direct implication of the fact that Ω
(i)
1,h or Ω

(i)
2,h would be smaller than the mesh size in

this case. The algorithm is also unable to track interfaces which are full-dimensional (in this
case of space dimension 1) since we choose to place only one point as the interface within an
element whose vertices have velocities around the threshold speed.

To avoid unnecessary loops due to the chosen accuracy, numerical experiments showed that
a good value of εΩ is comparable with the mesh size given at the outset of the problem. Also,
the value of εΓ is set quite small to determine the interfaces with high precision. Numerical
examples when the interface inverse permeability jump is non-positive indicated convergence
of the proposed scheme, independently from the starting configuration, thus suggesting that
the problem has a unique solution and that, in line with Remark 3.3, the interface should not
be full-dimensional.
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Algorithm 1: Interface tracking algorithm.

Data: For i = 1: the configuration C(i−1)
h and the tolerances (εΓ, εΩ);

Result: For i = end: the configuration C(i)
h ;

do

(u(i), p(i)) ← PDE(C(i−1)
h );

for E = (e1, e2) ∈ Ω
(i−1)
h do

(c1, c2) ← (‖u(i)(e1)‖ < 1, ‖u(i)(e2)‖ < 1);
if c1 6= c2 then

C(i)
h in E ← Interface(u(i));

end

end

d ← Distance(Γ
(i)
h , Γ

(i−1)
h );

i ← i+ 1;

while d > εΩ;

5.2 Discretization in space

Following the algorithm discussed before, we assume that a configuration C(i)
h is given. In

the case of non-linear constitutive relations Λ an iterative scheme can be used, e.g., Picard or
Newton or L-scheme. The solution is computed up to a tolerance εnl. In our implementation we
have considered a Picard iteration scheme. For this, to discuss the numerical approximation,
we assume thus a linear constitutive relation Λ.

Following [25], to solve the problem we consider the mixed finite element approximation
of lowest-order degree. For a given mesh Ωh we have (uh, ph) ∈ (P0(Ωh),RT0(Ωh)), where
the first is the space of constant piecewise polynomial and the second the Raviart–Thomas
space; see [37, 38]. This pair of discrete spaces is stable and gives a good approximation for
the velocity field, essential for our purposes. The resulting discrete problem is well-posed, see
also [14,25], and the discrete solution converges to the exact one as h goes to zero.

6 Numerical examples

In this part, we present numerical evidence for the quality and effectiveness of the previously
introduced framework. Particularly for increasing geometrical and physical complexity. We
consider three cases, starting from a single fracture in Section 6.1, two crossing fractures in
Section 6.2, and concluding with the fracture network of Benchmark 1 from [24] in Section
6.3. In all cases, linear and non-linear velocity-pressure relations are considered as well as
the impact of a possible vector source term f . The threshold on the velocity norm is set as
u = 0.15, so that we have

Ω1 = {x ∈ Ω | ‖u(x)‖ < u} Ω2 = {x ∈ Ω | ‖u(x)‖ > u} Γ = {x ∈ Ω | ‖u(x)‖ = u}.

If not otherwise specified, we consider a mesh size equal to h = 5 · 10−2 as well as εΩ = h; the
maximum number of iterations to reach a stable configuration with Algorithm 1 is set to 50;
and to track the interface we set εΓ = 10−10. In all the cases, the initial configuration is chosen

to be Ω
(0)
1 = Ω, i.e., the whole domain coincides with the low-speed region.
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Our simulations, unless mentioned otherwise, are based on the following combinations of
laws. In the linear case, we consider a combination of classical Darcy laws between the velocity
and pressure, namely K−1u = −∇p+ f with K = kI, where I is the identity matrix and

k =

{
k1 = 1 in Ω1,

k2 = 10 in Ω2.

Specifically, we have

Λ(u) =

{
u in Ω1,

0.1u in Ω2.
(21)

When the non-linear case is studied, a non-linear and heterogeneous relationship between the
velocity and the pressure is set. We assume a linear Darcy flow in Ω1 and a Darcy–Forchheimer
flow in Ω2. Specifically, we have

Λ(u) =

{
u in Ω1,

(0.01 + 3 ‖u‖)u in Ω2.
(22)

If not specified, we consider 50 as maximum for the number of iterations of the non-linear
solver with tolerance εnl equal to 10−4.

These examples were developed with the open source library PorePy [32]. The associated
scripts are freely accessible. PorePy uses Gmsh [31] to construct the grids.

6.1 Single fracture network

In this first case, we consider a single fracture Ω = (0, 1). Boundary conditions are set to zero
for the pressure. In the sequel, we consider a linear and non-linear law relationship between u
and p. The scalar and vector source terms are set equal to

q(x) =


1 if x1 6 0.3,

−1 if 0.3 < x1 < 0.7,

1 if x1 > 0.7,

and f = [5 · 10−2, 0, 0]>.

6.1.1 Linear case. In this part, we consider the linear case with Λ as in (21). The numerical
solution is reported in Figure 1 along with some snapshots of the tentative solutions from
Algorithm 1. What the “if Ω1” legend represents is a binary outcome saying if the region is Ω1

or not. The ”condition” legend represents the configuration at the previous algorithm iteration.
The first figure gives the initial condition imposed, the second the configuration after 3 steps
and the third the final solution (at iteration 6). We notice the creation of multiple interfaces
Γ, which might change during the determination of the final configuration. By changing the
initial condition we get to the same stationary solution, and by refining the grid we obtain a
stable outcome similar to the one presented in Figure 1.

In Figures 2 and 3 we study a case different from (21), where we test our algorithm for
various permeabilities k2 while fixing k1 = 1. By increasing the maximum number of iterations
to 1000, Figure 2 on the left shows the impact of changing k2 on the number of iterations for
the Algorithm 1. We see that for k2 > k1 the solution is always computable while we cannot
draw the same conclusion for k2 < k1. In this latter case, the algorithm “jumps” between
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Figure 1: Solution for different iterations for the problem of Section 6.1.1. From the left at
iteration 0, 2, and 6. The green line represents if the portion of the fracture belongs to Ω1 or
not. The pressure profile is amplified by a factor of 10.
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Figure 2: Number of iterations of Algorithm 1 for different values of k2 for the example in
Section 6.1.1. The red asterisks mean that the maximum number of iterations is reached.
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Figure 3: The two solutions computed by the algorithm for k2 = 0.5625; see Section 6.1.1.

εnl itout itin errp erru
10−1 2 3 1.2 · 10−5 8.7 · 10−6

10−2 2 4 1.8 · 10−7 1.3 · 10−7

10−3 2 5 2.8 · 10−9 2.2 · 10−9

10−4 2 6 4.4 · 10−11 2.1 · 10−11

10−5 2 7 2.4 · 10−12 1.0 · 10−11

10−8 2 11 0 0

10−12 2 15 − −

Table 1: Numbers of iterations and errors computed for the example in Section 6.1.2.

the two states and thus does not converge. An example, for k2 = 0.5625 is shown in Figure
3, where we notice that “if Ω1” and “condition” are perfectly flipped in any two successive
iterations.

By setting f = 0 and p(1) = 0.2, the latter to avoid that the algorithm converges in 1
iteration for each value of k2, we can do the same analysis and obtain the plot in Figure 2 on
the right. We deduce that the presence of the vector source has an impact on the computability
of the solution when k2 > k1, that is, when the interface permeability jump is positive.

We can conclude that, even in this simple setting, the obtained numerical evidence is
interesting and gives a valid support to the developed theory, at least when k2 > k1.

6.1.2 Non-linear case. In this part, we consider the non-linear case with Λ as in (22).
Figure 4 shows the numerical solution obtained at different iteration steps of Algorithm 1.
The stable solution is reached very quickly and only two iterations of the outer scheme are
needed. We see the effect on the pressure of the non-linear law, which changes shape between
the initial configuration and iteration 1. By changing the parameters, it is possible to show
that the obtained solution is independent from the initial condition and stable with respect
the grid refinement, once the mesh size is small enough to separate close interfaces. In this
case 2 iterations are needed to reach the stable solution, the first requires only 1 iteration and
the second 6.
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Figure 4: Solution for different iterations for the problem of Section 6.1.2. From the left at
iteration 0, 1. The green line represents if the portion of the fracture belongs to Ω1 or not.
The pressure profile is amplified by a factor of 100.

We consider now the effect of the tolerance imposed in the non-linear solver εnl, in par-
ticular its effect on the number of iterations and resulting error. By keeping fixed the spatial
discretization, we compute a reference solution (uref , pref) with tolerance εnl = 10−12. We
report in Table 1 the comparison with higher tolerances. In all cases the first iteration requires
only two non-linear cycles, since the initial configuration has only a linear problem. At the
second iteration the non-linear steps depend on the chosen tolerance, this value is reported in
the table. In particular, we notice that both errors errp for p and erru for u computed as

errp =
‖pref − p‖
‖pref‖

and erru =
‖uref − u‖
‖uref‖

have a monotone decay. The norms in the previous expression are the Euclidean norms of
the solution vector. The error is rather small and decays very quickly, reaching zero for the
non-linear tolerance equal to 10−3. The outer iterations are not influenced by this parameters,
probably due to the small errors obtained in all the cases.

Also in this case we can conclude that, even in this simple setting, the obtained numerical
evidence is interesting and gives a valid support to the developed theory.

6.2 Crossing fractures

In this second case, we consider the domain made of two crossing fractures. We set Ω =
Ωhoriz ∪ Ωvert where Ωhoriz = (0, 1) × {0.5} and Ωvert = {0.5} × (0, 1); both Ωhoriz and Ωvert

are identifiable with (0, 1). We consider a zero vector source term f and a scalar source term
given on Ωhoriz and Ωvert respectively by

qhoriz(x) =


1 if x1 6 0.3

−1 if 0.3 < x1 < 0.7

1 if x1 > 0.7

and qvert(x) =


1 if x2 6 0.3

−1 if 0.3 < x2 < 0.7

1 if x2 > 0.7

.

On the boundary we set p(0, 0.5) = 0 and p(0.5, 0) = p(1, 0.5) = p(0.5, 1) = 0.1.
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6.2.1 Linear case. In this part, we consider the linear case with Λ as in (21). Figure 5 shows
the graphical representation of the solution for both the horizontal and vertical part of Ω for
all the iterations of Algorithm 1. We notice the influence of the crossing through a velocity
jump in Ωhoriz, while the pressure profile is continuous as condition (8) imposes. Also in this
case, by changing the initial condition we obtain the same final outcome, where all the domain
becomes Ω2,h.

Also with this more complex case, the obtained numerical evidence is insightful and shows
good properties for the developed approximation framework which is apparently applicable to
fracture networks.

6.2.2 Non-linear case. In this part, we consider the non-linear case with Λ as in (22). The
obtained numerical solution is reported in Figure 6. The scheme takes 5 iterations to converge
with increasing number of non-linear solver iterations as (1, 6, 8, 9). The obtained solution
shows that the high-speed model, being Darcy–Forchheimer, is more proper to describe most
of the problem leaving the slow Darcian regime in the vicinity of the boundary where the non-
zero pressure condition is imposed. It is important to note that the plots show the norm of u
which presents a jump only in the horizontal fracture. Nevertheless, condition (8) is respected
at the fracture intersection since a velocity jump is also present in the other fracture. The
representation of only ‖u‖ hides this details. By changing the initial condition or refining the
mesh, we obtain again the same final outcome.

We can conclude that also in presence of a non-linear and heterogeneous law the proposed
framework works properly on a network of fractures.

6.3 Multiple fracture network

We finally consider a complex fracture network, with geometry taken from Benchmark 1 of [24].
It is composed of 6 intersecting fractures as Figure 7 shows, along with the set of boundary
conditions. We denote by Ωs the set of smaller fracture branches, which will be useful in the
following. Null and unitary vector and scalar sources are considered, respectively. As done
with the previous examples, we will consider the linear and non-linear case in the next Sections.

6.3.1 Linear case. We consider here the same linear relations as in Section 6.1.1; see (21).
The obtained solution is represented in Figure 8. The scheme converges after 4 iterations of
Algorithm 1. We see an interesting result: Ω2,h, which is the high-velocity region, is automat-
ically positioned on the main pathways between the inflow and outflow parts of the network.
Again, the algorithm showed robustness when changing the initial configuration and refining
the grid.

Even for this complex configuration, the proposed algorithm is capable to compute a rea-
sonable solution with a limited cost.

6.3.2 Non-linear case. We consider in this part the non-linear case, where the constitutive
law combination is given as

Λ(u) =

{
u in Ω1,

(0.01 + 0.25 ‖u‖)u in Ω2.

Algorithm 1 takes 4 steps to reach the final configuration with an average of 18 iterations of
the non-linear solver for each step. Figure 9 shows the obtained numerical solution for different
iterations. The obtained solution is again insightful, positioning the high-speed region, given
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Figure 5: Solution for different iterations for the problem of Section 6.2.1. The pressure profile
is amplified by a factor of 4. On the top for the horizontal part of Ω, while on the bottom for
the vertical one.
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Figure 6: Solution for different iterations for the problem of Section 6.2.2. The pressure profile
is amplified by a factor of 8. On the top for the horizontal part of Ω, while on the bottom for
the vertical one.
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p = 0 p = 0.2

p = 0.2

p = 0.2p = 0.2

Figure 7: Representation of the fracture network for the examples in Section 6.3. We have
reported the boundary conditions as well as the portion of the network with small branches in
red Ωs.

Figure 8: Solution for different iterations, respectively (0, 1, 4), for the problem of Section 6.3.1.
On the top the condition “if Ω1” is represented with red indicating ”true” and blue ”false”.
On the bottom the norm of the velocity.
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Figure 9: Solution for different iterations, respectively (1, 3, 4), for the problem of Section 6.3.2.
On the top the condition “if Ω1” is represented with red indicating ”true” and blue ”false”.
On the bottom the norm of the velocity.
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Figure 10: Zoom around the short fracture branches Ωs of the “if Ω1” condition for different
iterations, respectively (1, 3, 4), for the problem of Section 6.3.2.

by Ω2,h, in the longest fracture branches and the low-speed region Ω1,h mainly in the fracture
branches at the outflow. There is a transition zone from Ω2,h to Ω1,h that mainly takes place
in Ωs. A zoom-in is reported in Figure 10 to better clarify the evolution of Ω2,h and Ω1,h at
the small fracture branches.

This final example shows a very interesting and physically sound final configuration, which
might have been hard to predict without the framework introduced in this work. All these
examples showed the applicability and importance of the model adaptation and support the
presented Algorithm 1 to be a valid approach for its solution.

7 Conclusion

In this work we introduced a new model for discrete fracture networks that is able to adapt the
constitutive relation between velocity and pressure depending on the magnitude of the fluid
velocity, which is part of the unknowns.

We presented a mathematical formulation for it, and with an energy argument we were
able to show that under reasonable hypotheses on the constitutive law the problem has a
solution. When the interface inverse permeability jump is non-negative, the problem is convex
and we could show existence in any space dimension; when it is negative, however, the problem
becomes non-convex and we had to restrict our proof of existence to one space dimension. We
also introduced a discrete algorithm that, for a given problem, tracks the low- and high-speed
regions as well at the interface separating them. We considered various constitutive relations
for distinct parts of the network, such as the classical Darcy law and the non-linear Darcy–
Forchheimer law. Several numerical examples showed the validity of the proposed approach
by increasing the geometrical and physical complexity of the problem. We noticed that when
the interface inverse permeability jump is positive, the algorithm seems not to converge and
oscillate indefinitely between two configurations. In the complementary non-positive case, the
algorithm seems to behave and converge nicely. Let us summarize these results:

From a modeling point of view, as mentioned in the introduction, future extensions will be
the inclusion of the rock matrix and the possibility of having more than two constitutive laws
for the problem.

From an analytical point of view, open questions include the existence of solutions when
d > 1 and the interface inverse permeability jump is negative, and the extension of the existence
results to tensor permeabilities when d > 1; see Remark 3.1. In addition, characterizing
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λ21 > 0 λ21 = 0 λ21 < 0

existence of solutions yes yes yes if d = 1

convexity of energy yes yes no∗

convergence of algorithm (d = 1) no yes yes
∗ unless in trivial case d = 1 and Σv 6= ∅

Table 2: Summary of results according to the interface inverse permeability jump λ21 := λ2−λ1.

admissible constitutive laws on the interface (rather than leaving the choice as a free parameter
of the model, as we did here) as well as determining the Hausdorff dimension of the interface
are interesting questions that would allow us to study uniqueness of solutions.

From a numerical point of view, further extensions will be the the development of the
tracking algorithm for d > 1 and the proof of its convergence when the interface inverse
permeability jump is non-positive, and the development of an alternative algorithm when the
jump is positive.
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[19] M. Buĺıček, J. Málek, and J. Žabenský. A generalization of the Darcy–Forchheimer
equation involving an implicit, pressure-dependent relation between the drag force and
the velocity. Journal of Mathematical Analysis and Applications, 424(1):785–801, 2015.

[20] C. D’Angelo and A. Scotti. A mixed finite element method for Darcy flow in fractured
porous media with non-matching grids. Mathematical Modelling and Numerical Analysis,
46(02):465–489, 2012.

[21] J.-R. de Dreuzy, G. Pichot, B. Poirriez, and J. Erhel. Synthetic benchmark for modeling
flow in 3d fractured media. Computers & Geosciences, 50:59 – 71, 2013. Benchmark
problems, datasets and methodologies for the computational geosciences.

29



[22] J. Erhel, J.-R. de Dreuzy, and B. Poirriez. Flow simulation in three-dimensional discrete
fracture networks. SIAM Journal on Scientific Computing, 31(4):2688–2705, 2009.
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