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Abstract

Nanomedicine is the branch of nanotechnology devoted to the miniaturization of de-
vices and to the functionalization of processes for the diagnosis and the design of tools of
clinical use. In the perspective to develop patient-specific treatments and effective ther-
apies against currently incurable diseases, biomechanical modelling plays a key role in
enabling their translation to clinical practice. Establishing a dynamic interaction with
experiments, a modelling approach is expected to allow investigating problems with lower
economic burden, evaluating a larger range of conditions. Since biological systems have
a wide range of typical characteristic length and time scales, a multiscale modelling ap-
proach is necessary both for providing a proper description of the biological complexity at
the single scales, and for keeping the largest amount of functional interdependence among
them. This work starts with a survey both of the common frameworks for modelling a
biological system, at scales from atoms to a continuous distribution of matter, and of the
available multiscale methods that link the different levels of investigation. In the follow-
ing, we define an original approach for dealing with the specific case of transport and
diffusion of nanoparticles and/or drug-delivery carriers from the systemic circulation to a
target tissue microstructure. Using a macro-micro viewpoint, we discuss the existing mul-
tiscale approaches and we propose few original strategies for overcoming their limitations
in bridging scales. In conclusion, we highlight and critically discuss the future challenges
of multiscale modelling for achieving the long-term objective to assist the nanomedical
research in proposing more accurate clinical approaches for improved medical benefit.
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1 Introduction

Nanomedicine is the branch of nanotechnology devoted to facilitate medical diagnosis and
to improve therapeutic methodologies [106, 107]. According to the Forward Look Report on
Nanomedicine published by the European Science Foundation, nanomedicine aims at ”ensur-
ing the comprehensive monitoring, control, construction, repair, defence and improvement of
all human biological systems, working from the molecular level and using engineered devices
and nanostructures to achieve medical benefits, ultimately” [8]. A pioneering definition of
nanotechnology has been given by Feynman as the possibility to make smaller and smaller
machine tools down to the atomic level [56]. This vision perfectly applies to nanomedicine,
where miniaturization of medical tools pushes medicine towards more accurate, controllable
and reliable protocols [60], with the long term purpose of facing the challenges of chronic
diseases and improving the efficiency of the healthcare [126]. Nanomedicine does not only
study the role of a specific molecule that acts in some process in a living system, but it also
aims to address the whole set of issues behind pathologies [133]. For example, the design
process of a nanomolecule for targeted delivery requires the evaluation of the complex bio-
chemical and biophysical interactions present in a biological system. The increasing impact
of nanomedicine in our daily life can be understood by looking at either the incidence of the
main diseases over the world population (see, for example [150]) and the growing trend in
investments for nanotechnology [57, 50].

A comprehensive list of fields of interest in nanomedicine has been illustrated by Freitas
Jr [62]; he took into account 96 categories, ranging from nanostructured materials and func-
tionalized surfaces to DNA manipulation and molecular motors. This number is even more
impressive if one considers that one of the earliest therapeutic applications of nanomedicine
was presented by Desai et al [44] in 1998. Until few years ago, three quarters of research stud-
ies and 59% of the patents in the field of nanomedicine could be classified as drug-delivery
systems; other applications included nanoscale therapies, in-vivo imaging agents, in-vitro di-
agnostics sensors, biomaterials and active implants [50]. The success of nanoparticles for
therapeutic goals resides in the flexibility of their design according to different shape and size,
suitably tuned to interact with biological systems at different scales on the basis of different
mechanical, magnetic and optical properties. The classification provided by Sivasankar and
Kumar [136] divides nanoparticles into nanotubes, nanowires, nanocrystals, ceramic or metal
nanoparticles and nanorobots. A further class is constituted by synthetic and biopolymeric
materials, which are particularly attractive as degradable nano-carriers [115].

Regarding the particular case of cancer, Ozecelikkale et al [120] stressed the importance of
the multiscale and multiphysics aspects of nanoparticle-tumour interaction in nanomedicine
design, rather than the sole mechanical transport. The rationale behind such complex inter-
actions was discussed by Albanese et al [1]: they illustrated how size, shape and functionaliza-
tion are connected. As a consequence, growing interest is currently shown for multifuctional
nanoparticles, as reviewed by Bao et al [14]. Surface functionalized nanoparticles was also
investigated by Hondow et al [76], opening to the field of nanoparticles used for tracking and
imaging [19, 96, 160].
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Three keywords are crucial in order to understand the purposes and the methods of
nanomedicine for targeted-delivery: theranostics, pharmacokinetics/pharmacodynamics and
nanotoxicology.

• Theranostics is the combination of diagnosis of pathology and its consequent targeted
therapy [157]; it is intrinsically patient-specific, requiring functionalized treatments
[141].

• Pharmacokinetics aims at understanding how nanoparticles or drug-carriers distribute
among organs in a global sense, whilst pharmacodynamics addresses the processes acting
locally, in the specific site [25]. Joint application of these two disciplines makes it
possible to evaluate how nanovectors distribute, penetrate and interact with their micro-
environment.

• Nanotoxicology deals with the toxic impact of nanomaterials. Parallel to the increas-
ing use of nanomedicines, to assess the negative effects of the presence, evolution and
degradation of nanoparticles in a biological system has become a matter of primary
importance [66, 117].

Most of the literature in nanomedicine illustrates experimental results. Nevertheless,
mathematical modelling is a promising tool for the future development of this research field.
Although experiments are fundamental to understand the potential offered by materials or
technologies, the in vitro and in vivo studies are expensive both in terms of time and costs.
By using mathematical models, instead, a quantitative understanding of system behaviour
and of the efficiency of techniques can be rapidly obtained and the results from simulations
can be used to guide experiments and improve the overall clinical effectiveness [61, 124]. After
a proper validation, a mathematical model can be used to investigate in silico a range of con-
ditions wider than the ones allowed by experiments. An example are the data on pathological
situations: they are of fundamental importance while they are often difficult to obtain and
manage in vivo.

The aim of this survey is to provide a description of the mechanical modelling approaches
used in biological problems with a particular focus on nanomedicine in applications for tar-
geted delivery for which a multiscale ”top-down” description is proposed. In Section 2, the
intrinsic multiscale nature of biological systems is highlighted. In Section 3, classical method-
ologies to model a biological problem at given characteristic length and/or time scales are pre-
sented. In Section 4, the example of transport of nanoparticles in porous media is considered
to build a multiscale mathematical approach. Finally, the limitations of current approaches
and the future trends in nanomedicine modelling are examined in Section 5.

2 Multiscale nature of biological systems

A biological system can be defined as a set of integrated components which interact and
mutually depend on each other by the means of biological processes. Biological systems work
over a wide range of characteristic length- and time-scales (Fig. 1): the largest scale is the one
at which the macroscopic function is explicated, whereas the lowest scale is the one at which
the elementary blocks can be separately recognized. A certain number of mesoscopic levels,
instead, can be identified as the bridges between these two limits [130]. A generic biological

3



Figure 1: Multiscale nature of biological systems: building components and underlying bio-
logical processes can be identified in a wide range of length and time scales

system can be defined looking at its function, its form and its material properties; within
the same biological system, as a consequence of the hierarchical structure [26, 15, 139], these
aspects can differ if different characteristic scales are considered and the overall behaviour is
not the simple superposition of the single lower scale ones [135].

Focusing on the topic of this article, the multiscale nature of biological system is briefly
explained by using two examples: the cardiovascular system, through which nanoparticles
are driven into the body, and a solid tumour, one of the most common clinical targets for
nanoparticles. In the circulatory system, the heart pumps blood from the left ventricle, a
chamber with a volume of a few cubic centimetres (cm3), working in a range of 55 − 200
beats per minute. From the aorta, the largest arterial vessel (diameter ∼ 3cm), the vascular
system branches out in smaller and smaller vessels in order to reach all the peripheral districts:
arteries (cm), arterioles (mm) and arterial capillaries (µm). At this stage, red blood cells and
nutrients transported in the network perfuse into the intracellular space through the capillary
walls and biochemical reactions occur due to macromolecule exchanges (nm - µs). On the
way back, venous capillaries, venules and veins close the system again into the heart. Blood
itself is a multiscale system: at different characteristic lengths (i.e. different vessel diameters),
blood constituents, of dimensions of the order of a few µm, interact with each other and with
the vessel walls in different ways, whilst different time-scales regulate the balance between
mechanical, chemical and electrical forces.

A solid tumour can be defined as a growing population of abnormal cells which invades
the mesenchyme of the primary site and, finally, metastasizes in a distant site [33]. Dur-
ing its development, tumour achieves six capabilities, in an order depending on the tumour
type: self-sufficiency in growth signals; insensitivity to anti-growth signals; evading apopto-
sis; limitless replicative potential; sustained angiogenesis; tissue invasion and metastasis [73].
Such properties can be related to the typical characteristic scales of the tumour structure:
at lengths of hundreds of nm or µm and times of µs, electrochemical interactions among
tumour cells and enzymes and/or molecules occur; the development of new microstructures,
such as newborn blood vessels, becomes important when the system is analysed at typical
scales of cm and s; the migration of tumour cells in the circulatory system and the creation of
metastasis affects at the larger length scale of the circulatory system. However, the multiscale
nature of a pathologic system has its further peculiar characteristics; considering angiogenesis,
for example, the cancerous circulatory system is less organized and regular than the healthy
vascular network [68]. Tumour blood vessels have a leakier and more permeable endothelium
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Figure 2: Different length- and time-scales within the human circulatory system: (a) whole
circulatory tree at the macroscale; (b) small artery structure at the mesoscale; (c) capillary
with red blood cells at the microscale (images taken from http://en.wikipedia.org/wiki/)

than healthy ones and an impaired lymphatic system, which result in high interstitial fluid
pressures [113], which also depend on the stromal structure [154].

Mathematical modelling in nanomedicine for targeted delivery can not be limited to the
sole design of nanoparticles: on the contrary, it requires analysis of the biological phenomena
at nanoscale (i.e. protein folding or molecule / cell membrane interaction) and the different
levels of multiphysics interplay. In the following Section, we provide a survey on the theoretical
approaches and methods for investigating a biological phenomenon at its particular single-
scale, which can constitute the building blocks of larger multiscale model. Although the
presented modelling frameworks have a general validity beyond the particular field presented
in this review, they have been extensively used in nanomedicine in many applications.

3 Single-scale models

Understanding the functional relationships between the macroscopic properties and micro-
scopic features of biological systems is one of the most important challenges for modelling
purposes. Different classes of methods are required when investigating the system properties
at different length- or time-scales, as schematically depicted in Fig. 3.

A major partition can be operated between phenomenological and nanostructural ap-
proaches. In the former, the laws that regulate a phenomenon are extracted by empirical
observations and are not derived from theoretical arguments. A great disadvantage is that
the resulting model has lumped parameters, which are often difficult to interpret and identify.
The latter, instead, starts from microstructural models of a single part of the system under
investigation and the overall behaviour is obtained through integration (uplift) of the single
parts using a number of functional interdependence rules. A list of fundamental properties
for materials in nanomedicine and biomaterials can be identified: structural, mechanical, sur-
face, transport, optical, magnetic, rheological [83]. Furthermore, biological systems possess
two additional peculiar properties which differentiate them from inert matter: growth, i.e.
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Figure 3: A classification of methods to be used for modelling biological systems in terms of
their characteristic length- and time-scales

variations of mass, and remodelling, i.e. rearrangements of the microstructure [142].

3.1 Ab-initio approaches

The atomistic scale can be considered as a universal platform where different scientific dis-
ciplines interact: chemistry, studying the chemical bonds; physics, studying the properties
of atoms; material science, analysing how the mechanical, electrical and/or thermal proper-
ties concur to determine the material structural properties [23]. Ab-initio methods (ABM)
are entirely based on theory from first principles or natural laws without averaging nor ap-
proximations: this means that the properties of the single atom and the interactions with
the surrounding particles have to be taken into account from the point of view of quantum
mechanics [111]. The limit of these all-atoms simulations is the maximum dimension of a
model, restricted to few hundreds of atoms: in fact, simulations of problems with character-
istic lengths larger than tens of nm or times larger than the µs become computationally too
expensive. Several applications have been proposed in a nanomedical context: for example,
Merkle and Freitas [104] used an ABM for investigating the building process of diamondoid
structures acting as nanorobots, with the long-time purpose to use them as targeted drug
delivery vectors. The goal to improve the nanoparticle’s cell selectivity was also present in
the work of Shah et al [132] where Brownian motion and adhesion kinetic theories are coupled
to assess the effects of the nanoparticle shape, the ligand density and the shear rate on the
adhesion probability to vascular wall.

3.2 Molecular dynamics

The theory of molecular dynamics (MD) dates back to the work of Alder and Wainwright
[3]. In this technique, one generates the atomic trajectories of a multi-particles system by
numerical integration of Newton’s law for given initial and boundary conditions and inter-
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atomic potentials [95]. The key feature of this approach is the requirement of basic hypotheses
for the interatomic interactions [121], which are introduced to identify the single components
of a multi-body model. Such interactions, which can be extracted from experiments or ab-
initio electronic calculations, define both the advantages and the limitations of the model [70].
Indeed, if the interactions within a body are imposed, they are inputs and they cannot be
investigated by the simulation itself; nevertheless, the size of the simulation can increase up
to a length scale of 100nm and time scale longer than µs. A widespread application of this
technique is the investigation of the behaviour of biological macromolecules [87]. An extensive
review of the application of this method in the description of protein folding was provided
by Dobson et al [47], whilst de Groot and Groot and Grubmuller [40] presented a real time
simulation of water permeation through human aquaporin-1 with atomic resolution. By cou-
pling MD with Monte Carlo methods (MCM) [72], Muller and Albe [110] investigated the
ordering kinetics in FePt nanoparticle, evaluating how the free surfaces, the bulk vacancies
and the mutual interactions drive the disorder-order transition; Wang et al [155] analyzed the
targeting properties of ligand-tethered polymer nanoparticles, including the effect of different
parameters, such as the number of tethered polymer chains, the tether length, the core size,
the receptor density and the receptor binding specificity.

3.3 Coarse graining

Investigating the interactions at the characteristic length of a living cell (µm) and charac-
teristic time of µs is of fundamental importance in biological systems. Notwithstanding the
increase in computational power of modern clusters, these kinds of problems cannot be tackled
using atomistic approaches: therefore, coarse grained models (CG) are extensively employed
[147]. As in MD, a CG model is characterized by a two-step procedure: first, the overall
system is partitioned in structural units and, second, the interactions between single units
are defined. The structural units in a CG model are larger than in MD, leading to a problem
with fewer degrees of freedom [108]. As stated by Izvekov and Voth [80], interactions (or po-
tentials) to be considered at this level have lower transferability than in the case of atomistic
analysis, because they results from larger spatial and temporal averages, thus leading to a
greater sensitivity on the imposed thermodynamic conditions in simulations. Nevertheless,
this approach is unavoidable for defining a bridge toward macroscale analysis [83]. The use of
CG models was presented in the work of Bahar [11] with the purpose of modelling large-scale
and long-time conformational motions of proteins, assuming a bead-and-spring model as the
basic unit. The importance of the proper choice of the potentials is highlighted, for example,
in the work of Tirion [145] where a single-parameter potential has been proved to be suit-
able for studying protein dynamics. Moreover, Ramachandran et al [125] proposed a coarse
grained model to study the DNA translocation in chemical modified nanopores, investigating
how the surface probe density and the type of interaction potentials could affect the DNA
transport in experimental tests.

3.4 Discrete (cell) models

In discrete models (DM), the spatial unit is a cell and its interactions with the surrounding
environment (including the other cells) define the dynamics of the system [97]. Two large
classes of DM are identified: in lattice-based DM (e.g. cellular automata), the cell’s possible
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positions are restricted on a regular mesh (structured or unstructured); in the lattice-free DM,
such a constraint is absent. Both of them require deterministic or probabilistic interaction
rules among cells. If the former is computationally less expensive but requires a rigorous pre-
liminary analysis on the mesh structure, that should not affect the solution, the latter can be
used in a wider range of situations [97]. Each cell is typically modelled as a three-component
vector, describing its position, its velocity and the internal variables, possibly extracted from
larger scale continuous equations [16]. An extensive review on the application of cellular au-
tomation (CA) approach in modelling biological cells was provided by Alber et al [2]: CA
is attractive in the field of nanomedicine models whenever its key feature, the modelled cell,
exactly matches a fundamental mesoscopic structure of a biological system. Therefore, cell
aggregation is one of the most successful applications. A review on the application of Potts
models (PM) in cellular modelling was due by Scianna and Preziosi [131]; they provide a novel
approach to link the mesoscopic cell inner variables with the microscopic properties, instead
of using a priori assumptions. PM was also used by Turner ans Sherratt [148] to study cell
proliferation, and tumour cell invasion in particular, by making use of an Hamiltonian formu-
lation that takes into account for both growth and mechanical deformations, demonstrating
that the cell-medium adhesion plays a more important role than the cell-cell adhesion. Finally,
a widely used discrete model for fluid dynamics problems is the lattice Boltzmann method
(LBM), as in case of modelling the viscous flow in large distensible blood vessels [54].

3.5 Continuous models

The hypothesis underlying the concept of a continuous model (CM) is that the matter contin-
uously fills the spatial domain under analysis: this assumption applies successfully at length
scales much larger than the interatomic distances. Mathematically, this means that the prob-
lem can be analysed in terms of partial differential equations describing the temporal and
spatial evolution of averaged quantities [16, 149]. Continuum biomechanics investigates the
structural constitutive laws of biological systems, which typically show non-linearity in stress-
strain elastic response [32], viscoelasticity [159, 144], and anisotropy [29, 119]. A single-phase
material can be described looking at both its structural, chemical, thermal and optical prop-
erties and the mathematical relations used to evaluate their effects. In case of biological
system, the phenomena of growth and remodelling are of primary importance. The volumet-
ric growth can described using a multiplicative decomposition of the deformation gradient
[129, 102], which relies on the concept of a virtual natural state. The stress-dependent re-
modelling laws can be formulated using thermodynamical principles [45, 5, 27] and can take
into account the characteristic size effects in biological tissues [98]. Cowin [35] and Ambrosi et
al [4] recently proposed extensive reviews of the continuous approaches in modelling these two
phenomena in soft tissues, whilst their importance in orchestrating the emergence of shape in
living matter is a matter of open debate [31, 28].

Whenever the interaction between the components of a biological system cannot be ne-
glected, the use of multiphase models becomes relevant. In this framework, a crucial issue
is the definition of reference volume element (RVE) [48, 86], the smallest volume over which
an average can be made that will yield a value representative of the whole. The particular
case of interaction between solid and fluid phases is widely observed among biological ma-
terials, from cells [105] to tissues, e.g. tumours [114] or bone tissue [93, 98], and suitable
approaches are the poroelastic mixture models. A poroelastic material with time-dependent
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properties is composed by a solid (elastic) skeleton whose pores are filled by a viscous fluid;
suitable volume integrations of the fields of the single phases define a new biphasic material
with averaged properties. This method is based on the so-called effective medium approach
and the momentum exchange among phases at the microscale leads to the introduction of
a coupling term in the constitutive equations accounting for the mutual stress between the
phases. In the mixture theory, a soft hydrated tissue is considered as a material with two
or more constituting phases, independent and uncompounded with each other [37], and the
averaging is weighted on the phase-densities of the basic constituents. As it often happens
at long time-scales, phases exchange mass and a suitable mass source law must be supplied
for each phase. The dynamics of nutrients or growth inhibitors is usually taken into account
in terms of reaction-diffusion equations of nutrients or growth inhibitors [7, 30, 79]. Mixture
theories based on mesoscopic averaging lead to systems of partial differential equations with
a mathematical structure similar to balance equations of single phase continuum mechanics,
while accounting for micro-structural complexity; however the rationale to supply constitutive
equations relations for partial stress and boundary conditions for each phase are sometimes
obscure [6].

The proper choice of the parameters in CM is more delicate than in mesoscopic models,
as they clearly depend on both the physical material constants and the geometry at the
microscale [13] in an averaged sense. Under suitable assumptions, some multiscale methods
provide rigorous tools to relate material properties at different scales.

4 Multiscale approaches in nanomedicine

4.1 Multiscale analysis in biological systems

On the basis of the schematic definitions given in Section 3, we can resume that ABM, MD
and MCM are suitable methods for the description of microscopic phenomena; CG and DM
refer to the mesoscopic level, whilst CM are well established techniques to model the macro-
scopic aspects. The aim of a multiscale approach is to bridge together models and methods
which pertain to different characteristic length- and time-scales, with the purpose of obtaining
a more comprehensive description of the macroscopic phenomena from microscopic bases [78].
Generally speaking, a multiscale analysis can be developed by using three different viewpoints:
in a ”bottom-up” approach, the study begins at the smallest scale and the results obtained
are used as input conditions for larger scales; in a ”top-down” approach, the study begins at
the largest scale, where a continuum hypothesis is valid, and the results are used as boundary
conditions for the underlying microscopic mechanisms; in a ”middle-out” approach, the study
begins at an intermediate scale and the results can be used to analyse both larger and smaller
lengths or times [38].
The choice among these approaches typically depends on the available information on the
physics of the phenomenon; nevertheless, all of them must face with the difficulties related
to the ”integrating-out” processes, which define the collection of rules to be used for linking
the scales among them [111]. Ayton et al [10] introduced a classification for these processes,
distinguishing between serial and parallel approaches. In the former case, different resolution
models are developed in sequence and the information passing unidirectionally. In the latter,
models at different scales are concurrently developed and the information flow can be bidirec-
tional. Within this classification, some of the common approaches available in literature are
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briefly described.
Homogenization techniques are widely used in multiscale modelling and they usually de-

duce mathematical relations between micro- and macro-fields using a multiscale expansion of
the relevant physical fields. Effective properties are then extracted on the basis of assumptions
of linearity and periodic or very slowly varying microstructure, in principle without even need
of physical measurements [77]. Generally speaking, all homogenization techniques produce
properties at the macroscale as averages of microscale conditions [89]. Applying the rule of
mixtures [127, 152], the macroscopic properties are calculated through a weighted average of
the properties of the single constituents: therefore, the concept of volume fraction becomes
central in this approach. In the effective methods approximation [52], material properties
to be used at macroscale are computed by solving analytical boundary value problems in
simple representative domains. Considering asymptotic expansion methods [138], instead, the
macroscale behaviour is obtained by expanding the macroscopic fields and the constitutive
equations in terms of the characteristic, separable scales of the problem; therefore, the ho-
mogenized equations among macroscale fields are regulated and derived from properties at
the microscale. Thus, the key feature of this approach is the proper choice of the relations
between the scales, reflecting the medium structure: as a consequence, asymptotic expansion
can be applied only when the microscopic domain shows a certain regularity [134].

An additional class of multiscale methods is based on the averaged field theory, using
the idea that relationships holding at macroscale must be function of certain averages of the
microscopic fields [77]. This approach fails in case of long-range fluctuations at the microscopic
scales, in which case it cannot be properly applied [94] and requires a more general self-
consistent theoretical framework. For example, a biological system can be described as a loop
between larger and smaller levels of organization (i.e. scales) in which the relations among
them are not simply derived from averages, as shown by Malo et al [99] for modelling cell
proliferation.

Furthermore, the class of micro-macro methods is extensively considered in the multiscale
modelling for biological tissue, whose purpose is to compute a material property to be used
in a larger model by developing an additional relation holding at a smaller scale. The result
at the smaller scale is not required to be valid for the whole macroscopic domain but it is
representative only of the particular microscopic domain [89, 137]. Therefore, this approach
is well-suited in all the cases in which the macroscopic system contains isolated and localized
defects or singularities [158], albeit more complex microstructures can also be taken into
account.

4.2 Multiscale models of nanoparticles transport in living materials

The investigation of the transport properties of nanoparticles and/or drug-delivery carriers
in living tissues is one of the most active and evolving branches in nanomedicine [82]. This
fundamental knowledge is of utmost importance to design novel therapeutic options for clinical
practice, e.g. patient-specific treatments. In the biomechanical literature many works focus
on the determination of the biological characteristics at a particular scale, while they are
based on simplifying hypotheses on the material parameters to link different scales. Often a
comprehensive work investigation of the whole multiscale problem from the nanometric scale
to the macroscopic biological system is lacking, mainly because of the wideness of the problem
itself. In this Section, we make a survey of some relevant multiscale approaches to study
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Figure 4: Multiscale analysis of a living tissue modelled as a porous medium. Four levels are
highlighted. (I) Tissue scale (Reprinted from [39], with permission from Elsevier [OR AP-
PLICABLE SOCIETY COPYRIGHT OWNER]); blood flows inside blood vessels that are
embedded into a solid structure constituted by cells (i.e., healthy cells, tumorous cells and
antibodies) and extracellular matrix. (II) Extravascular space (Reprinted from [65], with per-
mission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]); once blood
(represented in red) crosses the vessel wall, it perfuses among the structures (represented
in white) of the extravascular space. (III) Cellular level (Reprinted from [64], with permis-
sion from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]); the blood con-
stituents (natural or artificial nanoparticles) can be analysed separately and they are advected
by the blood flow while diffusing in the space among cells and interacting with them. (IV)
Subcellular level (Reprinted from [156], with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]); the biochemical interactions between a nanoparticle
and a cell influence the cell’s life driving towards phenomena like growth, survival, migration,
adhesion or apoptosis

transport properties in living materials. In order to take into account for the different length-
and time-scales, we suggest a ”top-down” approach composed by four levels of investigation,
based on the organization of the single components of the tissue and the biological mechanisms
that regulate the transport properties within living matter.

(i) The tissue scale (cm - tens of s), where the structured heterogeneities within the living
material can be recognized separately;

(ii) The extravascular space (mm - s), in which the blood transfer occurs from the capillary
network to the extra-cellular matter and the cells;

(iii) The cellular level (µm - ms), in which nanoparticles/nanovectors diffuse and are
advected by the flow or uptaken by the cells, behaving like a suspension within a fluid domain;

(iv) The subcellular level (up to hundreds of nm - µs), where the biochemical interactions,
such as the particles uptaking or cells regulation, become the dominant processes.

4.2.1 The continuum level

At a tissue level (i), the poroelastic theory due to Biot [20] applies well to the average macro-
scopic properties of a living material composed by a solid skeleton with pores filled by an
interstitial fluid. Considering a macroscopic RVE of volume Ω and boundary Γ, the equilib-
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rium equations in quasi-static conditions can be written as:{
∇ · σ = Fext in Ω

σn = fext on Γ
(1)

where σ is the effective Cauchy stress tensor, n is the normal to the boundary Γ, Fext and
fext are external body and traction forces, respectively. Under assumptions of isotropy, small
strains and hydrostatic fluid stresses, the constitutive equation for the stress reads:

σ = µeff [∇u + (∇u)T ] + λeff (∇ · u)I− αpI (2)

where u is the displacement, µeff and λeff are the effective Lamé constants of the material
(typically depending on the solid volume fraction), I is the unit-second order tensor, p is the
fluid pressure and α is the isotropic effective stress coefficient. A wide class of constitutive
equations coupling the pore pressure and the solid matrix can be found in Cowin and Doty
[36]. Such a constitutive equation can be generalized to nonlinear solid and fluid components
and an effective strain energy function for the material can be defined through a proper
homogenization process [116]. Assuming a Newtonian fluid filling the pores, the fluid velocity
v is governed by Darcy’s law:

v = −K∇p (3)

where K is the permeability tensor, possibly taking into account anisotropy effects in the
microscale porosity. As the size of red blood cells is comparable to the diameter of microvessels,
the blood flow in small vessels is better described by a shear-thinning model [153], as follows

τ = H|γ̇|nsgn (γ̇) (4)

where the relation between fluid shear stress τ and shear rate γ̇ depends on two material
parameters H and n (n < 1). According to Bonfiglio et al [21] and Tosco et al [146], Darcy’s
law in this case should be rewritten as:

v = −Keff |∇p|(1/n)−1∇p (5)

where Keff is a phenomenological parameter depending on the permeability tensor and the
porosity (i.e. as the ratio between the volume fractions of fluid and overall domains). The set
of governing equations is closed by imposing the mass balance for the fluid, leading:

∇ · v =
1

2
α
∂

∂t

(
∇u + uT

)
+

1

M

∂p

∂t
(6)

where the right-hand side represents the variation of the fluid content, which is related to the
Biot-Willis coefficients α and M . Such parameters describe the dilatation properties of the
porous material, with α = 1 and 1/M = 0 being the incompressible limit. In the poroelastic
framework, the entries of the permeability tensor are unknowns parameters and a multiscale
strategy is required for their proper definition because they depend on the microstructure
of the material. For a laminar fluid flow over a granular bed of solid, the Kozeny-Carman
equation can be employed, defining a functional relationship for the permeability depending
on the porosity of the material and the ratio between the wet surface area and the reference
volume [24, 90]. In biological materials, the permeability can be also influenced by the applied
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strains [92], and different phenomenological laws have been considered depending on the
microstructure of the tissue under consideration [91, 103] Alternatively, a direct micro-macro
approach can be used for the determination of the permeability if the spatial distribution
of voids is known for each mesoscopic domain composing the RVE, e.g. by using imaging
techniques, as done by Guo [71]. Another interesting application concerns materials in which
the voids are distributed according to a fractal rule: in this case an analytical relation links
the permeability to the typical fractal dimensions of the voids [34] . This is an attractive
approach for modelling solid tumour, whose vasculature generated by angiogenesis has been
found to have a fractal structure [12, 128].

The tissue (i) and the vascular (ii) scales can be linked performing a homogenized approach
based on the asymptotic expansion method, as recently proposed by Shipley and Chapman
[134] and extended by Penta et al [122, 123]. The poroelastic RVE is composed by two sepa-
rated domains where different physical laws apply: ΩF is the fluid domain (the vasculature)
and ΩE is the porous extravascular domain, so that Ω = ΩF ∪ΩE . The microscopic domains
and the interface ΓFE , are depicted in Fig. 5 in the case of the capillary vassels network in
healthy liver lobule. The extravascular domain is modelled as a porous medium:

∇ · uE = 0 in ΩE (7)

uE = −kE
µF
∇pE in ΩE (8)

where equation (7) accounts for the mass conservation and equation (8) is Darcy’s law with
isotropic permeability kE and fluid viscosity µF , uE and pE being the fluid velocity and
pressure fields, respectively, in the extracellular medium. Conversely, in the fluid domain a
Newtonian fluid flows according to:

∇ · uF = 0 in ΩF (9)

ρF

(
∂uF
∂t

+ (uF · ∇) uF

)
= −∇pF + µF∇2uF in ΩF (10)

where equation (10) is the Navier-Stokes equation for a fluid with density ρF , with uF and
pF being the fluid velocity and pressure fields, respectively, in the vascular domain. At the
interface ΓFE between the two domains, two interface conditions are required to close the
set of governing equations. The mass exchange at the interface can be implemented by using
Starling’s equation of filtration that, in a general framework, reads:

uF · n = uE · n = Lp [pF − pE − σT (πF − πE)] on ΓFE (11)

where n is the outward pointing normal to the fluid surface, Lp the hydraulic conductivity of
vessels wall (the interface in this case), σT the osmotic reflection parameter, πF and πE are
the osmotic pressures in fluid and extravascular domains, respectively. Furthermore, a slip
condition at interface between a Newtonian fluid and the porous medium must be supplied
[85]:

[(n · ∇) uF ] · τ = − q√
kE

uF · τ on ΓFE (12)

where τ is any unit vector tangential to ΓFE and q is a dimensionless parameter which
characterizes the slipping properties of the interface.
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If the Reynolds number of the flow is low enough, the nonlinear advection terms in equation
(10), may be neglected. Furthermore, if the exact representation of the boundary layers near
the vessel walls is not the main interest in the model, then the interface conditions in equation
(11) and (12) may be reduced to simply imposing continuity of the normal velocity and normal
traction as in Discacciati et al [46] In this case, the model (7) - (10) may be manipulated to
define a ”fictitious domain” formulation where the the equation to be solved in both ΩF and
ΩE has the same form, while the different flow properties in different regions are represented
by varying the equation coefficients. The main step in this procedure consists of reformulating
the constitutive relations in (8) and (10) according to the Brinkman model [22] as

∇p = −µBr
kBr

u + µBr∇2u (13)

Here the permeability kBr and the viscosity µBr are discontinuous at the vessel walls and
their values are such that kBr

µBr
= kE

µE
in ΩE and kBr

µBr
= kF

µF
in ΩF where kE , kF , µE and µF

indicates the permeability of the extravascular domain, the permeability of the fluid domain,
the viscosity of the extravascular domain and the viscosity of the fluid domain. Using such
modified constitutive relations the equations (7) - (10) may be rewritten in the unified form

∇ · u = 0 in ΩF ∪ ΩE . (14)

∇p = −µBr
kBr

u + µBr∇2u in ΩF ∪ ΩE . (15)

It is shown in Angot et al [9] that equations (14) and (15) are a ”good approximation”
of equations (7) - (10). Furthermore, in the limit when the ratio of the permeability in the
extravascular region to that in the vessels tends to infinity, then the solution to equations (14)
and (15) converges to the solution of a Stokes flow model set in ΩF with no-slip conditions
at the boundary walls. This latter fact has been exploited in the literature fluid flow around
obstacles [88, 9]. The stable numerical treatment of equations (14) and (15) in cases where
the coefficients display large discontinuities requires the use of suitable numerical methods the
study of which has been of interest both in the context of the literature on finite elements [101]
and isogeometric methods [53].

4.2.2 Homogenization technique in multiscale analysis

Let us now assume that a strong separation between the lengths that characterize the structure
of such a domain: a macroscopic one L, typical of Ω, and a microscopic one d, typical of the
subdomains ΩF and ΩE , such that:

ε =
d

L
<< 1 (16)

Accordingly, let us introduce the spatial position vectors in the microscale X and in the
macroscale x, that are related by

x = εX (17)

Assuming that all fields depend, in principle, on both the independent variables (X and x),
one can perform a series expansions of the physical fields as follows

u = u(0)(x,X) + εu(1)(x,X) + ε2u(2)(x,X) + ... (18)
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Figure 5: Microstructural organization inside a liver lobule: (left) micrography (area of
250x250µm) showing the capillary vessels as gray domains and the nuclei of the hepato-
cytes as blue dots; (right) scheme of the representative volume unit, indicating the fluid
and extravascular domains ΩF and ΩE , respectively, together with their interface ΓFE . The
micrography frame is a courtesy of M. Iannacone and L. Sironi, Ospedale San Raffaele, Milan

p = p(0)(x,X) + εp(1)(x,X) + ε2p(2)(x,X) + ... (19)

After lengthy manipulations, under the hypothesis of periodicity in X, Darcy’s law can be
derived for the extracellular domain, relating the averaged leading order macroscale velocity〈
u
(0)
E

〉
E

to the leading order macroscale pressure p
(0)
E (x), constant on the microscale, as

follows: 〈
u
(0)
E

〉
E

= −kE
d2

E · ∇xp(0)E (x) (20)

The same result is found for the fluid domain where the averaged leading order macroscale

velocity
〈
u
(0)
F

〉
F

is related to the leading order macroscale pressure p
(0)
F (x), constant on the

microscale, as follows: 〈
u
(0)
F

〉
F

= −G · ∇xp(0)F (x) (21)

In equations (20) and (21), tensors E and G depend on proper averaging of microscale quan-
tities only, and can be obtained by solving the corresponding adjoint problems [123].

4.2.3 Multiscale model of circulation using lumped elements

If a given amount of nanoparticles is injected in the systemic circulation, the concentration
of nanoparticles in the circulatory system up to the target organ is dictated by the transport
properties of the flow in the vessels. The available literature in this field is large. For example,
Formaggia et al [58] studied how to couple three dimensional, one dimensional and zero-
dimensional models of different vascular districts, using a geometrical multiscale model. An
application of this approach was presented by Malossi et al [100], where the fluid structure
model in a three-dimensional aorta is coupled with six one-dimensional elements representing
the surrounding vessels. A comprehensive multiscale model of the drug pharmacodynamics
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from organ to cells has been presented by Tang et al [143]. The drug concentration Ci(t) in i-th
organ and CB(t) in the blood can be obtained by solving the coupled differential equations:

dCi
dt

= −kiBCi + kBiCB − ki,lossCi (22)

dCB
dt

= −

(
n∑
i=1

kBi

)
CB +

(
n∑
i=1

kiB

)
Ci − kB,lossCB (23)

where kiB is the transfer coefficient from i-th organ to blood, kBi the transfer coefficient
from blood to i-th organ, ki,loss the rate of elimination in i-th organ and kB,loss the rate of
elimination in blood. The initial concentration at the i-th organ is assumed null, Ci(0) = 0;
whereas the initial condition for blood drug concentration CB(0) is imposed according to the
subministration dose and method.

4.2.4 Nanoparticle transport and diffusion

Solving for the velocity fields in Equations (17) and (18), the transport properties in the
intravascular space (ii) can be modelled using a reaction-advection-diffusion differential equa-
tion, derived from the classical colloid filtration theory. If the number of nanoparticles is
sufficiently large that a concentration field can be defined, it obeys the equation:

∂CE
∂t

+∇ · (uECE) = ∇ · [D∇CE ]− kfCE (24)

where CE is the molar concentration of the particles in the extravascular domain, D the
diffusion coefficient, kf is the absorption rate coefficient of the particles, e.g. by the target
cellular matter, which are functions of the particles properties (e.g. size, shape, electric
conductivity), of the local velocity and of the porous structure. Two conditions are to be
enforced at the interface ΓFE ; some examples [81, 134] are e.g.

CE = Ci (25)

(CEuE −D∇CE) · n = r (CE − Ci) (26)

βCE = Ci (27)

Equation (25) imposes the continuity of the local concentration across the interface; equation
(26) assumes that the concentration jump depends on the permeability of the wall (i.e. mem-
brane law); and in equation (27) the concentration depends on the solubility of nanoparticle
in domain under investigation, where Ci is the local concentration of the nanoparticles in the
i-th organ from equations (22) and (23), r is the permeability of the interface with respect to
the nanoparticle typology and β is the interface solubility of the nanoparticle typology.

In order to take into account for the transport properties at cellular scale, the material
parameters D and kf can be computed using analytical correlations or mathematical models
based on the cellular scale (iii). The diffusion coefficient D can be calculated in one of the
forms suggested for intercellular, porous domains in biomaterials [59, 69] , such as:

D = D0
kBT

6πµa

L (λ)

Fτ (λ)
(28)
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where D0 is the diffusion coefficient of the nanoparticle in an unbounded fluid domain, kB
the Boltzmann’s constant, T the absolute temperature, F > 1 a shape factor, L (λ) a factor
related to the steric reduction of diffusivity, τ (λ) the tortuosity, λ = a rp where a is the
particle radius and rp the effective pore radius. In order to define kf , Su et al [140] proposed
a direct micro - macro approach, based on the Brownian motion of a nanoparticle in a fluid.
Accordingly, the random forces R(t) and torques T(t), acting on a nanometric particle of
general shape, have to be consistent with the fluctuation-dissipation theorem, reading [109]:

〈Ri(t)〉 = 0, 〈Ti(t)〉 = 0 (29)〈
Ri(t)Rj(t

′)
〉

= 2kBTβtδijδ(t− t′)I,
〈
Ti(t)Tj(t

′)
〉

= 2kBTβrδijδ(t− t′)I (30)

where δij is the Kronecker delta, δ(t − t′) is the Dirac delta function, βt and βr are the
translational and rotational friction coefficients of nanoparticles, respectively, depending on
the particles shape [132]. The motion of the particle flow and the colloidal filtration in porous
media can be typically modelled by using the Happel’s sphere-in-cell model [74], where a
spherical particle flows within a porous structure composed by spherical cells; such a theory
holds under the hypotheses of particles much smaller than the chemically inert cells, and a
dilute, laminar flow. Neglecting their mutual interactions, the nanoparticles follow a Brownian
motion and they are subjected to van der Waals attractive force, electrostatic double layer
force, hydrodynamic drag force, lift force, buoyancy force, Basset force, and Magnus force, if
they are nearby the cell surface [112]. In case of nanometrical particles, inertial forces can
be neglected and the trajectory of the j-th nanoparticle can be modelled by the stochastic
Langevin equation:

drj =

(
D

kBT

∑
k

Fj
k + uE

)
∆t+ (∆r)Bj (31)

where rj is the displacement vector,
∑

k Fj is the summation of the forces acting on the j-th

nanoparticle and (∆r)Bj is the Brownian displacement. A model composed by a large number
of nanoparticles and a solid phase composed by a single sphere was considered by Su et al [140]
and a trajectory can be computed for each nanoparticle by integrating equation (31) using
the time integration interval ∆t. Accordingly, the parameter kf is calculated by computing
the number of nanoparticles that have a trajectory falling on the sphere.

Finally, the investigation of transport properties can be moved at the subcellular level (iv)
where a complex interplay between extracellular environment and cellular functions occurs
[49], it is possible to investigate the relation between the local concentration of drugs or growth
factors and the number of receptors on the cell membrane for evaluating the characteristics
of cell proliferation[51]. Similarly, a discrete lattice MCM has been proposed by Jiang et al
[84] to determine the rule of cell duplication in function of the local concentrations of the
available chemicals. The importance of size and shape effects in regulating the distribution of
injected nanoparticles among the different districts has been experimentally pointed out by
Decuzzi et al [43]. The theory proposed by Decuzzi et al [41, 42] can be used to study the
specific interactions between a cell and a nanoparticle in order to evaluate the dynamics of
the uptaking process, depending on the particle volume and its aspect ratio. In these works,
moving from the theory developed by Freund and Lin [63] to determine the adhesion of a cell
over an infinite plane substrate, the authors evaluated the cell wrapping around a cylindrical
particle as a function of the binding energy factor, the molecular bond surface density, the
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density of the receptor molecules and the mobility of receptors over the membrane, for different
geometries.

5 Towards bridging scales: limitations and future perspectives

In this work, we have shown how mathematics can assist nanomedicine by modelling the
mechanical behaviour of biological systems, considering both the single length- and time-scales
of investigation and the possible functional connections among them. Although clinicians are
very interested in the advantages apparent in using models, their impact in nanomedicine is
far to be of current use for real applications in diagnosis and therapeutics: indeed, the state-
of-the art in multiscale models of biological systems still presents serious limitations and a
number of challenges must be faced for obtaining more effective approaches in future.

A major difficulty that occurs in developing a reliable model at a particular scale is how to
take into account the sensitivity of the biological systems on the great number of biochemical
factors and signals that are continuously exchanged, while preserving the apparent robustness
with respect to certain perturbations in the environment and components [17]. Multiscale
approaches aim at deriving the governing parameters at a particular scale by developing larger
or smaller scale models, so that the system behaviour strongly depends on the interconnection
rules between the scales. Consequently, there exists a fundamental trade-off between the
accuracy of the biological system description and the insight that the model is able to provide.
This is a particularly harsh limitation in nanomedicine, where the transfer of knowledge
from the nanometric scale to the tissue level is of utmost importance for delivering effective
therapeutic actions in clinical practice [161]. Indeed, we focused on the nanoparticle delivery
in porous systems to show how multiscale mathematical models can be employed to provide
a more accurate description of the microscopic processes in a biological system. Nevertheless,
the achieved results can be just considered as a starting point, and the improvement of
multiscale techniques appears as one of the most challenging research fields in the next future
[18]

We share with Ferrari [55] the vision that mathematical modelling in nanomedicine will
serve as a compass for guiding the clinicians through the unbearable complexity of the nano-
metric systems, providing tools for identifying the key mechanisms of a given phenomenon
and guiding the technological innovation towards conquering bottlenecks in the fight against
disease. Although much effort is directed towards achieving a greater accuracy in bridging
scales, this should be accompanied by a deeper understanding of the underlying phenomena
at the meso- and micro-scales, where the complexity of biological systems reaches the highest
level. The development of novel experimental techniques will provide an enormous quantity of
new data at smaller and smaller scales of investigation, which the modeller should accurately
analyse for determining the level of approximation at which the nanomedical phenomenon
must be described. This step becomes fundamental in the absence of any a-priori knowledge
of the systems properties, and it requires the development of an interactive, interdisciplinary
research where the model is informed by extant data and continuously revised by new exper-
imental information [67].

If most of the current approaches test the appropriateness of the model with respect to
the observable system features which it is able to reproduce, much work must be done to test
the robustness and reliability. Having this goal in mind, there is the stringent necessity to
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move from deterministic models, where the dynamics of the whole system is insensitive to
small fluctuations of the individual biological events, to a probabilistic approach, which takes
into account the intrinsic uncertainty and variability of the biological phenomena. This work
highlights how this mandatory request in multiscale approaches reflects not only the need to
model the single scales but also the connection mechanisms among them.

In order to be predictive, the modelling approach should be tested through a multi-step
process including:

• validation, i.e. investigation of the accuracy with which a model is able to reproduce
particular physical events of interest,

• calibration, i.e. determination of the model parameters for the specific physical envi-
ronment in which such events take place, and

• uncertainty quantification, i.e. developing measures of the uncertainty in predicted
particular quantities of interest. [75].

In practice, after that validation and calibration are performed using different solution do-
mains and boundary/initial conditions, generally in a hierarchy of descending complexity, the
propagation of uncertainty must be traced in every step of the processes and ultimately quan-
tified for the variables of interest [118]. In the field of nanomedicine, all these concepts are
crucial: the extent of new biological data forces the existent models to be revalued or devel-
oped again, the variability of the biological system’s responses enlarges the confidence under
which the models hold, and the uncertainty quantification checks the model’s predictivity.

In conclusion, we are convinced that taking up these challenges will significantly help the
nanomedical research in proposing more accurate, controllable and reliable clinical approaches
to achieve a greater level of medical benefit. The integration of applied mathematics, statis-
tics, biology and computer science has the potential to drive progress towards the creation of
fit-for-purpose and responsive multiscale modelling and simulation, with the ultimate goal to
lead to quantitative predictions to be used in clinical practice [151]. Increasing the modelling
complexity of a biological system is an unavoidable but necessary task to deliver minimally
invasive, patient-specific therapeutic options. This is a tremendously ambitious but certainly
not an unachievable goal.
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