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Abstract

We assess the impact of space-time mesh adaptivity on the modeling of solute

transport in porous media. This approach allows an automatic selection of both

the spatial mesh and the time step on the basis of a suitable recovery-based error

estimator. In particular, we deal with an anisotropic control of the spatial mesh.

The solver coupled with the adaptive module deals with an advection-dispersion

equation to model the transport of dissolved species, which are assumed to be

convected by a Darcy flow field. The whole solution-adaptation procedure is as-

sessed through two-dimensional numerical tests. A numerical convergence anal-

ysis of the spatial mesh adaptivity is first performed by considering a test-case

with analytical solution. Then, we validate the space-time adaptive procedure by

reproducing a set of experimental observations associated with solute transport in

a homogeneous sand pack. The accuracy and the efficiency of the methodology

are discussed and numerical results are compared with those associated with fixed

uniform space-time discretizations. This assessment shows that the proposed ap-

proach is robust and reliable. In particular, it allows us to obtain a significant

improvement of the simulation quality of the early solute arrivals times at the out-

let of the medium.

∗This work has been supported by the Project MIUR ”Innovative methods for water resources under

hydro-climatic uncertainty scenarios”, PRIN 2010/2011
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1 Introduction

A wide set of physical processes involves transport of solutes in porous media. These

include contamination of groundwater by inorganic and organic chemicals, petroleum

generation and migration, reactive processes which can modify the properties of soil

and rock formations. Several modeling techniques and analytical solutions are proposed

in the literature, while a variety of algorithms and software packages have been devel-

oped for the numerical simulation of solute transport in the subsurface (see, e.g., [52, 3,

20]). Transport of solutes in porous media is typically modeled through an advection-

dispersion equation, where the dispersive coefficient embeds the effects of molecular

diffusion and hydrodynamic dispersion. The advective term results from a velocity

field, which is typically assumed to obey Darcy’s law.

Different examples of mesh adaptivity applied to fluid flow and solute transport

in homogeneous and heterogeneous porous media are available in the literature (see,

e.g., the review in [34]). In the context of flow simulation in heterogeneous media,

the advantages resulting from an a priori refinement of an otherwise static mesh have

been quantified in field scale flow simulation [36] as well as in transport problems [23].

In [30], a moving mesh algorithm for the modeling of a three-dimensional flow in the

subsurface is proposed. A two-dimensional technique based on local refinement of

hierarchical meshes is presented in [9]. The mesh adaptivity is here driven by an a

posteriori error estimator for the energy norm. An example of anisotropic adaptivity

is provided in [51], where a dynamic mesh adaptation for a reactive transport problem

is proposed. The directional features of the solution are taken into account via local

refinement/coarsening error indicators. In particular, the authors deal with structured

and rectangular grids in a hierarchical framework.

Time step adaptivity has also been applied to the error control in the context of transient

transport phenomena in porous media. These include density driven flows (e.g., [55, 54,

16]), flow in unsaturated media (e.g., [29]) and reactive transport processes [49].

In this contribution, we aim at combining mesh with time step adaptivity for model-

ing solute transport in porous media. To the best of our knowledge, this represents a first

attempt in this applicative context. To maximize the advantages deriving from adapted

meshes, we resort to an anisotropic mesh adaptivity (see, e.g., [12, 26, 45]). Size, ori-

entation and shape of the elements are optimized to match the directional features of the

problem at hand. We base our work on the methodology used in [47] for simulating un-

steady shallow water problems. Here, the adaptive procedure relies on a recovery-based

a posteriori estimator for the global (i.e., space–time) error. The contribution of space

and time approximation errors is kept separated following, e.g., [11, 37, 38, 50] so that

the space and the time discretization grids are sequentially and independently adapted.

The spatial mesh adaptivity is grounded on the a posteriori error estimate proposed

in [41], which essentially represents the anisotropic counterpart of the error estimator

originally proposed by O.C. Zienkiewicz and J.Z. Zhu in [56]. This yields a compu-

tationally cheap, problem-independent error estimator, which has been already applied

successfully to different two- and three-dimensional problem settings [46, 18, 39]. The

time step adaptivity is derived through the recovery-based technique devised in [47].
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This methodology allows us estimating the time approximation error upon relying on a

higher-order local reconstruction of time derivatives. Finally, this paper is enriched by

comparing the results provided by the proposed numerical approach with actual exper-

imental data similar to those presented in [32]. This is a key contribution of this paper,

and allows us discussing the impact of space-time adaptive simulation methodologies

on the interpretation of experiments.

The paper is organized as follows. Section 2 introduces the flow and solute transport

equations and the adopted finite-element discretization. In Section 3, we provide the

reference anisotropic setting and define the recovery-based space-time error estimator.

Section 4 provides the procedures adopted to predict the new space-time adapted mesh

together with the coupling strategy used to combine the solver in Sect. 2.1 with the

whole adaptive procedure. Finally, in Sect. 5 we deal with the numerical validation, by

considering first a benchmark analytical test case and then by performing a comparison

with the experimental results. A discussion with concluding remarks ends the paper.

2 Solute Transport Modeling

Solute transport in porous media is typically described through a standard advection-

dispersion equation (ADE). While the transport phenomenon is intrinsically three-di-

mensional, we assume here that the variation of solute concentration along the vertical

direction may be neglected. This approximation is typically acceptable in the context of

the laboratory settings that we consider in this work and allows us casting the transport

equation into a two-dimensional (planar) framework [3].

Let Ω ⊂ R
2 be a bounded polygonal domain with boundary ∂Ω, and [0,T ] a time win-

dow of interest. The ADE reads

∂C

∂ t
+∇ · (⃗vC)−∇ ·

(
D⃗∇C

)
= 0 in Ω× (0,T ], (1)

where C = C (⃗x, t)[mol/m3] is the (unknown) vertically averaged solute concentration

at location x and at time t, v⃗ = (v1,v2)
T [m/s] is the fluid velocity and D = {Di j} is

the symmetric positive definite dispersion tensor. Following [3], this tensor is typically

defined as

Di j = (αT |⃗v|+Dm)δi j +(αL −αT )
viv j

∥⃗v∥2

with i, j = 1,2 , (2)

where αT ,αL[m] are the transverse and the longitudinal dispersivity, respectively, δi j

is Kronecker’s delta symbol, Dm[m2/s] is the molecular diffusion and ∥w∥2 denotes

the standard Euclidean norm of a generic vector w ∈ R
2. Equation (1) is completed

with a suitable set of initial and boundary conditions which, in general, coincides with

relations as 



C (⃗x,0) =C0 (⃗x) for x⃗ ∈ Ω,
C (⃗x, t) = f1 (⃗x, t) for x⃗ ∈ Γ1, t ∈ (0,T ],

−
(

D⃗∇C
)
· n⃗ = f2 (⃗x, t) for x⃗ ∈ Γ2, t ∈ (0,T ],(

v⃗C− D⃗∇C
)
· n⃗ = f3 (⃗x, t) for x⃗ ∈ Γ3, t ∈ (0,T ],

(3)
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where Γ1,Γ2 and Γ3, with ∪3
i=1Γi = ∂Ω,

◦
Γi ∩

◦
Γ j= /0, for i, j = 1,2,3 and i ̸= j, represent

a partition of the boundary ∂Ω associated with Dirichlet, Neumann and Robin boundary

conditions, respectively, C0 is the initial value of the solute concentration, fi, with i =
1,2,3, are the boundary data, and n⃗ is the unit outward normal vector to ∂Ω.

The velocity field v in (1) is typically obtained through the numerical approximation of

the following equations





v⃗ =− k

µφ

(
∇p+ρ g⃗k

)
for x⃗ ∈ Ω,

∇ · v⃗ = 0 for x⃗ ∈ Ω,
v⃗ · n⃗ = ψ for x⃗ ∈ ∂Ω,

(4)

where p[Pa] is the pressure, g[m/s2] is the gravity, µ > 0[Pa·s] and ρ > 0[Kg/m3] are

the fluid viscosity and density, respectively, k > 0[m2] is the porous medium perme-

ability, 0 < φ < 1 is the porosity, ψ is a flux imposed on the domain boundary and

k denotes the unit vector aligned with the vertical direction. In particular, we assume

µ , ρ , k, φ real constants. Equation (4)1 coincides with Darcy’s law coupled with the

continuity equation (4)2, while equation (4)3 models an imposed flux. Notice that, via

the divergence theorem, we obtain
∫

∂Ω ψ ds = 0. Since equations (4) are steady, we are

assuming to deal with a time independent field v⃗ in (1).

2.1 The Finite Element Discretization

In this section, we provide the finite element formulation used to discretize problem

(1)-(4). We first introduce the discretization of the flow problem (4) by resorting to a

mixed two-field formulation (see, e.g., [35, 44, 15]). For this purpose, we consider the

following function spaces

V = H (div,Ω) =
{

v⃗ ∈ [L2 (Ω)]2 : ∇ · v⃗ ∈ L2 (Ω) , trace(⃗v · n⃗) = ψ ∈ H−1/2(∂Ω)
}
,

W = H0 (div,Ω) =
{

w⃗ ∈ [L2 (Ω)]2 : ∇ · w⃗ ∈ L2 (Ω) , trace(w⃗ · n⃗) = 0 on ∂Ω
}
,

P = L2
0 (Ω) =

{
p ∈ L2 (Ω) :

∫

Ω
pdΩ = 0

}
,

(5)

where trace(·) denotes the standard trace operator. The demand on the average of p in

P is due to the fact that the pressure field in (4) is involved in a gradient form. As a

consequence, to guarantee the uniqueness of p, we have to constrain it with a condition.

In practice, we specify the value of p at a certain point in Ω instead of implementing

condition
∫

Ω pdΩ = 0. For all the details concerning the spaces in (5), we refer to [6].

Thus, for given values of the physical parameters µ , k, φ , ρ and ψ , the weak formulation

of (4) reads: find v⃗ ∈V and p ∈ P such that, for any w⃗ ∈W and q ∈ P,

∫

Ω

(
µφ

k
v⃗ · w⃗− p∇ · w⃗+∇ · v⃗q

)
dΩ =−

∫

Ω

(
ρ g⃗k · w⃗

)
dΩ. (6)

For sufficiently regular data, the weak formulation (6) is known to have a unique so-

lution. To discretize problem (6), we introduce a conformal partition Th = {K} of the
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domain Ω into triangles K of diameter hK [13]. Then, we define the spaces

Vh =
{

v⃗h ∈ [L2 (Ω)]2 : v⃗h

∣∣
K
∈ RT0 (K) ,∀K ∈ Th, trace(⃗vh · n⃗) = ψh

}
,

Wh =
{

w⃗h ∈ [L2 (Ω)]2 : w⃗h

∣∣
K
∈ RT0 (K) ,∀K ∈ Th, trace(w⃗h · n⃗) = 0

}
,

where RT0 denotes the space of the zero-order Raviart–Thomas finite elements [6],

while ψh is a piecewise constant approximation of the trace ψ . The space Vh is em-

ployed to discretize the velocity field, while Wh is used to discretize the test functions.

This choice leads us to select the space

Ph =
{

ph ∈ P : ph

∣∣
K
∈ P0(K),∀K ∈ Th

}
,

for the pressure, P0 being the set of the polynomials of degree zero. Thus, the RT0 −P0

discretization of problem (6) reads: find v⃗h ∈Vh and ph ∈ Ph such that, for any w⃗h ∈Wh

and qh ∈ Ph,

∑
K∈Th

{∫

K

(
µφ

k
v⃗h · w⃗h − ph∇ · w⃗h +∇ · v⃗hqh

)
dK

}
= ∑

K∈Th

{
−

∫

K

(
ρ g⃗k · w⃗h

)
dK

}
.

(7)

Notice that, the combination RT0 −P0 of shape functions for the velocity and pressure

does satisfy the Babuška-Brezzi stability condition. Moreover, since we assume to deal

with a steady velocity field, we solve problem (7) only once, for a prescribed set of data

and before dealing with ADE (1).

The discretization of the ADE moves from the weak formulation of equation (1): for

any t ∈ (0,T ], find C (t) ∈ Z such that, for any z ∈ Z,

∫

Ω

(
∂C(t)

∂ t
z+

(
D⃗∇C(t)− v⃗C(t)

)
·∇z

)
dΩ = 0, (8)

where Z coincides with a subspace of the Sobolev space H1(Ω), suitably modified to

satisfy the essential boundary conditions assigned on ∂Ω. On the other hand, the impo-

sition of natural boundary conditions leads to modify accordingly the right-hand side in

(8) by introducing suitable integral boundary terms.

The spatial discretization of (8) is obtained via a streamline upwind technique (see,

e.g., [7]) to damp the spurious oscillations yielded by the standard Galerkin finite el-

ement approximation. Let Zh =
{

zh ∈C0(Ω) : zh

∣∣
K
∈ P

1 (K) ,∀K ∈ Th

}
∩ Z be the

space of the affine finite elements associated with the partition Th. Thus, the streamline

upwind finite element discretization of (8) is: for any t ∈ (0,T ], find Ch (t) ∈ Zh such

that, for any zh ∈ Zh,

∑
K∈Th

{ ∫

K

(∂Ch(t)

∂ t
zh +

(
D⃗h∇Ch(t)− v⃗hCh(t)

)
·∇zh

)
dK

+QK

∫

K
(⃗vh ·∇Ch(t)) (⃗vh ·∇zh) dK

}
= 0,

(9)

where QK = δK/ |⃗vh| represents the stabilization coefficient associated with element

K, δK being a suitable coefficient proportional to the element dimension (we refer to
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Sect. 3.1 for an explicit expression of δK). Notice that the dispersion tensor D⃗ and

the advective field v⃗ in (8) are here replaced by the discrete counterparts D⃗h and v⃗h,

respectively. In particular, the discrete tensor D⃗h is computed via (2) after substituting

v⃗ with v⃗h. Moreover, the meshes employed to discretize (6) and (9) may differ. In such

a case, v⃗h will be projected on the P1 degrees of freedom.

Finally, the full discretization of problem (8) is obtained by discretizing the time

dependence in (9) via the standard θ -method. For this purpose, we introduce a partition

of the time window [0,T] by fixing the time levels
{

t0, . . . , tn
}

, with t0 ≡ 0 and tn ≡ T ,

which identify the set {Ik}n−1
k=0 of the time intervals Ik of width ∆tk = tk+1 − tk, for

k = 0, . . . ,n− 1. To guarantee the unconditionally absolute stability of the θ -method,

we set θ equal to 2/3. This choice relieves us from any constraint in the choice of

the time step in order to avoid the occurrence of spurious oscillations in the discrete

solution. This is a crucial issue in view of the time adaptivity procedure in Sect. 4.2.

3 A Space-Time Recovery-Based Error Estimator

In this section, we provide the theoretical tools used to drive the space-time adaptive

procedure. In particular, after introducing the framework used to settle the anisotropic

mesh adaptivity, we furnish the a posteriori estimators for the control of the space and

of the time discretization errors.

3.1 The Anisotropic Setting

Following the setting proposed in [21, 22], the anisotropic information is derived by

introducing the standard invertible affine map TK : K̂ → K which transforms the equi-

lateral triangle K̂ with vertices (−
√

3/2,−1/2), (
√

3/2,−1/2), (0,1) into the generic

triangle K ∈ Th. The triangle K̂ is inscribed in the unit circle centered at (0,0). The

map TK changes this circle into an ellipse circumscribing K, as shown in Fig. 1. In

particular, we have

x⃗ = TK

(
̂⃗x
)
= MK

̂⃗x+ t⃗K ∀⃗x = (x1,x2)
T ∈ K,

with ̂⃗x = (x̂1, x̂2)
T ∈ K̂, MK ∈R

2×2 the Jacobian associated with the map TK and t⃗K ∈R
2

a shift vector. We exploit the spectral properties of MK to describe the anisotropic

features of the element K. To do this, first we introduce the polar decomposition MK =
BKZK of MK , with BK ∈ R

2×2 a symmetric positive definite matrix and ZK ∈ R
2×2 an

orthogonal matrix. Then, we consider the spectral decomposition BK = RT
KΛKRK of

BK , where RT
K = [⃗r1,K ,⃗r2,K ] ∈ R

2×2 is the matrix of the right eigenvectors of BK and

ΛK = diag(λ1,K ,λ2,K) is the diagonal matrix of the corresponding eigenvalues, where

we assume λ1,K ≥ λ2,K .

Thus, shape, size and orientation of K are fully described by the quantities r⃗i,K and λi,K

for i = 1,2. In particular, r⃗1,K and r⃗2,K identify the directions of the two semi-axes of

the ellipse circumscribing K, while λ1,K and λ2,K measure the length of these semi-axes
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Figure 1: Geometric interpretation of the map TK

(see Fig. 1). The aspect ratio sK = λ1,K/λ2,K ≥ 1 quantifies the deformation of triangle

K. In particular, if K coincides with an equilateral triangle (the isotropic case), sK = 1

while sK increases as the shape of K stretches.

Now, we provide the anisotropic interpolation error estimate that inspired the esti-

mator introduced in Sect. 3.2.1 for the spatial discretization error. Let I1
h be the Clément

quasi-interpolant [14] defined, in the case of linear finite elements, by

I1
h (u)(x) = ∑

N j∈N

Pju(N j)ϕ j(x) ∀u ∈ L2(Ω),

where N is the set of the mesh vertices except the ones belonging to the Dirichlet

portion Γ1, ϕ j is the Lagrangian basis function associated with the node N j, and where

Pju denotes the affine function associated with the patch ∆ j of the elements sharing

node N j defined by the relations

∫

∆ j

(
Pju−u

)
ϑ d∆ j = 0 with ϑ = 1,x1,x2.

The local feature of the employed error estimator leads us to introduce the restriction I1
K

of I1
h to K, such that I1

K(u
∣∣
K
) = I1

h (u)
∣∣
K

for any u ∈ L2(Ω) and for any K ∈ Th. Moving

from [21], we can state the following result

Lemma 3.1 Let ∆K = {T ∈ Th : T ∩K ̸= /0} be the patch of elements sharing at least

a vertex with K, ∆
K̂
= T−1

K (∆K) be the reference patch obtained by mapping back the

whole ∆K via the map TK and let u ∈ H1(Ω). Then, if card(∆K)≤ M and diam(∆
K̂
)≤

N∆, there exists a constant C =C(M ,N∆) such that

∥u− I1
K(u)∥L2(K) ≤C

[ 2

∑
i=1

λ 2
i,K

(
rT

i,KGK(u)ri,K

)]1/2

, (10)

where GK(u) ∈ R
2×2 is the symmetric positive semi-definite matrix given by

GK(u) = ∑
T∈∆K




∫

T

( ∂u

∂x1

)2

dT

∫

T

∂u

∂x1

∂u

∂x2

dT

∫

T

∂u

∂x1

∂u

∂x2

dT

∫

T

( ∂u

∂x2

)2

dT


 . (11)
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We highlight the explicit dependence of estimate (10) on the quantities ri,K and λi,K ,

i= 1,2, which allows us to characterize anisotropically the triangle K, i.e., to fix its size,

shape and orientation. Moreover, the conditions on ∆K and ∆
K̂

just avoid too distorted

patches in the reference framework without introducing any limit on the anisotropic

features of the mesh (we refer to [40] for examples of acceptable and not acceptable

patches). When λ1,K ≃ λ2,K ≃ hK , we recover the standard isotropic result [14]

∥u− I1
K(u)∥L2(K) ≤C hK |u|H1(∆K). (12)

Note that the diameter hK in (12) is replaced by the lenghts λi,K in (10), while the com-

ponents of the H1-seminorm |u|H1(∆K) are projected along the anisotropic directions

ri,K via the terms rT
i,KGK(u)ri,K .

Finally, we exploit the anisotropic spacing to fix the coefficient δK characterizing

the stabilization coefficient QK in (9). Following [40], we set δK = λ2,K/2.

3.2 Recovery-Based Error Estimators

Recovery-based error estimators have been originally proposed by O.C. Zienkiewicz

and J.Z. Zhu in the framework of linear elasticity [56, 57, 58]. The key idea underlying

this class of error estimators is to improve the accuracy of the gradient of a numer-

ical solution through suitable interpolation or averaging techniques, generally known

as gradient recovery procedures. In a displacement-based finite element approach, the

demand for a sharper numerical gradient arises from the necessity to deal with derived

fields (e.g., stresses or strain rates) at least as accurate as the primary ones (e.g., dis-

placements), due to their significant physical meaning in practical applications.

As a byproduct of the gradient recovery procedure, in [58] O.C. Zienkiewicz and

J.Z. Zhu propose an a posteriori error estimator for the H1-seminorm of the discretiza-

tion error, simply defined as the L2-norm of the difference between the recovered and

the numerical gradient. This estimator is usually referred to as recovery-based. Many

good properties characterize the recovery-based error estimators: they depend only on

the adopted discrete space, being completely independent of the considered problem,

of the governing equations and of the other details characterizing the adopted discrete

formulation (e.g., the stabilization scheme); they are robust, easy to implement and

cheap in terms of computational cost, since their definition involves only the numerical

solution and the corresponding gradient. These properties make recovery-based error

estimators a practical tool in view of an adaptive procedure and justify the extensive em-

ployment of these estimators in diverse applicative fields (see, e.g., [5, 33, 8, 43, 28]).

More recently, an anisotropic version of the recovery-based error estimators has been

proposed in [41] and successfully employed in two-dimensional as well as in three-

dimensional settings [18, 39, 47, 46]. This anisotropic generalization allows us to

combine the good properties of a recovery-based estimator with the richness of infor-

mation needed for an anisotropic error analysis.

A theoretical investigation of the recovery-based error estimators is a recurrent

but not yet very well understood issue in the literature, even in the simplest isotropic

case [31, 42, 53, 10].
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Following [47], in this section we resort to a recovery-based error estimator to adapt

both the spatial mesh and the time step. For this purpose, we introduce an estimator ηA
ht

to control the global (i.e., in space and time) discretization error where the space and

time contributions are separate (see also [11, 37, 38, 50]), namely, such that

ηA
ht = ηA

h +ηt , (13)

with ηA
h and ηt the space and time recovery-based error estimator, respectively. In

particular, our interest in anisotropic adapted meshes leads us to identify ηA
h with an

anisotropic error estimator. Estimators ηA
h and ηt are formulated separately in the two

next sections.

3.2.1 The Spatial Error Estimator

Let us consider a generic time-dependent scalar variable z and let zh be the corre-

sponding linear finite element approximation. For any t > 0, we aim at providing an

anisotropic estimate for the H1-seminorm
∣∣ez

h (t)
∣∣2
H1(Ω)

=
∫

Ω |∇z(t)−∇zh (t)|2 dΩ of the

discretization error ez
h(t) = z(t)− zh (t). In an isotropic framework, the idea is to com-

pute ez
h (t) by replacing the (generally) unknown exact gradient ∇z(t) with a suitable

recovered gradient P(∇zh(t)) [56, 57, 58], so that

∣∣ez
h (t)

∣∣2
H1(Ω)

≃
∫

Ω
|P(∇zh(t))−∇zh (t)|2 dΩ =

[
ηZZ(ez

h(t))
]2
. (14)

To provide an anisotropic variant of estimator ηZZ(ez
h(t)), we refer to the anisotropic

interpolation error estimate (10). In practice, by comparing estimates (10) and (12)

we observe that the matrix GK(u) provides the anisotropic counterpart of the standard

isotropic H1-seminorm of u. This equivalence can be exploited for the definition of an

anisotropic recovery-based error estimator, since ηZZ(ez
h(t)) in (14) coincides exactly

with the H1-seminorm of the recovered error E(zh(t)) = P(∇zh(t))−∇zh (t). Thus,

following [41, 18] and moving from definitions (10) and (14) we identify the spatial

recovery-based anisotropic estimator to be replaced in (13) with

[
ηA

h (e
z
h(t))

]2
= ∑

K∈Th

[
ηA

K,h(zh(t))
]2
, (15)

where
[
ηA

K,h(zh(t))
]2

=
1

λ1,Kλ2,K

2

∑
i=1

λ 2
i,K

(
rT

i,KGK(EK(zh(t))ri,K

)
(16)

denotes the local error estimator, with EK(zh(t)) = E(zh(t))
∣∣
K

. The scaling factor

(λ1,Kλ2,K)
−1 ensures the consistency with respect to the isotropic case, i.e., when we

choose λ1,K = λ2,K , we get the isotropic estimator

[
η I

h(e
z
h(t))

]2
= ∑

K∈Th

[
η I

K,h(zh(t))
]2

with
[
η I

K,h(zh(t))
]2

=

∫

∆K

|(EK(zh(t))|2 d∆K .

9



Figure 2: Spatial gradient recovery procedure (left): gradient of the discrete solution

(black) and recovered gradient (grey); time gradient recovery (center): recovered solu-

tion zR (dotted and dashed lines) and linear interpolant of values z
j

h (continuous line);

time derivatives (right): ∂ zR/∂ t (dotted and dashed lines), ∂ zh/∂ t (continuous line)

Finally, the quantity zh involved in (15) strictly depends on the problem at hand and

identifies the physical quantity used to drive the spatial mesh adaptivity. Estimator (15)

may be applied to more general problems involving not only scalar quantities, such as

the elasticity or the Navier-Stokes equations [18].

We detail in the following the adopted gradient recovery procedure. Several recipes

have been provided in the literature to compute the recovered gradient (see, e.g., [57,

48, 10, 33]). Following [41], we resort here to a very simple approach which defines a

patchwise constant recovered gradient. We let

P∆K
(∇zh)(⃗x, t) =

1

|∆K | ∑
T∈∆K

|T |∇zh(t)
∣∣
T

with x⃗ ∈ K, t > 0, (17)

with |ϖ | the measure of the generic set ϖ ⊂ R
2, namely we compute the area-weighted

average over the whole patch ∆K of the gradients of the discrete solution and then we

assign such a value to the single element K (see Fig. 2, left for a sketch of the recov-

ery procedure). Thus, for any element K′ ∈ ∆K with K′ ̸= K, P∆K′ (∇zh) is, in general,

different from P∆K
(∇zh), and it is constant on the patch ∆K′ . In view of a practical

implementation, the time t in (17) coincides with a time level tk of the time partition

{t0, . . . , tn}. The recovery procedure in (17) can be generalized to higher degree polyno-

mials as shown in [41]. Here, to contain the computational costs, we adopt the simplest

choice, i.e., zh coincides with a piecewise linear function.

Despite the heuristic nature of the anisotropic estimator ηA
h (e

z
h(t)), a correspond-

ing theoretical background is furnished in [41], where a patch test on the estimator is

provided and an equivalence relation between the local estimator ηA
K,h(zh(t)) and the

H1-seminorm of the discretization error on the patch ∆K is derived.

Finally, estimator ηA
h (e

z
h(t)) has been successfully extended and assessed in a three-

dimensional setting in [18, 39].
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3.2.2 The Time Error Estimator

The actual goal pursued in our time adaptive procedure is to predict, at the generic

time level tk, the time step ∆tk identifying interval Ik. Following [47], this prediction

is carried out by defining a local time error estimator instead of the global one ηt in

(13). As a consequence, we observe that the number n of time intervals is not known

a priori but it will be fixed by the adaptive procedure itself. As in Sect. 3.2.1, we

consider a generic scalar variable z together with the corresponding linear finite element

approximation zh. Then, in the spirit of a recovery-based error estimator, we move from

the H1-seminorm of the time discretization error on the time interval Ik−1

∣∣ez
h (⃗x)

∣∣2
H1(Ik−1)

=
∫

Ik−1

∣∣∣∣
∂ z (⃗x)

∂ t
− ∂ zh (⃗x)

∂ t

∣∣∣∣
2

dt. (18)

Of course, at the generic time level tk, we know zh at all the previous times t i, with

i = 0, . . . ,k− 1. Now, the idea is to replace the two time derivatives in (18) with two

easily computable quantities. We approximate the derivative of the discrete solution,

∂ zh (⃗x)/∂ t, by replacing zh with the straight line interpolating zh at tk−1 and tk (see Fig.

2, center), so that

∂ zh (⃗x)

∂ t

∣∣∣
Ik−1

≃ zk
h − zk−1

h

∆tk−1
,

with z
j

h = zh(⃗x, t
j) for j = 0, . . . ,n. To replace ∂ z (⃗x)/∂ t, we first substitute z with a suit-

able recovered solution zR and then we compute ∂ z (⃗x)/∂ t as ∂ zR (⃗x)/∂ t. In particular,

we select zR as the parabola interpolating the pairs of values (tk−2,zk−2
h ), (tk−1,zk−1

h ),
(tk,zk

h) (see Fig. 2, center). Notice that this choice leads to a piecewise linear recovered

gradient in contrast to the piecewise constant discrete quantity ∂ zh (⃗x)/∂ t (see Fig. 2,

right), in agreement with a standard recovery-based approach. Thus, the H1-seminorm

in (18) is approximated via the local time recovery-based error estimator ηk−1,t(zh(⃗x))
as

∣∣ez
h (⃗x)

∣∣2
H1(Ik−1)

≃ T̃

∫

Ik−1

∣∣∣∂ zR (⃗x)

∂ t

∣∣∣
Ik−1

− zk
h − zk−1

h

∆tk−1

∣∣∣
2

dt =
[
ηk−1,t(zh(⃗x))

]2
, (19)

with T̃ a suitable time scale factor typical of the problem at hand. Different choices are

possible for T̃ . It may just coincide with the time step ∆tk−1 or it may be related to geo-

metrical and/or physical quantities, e.g., we can choose T̃ = L/w, with L a characteristic

length of the domain Ω and w a representative velocity. In the numerical validation of

Sect. 5, we always choose T̃ = ∆tk−1. Factor T̃ essentially makes the time estimator

dimensionless, i.e., suited to be added to the dimensionless space estimator ηA
h (e

z
h(t))

in view of (13). Estimator ηk−1,t(zh(⃗x)) can be evaluated at each vertex N of the mesh,

i.e., for any x⃗ ≡ N. Nevertheless, we need in practice a unique value for such an esti-

mator on the interval Ik−1. With this aim, we first obtain a unique value on the generic

triangle K ∈ Th simply by considering the mean of the values at the three vertices of K

[
ηk−1,t,K(zh)

]2
=

1

3
∑

N∈K

[
ηk−1,t(zh(N))

]2
.

11



Then, we lump the information on the whole mesh by introducing the further area-

weighted average

[
ηk−1,t(zh)

]2
=

1

∑
K∈Th

|K| ∑
K∈Th

|K|
[
ηk−1,t,K(zh)

]2
. (20)

In [47] we employ a standard sum over the mesh elements to get the value ηk−1,t(zh).
The variant in (20) normalizes the time error estimator with respect to the domain di-

mension. This makes the element time estimators comparable even in the presence of

strongly non-uniform spatial meshes. Finally, in view of the time adaptive procedure in

the next section, we formally introduce the global time error estimator

[
ηt(e

z
h)
]2

=
n

∑
k=1

[
ηk−1,t(zh)

]2
(21)

which can be introduced in (13). Notice that the number n of time subintervals involved

in (21) represents an unknown of the space-time adaptive procedure.

4 The Solution-Adaptation Procedure

We illustrate here how we combine the discretization of ADE (1) with the informa-

tion provided by the error estimators ηA
h (e

z
h(t)) and ηt(e

z
h(⃗x)) to automatically adapt

the spatial mesh Th and the discretization of the time window [0,T ] to model an un-

steady solute transport process. We aim at guaranteeing the total error below a certain

global tolerance τ . Following [38], we split this tolerance by setting a space and a

time tolerance, τh and τt , respectively such that τ = τh + τt . Tolerance τh will drive the

mesh adaptive procedure detailed in Sect. 4.1, while τt will lead us to identify the next

time step via the predictive procedure in Sect. 4.2. The algorithm coupling these two

adaptive procedures with the discrete solver for (1) is then provided in Sect. 4.3.

4.1 Spatial Mesh Adaptivity

We resort to a well-established metric-based adaptive procedure, following the ap-

proach proposed in [22] and successfully employed in a number of works (see, e.g., [38,

41, 46, 18]). In particular, the adapted mesh is built starting from a metric induced by

the error estimator ηA
h (e

z
h(t)) so that the number of mesh elements is minimized and the

tolerance τh is guaranteed on ηA
h (e

z
h(t)) via an error equidistribution criterion.

According to the generic definition, a metric is a symmetric positive definite ten-

sor field M : Ω → R
2×2, such that M (⃗x) = R̃T (⃗x)Λ̃−2(⃗x)R̃(⃗x) for any x⃗ ∈ Ω, with

Λ̃(⃗x) = diag(λ̃1(⃗x), λ̃2(⃗x)) and R̃T (⃗x) = [̃⃗r1(⃗x),˜⃗r2(⃗x)] a positive diagonal and an orthog-

onal tensor, respectively [24]. For an assigned mesh Th, it is a standard practice to

approximate the pointwise tensors Λ̃(⃗x) and R̃(⃗x) via quantities which are piecewise

constant on Th, so that λ̃i(⃗x)
∣∣
K
= λ̃i,K , ˜⃗ri(⃗x)

∣∣
K
= ˜⃗ri,K for any K ∈ Th and for i = 1,2.

12



Now, we briefly explain how to associate a piecewise constant metric Mη with a

background grid T B
h by exploiting the anisotropic spatial error estimator in (15)-(16)

evaluated on T B
h . For the sake of simplicity, we drop the time dependence in (15)-

(16). In particular, we focus on the local estimator ηA
K,h(zh). We properly rewrite it, by

collecting the area information in a unique multiplicative factor, i.e., as

[
ηA

K,h(zh)
]2

= |∆
K̂
|λ1,Kλ2,K

{
sK

(
rT

1,KG∗
K(EK(zh))r1,K

)
+ s−1

K

(
rT

2,KG∗
K(EK(zh))r2,K

)}

(22)

where G∗
K(EK(zh)) = GK(EK(zh))/|∆K |, with |∆K |= |∆

K̂
|λ1,Kλ2,K and ∆

K̂
defined as in

Lemma 3.1. Now, the idea is to apply an error equidistribution criterion to guarantee

that each element K ∈ T B
h provides the same contribution to the global error, i.e., to

ensure that
[
ηA

K,h(zh)
]2

= τ2
loc, where τloc = τh/card(T B

h ) is the local tolerance, with

card(T B
h ) the cardinality of the background grid. At the same time, we aim at min-

imizing the number of mesh elements, which is equivalent to maximizing the area of

each triangle K. Consequently, we minimize the term in brackets in (22), i.e., for each

K ∈ T B
h , we solve the minimization problem

find {sK ,r1,K} : sK

(
rT

1,KG∗
K(EK(zh))r1,K

)
+ s−1

K

(
rT

2,KG∗
K(EK(zh))r2,K is minimum,

constrained by the following requirements sK ≥ 1, ∥r1,K∥2 = ∥r2,K∥2 = 1, r1,K · r2,K =
0. As shown in [42], there exists a unique analytical solution to this problem which

provides the optimal aspect ratio s̃
η

K =
√

γ1,K/γ2,K and the optimal direction r̃
η
1,K = g2,K ,

with γ1,K ≥ γ2,K the eigenvalues of G∗
K(EK(zh)) and g2,K the eigenvector associated with

γ2,K . The metric Mη is then completely identified by deriving two separate optimal

values λ̃ η
1,K , λ̃ η

2,K from s̃
η

K . With this aim, we exploit the error equidistribution to get

λ̃ η
1,K =

√
p s̃

η
K , λ̃ η

2,K =
√

p/s̃
η

K , with

p = λ̃ η
1,K λ̃ η

2,K = τ2
loc

[
|∆

K̂
|(s̃ η

K γ2,K +(s̃ η
K )−1 γ1,K)

]−1

. (23)

To summarize, the metric M η induced by ηA
h (e

z
h(t)) is univocally identified by the

triplets
{

λ̃ η
1,K , λ̃

η
2,K , r̃

η
1,K

}
, with K ∈T B

h . This provides us with an optimal metric, which

minimizes the number of elements, while guaranteeing the desired global accuracy τh

and the equidistribution of the spatial discretization error.

Finally, the new adapted mesh is generated moving from the metric M η and the

background grid T B
h . To this end, we employ the two-dimensional metric-based mesh

generator BAMG which performs a remesh on T B
h , although trying to preserve the

original position of the mesh nodes [27].

The generation of the adapted mesh is constrained by some additional checks. In

particular, we avoid an excessive element clustering, for instance where solution dis-

continuities occur, by setting a minimum value pmin on the product λ̃ η
1,K λ̃ η

2,K , i.e., on

the minimum area allowed for K. In practice, we predict p via (23) and then we set

p = max(p, pmin). We also check the number of the triangles predicted by the metric

M η . We impose that the cardinality of the adapted mesh belongs to a specific interval
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[Nmin,Nmax], to prevent an extreme coarsening or refinement of the mesh elements. In

particular, we predict the number of elements associated with the metric M η ; if this

number is smaller than Nmin or greater than Nmax, we generate a new metric via a

global and uniform scaling of the tensor M η . This check turns out to be crucial espe-

cially in the presence of unsteady phenomena characterized by a strong heterogeneity

of space-time dynamics.

4.2 Time Step Adaptivity

Goal of the time step adaptivity here proposed is to predict, at each time tk, the time

step ∆tk which identifies the next time level tk+1. An error equidistribution criterion

is pursued also in this case. Nevertheless, since the total number of time intervals is

determined only at the end of the adaptive procedure, we fix a local tolerance τ∆t
t to be

associated with each Ik instead of the global tolerance τt as in (13). Following [47], we

rewrite the time error estimator in (20) as

[
ηk−1,t(zh)

]2
=
[
∆tk−1ρk−1,t(zh)

]2
(24)

with [
ρk−1,t(zh)

]2
=

1
[
∆tk−1

]2
∑

K∈T k
h

|K| ∑
K∈T k

h

|K|
[
ηk−1,t,K(zh)

]2

and where T k
h denotes the spatial mesh associated with the time tk. Relation (24) is

now exploited to predict ∆tk. In particular, after imposing ηk−1,t(zh) = τ∆t
t , we solve

(24) with respect to the time step and we obtain

∆tk =
τ∆t

t

ρk−1,t(zh)
. (25)

Finally, we check that the time step predicted in (25) belongs to a suitable range of

variation [∆tmin,∆tmax], fixed a priori according to the temporal scales involved in the

problem at hand. This control improves the global stability and accuracy of the whole

adaptive procedure. Finally, since the time recovery procedure (19) involves the three

times tk, tk−1, tk−2, we are obliged to assign a priori the time steps ∆t0 and ∆t1, which

are both set to ∆tmin in the numerical validation below.

4.3 Coupling Discretization with Adaptivity

We detail here the strategy followed to combine the discretization in Sect. 2.1 with the

space and time adaptive procedures of Sect. 4.1-4.2, in view of a reliable and efficient

modeling of unsteady solute transport processes. For this purpose, we identify the scalar

variable z driving the adaptive procedure with the concentration C.

To start the solution-adaptation procedure, we have to preliminarily assign the initial

datum C0 in (3) as well as the velocity field v⃗, solution to Darcy’s problem (4), on

a sufficiently fine initial grid T 0
h . We focus now on the generic time tk−1, i.e., we
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assume to know the discrete concentration field Ck−1
h =Ch(t

k−1) at time tk−1, the mesh

T
k−1

h and the time step ∆k−1, both predicted at the previous time step. First of all,

we discretize equation (1) on the interval Ik−1 via the stabilized finite element scheme

(9), thus yielding the approximate solution C∗k
h at time tk. This solution is employed

to generate the next adapted mesh, T k
h , following the anisotropic adaptive procedure

detailed in Sect. 4.1, after identifying zh with C∗k
h and T B

h with T
k−1

h . Then, all the

quantities associated with T
k−1

h are projected on the new mesh T k
h . This last projection

leads us to define the actual value, Ck
h, of the concentration field at the time tk. Notice

that, to contain the computational cost characterizing the whole time window, we do

not resort to an iterative procedure to get the adapted mesh T k
h , by demanding, for

instance, a stagnation of the number of mesh elements (see, e.g., [38]). On the contrary,

the mesh identified by the optimal metric in Sect. 4.1 is directly assumed as the mesh

to be associated with time tk. Finally, moving from the approximate solutions Ck
h, Ck−1

h

and Ck−2
h , we predict the next time step ∆tk (i.e., the new time level tk+1) via the time

adaptive procedure in Sect. 4.2, after setting zh =Ch and a local time tolerance τ∆t
t . The

whole procedure is sketched in Fig. 3.

Figure 3: Sketch of the solution-adaptation procedure

Concerning the projection step, following [47], we resort to a standard L2-projection

which exhibits good conservation properties when applied, for instance, to the unsteady

shallow water equations [46]. More sophisticated recipes to deal with such a projection

are available in the literature (see, e.g., [1, 19]).

5 Numerical Results

We assess here the methodology introduced in Sect. 3-4. In particular, we first perform

a quantitative investigation by considering a test case characterized by an analytical

solution. Then, we model a solute transport experiment performed in a homogeneous

sand box. For this test case, a comparison with experimental measurements is provided

as well.
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5.1 Analytical Test Case

We consider a two-dimensional solute transport problem assigned in the semi-infinite

rectangular domain Ω = (0,+∞)× (0,W )[m]. A constant solute concentration Cin = 1

is introduced into the domain at the inlet section Γin corresponding to the segment

{(x1,x2) : x1 = 0m,x2 ∈ [Y1,Y2]m}. A zero-flux boundary condition is imposed on

the remaining part of the left-side boundary as well as on the top and bottom edges.

Then, we assume that a horizontal uniform velocity field v⃗ = (v1,0)
T , with v1 ≥ 0, is

applied to the system, while we choose Dm = 0, αL = 0.1m and αT = 0.05m in (2) and

the initial value C0 = 0. An implicit analytical expression for the concentration field C,

solution to (1), is available in [52] and coincides with

C (x1,x2, t) =
+∞

∑
n=0

LnPn cos(ηx2)
{

exp
[

x1(v1−β )
2D11

]
erfc

[
x1−β t

2
√

D11t

]

+exp
[

x1(v1+β )
2D11

]
erfc

[
x1+β t

2
√

D11t

]}
,

(26)

with

Ln =

{
1

2
if n = 0

1 if n > 0,
Pn =





Y2 −Y1

W
if n = 0

[sin(ηY2)− sin(ηY1)]

nπ
if n > 0,

η = nπ/W, β =
√

v2
1 +4D11 (η2D22),

where erfc is the complementary error function, while D11, D22 denote the diagonal

components of the dispersion tensor D according to (2). In particular, we set Y1 =
0.13m, Y2 = 0.67m, W = 1m and v1 = 10−3m/s. These values, together with the choices

made for αT and αL, are representative of a typical laboratory scale transport setting.

The analytical solution (26) allows us to investigate the convergence properties of

the proposed adaptive procedure. We perform this analysis for a fixed time level t∗ =
150s, when the solute concentration C already exhibits a moderate spread within the

domain as shown in Fig. 4-a). Figure 4-b) shows the corresponding anisotropic adapted

mesh. The anisotropic features of the solution are not so marked. This is confirmed by

the corresponding maximum value of the aspect ratio which is about equal to 8. We

analyze the trend of the H1(Ω)-seminorm of the spatial discretization error eC
h (t

∗) =
C(t∗)−Ch(t

∗) at time t∗. Concerning the evaluation of the exact solution, we truncate

the series (26) at the hundredth term while, to mimic the semi-infinite domain, we

identify Ω with a rectangular domain whose right side is sufficiently far from the left

one so that it is never reached by the phenomenon at hand. Homogeneous Neumann

condition are assigned along this fictitious boundary. In Fig. 4-c) we compare the trend

of the error eC
h (t

∗) as a function of the number of elements. We consider three different

space-time discretization strategies: i) fixed and uniform space-time grids; ii) meshes

anisotropically adapted in space, but fixed and uniform in time; iii) meshes adapted

both in space and time, with an anisotropic adaptivity in space. The slope of the three

curves is comparable and consistent with the expected order of convergence, i.e., −1/2,
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Figure 4: Analytical test case: a) contour plot of the concentration field in (26) for

t∗ = 150s; b) corresponding anisotropic adapted mesh; c) trend of the H1(Ω)-seminorm

of the relative error for different space-time meshes

Table 1: Analytical test case: quantitative information associated with the convergence

analysis
Fixed uniform Space adaptivity Space-time adaptivity

Nel 732 2482 10388 967 2928 8104 627 2829 8081

N∆t
150 150 150 150 150 150 54 36 32

∣∣∣eC
h
(t∗)

∣∣∣
H1

3 ·10−1 1.70 ·10−1 9.7 ·10−2 1.18 ·10−1 5.93 ·10−2 3.47 ·10−2 1.54 ·10−1 5.72 ·10−2 3.78 ·10−2

while it is evident that, for a given number of mesh elements, the error associated with

the fixed space-time mesh is the largest one.

More quantitative information are provided in Table 1. For each type of mesh, we

furnish the mesh cardinality, #Th, the number, N∆t , of time steps used to reach time

t∗ and the H1(Ω)-seminorm of the error eC
h (t

∗). Of course, a different tolerance τh

and different values for Nmin and Nmax drive the mesh adaptive procedure through

the columns of the table. The choice pmin = 10−5 is common to all the simulations.

The time step is set to ∆t = 1s for the fixed uniform and space adaptive simulations

(first two macro-columns in Table 1), while we set ∆tmin = 1s and ∆tmax = 20s for

the space-time adaptive procedure (i.e., in the third macro-column in Table 1). An

error of approximately 10% is obtained with a fixed space-time grid of approximately

10,000 triangles and 150 time intervals. On the other hand, for the same N∆t , we

are able to guarantee a better accuracy (i.e., an error of about 6%) via an anisotropic

adapted mesh consisting of about 3,000 triangles only. When also the time step is also

adapted, we obtain a comparable error by resorting to a similar number of elements

but reducing N∆t by a factor four. A comparison between the second and the third

macro-column shows that for a comparable number of mesh elements, the number of

time intervals predicted by the time adaptive procedure is significantly reduced (i.e., by

a factor comprised between three and five).
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5.2 Solute Transport in a Homogeneous Sand Box

Goal of this section is to compare the results provided by our numerical approach with

experimental data. This provides an important added value to this work. The experi-

ments are performed within a square flow cell with an extension of 0.249× 0.249m2

and a thickness of 1.5cm. The inlet and outlet sections are located near the bottom-left

and the top-right corner, respectively as shown in Fig. 5-a). The width of the inflow

and outflow sections is very small, equal to 3mm. The flow cell is packed with a ho-

mogeneous sand with porosity φ = 0.325 and permeability k = 1.4256 ·10−10m2 while,

since the fluid is simply water, we set the viscosity µ and density ρ to 10−3Pa·s and

1,000Kg/m3, respectively [32]. The solute concentration in the system is zero at the

beginning of the experiment. A solution containing a constant concentration Cin is then

introduced as a step-input at the inlet, while a zero flux condition is imposed on the re-

maining part of ∂Ω. The injection flow rate is constant in time and equal to Qin = 4ml/s.

The available experimental measurements correspond to the time evolution of the av-

erage concentration at the outflow section, i.e., they coincide with the breakthrough

curve

Cout(t) =
1

|Γout |

∫

Γout

C(⃗x, t)dΓ ∀t ∈ [0,T ], (27)

where Γout is the outflow section and |Γout | denotes its length. We consider here data

from two identical experimental tests to increase the robustness of the results with re-

spect to measurement errors.

Figure 5: Experimental flow cell: a) velocity vector field superimposed to the color map

of log10 ∥⃗v∥2; b) pressure contour plot

The velocity field v⃗ is obtained by approximating (4) through the discrete formu-

lation (7) on a fixed uniform unstructured grid of 22,108 elements. Fig. 5 shows the

pressure contour plot in panel b), and the velocity vector field superimposed to the con-

tour plot of the corresponding modulus in logarithmic scale in panel a). A constant

(atmospheric) pressure is imposed at the outlet boundary, while we set v⃗ · n⃗ = Qin/Ain
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Figure 6: Experimental flow cell: solute concentration field a)-c); associated anisotropic

adapted mesh d)-f); details of the adapted mesh g)-i) for t = 10s (left), t = 1,500s

(center), t = 3,000s (right)

at the inlet, Ain being the area of the inflow cross section. The remaining parts of the

boundary of the flow cell are considered as impermeable, i.e., we set v⃗ · n⃗ = 0.

Then, the solute transport is modeled by means of the space-time adaptive procedure

detailed in Sect. 4 within the time window [0,12,000]s. The dispersivities αL and αT

are set to 10−4m and 10−5m, respectively, upon preliminary visual calibration against

experimental data. The effect of molecular diffusion is here embedded in the dispersion

coefficients, i.e., we set Dm = 0. In the following, we describe the process evolution,

we provide a comparison with experimental measurements and, finally, we discuss the

sensitivity of the numerical results to the parameters involved in the space-time adap-

tive technique.

Figure 6-a)-c) shows some snapshots of the concentration evolution. During the first in-

stants the solute spreads radially into the cell, around the inflow section (Fig. 6-a). Then,
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the advective field and the dispersive processes deform and displace the concentration

front towards the center of the cell (Fig. 6-b). At time t ≈ 3,000s, the solute reaches the

outlet boundary following a preferential flow path (Fig. 6-c). For longer times, the so-

lute slowly spreads towards the top-left and bottom-right corners of the cell. At the final

time T = 12,000s, the cell is characterized by a constant concentration equal to one. In

Fig. 6-d)-f) we gather the corresponding anisotropic adapted meshes, while a zoom in

on the boxed areas is provided in the last row of the figure. A good matching between

solution and mesh can be observed. The refinement of the mesh essentially follows the

advancing front, where the gradient variations are significant, while a general coarsen-

ing occurs where the concentration is basically uniform. The anisotropic features of the

adapted mesh become more significant when the front develops and gradually spreads

the cell (see the enlarged views in Fig. 6-h and 6-i). On the contrary, at the initial times

the triangles are clustered around the inlet section but they exhibit a mild anisotropy,

due to extremely reduced size of the concentration front. Thus, the maximum value of

the aspect ratio increases in time, and corresponds to 26.5 to 27.8 until 49.82 for the

meshes displayed in Fig. 6-d), -e), -f), respectively. The maximum value reached by sK

on the whole time window is 407.18. To obtain the results in Fig. 6, we have employed

the following setting for the parameters involved in the space-time adaptive procedure:

concerning the adaptivity in space we choose τh = 0.7, Nmin = 400 and Nmax = 10,000

while the adaptivity in time is performed by assigning the values τ∆t
t = 0.17, ∆tmin = 1s

and ∆tmax = 50s.

The numerical validation demonstrates that the value pmin proportional to the minimum

allowed element area plays a critical role in the adaptive procedure. In principle, the

choice pmin = 10−6m2 should allow to capture all the meaningful details of the process

at hand since the whole flow cell area is equal to 0.062m2. Nevertheless, this value

is still too large to provide an accurate approximation of the solute behaviour at the

outlet and inlet cross sections, which are 3mm wide. This represents a critical issue

for two important reasons: (i) a sharp discretization of the concentration field at the

inlet is crucial to capture the initial times of the solute evolution and, consequently, to

allow the correct development of the phenomenon; (ii) a proper discretization of the

concentration at the outlet is essential to compare the numerical results with the exper-

imental measurements that we have at our disposal, i.e., with the breakthrough curve

(27). To take into account both these demands, we introduce an adaptive choice of

the quantity pmin during the simulation time window, following this two-value strat-

egy: for t < 20s, we set pmin = 10−9m2 to properly model the solution near the inflow

section (see Fig. 6-d and 6-g); in the next phase, we increase pmin to 10−6m2 to save

computational resources (see Fig. 6-e and 6-h); then, as soon as we detect at the outlet

concentration values above a given threshold (set to 10−3 in this application), we set

again pmin = 10−9m2 (see Fig. 6-f and 6-i).

We deal now with the comparison between the numerically computed and exper-

imentally measured breakthrough curves. As for the previous test case, we consider

three different space-time discretization strategies, namely, a fixed uniform space-time

mesh, a mesh anisotropically adapted in space but fixed and uniform in time, a fully

adapted mesh, i.e., adapted both in space and time. The fixed uniform mesh is char-

20



acterized approximatively by 10,000 elements, while the discretization step is ∆t = 1s.

When we adapt the spatial mesh only, we set τh = 0.7 and preserve the constant time

step ∆t = 1[s]. Finally, the fully adaptive procedure is associated with the values

τh = 0.7 and τ∆t
t = 0.14.

Figure 7: Experimental flow cell: a) comparison of experimental measurements with

the numerical breakthrough curves for three different choices of the space-time mesh;

b) enlarged view on the early solute breakthrough in semi-logarithmic scale

Figure 8: Experimental flow cell: a) comparison of experimental measurements with

the numerical breakthrough curves in a semi-logarithmic scale and b) time evolution of

the mesh cardinality for three different choices of the spatial tolerance τh

Figure 7 compares the corresponding results with the experimental measurements.

As shown in Fig. 7-a), the three simulations seem to correctly reproduce the general

trend of the experimental measurements within the considered time window. However,

a detailed inspection of the concentration trend at the initial times shows a significant

difference among the three approximations (see Fig. 7-b, where data are plotted in a

semi-logarithmic scale to emphasize the small values of the concentration character-

izing the early tail of the solute breakthrough curve). Note that accurate modeling of

the early solute arrivals is often crucial, for instance when dealing with risk assessment

analysis in contaminant transport scenarios [2]. The data of the experiment 1 show
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two isolated positive concentration values at t < 3,000s; then, a sudden increase of

the concentration is observed at t ≈ 3,000s. In our analysis we assume that the early

arrival time of the solute can be identified with t ≈ 3,000s, since the earlier values

can be considered as oscillations which typically cannot be rendered by a continuum

scale approximation such as the ADE (1). The solution obtained through a fixed space-

time discretization under-estimates the solute early arrival time of about 400s (i.e., of

about 15% of the experimental value). When the mesh is spatially adapted and the

time step is fixed to ∆t = 1s, the difference between the numerical and the experimental

breakthrough curves significantly reduces. However, this approach is computationally

expensive, since the spatial mesh is adapted at each of the 12,000 time steps. The

space-time adaptivity still provides a sufficiently accurate solution, while containing

the whole computational cost as the total number of time steps reduces to 1,232. To

provide a quantitative assessment of the results, we compute the mean squared error

(MSE) between the computed and the observed breakthrough concentrations depicted

in Figure 7. The MSE is defined as

MSE =

NO

∑
i=1

[Cout,h(ti)−C∗
out(ti)]

2

NO

, (28)

where C∗
out and Cout,h are the experimentally measured and the numerically computed

breakthrough concentrations, respectively, NO is the number of available experimental

observations and ti denotes the time corresponding to the i-th observation. For the

fixed uniform meshes we obtain a MSE of 6.417 ·10−4. The MSE decreases to 2.983 ·
10−4 and 2.811 · 10−4 when resorting to space and to space-time adaptive procedures,

respectively. We observe that, while all three approximation strategies yield acceptable

results in terms of MSE, the adaptive discretization strategies enable us to halve the

MSE with respect to the fixed uniform discretization. Moreover, consistent with results

presented in Section 5.1, we emphasize that the space-time discretization technique

enables us to obtain a slight improvement of the accuracy with respect to the space

adaptive methodology, while significantly reducing the computational cost.

Now, we assess the sensitivity of the numerical results to the tolerances, τh and

τ∆t
t . Figure 8 compares the experimental data with the solutions associated with the

three choices τh = 1, 1.4, 1.8 for τ∆t
t = 0.17. In particular, Fig. 8-a) provides the cor-

responding early breakthrough curves analogously to Fig. 7-b), while Fig. 8-b) shows

the evolution in time of the cardinality of the adapted meshes. The capability of the nu-

merical breakthrough curves to reproduce experimental observations decreases as the

tolerance increases while the trend becomes more and more irregular (see Fig. 8-a). In

particular, the numerical curves locate leftward which means that the solute arrival time

is underestimated by the numerical procedure. This can be justified by the considerable

difference in terms of mesh cardinality among the three simulations, as shown in Fig. 8-

b). For τh = 1 the number of elements increases for t ∈ [0,2,600]s; then, the maximum

threshold Nmax = 10,000 is reached and maintained for the remaining part of the sim-

ulation time window. The increase in the number of elements is also associated with
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the decrease of the parameter pmin, from 10−6m2 to 10−9m2, as previously discussed.

For τh = 1.4, we get a similar oscillation in the mesh cardinality for t < 2,600s. Nev-

ertheless, in this case, the number of elements smoothly increases up to approximately

8,000 triangles at the end of the simulation and the maximum number Nmax of elements

is never reached. For τh = 1.8, the number of mesh elements is around 1,000 for the

entire simulation time. This significant difference with respect to the number of ele-

ments predicted for τh = 1 is reflected in the computed breakthrough curve (Fig. 8-a).

The strong oscillations exhibited by the numerical solution can be also ascribed to the

reinterpolation step which involves coarse meshes for τh = 1.8. The amplitude of the

oscillations reduces for τh = 1.4 and τh = 1, namely in the presence of finer meshes.

Figure 9: Experimental flow cell: a) comparison of experimental measurements with

the numerical breakthrough curves in a semi-logarithmic scale and b) evolution of the

time step ∆t for three different choices of the local time tolerance τ∆t
t ; c) concentration

fields corresponding to box 1 and d) to box 2

Finally, we perform a sensitivity analysis to the local time tolerance τ∆t
t . Figure 9-

a) provides a comparison among the breakthrough curves and the experimental data for

τh = 0.7 and by choosing τ∆t
t = 0.14,0.17, 0.2. As expected, the accuracy of the numer-

ical solution decreases as the tolerance increases. In Fig. 9-b) we show the evolution of

the time step predicted for the three different choices of τ∆t
t . For τ∆t

t = 0.2, the time step

quickly changes from the initial value ∆tmin to ∆tmax and then it remains constant for

the rest of the simulation. For τ∆t
t = 0.17, the time step initially increases until reach-

ing ∆t ≈ 20s at t ≈ 1,500s. The numerical solution corresponding to this time level is
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shown in Fig. 9-c). In this initial phase the concentration front has a reduced amplitude

and the concentration is equal to zero in a considerable portion of the domain. At the

same time, the concentration gradient at the front decreases due to the effect of disper-

sion. These features justify the trend of the time step observed in Fig. 9-b). As the front

expands, we observe a progressive reduction of the time step,which attains a minimum

value ∆t ≈ 5s at t ≈ 3,000s when the solute reaches the outlet section (see Fig. 9-d),

i.e., when the breakthrough curve starts to sharply increase in time. As time advances,

the concentration field smoothly evolves and, for t > 3,000s, ∆t tends to the maximum

allowed value ∆tmax = 50s. A similar trend can be observed for τ∆t
t = 0.14, even though

the predicted time steps are now, in general, smaller with respect to the ones associ-

ated with τ∆t
t = 0.17. For instance, ∆t reaches the minimum value ∆tmin = 1s around

t ≈ 3,000s for a limited time interval.

6 Discussion and Concluding Remarks

Accurate numerical approximations are required to obtain reliable predictions of solute

transport processes in porous media. In this paper, we detail an adaptive numerical

methodology, where the computational space and time discretizations are automati-

cally selected on the basis of a suitable error control. In particular, we implement an

anisotropic mesh adaptation technique which allows us to optimize the spatial compu-

tational grid according to the directional features of the numerical solution. Both the

adaptive procedures are grounded on recovery-based error estimators, which typically

guarantee robust and computationally cheap error estimates.

A spatial mesh adaptivity significantly increases the accuracy of a finite element

approximation for a fixed number of elements. This has been quantitatively verified

in Sect. 5 by comparing the numerical results with an analytical solution as well as

with experimental measurements. However, the proposed metric-based adaptive proce-

dure may become computationally intensive, especially due to the prediction of the new

metric. As a consequence, we have tried to contain the number of solution-adaptation

iterations throughout each simulation, by combining space with time adaptivity. Re-

sults in Sect. 5 show that coupling mesh with time step adaptivity leads to a degree of

accuracy similar to the one provided by the spatial adaptivity only, but it significantly

reduces the number of demanded time steps.

The comparison against experimental data has allowed to assess the influence of

the space-time discretization strategy on the accuracy of the simulation, quantified in

terms of solute concentration at the outlet section (i.e., the solute breakthrough curve).

In particular, we have focused on the analysis of the early solute arrival times, which

are relevant in practical applications, such as risk assessment in contaminant transport

analysis. It is shown that an adaptive space-time discretization is able to greatly im-

prove the prediction of early solute arrival times with respect to a fixed uniform space-

time discretization, clearly upon setting the same physical parameters in the differential

problems describing flow and solute transport, respectively. This result suggests that

the impact of an adaptive space-time discretization within parameter calibration and
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inverse modeling schemes may be relevant in laboratory and field scale applications.

An ad-hoc tuning of the parameters involved in the solution-adaptation procedure

proved to be a key issue in view of meaningful results. In more detail, we constrain

both the space and time adaptivity via a set of criteria which improve the robustness of

the solution-adaptation approach. We resort to both global and local controls, by fixing

the minimum and maximum number of mesh elements and a minimum value for the

element area. Our results show that these controls have to be tuned according to the

characteristic space-time scales of the problem at hand, as well as to the desired accu-

racy. In particular, a coarse mesh typically yields an oscillating numerical breakthrough

curve, due to successive interpolations between coarse meshes at the outlet section. On

the contrary, when the tolerance and the minimum element area are properly tuned,

these oscillations attain a negligible amplitude (i.e., O(10−2) or smaller).

Future investigations may lead to combine different information within the space-

time adaptive strategy by properly intersecting distinct metrics, as proposed, e.g., in [46].

These metrics may be related to the numerical solution as well as to a target output

of the simulation (e.g., the breakthrough curve), in the spirit of a goal-oriented ap-

proach [17, 4, 25]. Further extensions of this research will involve solute transport

modeling in the presence of both block heterogeneous and random permeability fields,

with a view to field scale applications.
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[2] Andričević, R., Cvetkovic, V.: Evaluation of risk from contaminants migrating

by groundwater, Water Resour. Res. 32 (3), 611-621 (1996)

[3] Bear, J., Cheng, A.H.-D.: Modeling Groundwater Flow and Contaminant Trans-

port. Springer Dordrech (2010)

[4] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error

estimation in finite element methods. Acta Numerica 10,1-102 (2001)

[5] Bouillard, P., Allard, J.-F., Warzée, G.: Superconvergent patch recovery technique

for the finite element method in acoustic. Comm. Numer. Methods Engrg. 12(9),

581-594 (1996)

25



[6] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer New

York (1991)

[7] Brooks, A.N., Hughes, T.J.R.: Streamline upwind/PetrovGalerkin formulations

for convection dominated flows with particular emphasis on the incompressible

NavierStokes equations. Comput. Methods Appl. Mech. Engrg. 32 (13), 199–259

(1982)

[8] Cai, Z., Zhang, S.: Recovery-based error estimators for interface problems:

mixed and nonconforming finite elements. SIAM J. Numer. Anal. 48(1), 30-52

(2010)

[9] Cao, J., Kitanidis, P.K.: Adaptive-grid simulation of groundwater flow in hetero-

geneous aquifers. Adv. Water Resour. 22 (7), 681-696 (1999)

[10] Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori

error control in FEM on unstructured grids. I: low order conforming, noncon-

forming, and mixed FEM, Math. Comp. 71, 945-969 (2001)

[11] Cascón, J.M., Ferragut, L., Asensio, M.I.: Space-time adaptive algorithm for the

mixed parabolic problem. Numer. Math. 103 (3), 367-392 (2006)

[12] Castro-Diaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic un-

structured mesh adaptation for flow simulations. Int. J. Numer. Meth. Fluids 25

(4), 475-491 (1997)

[13] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland

Publishing Co., Amsterdam (1978)

[14] Clément, Ph.: Approximation by finite element functions using local regulariza-

tion. RAIRO Anal. Numér. 2, 77-84 (1975)

[15] Correa, M.R., Loula, A.F.D.: Unconditionally stable mixed finite element meth-

ods for Darcy flow. Comput. Methods Appl. Mech. Engrg. 197 (17), 1525-1540

(2008)

[16] Diersch, H.-J.: Finite element modelling of recirculating density-driven saltwater

intrusion processes in groundwater. Adv. Water Resour. 11 (1), 25-43 (1988)

[17] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive meth-

ods for differential equations. Acta Numerica 4, 105-158 (1995)

[18] Farrell, P.E., Micheletti, S., Perotto, S.: An anisotropic Zienkiewicz-Zhu-type

error estimator for 3D applications. Int. J. Numer. Meth. Eng. 85 (6), 671-692

(2011)

[19] Farrell, P.E., Piggott, M.D., Pain, C.C., Gorman, G.J., Wilson, C.R.: Conservative

interpolation between unstructured meshes via supermesh construction. Comput.

Methods Appl. Mech. Engrg. 198 (33-36), 2632-2642 (2009)

26



[20] Fetter, C.W.: Contaminant Hydrogeology, Waveland Prentice Hall (2008)

[21] Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer.

Math. 89 (4), 641-667 (2001)

[22] Formaggia, L., Perotto, S.: Anisotropic error estimates for elliptic problems. Nu-

mer. Math. 94 (1), 67-92 (2003)

[23] Gedeon, M., Mallants, D.: Sensitivity analysis of a combined groundwater flow

and solute transport model using local-grid refinement: a case study. Math.

Geosci. 44 (7), 881-899 (2012)

[24] George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing: Application

to Finite Elements. Hermes Paris (1998)

[25] Giles, M.B., Suli, E.: Adjoint methods for PDEs: a posteriori error analysis and

postprocessing by duality. Acta Numerica 11, 145-236 (2002)

[26] Gruau, C., Coupez, T.: 3D tetrahedral, unstructured and anisotropic mesh gener-

ation with adaptation to natural and multidomain metric. Comput. Methods Appl.

Mech. Engrg. 194 (48-49), 4951-4976 (2005)

[27] Hecht, F.: New development in FreeFem++. J. Numer. Math. 20 (3-4), 251-265

(2012)

[28] Katragadda, P., Grosse, I.R.: A posteriori error estimation and adaptive mesh

refinement for combined thermal-stress finite element analysis. Computers and

Structures 59 (6), 1149-1163 (1996)

[29] Kavetski, D., Binning, P., Sloan, S.W.: Adaptive backward Euler time stepping

with truncation error control for numerical modelling of unsaturated fluid flow.

Int. J. Numer. Meth. Engng. 53 (6), 1301-1322 (2002)

[30] Knupp, P.: A moving mesh algorithm for 3-D regional groundwater flow with

water table and seepage face. Adv. Water Resour. 19 (2), 83-95 (1996)
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