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Abstract

We analyze the reliability of NASA composite pressure vessels using a new

Bayesian semiparametric model. The dataset consists of lifetimes of pressure ves-

sels, wrapped with a Kevlar fiber, grouped by spool, subject to different stress

levels; 10% of data are right censored. The model we consider is a regression on

the log-scale for the lifetimes, with fixed (stress) and random (spool) effects. The

prior of the spool parameters is nonparametric, namely they are a sample from

a normalized generalized gamma process, which encompasses the well-known

Dirichlet process. The nonparametric prior is assumed to robustify inferences to

mispecification of the parametric prior. Here, this choice of likelihood and prior

yields a new Bayesian model in reliability analysis. Via a Bayesian hierarchical

approach, it is easy to analyze the reliability of the Kevlar fiber by predicting

quantiles of the failure time when a new spool is selected at random from the

population of spools. Moreover, for comparative purposes we review the most in-

teresting frequentist and Bayesian models analyzing this dataset. Our credibility

intervals of the quantiles of interest for a new random spool are narrower than

those derived by previous Bayesian parametric literature. Additionally, the dis-

creteness of the random-effects distribution induces a natural clustering of the

spools into three different groups, which is in accordance with the frequentist

spool rankings.

Keywords: accelerated failure time regression model; Bayesian clustering; Bayesian

nonparametrics; random-effects model; reliability.
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1 Introduction

The main purpose of this work is to analyze the reliability of NASA composite pres-

sure vessels, which are critical components of the Space Shuttle, using a Bayesian

semiparametric methodology. The dataset consists of 108 lifetimes of pressure vessels,

wrapped with a Kevlar yarn, coming from 8 different spools, at different levels of pres-

sure. Eleven lifetimes with the lowest level of pressure are right censored. Here we

propose a new semiparametric Bayesian prior to fit the data, using a generalized linear

model with the batch effect. The dataset have been repeatedly analyzed both from

frequentist and Bayesian perspective. Gerstle and Kunz (1983) fitted six separated

(frequentist) regression models using data from 6 spools only. Glaser (1983) and Crow-

der et al. (1991) fitted accelerated failure time (AFT) models for the failure times using

Weibull distributions with both stress and spool as fixed effects. Feiveson and Kulka-

rni (2000) were the first to emphasize the need of assuming the spool effect as random,

and provided a frequentist estimate of the parameters of the Weibull distribution for

each stress level. Recently Bayesian approaches were proposed to analyze the dataset:

Leon et al. (2007) consider a Bayesian Weibull regression model with the spool random

effect, while Argiento et al. (2010a) propose a semiparametric Bayesian Weibull re-

gression model, where the random spool effect is grouped via a discrete nonparametric

component.

The aim of this paper is twofold. On one hand, we want to predict the reliability

of the Kevlar yarn, using a Bayesian hierarchical approach to the problem. Under

this framework, it will be easy to predict the failure time (or to monitor its quantiles)

when a new spool is selected at random from the population of spools. The model we

consider here is an AFT model for the pressure vessel lifetimes, with covariates given

by the stress (fixed) and the spool (random). The same likelihood has been considered

in Leon et al. (2007), but unlike them, we assume that the spool-effects parameters

are a sample from a nonparametric random distribution. Therefore, as a second aim of

the paper, a comparison between the inferences given by the parametric prior in Leon

et al. (2007) and by our nonparametric prior will be made. Generally, nonparametric

Bayesian models are assumed to avoid critical dependence on parametric assumptions,

to robustify inferences to mispecification of the parametric prior, or to perform sen-

sitivity analysis for parametric models by embedding them in a larger encompassing

nonparametric model. Priors under a nonparametric Bayesian perspective consist in
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probabilities on probability spaces: instead of considering models that can be indexed

by a finite-dimensional parameter, we consider a prior probability for the unknown

population distribution P , which, in the case considered here, represents the probabil-

ity distribution of the spool-effects parameter. For a review of Bayesian nonparametric

inference see Müller and Quintana (2004). In this paper, P is a normalized generalized

gamma (NGG) random measure, indexed by two parameters (σ, κ), controlling the

amount of mass the distribution of P puts on the mean distribution P0. The Dirichlet

process is contained within this family, for σ = 0. Therefore, our model can be consid-

ered as a generalization of the generalized linear mixed model (GLMM) in Kleinman

and Ibrahim (1998), who assume the random-effects parameters to be a sample from a

Dirichlet process. The GLMMs with semiparametric priors are widespread in biosta-

tistical applications, while new in reliability analysis. Observe that, since the random

distribution function we assume selects discrete probabilities, there will be a positive

probability of having coincident values among the sampled (from P ) random-effects

parameters. The number of distinct values among them will represent the number of

effectively distinct groups among the 8 spools.

As far as the comparison to the parametric model is concerned, we have monitored

the first percentile of the failure time distribution at the lowest stress level (23.4MPa)

and the median of the failure time distribution at the (extrapolated) level of stress of

22.5MPa. Those two quantiles provide an insight on the failure behaviour: the first per-

centile at 23.4MPa can be considered as a low risk index, while the median at 22.5MPa

is an an estimate under low loads corresponding to normal operating conditions. Of

course, interval estimates are preferable to point ones, since they provide a degree of

belief in such estimates. We can compute the quantile estimates for both a given and a

new random spools, but, from a practical point of view, we are particularly interested

in the latter, since the Kevlar fiber wrapping the Space Shuttle vessels will come from

a new and unknown spool. We find that credibility intervals of the two quantiles of

interest for a new spool were narrower than the parametric ones. However, they were

sensitive to hyperparameters (σ, κ) of the nonparametric component P . To robustify

inferences with respect to σ and κ, we have assumed a prior distribution on them. In

this case, the credibility intervals of the two quantiles for a new random spool are still

narrower than those under the parametric model. The discreteness of the random-

effects distribution P induces a clustering of the spools into three different groups (the

worst, the average and the best spools), which is coherent with the frequentist spool
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ranking in Crowder et al. (1991). As far as the reliability of the pressure vessels is con-

cerned, we have obtained better interval estimates of the quantiles for a new random

spool than before, but they are still too wide to conclude that the pressure vessels are

fully reliable.

As a final comment we point out that the problem of the reliability of pressure

vessels is still present and relevant nowadays (NASA has recently organized a meeting

on composite pressure vessels). On one hand, the classification of spools we have pro-

vided suggests to investigate more deeply the different physical features of the groups

of spools. On the other hand, our conclusions could be used to elicit an informative

prior for new data, when available.

The setup of the paper is as follows. Section 2 briefly describes the experiment and

the dataset considered. In Section 3 we review the most interesting literature, from a

statistical point of view, of frequentist and Bayesian models analyzing the reliability

of the Kevlar yarn in the dataset. Section 4 describes the semiparametric model, the

nonparametric component of the model, and the quantiles considered in order to make

a comparison between the semiparametric and parametric models. A few details about

the MCMC algorithm for computing the posterior distribution are given in Section 4

itself. Results are presented in Section 5. Conclusions and comments are given in

Section 6.

2 Accelerated life test on composite pressure ves-

sels

In accelerated life tests (ALTs) a mechanical component is subject to high stress (for

instance pressure or temperature) to accelerate its failure time, with the purpose of

extrapolating its lifetime characteristics at a lower stress corresponding to normal use

conditions. Here we analyze an ALT test on NASA composite pressure vessels, which

are critical components of the Space Shuttle. A pressure vessel is a closed container

designed to hold gases or liquids at high pressure. Pressure vessels wrapped with

composite materials have been largely used since they offer considerable weight savings

over steel or titanium alternatives. For instance, the Space-Shuttle has 22 composite

pressure vessels containing Helium or Nitrogen at high pressure, and a mission usually

lasts two weeks at most.
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At the U.S. Department of Energy Lawrence Livermore National Laboratories two

experiments on 220 scaled-down replicates of NASA pressure vessels were done, to

estimate short-term static-burst pression and creep rupture time at given pressure; the

dataset and the description of the experiments are reported in Gerstle and Kunz (1983).

All the pressure vessels were wrapped with a Kevlar yarn and the fiber came from 8

different spools. In the first experiment, 29 vessels were used for the burst rupture

test and pressurized at rate of 23.3 KPa/s. The application we will consider here

is based on the second experiment, i.e. an ALT to estimate creep rupture time. In

particular, 191 vessels were tested at different levels of pressure, 17.2, 23.4, 25.5, 27.6,

29.7 MPa, but 37 of them were discarded during the test because they developed leaks

on the internal aluminum liner, yielding a dataset of 154 lifetimes. All the 46 vessels

at the lowest level of stress and 11 vessels (out of 21) at stress level 23.4MPa were

censored at 41000 hours. Gerstle and Kunz (1983) conclude that the short-term static-

burst behavior of such vessels is quite predictable (the mean estimate is 34.5MPa,

the standard deviation estimate is 1.3MPa). On the other hand, the response of the

composite vessels to sustained pressurization cannot be easily forecast, because there

is a large variability among the failure times and, in fact, several authors proposed

different model to analyze those data; see Section 3.

Gerstle and Kunz (1983) provide a description of the vessels: each one consisted of

a 112mm internal diameter aluminum liner, 1mm thick, overwrapped with 1.1mm of

Kevlar 49 yarn wetted during winding with epoxy. The liner is essentially made from

aluminum hemispheres, electron-beam welded at the equator. Although the liner is

nearly as thick as the composite, it is much weaker and therefore contributes little to

the strength of the vessel. Moreover, the authors provide further information about

the microscopic characteristics of a single fiber and a single yarn of spool 2 and 7,

respectively. For ease of reading, Table 1 reports the results of mechanical tests shown

in Gerstle and Kunz (1983). One of the findings of all the analysis (see next sections)

is that spool 7 has low performance and spool 2 has average behaviour. The bad

performance of spool 7 can be explained by the microscopic characteristics of the yarn;

in fact it has only 127 filaments instead of the nominal 267 and the diameter of the fiber

is 17mm (instead of 11mm). Similarly, we guess that spool 2 has average performance

since its properties are closer to the nominal ones.
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Nominal Spool 2 Spool 7

Fiber strength (GPa) 2.86 3.33 3.31

Yarn failure load (Kg) 7.3 6.6 6.0

Fiber diameter (µm) 11.0 11.5 17.0

Fibers per strand of yarn 267 263 127

Yarn strength (GPa) 2.76 2.59 2.02

Table 1: Mechanical properties of a single fiber and a single yarn of Kevlar.

3 Frequentist and Bayesian approaches to the dataset

Several authors made a statistical analysis of this dataset. Some included the censored

times at 23.4MPa, but nobody included the 46 vessels at lowest level of stress since

they are all censored; spool 7 was discarded sometimes, since it does not respect the

nominal conditions. Here we provide a brief description of the analyses mentioned in

the Introduction.

Gerstle and Kunz (1983), who seem the first ones to consider this dataset, omit all

the censored times. Using a F-test on transformed failure times, they find that there is

variability among the spools; moreover, they conclude that the short-term burst tests

do not correlate with the long term results, since the former data are homogeneous

with respect to the spool, unlike the latter one. Therefore, their findings are that the

short-term results cannot be used to predict long-term lifetime of the pressure vessels.

As mentioned in the Introduction, the authors propose to fit 6×2 separated regression

models for log-failure times (assuming Gaussian distributions for the responses); for

each spool they consider two regression models with the covariate equal to the stress

or to the log of the stress. They conclude that spool 4 is the best and spool 3 is the

worst in terms of point estimate, while spool 6 has the largest variability. Finally,

for each spool, they provide point estimates of the 10−6 percentiles of the failure time

distribution for a new pressure vessel and the pressure value corresponding to a ten

years life with a 0.999999 reliability, concluding that there are guarantees for ten years

life. However, since such small percentiles or longest-life reliability are generally not

robust, we cannot fully rely on their results.

Glaser (1983) considers neither the censored times nor spool 7, and model the failure

times as independent, each marginally Weibull-distributed with parameter (ϑ, λ). By
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a Weibull(ϑ, λ) random variable we mean the variable with survival function

S(v) = exp

{

−

(

v

λ

)ϑ}

, v ≥ 0;

note that ϑ > 0 and λ > 0 represent the shape and the scale parameters, respectively.

The author fits an AFT model with both stress and spool as fixed effects. We can

describe the model equivalently both in multiplicative and additive form:

(1) T = ex′β · V, V ∼ Weibull(ϑ, 1),

or

(2) logT = x′β +
W

ϑ
, W ∼ Gumbel(0, 1),

where

x′β = β0 + β1x+

8
∑

j=1,j 6=7

αjzj,

8
∑

j=1,j 6=7

αj = 0,

ϑ = γ0 + γ1e
2x

and

x = stress level, zj = effect of spool j (binary), j ≥ 1 .

In both specifications we have written the error term as a random variable with a

standard distribution, so that the role of ϑ as a scale parameter in (2) or as a shape

parameter in (1) is evident. The survival function of W is e−ew

, corresponding to

the Gumbel distribution of the smallest extreme, with E(W ) = −γ (minus the Eu-

ler constant) and Var(W ) = π2/6. Then, by maximum likelihood (ML) estimation,

Glaser (1983) provides the point estimates of the 10−3 percentile of the failure time

distribution and the five-year reliability for a new pressure vessel from the worst, mean

and best spools, respectively. The author assumes the best spool in the testing to be

spool 4, since it has the longest lifetimes, the worst to be spool 3 (spool 7 is not consid-

ered there); the mean spool effect is obtained without considering the spool adjustment

term
∑8

j=1,j 6=7 αjzj , i.e. it is represented by β0 + β1x at a given stress level x.

Crowder et al. (1991), who omit the censored times as well, present an analysis of

variance based on the Weibull distribution with ML fitting, similar to Glaser (1983).
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Although they assert that the shape parameter ϑ may be different at each stress level,

they assume it constant, while x′β = β0 + β1 log(x) +
∑8

j=1 αjzj and
∑8

j=1 αj = 0.

They provide point and interval estimates of the first percentile at stress level 23.4MPa

and of the median at the extrapolated stress value of 22.5MPa of the failure times for

the eight spools and for the mean spool at given stress level. Finally, they compare

their results to those of Gerstle and Kunz (1983) and observe that they obtain the

same spool ranking except for two worst spool 3 and 7, which are switched over.

As mentioned before, Feiveson and Kulkarni (2000) emphasize the necessity of treat-

ing the spool effect as random, since it is unknown which spools are used to wrap the

pressure vessels of the Space Shuttle. Each vessel may be wound from one of the known

spools, or from a spool selected at random from the population of spools. Moreover,

they are the first ones who considered the censored times in their analysis, while they

omit spool 7, and assume that the lifetimes are Weibull-distributed. First of all, for

each stress level, they estimate the scale and the shape parameters of the Weibull distri-

butions using a bootstrap method, requiring an estimate of the censoring probability at

each stress level; then, they extrapolate for any stress level. Finally, they estimate the

probability Rm that the system of 22 pressure vessels survives m two-weeks missions,

and the conditional probability pm = Rm/Rm−1 that the system survives m mission

given that it survived m− 1 missions, concluding that there is a considerable amount

of uncertainty in both estimates.

Leon et al. (2007) propose an AFT model as Crowder et al. (1991) using a Bayesian

parametric approach. They consider data from all the 8 spools and also include cen-

sored times for a total of 108 observations. They treat the spool effect as fixed first,

only for comparative purposes, and then as random yielding a GLMM in a Bayesian

framework. Specifically, the authors take α = (α1, . . . , α8) to be conditionally i.i.d.

Gaussian with zero mean and variance σ2, which is given an inverse gamma prior, i.e.

(3) Ti = ex′

i
β · Vi, , i = 1, . . . , n,

with

(4) x′
iβ = β0 + β1 log(xi) +

8
∑

j=1

αjzj,i,

(5) Vi|ϑ
iid
∼ Weibull(ϑ, 1), i = 1, . . . , n,
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and prior

β0 ∼ N(µ0, σ
2
0), β1 ∼ N(µ1, σ

2
1)

α1, . . . , α8|λ
iid
∼ N(0, λ)

λ ∼ InvGamma(
τ1
2
,
τ2
2

)

ϑ ∼ Gamma(a0, b0),

β0, β1, α, ϑ independent.

(6)

Finally, they provide posterior point and interval estimates of the conditional first

percentile at stress level 23.4MPa and of the conditional median at 22.5MPa of the

failure times for all the 8 spools, for the mean spool and for a new random spool. A

precise description of the quantile functions considered is given later in Section 4.3.

Their results for all the 8 spools and for the mean spool are comparable to those in

Crowder et al. (1991)’s, while the interval estimates for the vessel wrapped with Kevlar

from a new random spool are quite larger. They conclude that the interval estimates

are too wide to make statements about the reliability of the pressure vessels.

Argiento et al. (2010a) present a Bayesian semiparametric approach to the AFT

model for the dataset, observing as the nonparametric component in their model in-

duces a grouping criterion on the observations. As Leon et al. (2007), they consider

the failure times from all the 8 spools and include the censored times. The model can

be described hierarchically in log-scale as follows:

log Ti = β1xi + log ϑ2,i +
Wi

ϑ1i
, i = 1, . . . , n

Wi
i.i.d.
∼ Gumbel(0, 1) ,

θi = (ϑ1i, ϑ2i)|P
iid
∼ P,

(7)

where P has a nonparametric distribution, namely P is a NGG. The prior is completed

assuming independence between β1 and P , and a Gaussian distribution for β1. The

authors draw an interesting analogy between the Bayesian mixed-effects model (3)-(5)

and model (7). Indeed, the terms {log ϑ2,i} hold the same place of the αj’s in (4),

with the difference that here the number of distinct parameters is random and can

vary between one and n, because of the ties induced by the discreteness of P . Then,

the grouping of observations in Argiento et al. (2010a) is not fixed (as dictated by the

spool number), but is random and is inferred from the data. Even if the authors obtain
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narrow posterior credibility intervals, it should be noted that their grouping criterion

cannot exactly preserve the hierarchical nature of the data, since it is not unequivocal

and can be influenced by unobserved latent factors.

4 A Bayesian Semiparametric Mixed-Effects model

4.1 The model

Here we generalize the Bayesian AFT model of Leon et al. (2007), described in (3)-(6),

relaxing the normality assumption for the random-effects parameters; in fact, we allow

now the distribution for the spool effect to be multi-modal, in order not to over-estimate

its variance. The model we propose is similar to that in Kleinmann and Ibrahim (1998),

where the authors used a Dirichlet process prior for the random effects, while here we

use a NGG prior. As mentioned in the Introduction, the NGG process prior is ruled by

two scalar parameters (instead of one of the Dirichlet process) controlling the clustering

mechanism, with the aim of obtaining a more flexible prior than the Dirichlet process.

The likelihood we consider is as in (3), with

(8) x′
iβ = β1 log(xi) +

8
∑

j=1

αjzj,i

and

(9) Vi|ϑ
iid
∼ Weibull(ϑ, 1), i = 1, . . . , n,

where xi represents the stress and zj,i = 1 if the i-th observation is from spool j (and

0 otherwise). The prior specifications for the parameters are

ϑ ∼ Gamma(a0, b0), β1 ∼ N(µ1, σ
2
1)

α1, . . . , α8|P
iid
∼ P

P ∼ NGG(σ, κ, P0)

P0|µ, λ ∼ N(µ, λ), λ ∼ InvGamma(
τ1
2
,
τ2
2

) µ ∼ N(µ0, σ
2
0),

β1, α := (α1, . . . , α8), ϑ independent.

(10)

By (3), (8)-(10) and the scaling property of the Weibull distribution, the failure times

{Ti} have conditional distribution

Ti|β1,α,xi, ϑ
ind
∼ Weibull(ϑ, exp{β1 log(xi) +

8
∑

j=1

αjzj,i}).
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Our model can be considered as a straightforward generalization of a GLMM, using the

two-parameter Weibull instead of an exponential family distribution. In this frame-

work, the overall mean spool effect is represented by the conditional (random) mean

E(αj |P ) =
∫

ℜ
xP (dx); this is clear if we rewrite the linear predictor (8) as

x′
iβ = E(α1 | P ) + β1 log(xi) +

8
∑

j=1

(αj − E(α1 | P )) zj,i.

In the previous equality the random-effects parameters have zero conditional mean,

while E(α1 | P ) takes the place of β0 in (4). In this paper the focus is not on the

estimation of the overall mean effect, and therefore we will not report results on it.

However, we refer to Jara et al. (2009), where this quantity is estimated by sampling the

trajectories of the posterior mixing distribution P , and to Li, Müller, and Lin (2007),

where an approximation of its distribution is given.

4.2 The NGG process

The family of the NGG processes was first introduced as a nonparametric prior by

Regazzini et al. (2003). The NGG, indexed by σ, κ and P0, selects discrete distributions.

The parameter σ, which assumes values in (0,1), controls the clustering, while κ > 0

plays the role of the mass parameter as in the Dirichlet process, which is recovered when

σ = 0. The distribution P0 represents the mean probability measure of the process,

i.e. E[P (A)] = P0(A) for all A, and it is usually assumed absolutely continuous.

Moreover, both σ and κ control the overall variance of the process, and therefore their

prior elicitation is quite difficult. If X1, X2, . . . , Xn is a sample from P, the predictive

distribution of Xn+1, given X1, X2, . . . , Xn, is a mixture of the mean measure P0 and

a weighted version of the empirical distribution, i.e.

(11) Xn+1|X1, X2, . . . , Xn ∼ w0(n, k; σ, κ)P0(·) + w1(n, k; σ, κ)
k
∑

j=1

(ej − σ)δψj
(·),

where ψ1, ψ2, . . . , ψk are the distinct values among {X1, X2, . . . , Xn}, ej = #{Xi :

Xi = ψj , 1 ≤ i ≤ n},

w0(n, k; σ, κ) =
σ

n

∑n
i=0

(

n
i

)

(−1)i(κ
σ
)i/σΓ(k + 1 − i/σ; κ

σ
)

∑n−1
i=0

(

n−1
i

)

(−1)i(κ
σ
)i/σΓ(k − i/σ; κ

σ
)

w1(n, k; σ, κ) =
1

n

∑n
i=0

(

n
i

)

(−1)i(κ
σ
)i/σΓ(k − i/σ; κ

σ
)

∑n−1
i=0

(

n−1
i

)

(−1)i(κ
σ
)i/σΓ(k − i/σ; κ

σ
)
,

(12)
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for any k = 1, . . . , n. Here Γ(α, x) :=
∫ +∞

x
e−ttα−1dt denotes the incomplete gamma

function. ¿From (11) it is clear that, if X1, X2, . . . , Xn is a sample from the NGG pro-

cess, there is a positive probability of having coincident values among the Xj ’s. There-

fore the number of distinct values among the (X1, X2, . . . , Xn) is a random variable,

denoted by Kn, with values in {1, 2, . . . , n}; see its distribution in Lijoi et al. (2007),

Sect 3.

4.3 Quantile functions

In our analysis we use the same data as in Leon et al. (2007), including failure times

from all the 8 spools and censored times at 23.4MPa. We are interested in the pre-

diction, in a Bayesian framework, of two quantiles of the failure time distribution at

two different stress levels for a new and a given spool. The interest is motivated by

the comparison of the quantiles estimates in Leon et al. (2007) under the parametric

model (3)-(6) on one hand, and the semiparametric one (8)-(10) on the other. In par-

ticular, if αnew denotes the parameter corresponding to a new spool generated from

the population of spools, the functions we will consider are:

(i) the first percentile of the conditional failure time distribution at the lowest stress

level (23.4MPa), given the parameters θ, β1, αnew,

F−1
Tnew

n+1
|θ,β1,αnew,x=23.4(0.01);

(ii) the median of the conditional failure time distribution at the (extrapolated) level

of stress of 22.5MPa, given the parameters θ, β1, αnew,

F−1
Tnew

n+1
|θ,β1,αnew,x=22.5(0.5).

We can easily obtain the conditional quantile functions for a given spool j, replacing

αnew with αj in the above quantities. All these conditional quantile functions can be

expressed as deterministic transformations of the parameter vector, appearing in the

conditioning, by inverting the Weibull distribution function; for instance, the quantiles

in (i) and (ii) are obtained as the solution of the relationships

1 − exp

(

−

(

t

eβ1 log(x)+αnew

)θ
)

= 0.01 or 0.5, when x = 23.4 or 22.5.
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We will compute the whole posterior distributions of these quantities, in order to give

not only point-, but also interval-estimates for them. To this aim, and to make a

comparison among the spools, we will build a Gibbs sampler that converges to the

posterior distribution of the whole parameter vector (β1, α1, . . . , α8, αnew, ϑ, µ, λ); see

the prior in (10).

We point out that the quantile functions we are considering do depend on the non-

parametric component P only through the parameter αnew. Usually, when there is a

nonparametric component in the model, the quantile functions of interest are those

depending directly on the nonparametric component P . For instance, in Argiento et

al. (2010a), the authors considered the quantile obtained by numerical inversion of

F (t;P ) =
∫

Θ

(

1 − e−(t/ϑ2)ϑ1

)

P (dϑ1, dϑ2), where P is the random probability distribu-

tion in (7), which is given a NGG prior; we refer to Gelfand and Kottas (2002) or

Argiento et al. (2010b) for a detailed discussion on estimation of nonparametric func-

tional under Dirichlet process mixture models or NGG-mixture model, respectively.

However, in this paper, we integrate out P , which parametrize the spool population

distribution, in order to compare the estimates of the same function of the parameter

under the parametric and the semiparametric GLMMs.

As far as the Gibbs sampler is concerned, only few information on it is provided

here. Recall that the Gibbs sampler algorithm samples sequentially from each full-

conditional, i.e. the law of a parameter given all the others and the data. In this case,

to sample from the full-conditionals of each αj , we must sample from the predictive

distribution of a sample from a NGG process, as described in (11), yielding a generalized

Pólya urn scheme, and adapt Algorithm 8 of Neal (2000) for non-conjugate priors to

the NGG case. The full-conditionals of β1 and ϑ are log-concave, so that an adaptive

rejection sampling method (see Robert and Casella, 2004) can be adopted. A final

step of the algorithm for imputing the right-censored times and include them into the

Markov Chain is required. Analytic expressions of the full-conditionals, as well as all

the details on this Gibbs sampler, are provided in Soriano (2010).

5 Results

In this section we analyse the data and compare our results to those of Leon et

al. (2007); for ease of reading, some of their results are reported in Table 2 below.

In particular, we provide interval estimates for the quantiles described in Section 4.3
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for spool 2, 4 and 7 and for a new random spool, as well as a classification of the 8

spools.

Table 2: Interval estimates of the quantiles under the parametric model of Leon et al. (2007).

Spool 2.5% 50% 97.5%

2 153.2 362.4 732.6

4 1773 4524 10060

7 56 131 305

new 22.0 671 19290

(a) 1st percentile failure time in hours

at 23.4MPa.

Spool 2.5% 50% 97.5%

2 17.4 28.56 46.42

4 185.8 356.6 682.8

7 4.72 9.19 17.9

new 1.9 53.7 1479

(b) Median failure time in thousands

of hours at 22.5MPa.

First, some details on computation and prior elicitation are given. We run the

algorithm for 100000 iterations, while the first 80000 iterations were discarded, using

a thinning of 4 to reduce the autocorrelation of the Markov chain. The final sample

size was 5000. We run longer chains but we do not obtain any relevant reduction of

the Monte Carlo error, and some diagnostic convergence tests were done. Concerning

hyperparameters specifications (see (10)), we chose fairly vague priors for β1, µ and

λ, fixing µ1 = µ0 = 0, σ2
1 = σ2

0 = 1000, τ1 = τ2 = 0.2. Moreover, we assumed

a0 = 1.5. b0 = 5 such that the marginal distribution of logV has finite first moment.

A robustness analysis (Soriano, 2010) showed that the inferences are not particularly

sensitive to the choice of those hyperparameters, while they are sensitive to the NGG

processes hyperparameters σ and κ.

In Table 3, we provide credibility intervals of the two quantiles for a new random

spool for different choices of σ and κ. Since K8, the number of distinct values in

(α1, . . . , α8) is a random variable with support {1, . . . , 8}, and its distribution depends

on σ and κ, we fixed σ and κ such that the prior expected value of K8 is around 1, 2

or 4. The value 2 was fixed to translate the prior information that there are at least

two groups of spools, those that are close to the nominal characteristics like spool 2,

and those that do not respect the nominal conditions like spool 7; values 1 and 4 were

considered to test the robustness of the NGG prior. Table 3 displays the posterior

expected values of K8 as well. Observe that K8 represents the number of distinctive

groups among (α1, . . . , α8). Both quantiles of interest are sensitive to the values of

the hyperparameters: in particular the intervals get larger and the medians get higher
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Table 3: Interval estimates of the quantiles for a new random spool for different values of

hyperparameters in the NGG process prior.

σ κ E[KJ ] E[KJ |T ] 2.5% 50% 97.5%

0.01 0.01 1.1 2.8 58.7 382.5 4401.1

0.01 0.5 2.0 4.0 52.6 454.4 5620.8

0.1 0.3 2.0 4.1 55.4 472.1 6077.9

0.3 0.09 2.0 5.0 46.9 525.8 7447.5

0.01 2.5 4.0 5.4 49.0 570.8 9357.2

0.1 2 4.0 5.4 39.3 570.6 8529.3

0.3 1.2 4.1 5.7 41.3 577.5 9179.0

(a) 1st percentile failure time in hours at 23.4MPa.

σ κ E[KJ ] E[KJ |T ] 2.5% 50% 97.5%

0.01 0.01 1.1 2.8 8.6 46.6 509.2

0.01 0.5 2.0 4.0 7.5 48.5 558.8

0.1 0.3 2.0 4.1 7.8 49.0 598.3

0.3 0.09 2.0 5.0 6.5 51.0 700.8

0.01 2.5 4.0 5.4 6.1 55.3 838.0

0.1 2 4.0 5.4 5.0 54.7 771.3

0.3 1.2 4.1 5.7 5.2 55.2 892.0

(b) Median failure time in thousands of hours at 22.5MPa.

under a larger a priori expected number of clusters. Notice that all the intervals are

narrower than those obtained by the parametric model of Leon et al. (2007) (see the

bottom row in Table 2).

To robustify inferences with respect to σ and κ, we have assumed a prior distribution

on (σ, κ) ∈ (0, 1) × (0,+∞). In particular, we adopted a discrete prior on a grid of

30 × 30 points in (0, 1) × (0, 33), which assigns high probability to those (σ, κ) such

that the prior expected number of clusters K8 is around 3. Of course, an upper bound

for κ different from 33 could be chosen. Figure 1a displays the prior distribution of K8,

marginalized with respect to the prior for (σ, κ). Notice that the prior distribution is

rather diffuse, still reflecting our prior information about the different types of spool.

On the other hand, the posterior distribution of K8 in Figure 1b puts no mass to 1 and
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Figure 1: Probability distribution of the number of clusters K8 when (σ, κ) has prior distri-

bution.

2, but the mode is 5. The posterior distribution of (σ, κ) was found to be significantly

different from the prior, and does not concentrate mass on σ = 0. This means that in

this case, a better fit is obtained with an NGG prior with σ considerably larger than

0, i.e. far from the Dirichlet prior. Table 4 displays credibility intervals of the two

quantiles for a new random spool and spool 2, 4, 7, under the prior described above,

while Figure 2 shows the marginal posterior distributions of the 8 spool parameters

and of a new random spool. The credibility intervals for a new random spool we obtain

here are still narrower than those of Leon et al. (2007); the intervals for spool 2, 4, 7

are slightly different: in particular, the interval estimates for the median at 22.5MPa

are a bit higher and wider.

Moreover, we provide a classification of the behaviour of the different spools from

Figure 2: with small uncertainty, it is clear that we have three different groups of

spools, the worst (spool 3 and 7), the average (spool 2, 5 and 6), and the best (spool 1,

4 and, probably, 8). The clustering into three groups is more evident here than in

the past parametric analysis and coherent with Crowder et al. (1991) spool ranking.

We can guess that spool 3 has the same microscopic characteristics of spool 7 (see

Section 2), and that spool 5, 6 have the nominal ones, as spool 2. To support the

conclusions from Figure 2, as in Medvedovic and Sivaganesan (2002), we used an

hierarchical agglomerative clustering based on a similarity matrix π̂ formed using the

observed clusterings in the Gibbs sampler. Namely, the matrix π̂ is the mean (over all

the MCMC iterations) of the incidence matrices describing the partition of {1, . . . , 8}

induced by the (α1, · · · , α8) MCMC samples. In Figure 3 we show the dendogram from
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the agglomerative clustering algorithm with single linkage and similarity π̂. Cutting

the dendogram where the gap between two successive combination similarities is largest

provides the “natural” grouping (e.g., see Johnson and Wichern, 1988). In this case,

the dendogram confirms our conclusion about the clusterization of the spools into three

groups.

Table 4: Interval estimates of the quantiles for the semiparametric model when (σ, κ) has

prior distribution.

Spool 2.5% 50% 97.5%

2 130.2 356.2 789.2

4 1247.9 3645.6 9855.6

7 38.8 111.4 275.8

new 40.8 546.3 9073.2

(a) 1st percentile failure time in hours at

23.4MPa.

Spool 2.5% 50% 97.5%

2 20.0 37.0 65.7

4 185.5 370.0 851.3

7 5.5 11.6 24.6

new 5.5 51.8 856.8

(b) Median failure time in thousands

of hours at 22.5MPa.

We computed the same estimates under a different prior on (σ, κ), such that the

prior distribution of K8 is almost uniform on the support {1, . . . , 8}, ignoring, in a

sense, the prior information from the other analyses. However, the posterior inferences

on the quantiles and the eight spools were very similar to those in Table 4 and Fig-

ure 2. Moreover, the marginal posterior distributions of the spools, as well as their

classification, remain essentially unchanged if we do not assume the prior distribution

on (σ, κ), but we fix their values as in Table 4.

6 Conclusions

We have presented a new Bayesian semiparametric model to fit a dataset of 108 life-

times of Kevlar pressure vessels with two covariates (spool and stress). The likelihood

has the form of an AFT model, where the stress is a fixed effect and the spool is

random. This model follows the framework of generalized linear mixed models, where

the (conditional) distribution of the random-effects parameters α1 . . . , αJ is modelled

nonparametrically. In particular, we assumed a prior for the random-effects parameters

which is more flexible than the Dirichlet process prior, namely (α1 . . . , αJ) is a sample

from a NGG process.
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Figure 2: Marginal posterior distributions of the random effect parameters when (σ, κ) has

prior distribution.
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Figure 3: Dendogram from agglomerative hierarchical clustering with single linkage.
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The dataset we have analyzed was recorded from an ALT test on NASA composite

pressure vessels, which are critical components of the Space Shuttle. The reliability of

the pressure vessels is still relevant: in 2009 NASA organized the Composite Pressure

Vessel and Structure Summit (see the webpage of the meeting http://www.nasa.gov/

centers/wstf/news/safetysummit2009.html) to discuss the state of the art on this

subject. Several authors have made a statistical analysis of the dataset. For this

reason we have also provided a short review of the most interesting papers analyzing

the dataset. In particular, the model we propose presents an analogy with the Bayesian

parametric mixed-effects model in Leon et al. (2007). The advantages of our model

consist in a more flexible prior for the random-effects parameters, which includes the

Dirichlet process prior suitably specifying one of the parameters (σ = 0) of the NGG

process.

The credibility intervals of the two quantiles of interest for a new spool were nar-

rower than those obtained by Leon et al. (2007). However, they were sensitive to

hyperparameters σ and κ of the NGG process prior. To robustify inferences with re-

spect to σ and κ, we have assumed an weakly informative prior distribution on them.

The credibility intervals of the two quantiles for a new random spool are still narrower

than those under the parametric model. The plot of the marginal posterior distribu-

tions of the random-effects parameters shows a very clear clustering of the spools into

three different groups (the worst, the average and the best spools), which is coherent

with the frequentist spool ranking in Crowder et al. (1991). As far as the reliability

of the pressure vessels is concerned, we have obtained better interval estimates of the

quantiles for a new random spool than before, but they are still too wide to conclude

that the pressure vessels are fully reliable. Based on the results of our analysis, as

well as on all the analyses mentioned here, we think that the log-linear relationship

between survival time and stress level is not linear for lower stress values. This issue

could be addressed by assuming a model with a non-linear link function or a covariates-

dependent error prior. Anyhow, the analysis of such models is outside the scope of this

paper and could be left as future work.
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