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Abstract

We derive an anisotropic a posteriori error estimator for a PDE-con-
strained optimal control problem, governed by the scalar advection-diffusion-
reaction equation. With a view to the advection dominated case, a strongly
consistent symmetric stabilization is employed so that the “optimize-then-
discretize” and “discretize-then-optimize” philosophies coincide and lead
to the same discrete problem. The estimator is turned into an anisotropic
mesh adaptation procedure which allows us to approximate the cost func-
tional within to a given tolerance. Both an academic and a realistic test,
inspired by an environmental application, assess the performance of the
proposed approach.

1 Introduction and motivations

Optimal control problems are likely the most interesting in science and engi-
neering, where they raise a lot of challenges. In any manufacturing or design

∗This research was supported by COFIN 2006 “Metodi Numerici Avanzati per il Calcolo
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process there is always, sooner or later, a phase where some optimization process
is required. For instance, a race car in Formula 1 should contain the consumed
fuel while minimizing the lap time by a suitable race strategy (instantaneous ve-
locity, number of pit-stops, etc), adapted to the characteristics of a given circuit
and the unpredictable race situations; in swimming races, the swimmer should
optimize his/her stroke while undertaking the least physical effort; in microelec-
tronics, a given semiconductor device must be designed (for example, by acting
on its doping profile) so as to limit power consumption while maximizing some
performance index (e.g., the switching speed); in medical surgery, the shape of a
by-pass has to be optimized to reduce the vorticity downstream the graft, respon-
sible of a possible new stenosys; in environmental issues, the concentration of
toxic substances and pollutants emitted by industrial plants near a town (rather
than of contaminants dumped in a river) should be kept below some attention
level, without compromising the production rate of the factories involved.

In all these applications the specific objective can actually be formalized via
a suitable optimal control problem, in terms of the minimization of a suitable
cost functional. This typically involves the discrepancy between the quantity to
be controlled and a given observation. On the other hand the physical prob-
lem under investigation can be often modeled by partial differential equations
(PDE’s), typically translating the space/time conservation of the main quanti-
ties involved in the process. These equations play the role of a constraint to the
optimal control problem, depending on the state (the quantity to be controlled)
and the control (the quantity acting as regulator). To conclude with, we are
dealing with PDE-constrained optimal control problems ([3]).

In this paper we focus on a model optimal control problem: the govern-
ing equation is an elliptic PDE, namely, the scalar advection-diffusion-reaction
equation. The considered setting is fairly simple, i.e., both the observation and
the control are distributed and fully homogeneous Dirichlet boundary conditions
are enforced. We are primarily concerned with the numerical approximation of
this optimal control problem through a Galerkin method employing continuous
piecewise affine finite elements. Our actual aim is the derivation of an a pos-
teriori error estimator able to drive a suitable mesh adaptation procedure with
a view to advection dominated problems. As a matter of fact it is well known
that, in such a case, the physical solution often exhibits strong directional fea-
tures (e.g., boundary or internal layers), where the numerical approximation
may show spurious oscillations on a mesh which is not sufficiently fine. A con-
venient stabilization scheme combined with a mesh adaptation procedure is a
standard remedy to this matter. This raises a long-debated issue in the lit-
erature ([16, 2, 5, 1, 11, 14]). Two reciprocal approaches are indeed pursued:
the so-called “optimize-then-discretize” philosophy versus the “discretize-then-
optimize” strategy. So far, none of these two has been definitely shown to better-
off the other. There are cases where the first approach performs better, while
in other circumstances it fails ([16]). As highlighted in [5], a possible remedy
to this dilemma is the employment of a symmetric and strongly consistent sta-
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bilization: this makes the two approaches identical and yields also a symmetric
discrete optimality system whose solution exhibits optimal convergence rate. We
stick to this evidence in choosing the discretization scheme, based on a variant
of the strongly-consistent edge-based stabilization proposed by J. Douglas and
T. Dupont in [15].

The novelty of the proposed a posteriori error estimator is its capability to
detect the directional features of the solution. At each iteration, our adaptive
procedure yields a mesh whose elements are not only crowded around the layers
but also automatically match the actual directionalities of the solution by a
proper sizing, shaping and orientation of the triangles. The more flexibility of
an anisotropic adaptation, with respect to the standard isotropic one, where only
the size of the triangles is tuned, is a strength point of the proposed methodology
in the context of optimal control problems.
To our knowledge, the only paper dealing with anisotropic mesh adaptation in
an optimal control setting is [32]. In this paper the author derives an anisotropic
a posteriori error estimator for the heat equation. However, no mesh adaptation
procedure is devised. Moreover the purely diffusive nature of the heat equation
relieves the author from the embarrassing interplay between discretization and
optimization.

The paper is organized as follows. Section 2 presents the model problem
along with its discretization, while unraveling the “optimize-then-discretize” ver-
sus “discretize-then-optimize” dilemma. In section 3 we introduce the grounds
of the reference anisotropic setting. We also derive a new anisotropic estimate to
control a directional derivative along a triangle edge, instrumental for the edge-
based stabilization scheme. The anisotropic a posteriori error estimator is pro-
vided in section 4. This estimator is then converted into an effective anisotropic
mesh adaptation procedure as detailed in section 5. Section 6 gathers the results
of the numerical assessment, which deals with a benchmark problem and with
a test of possible interest in environmental applications. This last test case al-
lows us to check the proposed procedure on a more general framework including
Neumann boundary conditions and localized control and observation.

2 The model problem

In this section we introduce the model problem we are interested in, i.e., the
standard scalar advection-diffusion-reaction equation

{ −∇ · (ε∇u) + β · ∇u+ σu = f + q in Ω

u = 0 on ∂Ω,
(1)

where Ω ⊂ R
2 is a bounded polygonal domain with boundary ∂Ω, while the

source f ∈ L2(Ω), the control variable q ∈ L2(Ω), the diffusivity ε ∈ L∞(Ω),
with ε ≥ ε0 > 0 a.e. in Ω, the reaction σ ∈ L∞(Ω), and the advective field
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β ∈ [L∞(Ω)]2, with ∇ ·β ∈ L∞(Ω) and −1
2∇ ·β + σ ≥ 0 a.e. in Ω, are assigned

functions.
Throughout the paper, we use the standard notation to denote the Lebesgue
and Sobolev function spaces ([25]). In particular, let ω be a given Lebesgue
measurable set in R

d, with d = 1, 2, with measure |ω|. Thus L∞(ω) stands
for the space of the functions bounded a.e. in ω; W 1,∞(ω) denotes the space of
functions in L∞(ω) whose first order (partial) derivatives belong to L∞(ω); L2(ω)
is the space of the functions Lebesgue square-integrable, with corresponding
norm ‖ · ‖L2(ω); H

k(ω) denotes the space of functions in L2(ω) for which the
distributional derivatives of order up to k ≥ 1 belong to L2(ω). Moreover let
Hdiv(ω) be the space of vector-valued functions in [L2(ω)]2 and with divergence
in L2(ω) ([6]).

The weak formulation of (1) is provided by

find u ∈ V ≡ H1
0 (Ω) : a(u, µ) = (f, µ) + b(q, µ) ∀µ ∈ V, (2)

where (·, ·) denotes the L2-scalar product on Ω, H1
0 (Ω) = {v ∈ H1(Ω) : v

∣∣
∂Ω

=
0}, while the bilinear forms a(·, ·) and b(·, ·) are given by

a(u, µ) =

∫

Ω

ε∇u · ∇µdΩ +

∫

Ω

β · ∇uµ dΩ +

∫

Ω

σuµ dΩ ∀u, µ ∈ V,

b(q, µ) =

∫

Ω

q µ dΩ ∀µ ∈ V.

Existence and uniqueness of the solution to (2) follow from the above hypotheses
on the problem data ([31]).

With a view to the optimal control problem we have in mind, let Q and H be
the space of the controls and of the observations, respectively. Let J : V ×Q→ R

be the cost functional to be minimized. Accordingly to the theory in [24, 3, 5],
we pick

J(u, q) =
1

2
‖cu− c0‖2H +

1

2
n(q, q), (3)

with c : V → H a linear bounded observation operator; c0 ∈ H the observation;
n : Q×Q→ R a bilinear symmetric and coercive form representing the Tikhonov
regularization, with Q = L2(Ω). Thus the existence of a unique solution to the
optimal control problem

minimize J(u, q), with u ∈ V and q ∈ Q, subject to (1) (4)

is guaranteed (see, e.g., [24]). With a view to the resolution of problem (4) via
an “optimize-then-discretize” approach, we introduce the Lagrangian functional

L(u, λ, q) = J(u, q) + a(u, λ) − b(q, λ) − (f, λ),
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where λ ∈ V is the so-called Lagrangian multiplier.
The Euler-Lagrange equations representing the necessary condition for optimal-
ity are identified by equality

∇L(u, λ, q)(v, µ, r) = 0 ∀{v, µ, r} ∈ V × V ×Q,

i.e., by the system of equations

Lλ(u, λ, q)(µ) = a(u, µ)− b(q, µ)− (f, µ) = 0 ∀µ ∈ V,

Lu(u, λ, q)(v) = a(v, λ) + (cu− c0, cv) = 0 ∀v ∈ V,

Lq(u, λ, q)(r) = −b(r, λ) + n(q, r) = 0 ∀r ∈ Q.

This is equivalent to solving the problem: find {u, λ, q} ∈ V × V ×Q s.t.

a(u, µ) = b(q, µ) + (f, µ) ∀µ ∈ V,

a(v, λ) = (c0 − cu, cv) ∀v ∈ V,

n(q, r) = b(r, λ) ∀r ∈ Q.

(5)

The first coincides with the state equation (2); the second is the corresponding
adjoint state equation, while the last one is the gradient equation.

As we are interested in applications where advection dominates over diffusion
and reaction, a suitable discretization scheme has to be employed to contain the
spurious oscillations of the numerical solution.
We adopt a variant of the strongly-consistent edge-based stabilization proposed
by J. Douglas and T. Dupont in [15] (see, also, [7, 8]). The choice made for
this stabilization scheme is aimed at getting rid of the dilemma “optimize-then-
discretize” versus “discretize-then-optimize”. Indeed, as observed in [5, 35], the
employment of a symmetric stabilization guarantees the commutativity of the
optimize and discretize steps. Moreover, as highlighted in [5], such a scheme
yields a symmetric discrete optimality system and optimal convergence rate.

Let {Th}h be a family of conforming decompositions of Ω into triangles K
of diameter hK ([9]). Let Qh = {vh ∈ C0(Ω) : vh|K ∈ P1,∀K ∈ Th} ⊂ Q
(and subset also of V ) denote the subspace of piecewise affine functions, with
P1 = span{1, x1, x2} the space of polynomials of (global) degree less than or
equal to one, and let Vh = Qh ∩ V .
Thus the adopted discrete counterpart of (5) is given by: find {uh, λh, qh} ∈
Vh × Vh ×Qh, s.t., ∀{µh, vh, rh} ∈ Vh × Vh ×Qh,

a(uh, µh)+
1

2

∑

K∈Th

{ ∑

e∈∂K

∫

e

γ h2
e [∇uh·n]e [∇µh·n]e ds

}
= b(qh, µh)+(f, µh); (6)

a(vh, λh) +
1

2

∑

K∈Th

{ ∑

e∈∂K

∫

e

γ h2
e [∇λh · n]e [∇vh · n]e ds

}
= (c0 − cuh, cvh); (7)

5



n(qh, rh) = b(rh, λh), (8)

where he denotes the length of the edge e ∈ ∂K; γ ∈ L∞(e), for any e ∈ Eh\∂Ω,
with Eh the skeleton associated with Th; [·]e stands for the jump across the edge
e, for any e ∈ Eh\∂Ω, [·]e vanishing when e ∈ ∂Ω.

Concerning the stabilization parameter γ in (6)-(7), we follow the recipe

γ = γ0 min
{‖β‖2 he

2ε
, 1

}
|β · n|, (9)

γ0 being a tuning parameter, and where ‖ · ‖2 denotes the Euclidean norm.
Function γ is a variant to the choice made in [8], apparently more suitable when
handling anisotropic grids. Also the employment of he in (6)-(7) and in (9)
instead of hK , as in [8], is suggested by its more anisotropic feature.

Remark 2.1 The strong consistency of (6) and (7) leads to add suitable reg-
ularity assumptions on the diffusion coefficient, i.e., ε ∈ W 1,∞(Ω). Indeed the
jump term [∇u · n]e vanishes identically when ∇u ∈ Hdiv(Ω) ([6]). Actually the
weak formulation (5)1 guarantees that ε∇u ∈ Hdiv(Ω). Thus the hypothesis on
ε implies ∇u ∈ Hdiv(Ω). This regularity will be assumed henceforth.

We observe that the “discretize-then-optimize” approach stems from the op-
timality condition

∇Lstab(uh, λh, qh)(vh, µh, rh) = 0 ∀{vh, µh, rh} ∈ Vh × Vh ×Qh, (10)

which returns (6)-(8), where the stabilized Lagrangian Lstab : V ×V ×Q→ R is
given by

Lstab(u, λ, q) = J(u, q) + a(u, λ)− b(q, λ)− (f, λ)

+
1

2

∑

K∈Th

{ ∑

e∈∂K

∫

e

γ h2
e [∇u · n]e [∇λ · n]e ds

}
.

(11)

Moreover, following Remark 2.1, i.e., thanks to the strongly consistent stabiliza-
tion, it holds that

∇Lstab(u, λ, q)(v, µ, r) = ∇L(u, λ, q)(v, µ, r) = 0 ∀{v, µ, r} ∈ V ×V ×Q. (12)

By suitably subtracting (10) from (12) (with {v, µ, r} = {vh, µh, rh} ∈ Vh×Vh×
Qh), we obtain the orthogonality relation

∇Lstab(u, λ, q)(vh, µh, rh)−∇Lstab(uh, λh, qh)(vh, µh, rh) = 0

for any {vh, µh, rh} ∈ Vh × Vh ×Qh or, equivalently, as Lstab is quadratic,

∇2Lstab(·, {u−uh, λ−λh, q−qh}, {vh, µh, rh}) = 0 ∀{vh, µh, rh} ∈ Vh×Vh×Qh.
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3 The anisotropic framework

We introduce the anisotropic setting used to enrich the a posteriori optimal con-
trol analysis with directional information. We resort to the anisotropic frame-
work in [19], according to which the source of the anisotropic information is the
standard invertible affine map TK : K̂ → K between the reference triangle K̂
and the general element K, given by

x = (x1, x2)
T = TK(x̂) = MK x̂ + tK , ∀ x ∈ K,

with x̂ = (x̂1, x̂2)
T ∈ K̂. For instance, when K̂ is picked as the equilateral

triangle inscribed in the unit circle centered at the origin and with vertices
(−
√

3/2,−1/2), (
√

3/2,−1/2), (0, 1), it holds

MK =
1

3

[ √
3 (xK2

1 − xK1
1 ) 2xK3

1 − xK1
1 − xK2

1√
3 (xK2

2 − xK1
2 ) 2xK3

2 − xK1
2 − xK2

2

]
,

tK =
1

3

[
xK1

1 + xK2
1 + xK3

1

xK1
2 + xK2

2 + xK3
2

]
,

where (xKi
1 , xKi

2 ), for i = 1, 2, 3, are the vertices of the triangle K.
We introduce the polar decomposition MK = BK ZK of MK , where the matrix
BK is symmetric positive definite and ZK is orthogonal. Diagonalizing BK in
terms of its eigenvectors ri,K and eigenvalues λi,K , with i = 1, 2, yields BK =
RT

KΛKRK , where

RK =

[
rT
1,K

rT
2,K

]
and ΛK =

[
λ1,K 0

0 λ2,K

]
.

The geometrical information provided by the quantities λi,K , ri,K is displayed

in Figure 1. The map TK strains the circle circumscribed to K̂ into an ellipse
circumscribing K, centered at the barycenter of K: the eigenvalues λ1,K , λ2,K

measure the lengths of the major and of the minor semi-axis, aligned with the
directions r1,K and r2,K , respectively. Notice that ZK and tK do not play any
role as associated with a rigid rotation and a shift, respectively.
Without loss of generality, henceforth we assume λ1,K ≥ λ2,K , i.e., that the so
called stretching factor sK = λ1,K/λ2,K , providing us with a measure of the
deformation of the triangle K, is always greater than or equal to 1, with sK = 1
whenever K is an equilateral triangle.

3.1 Anisotropic interpolation error estimates

We recall some anisotropic interpolation error estimates proved in [19, 20]. The
adjective anisotropic refers to the explicit dependence of these estimates on the
geometrical parameters λi,K , ri,K and sK , in contrast with the classical isotropic
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TK

1

λ1,K

K

λ2,K

bK

r1,K

r2,K

Figure 1: Geometrical interpretation of the map TK and main anisotropic quan-
tities.

estimates, where the main role is played by the diameter hK . In particular, we
tackle the Clément interpolation operator in [10], defined, in the case of affine
finite elements, as

I1
hv(x) =

∑

Nj∈Nh

Pjv(Nj)ϕj(x) ∀v ∈ L2(Ω), (13)

where ϕj is the Lagrangian basis function associated with the node Nj , while
Pj denotes the L2-projection onto the affine functions associated with the patch
∆j of the elements sharing node Nj, defined by the relations

∫

∆j

(Pjv − v)ψ d∆j = 0 with ψ = 1, x1, x2.

The sum in (13) runs only on the set Nh of the internal mesh vertices.

Now for any function v ∈ H1(Ω), let GK(v) ∈ R
2×2 be the symmetric positive

semi-definite matrix given by

[GK(v)]i, j =

∫

∆K

∂v

∂xi

∂v

∂xj
d∆K , with i, j = 1, 2, (14)

and with ∆K the union (patch) of all the elements sharing at least a vertex with
K.
Then as proved in [19, 20], we have:
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Lemma 3.1 Let v ∈ H1(Ω). Then under the assumptions that, for any K in
Th, card(∆K) ≤M and diam(∆ bK) ≤ Ĉ, with ∆ bK = T−1

K (∆K), it holds

‖v − I1
hv‖L2(K) ≤ C1

[ 2∑

i=1

λ2
i,K

(
rT
i,K GK(v) ri,K

)]1/2

, (15)

‖v − I1
hv‖L2(e) ≤ C2

(
he

λ1,Kλ2,K

)1/2 [ 2∑

i=1

λ2
i,K

(
rT
i,K GK(v) ri,K

)]1/2

,(16)

where Ci = Ci(M, Ĉ), for i = 1, 2.

Notice the explicit dependence of these estimates on the anisotropic quanti-
ties highlighted in Figure 1. In particular, when λ1,K ≃ λ2,K ≃ hK , that is when
the triangle is equilateral, estimates (15) and (16) reduce to the corresponding
isotropic results in [10].
The reference patch ∆ bK in Lemma 3.1 is obtained by mapping back all the

elements T ∈ ∆K by means of the same transformation T−1
K . The hypotheses in

Lemma 3.1 essentially rule out too distorted patches in the reference framework.
However the anisotropic features (stretching factor and orientation) of each T ∈
∆K are not constrained by these requirements; only the variation over ∆K of
the anisotropic quantities is affected (see [27] for more details).

The introduction of the edge stabilization calls for a new anisotropic trace
inequality for the directional derivative along a certain direction d ∈ R

2. To
prove this result we anticipate the estimate

∥∥∥∥
∂p̂

∂d̂

∥∥∥∥
L2(be)

≤ Ĉk

∥∥∥∥
∂p̂

∂d̂

∥∥∥∥
L2( bK)

∀p̂ ∈ Pk(K̂), (17)

where Pk(K̂) is the space of polynomials of maximum global degree k on K̂, ê is
any edge of K̂, d̂ is a given unit vector over K̂, and Ĉk is a constant depending

on K̂ and k. Notice that Ĉ1 =

√
hbe/|K̂ |. Inequality (17) follows simply by

extending the argument used to prove Lemma 2.1 in [34].

Lemma 3.2 Let v ∈ Vh and d be a given unit vector on Ω. Then under the
same assumptions as in Lemma 3.1 there exists a constant C3 = C3(|K̂|) such
that

‖∇v · d‖L2(e) ≤ C3

(
he

λ1,Kλ2,K

)1/2 1

λd,K

[ 2∑

i=1

λ2
i,K

(
rT
i,K GK(v) ri,K

)]1/2

where

λd,K =
[
λ−2

1,K

(
r1,K · d

)2
+ λ−2

2,K

(
r2,K · d

)2
]−1/2

.
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Proof. By exploiting the relation MT
K∇v = ∇̂v̂ between the gradient on K of v and

the gradient on K̂ of v̂ = v ◦ TK , and the decompositions introduced on MK , we have

‖∇v · d‖2L2(e) =
he

hbe

∫

be

[
d ·

(
MT

K

)−1∇̂v̂
]2
dŝ =

he

hbe

∫

be

[
d ·

(
RT

KΛ−1
K RKZK

)
∇̂v̂

]2
dŝ

=
he

hbe

∫

be

[(
ZT

KR
T
KΛ−1

K RKd
)T ∇̂v̂

]2
dŝ.

To exploit estimate (17) we let D = ZT
KR

T
KΛ−1

K RKd = ‖D‖2 1D, where 1D is a suitable

unit vector over K̂, while ‖D‖2 reduces to ‖Λ−1
K RKd‖2, ZK and RK being orthogonal

matrices. Thus (17) yields

‖∇v · d‖2L2(e) =
he

hbe

∫

be

[
‖D‖2 1T

D∇̂v̂
]2
dŝ =

he

hbe
‖D‖22

∥∥∥∥
∂v̂

∂1D

∥∥∥∥
2

L2(be)

≤ Ĉ2
1

he

hbe
‖D‖22

∥∥∥∥
∂v̂

∂1D

∥∥∥∥
2

L2( bK)

≤ Ĉ2
1

he

hbe
‖D‖22 |v̂|2H1( bK)

≤ Ĉ2
1

he

hbe
‖D‖22

[
sK

(
rT
1,K GK(v) r1,K

)
+

1

sK

(
rT
2,K GK(v) r2,K

)]
,

the last inequality being a direct consequence of relation (17) in [19] and of the definition

of sK . We complete the proof with a straightforward computation of ‖D‖2, yielding

‖D‖2 = λ−1
d,K , and identifying C3 with |K̂|−1/2. �

The following result will be useful with a view to the analysis in section 4.

Corollary 3.1 Under the same hypotheses as in Lemma 3.2 we have that

‖∇(Ihw) · d‖L2(e) ≤ C̃3

(
he

λ1,Kλ2,K

)1/2 1

λd,K

[ 2∑

i=1

λ2
i,K

(
rT
i,K GK(w) ri,K

)]1/2

with C̃3 = C̃3(M, Ĉ, |K̂|).
Proof. We follow the same steps as in the proof of Lemma 3.2 up to the line before
the last one, identifying v with Ihw and v̂ with

(
Ihw

)
̂ = Îhŵ. This yields

‖∇(Ihw) · d‖2L2(e) ≤ Ĉ2
1

he

hbe
λ−2

d,K |Îhŵ|2H1( bK)
.

Now recalling the standard continuity property of the Clément interpolant operator

∣∣Îhŵ
∣∣
H1( bK)

≤ CI |ŵ|H1(∆cK
)

with CI = CI(M, Ĉ), combined with (17) in [19], we conclude

‖∇(Ihw) · d‖2L2(e) ≤ Ĉ2
1 C

2
I

he

hbe
λ−2

d,K

[
sK

(
rT
1,K GK(w) r1,K

)
+

1

sK

(
rT
2,K GK(w) r2,K

)]
,

i.e., the desired result with C̃3 = CI |K̂|−1/2. �
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4 A posteriori error analysis

To approximating J(u, q) with u and q solution to (4), we derive an a posteriori
analysis identifying a discrete pair (uh, qh) such that |J(u, q)−J(uh, qh)| is within
to a desired tolerance. The idea is to exploit the a posteriori estimator to build
the most economical grid for approximating both u and q, in addition “sensitive”
to the functional of interest J , in the spirit of a goal oriented approach (see, e.g.,
[4, 22, 26, 30]).
In more detail, the actual purpose is to enrich the a posteriori analysis in [3]
with the anisotropic information of section 3. The anisotropic mesh adaptation
help us in getting the most effective mesh from the computational viewpoint.

Before stating the main result of the paper we anticipate some notation.
Hereafter we assume n(q, r) = α(q, r), i.e., coinciding with the standard L2-
scalar product weighted by a positive constant α.
Let

ρu
K =

(
f + q +∇ · (ε∇uh)− β · ∇uh − σuh

)∣∣
K

(18)

and

Ru
Ke

=





[
ε∇uh · n

]
e

if e ∈ Eh\∂Ω

0 if e ∈ ∂Ω
(19)

be the element internal and boundary state residual, respectively; let

ρλ
K =

(
c(c0 − cuh) +∇ · (ε∇λh) + β · ∇λh − σλh

)∣∣
K

(20)

and

Rλ
Ke

=





[
ε∇λh · n

]
e

if e ∈ Eh\∂Ω

0 if e ∈ ∂Ω
(21)

be the element internal and boundary adjoint state residual, respectively; finally
let

ρq
K =

(
αqh − λh)

∣∣
K

(22)

be the gradient residual.

Proposition 4.1 Let {u, λ, q} ∈ V×V×Q be the solution to (5) and {uh, λh, qh} ∈
Vh×Vh×Qh be the corresponding approximation, solution to (6)-(8). Moreover
let q ∈ H1(Ω), and the observation operator c(·) in (3) be identified by a function
in L∞(Ω). Then, under the hypotheses as in Lemma 3.1,

∣∣J(u, q)− J(uh, qh)
∣∣ ≤ C

∑

K∈Th

{
Ru

KωK(λ) +Rλ
KωK(u) +Rq

KωK(q)
}
, (23)
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where J(u, q) is the cost functional in (3), C = C(M, Ĉ, |K̂|), the residuals Ru
K ,

Rλ
K and Rq

K are identified by

Ru
K =

(
1

λ1,Kλ2,K

)1/2 ∑

e∈∂K

(
h

1/2
e

2
‖Ru

Ke
‖L2(e) +

h
3/2
e

λne,K
‖γ‖L∞(e) ‖[∇uh · n]e‖L2(e)

)

+ ‖ρu
K‖L2(K),

Rλ
K =

(
1

λ1,Kλ2,K

)1/2 ∑

e∈∂K

(
h

1/2
e

2
‖Rλ

Ke
‖L2(e) +

h
3/2
e

λne,K
‖γ‖L∞(e) ‖[∇λh · n]e‖L2(e)

)

+ ‖ρλ
K‖L2(K),

Rq
K = ‖ρq

K‖L2(K),

the weights ωK(u), ωK(λ) and ωK(q) are given by

ωK(u) =

[ 2∑

i=1

λ2
i,K

(
rT
i,K GK(u) ri,K

)]1/2

,

ωK(λ) =

[ 2∑

i=1

λ2
i,K

(
rT
i,K GK(λ) ri,K

)]1/2

,

ωK(q) =

[ 2∑

i=1

λ2
i,K

(
rT
i,K GK(q) ri,K

)]1/2

,

(24)

all the element internal and boundary residuals being defined as in (18)-(22).

Proof. By mimicking the proof of Proposition 4.1 in [3] we get the initial relation

J(u, q)− J(uh, qh) =
1

2
∇Lstab(uh, λh, qh)(u− Ihu, λ− Ihλ, q − Ihq). (25)

Plugging the expression of the gradient of Lstab in (11) in this identity, we obtain

J(u, q)− J(uh, qh) =
1

2
∇Lstab(uh, λh, qh)(u− Ihu, λ− Ihλ, q − Ihq)

=
1

2

[
a(uh, λ− Ihλ) − b(qh, λ− Ihλ)− (f, λ− Ihλ)

+
1

2

∑

K∈Th

{ ∑

e∈∂K

∫

e

γ h2
e [∇uh · n]e [∇(λ− Ihλ) · n]e ds

}]

+
1

2

[
a(u − Ihu, λh) + (cuh − c0, c(u− Ihu))

+
1

2

∑

K∈Th

{ ∑

e∈∂K

∫

e

γ h2
e [∇(u − Ihu) · n]e [∇λh · n]e ds

}]

− 1

2

[
b(q − Ihq, λh)− n(qh, q − Ihq)

]

=
1

2

[
Iu + Iu,stab

]
+

1

2

[
Iλ + Iλ,stab

]
+

1

2

[
Iq

]
.

(26)
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Let us deal with the five terms on the right-hand side of (26) in turn.
We point out that C will denote different constant values throughout the proof.
The definitions of the bilinear forms a(·, ·) and b(·, ·), elementwise integration by parts
of the diffusive term, and the definitions (18) and (19) of the internal and boundary
state residuals yield

Iu = a(uh, λ− Ihλ)− b(qh, λ− Ihλ) − (f, λ− Ihλ)

=
∑

K∈Th

{∫

K

ε∇uh · ∇(λ − Ihλ) dK +

∫

K

β · ∇uh(λ− Ihλ) dK

+

∫

K

σuh(λ− Ihλ) dK −
∫

K

qh(λ− Ihλ) dK −
∫

K

f(λ− Ihλ) dK
}

=
∑

K∈Th

{∫

K

[
∇ · (ε∇uh) + β · ∇uh + σuh − f − q

]
(λ− Ihλ) dK

+
1

2

∑

e∈∂K

∫

e

[
ε
∂uh

∂n

]
e
(λ− Ihλ) ds

}

=
∑

K∈Th

{∫

K

− ρu
K(λ− Ihλ) dK +

1

2

∑

e∈∂K

∫

e

Ru
Ke

(λ− Ihλ) ds
}
.

(27)

Via the Cauchy-Schwarz inequality and Lemma 3.1, we have

|Iu| ≤ C
∑

K∈Th

{[
‖ρu

K‖L2(K) +
1

2

(
1

λ1,Kλ2,K

)1/2( ∑

e∈∂K

‖Ru
Ke
‖L2(e) h

1/2
e

)]

[ 2∑

i=1

λ2
i,K

(
rT

i,K GK(λ) ri,K

)]1/2}
,

(28)

with C = max(C1, C2). Let us consider now Iu,stab. Exploiting the regularity of λ and
suitably redistributing elementwise the jump [−∇(Ihλ) · n]e, provide us with

Iu,stab =
1

2

∑

K∈Th

{ ∑

e∈∂K

∫

e

γ h2
e [∇uh · n]e [∇(λ− Ihλ) · n]e ds

}

=
∑

K∈Th

{ ∑

e∈∂K

∫

e

γ h2
e [∇uh · n]e

(
−∇(Ihλ) · ne,K

)
ds

}

where ne,K = nK

∣∣
e
, for e ∈ ∂K. Cauchy-Schwarz inequality and Corollary 3.1 lead to

|Iu,stab| ≤
∑

K∈Th

{ ∑

e∈∂K

‖γ‖L∞(e) h
2
e ‖[∇uh · n]e‖L2(e) ‖∇(Ihλ) · ne,K‖L2(e)

}

≤ C̃3

∑

K∈Th

{( ∑

e∈∂K

‖γ‖L∞(e)
h

3/2
e

λne,K
‖[∇uh · n]e‖L2(e)

)

(
1

λ1,Kλ2,K

)1/2 [ 2∑

i=1

λ2
i,K

(
rT

i,K GK(λ) ri,K

)]1/2}
.

(29)
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In the same fashion as the one driving to (27), we obtain

Iλ =
∑

K∈Th

{∫

K

− ρλ
K(u − Ihu) dK +

1

2

∑

e∈∂K

∫

e

Rλ
Ke

(u − Ihu) ds
}
.

Cauchy-Schwarz inequality and the anisotropic estimates (15) and (16) give

|Iλ| ≤ C
∑

K∈Th

{[
‖ρλ

K‖L2(K) +
1

2

(
1

λ1,Kλ2,K

)1/2( ∑

e∈∂K

‖Rλ
Ke
‖L2(e) h

1/2
e

)]

[ 2∑

i=1

λ2
i,K

(
rT

i,K GK(u) ri,K

)]1/2}
,

(30)

with C = max(C1, C2). The term Iλ,stab can be bounded exactly as Iu,stab, i.e.,

|Iλ,stab| ≤ C̃3

∑

K∈Th

{( ∑

e∈∂K

‖γ‖L∞(e)
h

3/2
e

λne,K
‖[∇λh · n]e‖L2(e)

)

(
1

λ1,Kλ2,K

)1/2 [ 2∑

i=1

λ2
i,K

(
rT

i,K GK(u) ri,K

)]1/2}
.

(31)

Eventually, the gradient contribution Iq is managed recalling the definition of the bilinear
form b(·, ·), the choice made for the Tikhonov regularization n(q, q) in (3), and using
the Cauchy-Schwarz inequality and estimate (15) as

|Iq| ≤
∑

K∈Th

‖ρq
K‖L2(K) ‖q − Ihq‖L2(K)

≤ C
∑

K∈Th

{
‖ρq

K‖L2(K)

[ 2∑

i=1

λ2
i,K

(
rT

i,K GK(q) ri,K

)]1/2}
,

(32)

with C = C1. The final result (23) follows after suitably gathering (28), (29), (30), (31)

and (32). �

Estimate (23) enjoys the same structure as in [3]: the residual of the state
equation is weighted by ωK(λ) which is related to the adjoint state variable; vice
versa the adjoint state residual is tuned by the weight associated with the state
variable u; the gradient residual is modulated by the control variable itself via
ωK(q).
The added value of estimate (23) with respect to [3] is the presence of anisotropic
information, lumped in the weights.

Remark 4.1 An a posteriori estimate alternative to (23) and enjoying the same
structure can be obtained in the same spirit as in [13]. In more detail, a different
choice for the discrete test function ϕh in (4.5) of [4], leads to replacing in (25),
e.g., u− Ihu with u− uh− Ih(u− uh), and analogously for the adjoint state and
the control variables. We get consequently weights depending on the interpolation
errors in the right-hand side of (23). As numerically assessed in [13] this last
approach yields more economical grids in the case of the Clément interpolant.
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The right-hand side of (23) still involves the exact optimal solution {u, λ, q},
thus not being directly computable. To make such a quantity operative with a
view to the mesh adaptive algorithm, we introduce a suitable recovery procedure.
Namely, as the weights depend on the first order partial derivatives of {u, λ, q}
via the matrix GK in (14), we resort to the standard area-weighted Zienkiewicz-
Zhu gradient recovery procedure ([36, 37, 33, 28]). Hence the general matrix
GK(z), for any z ∈ H1(Ω), is replaced by G∗

K(z), where

[G∗
K(z)]i, j =

∫

∆K

(∇ZZz)i (∇ZZz)j d∆K , with i, j = 1, 2,

∇ZZz = ((∇ZZz)1, (∇ZZz)2)
T denoting the recovered gradient obtained from

the discrete approximation zh.

The global error estimator for the cost functional J(u, q) in (3) stemming
from Proposition 4.1 is thus identified by

ηJ =
∑

K∈Th

ηK , (33)

where ηK = Ru
Kω

∗
K(λ) +Rλ

Kω
∗
K(u) +Rq

Kω
∗
K(q) is the corresponding local error

estimator, with

ω∗
K(u) =

[ 2∑

i=1

λ2
i,K

(
rT
i,K G∗

K(u) ri,K

)]1/2

,

ω∗
K(λ) =

[ 2∑

i=1

λ2
i,K

(
rT
i,K G∗

K(λ) ri,K

)]1/2

,

ω∗
K(q) =

[ 2∑

i=1

λ2
i,K

(
rT
i,K G∗

K(q) ri,K

)]1/2

.

We point out that constant C in (23) is dropped in the definition of ηJ . However
it may be taken into account by a suitable tuning, as depending only on quan-
tities related to K̂ and ∆ bK

. Finally we highlight that when λ1,K ≃ λ2,K ≃ hK

we recover the corresponding isotropic a posteriori error estimator.

5 The adaptive procedure

This section is devoted to presenting the iterative procedure followed to commute
the a posteriori error estimator in (33) into an actual algorithm to anisotropically
adapt the computational mesh. Concerning the optimization procedure, we
provide the details separately for the two test cases, as a different algorithm is
employed for each of them.
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5.1 The mesh adaptation procedure

We employ a metric-based adaptive procedure as a predictive tool. Two recipro-
cal approaches are pursuable: either given a constraint on the maximum number
of elements, find the mesh providing the most accurate numerical solution; or
given a constraint on the accuracy of the numerical solution, find the mesh with
the least number of elements. We here focus on the latter approach.

We recall that a metric is induced by a symmetric positive-definite tensor
field M̃ : Ω→ R

2×2 (see, e.g., [21]). Let us emphasize the link existing between
metric and mesh. With any given mesh Th, we associate a piecewise constant
metric M̃Th

, such that M̃Th
|K = M̃K = B−2

K = RT
KΛ−2

K RK , for any K ∈ Th, the
matrices RK and ΛK being defined according to section 3. With respect to this

metric, any triangle K is unit equilateral, i.e.

√
eT M̃Th

e = 1, with e the vector
identifying the edge e of K.

Vice versa let now M̃ be a given metric. We show how an optimal mesh Th
with respect to M̃ can be defined in terms of a so-called matching condition.
We first diagonalize the tensor field M̃ as M̃ = R̃T Λ̃−2R̃, with Λ̃ = diag(λ̃1, λ̃2)
and R̃T = [̃r1, r̃2] a positive diagonal and an orthogonal matrix, respectively.
We then approximate the quantities λ̃1, λ̃2, r̃1 and r̃2 via piecewise constants
over Th, such that r̃i|K = r̃i,K ∈ R

2, λ̃i|K = λ̃i,K ∈ R, for any K ∈ Th and with
i = 1, 2.

Thus following Definition 5.1 in [29] we state that the mesh Th matches M̃

if, for any K ∈ Th, M̃ |K = M̃Th
|K , i.e., r̃i,K = ri,K , λ̃i,K = λi,K , for i = 1, 2.

In the spirit of a predictive procedure the tensor field M̃ represents the actual
unknown. In more detail, the computation of M̃ (and of the corresponding
matching triangulation) is obtained via an iterative procedure. At each iteration,
say j, we deal with three quantities:

i) the actual mesh T (j)
h ;

ii) the new metric M̃ (j+1) computed on T (j)
h ;

iii) the updated mesh T (j+1)
h matching M̃ (j+1).

Problem (6)-(8) is solved on T (j)
h and the corresponding solution {uh, λh, qh}

drives suitable local minimization problems (one for each K ∈ T (j)
h ), with the

aim of identifying the metric M̃ (j+1). Finally the new mesh T (j+1)
h is built via

the matching condition. This last task is accomplished by means of the function
adaptmesh in FreeFem++ ([23]).

Before addressing the local minimization problem, we suitably rewrite the
local estimator ηK in (33) as

ηK = αK

{
Ru

K ω ∗
K(λ) +Rλ

K ω ∗
K(u) +R q

K ω ∗
K(q)

}
(34)
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where αK = λ
3/2
1,Kλ

3/2
2,K gathers all the area |K| information,

Ru
K =

Ru
K

λ
1/2
1,Kλ

1/2
2,K

, Rλ
K =

Rλ
K

λ
1/2
1,Kλ

1/2
2,K

, R q
K =

Rq
K

λ
1/2
1,Kλ

1/2
2,K

,

are approximately pointwise values (at least for a sufficiently fine mesh), while
the new weights

ω ∗
K(u) =

[
sK rT

1,K G
∗
K(u) r1,K +

1

sK
rT
2,K G

∗
K(u) r2,K

]1/2
,

ω ∗
K(λ) =

[
sK rT

1,K G
∗
K(λ) r1,K +

1

sK
rT
2,K G

∗
K(λ) r2,K

]1/2
,

ω ∗
K(q) =

[
sK rT

1,K G
∗
K(q) r1,K +

1

sK
rT
2,K G

∗
K(q) r2,K

]1/2

collect only the anisotropic information associated with K, with G
∗
K(·) = G∗

K(·)
(λ1,Kλ2,K)−1. Following [29], for ease of computation we suitably combine the
information of the three terms in (34) in a single one. This yields

ηK = αK ω ∗
K

with αK defined as in (34) and

ω ∗
K =

[
sK rT

1,K G
∗
K r1,K +

1

sK
rT
2,K G

∗
K r2,K

]1/2
,

where the local matrix

G
∗
K =

(
Ru

K

)2
G

∗
K(λ) +

(
Rλ

K

)2
G

∗
K(u) +

(
R q

K

)2
G

∗
K(q) (35)

merges the anisotropic information provided by the state, the adjoint state and
the control variable, respectively, suitably weighted via the local residuals. The
adaptive procedure based on G

∗
K will be able to take into account all the direc-

tional features associated simultaneously with the three independent variables
u, λ and q (we refer to section 6 for some details).

We are now in a position to discuss the local problem aiming at minimizing
the number of mesh elements. We first observe that this is equivalent to maxi-
mizing the area of each element. In the spirit of an equidistribution criterion, we

enforce also that, for each element K ∈ T (j+1)
h , ηK = αK ω ∗

K = τ , with τ a local

tolerance. Thus the goal of maximizing the area |K| = |K̂|λ1,Kλ2,K lumped
into αK is achieved by minimizing the weight ω ∗

K with respect to sK and r1,K ,
i.e., by solving the local constrained minimization

min
sK≥1,ri,K ·rj,K=δij

ω ∗
K(r1,K , sK), (36)
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δij being the Kronecker symbol and where it is understood that r1,K and r2,K

are orthonormal vectors. Notice that all the recovered quantities involved in ω ∗
K

are computed on the background grid T (j)
h .

The following statement provides us with the desired result:

Proposition 5.1 Let {li,K , gi,K} be the eigenvector-eigenvalue pair of G
∗
K with

g1,K ≥ g2,K > 0. Then the minimum (36) is identified by the choices

r̃1,K = l2,K and s̃K =

(
g1,K

g2,K

)1/2

, (37)

yielding the value
(
2
√
g1,Kg2,K

)1/2
for ω ∗

K .

Proof. We refer to Proposition 14 in [18]. �

We observe that the optimal weight ω ∗
K does not depend on the stretching factor.

This sounds promising with a view to the efficiency and reliability analysis of
the error estimator ηJ .

To complete the construction of the optimal metric M̃ (j+1), it suffices to
extract the separate values of λ̃1,K and λ̃2,K obtained by directly exploiting the
equidistribution constraint, i.e., solving the equations

(
λ̃1,K λ̃2,K

)3/2 (
2
√
g1,Kg2,K

)1/2
= τ and

λ̃1,K

λ̃2,K

= s̃K =

(
g1,K

g2,K

)1/2

. (38)

System (38) provides us with the distinct values

λ̃1,K =

(
1√
2

(
g1,K

g2
2,K

)1/2

τ

)1/3

, λ̃2,K =

(
1√
2

(
g2,K

g2
1,K

)1/2

τ

)1/3

. (39)

Eventually, the optimal metric M̃ (j+1) is identified by r̃1,K in (37), λ̃1,K and

λ̃2,K in (39), with r̃2,K ⊥ r̃1,K .

To summarize, the adaptive algorithm used in practice is:

Algorithm 5.1 Set j = 0:

1. build the background mesh T (j)
h ;

2. solve problem (6)-(8);

3. solve the local minimization problem (36) for the pair (s̃K , r̃1,K);

4. via the equidistribution principle, compute (λ̃1,K , λ̃2,K) by

(38)-(39);

5. build up the new metric M̃ (j+1);
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6. construct the new mesh T (j+1)
h matching M̃ (j+1);

7. if a suitable stopping criterion is met, exit; else j ← j + 1
and go to 2.

As possible stopping criterion, we can fix the maximum number of iterations

rather than |#T (j+1)
h − #T (j)

h | ≤ #T (j)
h TOLLREL, for a small relative tolerance

TOLLREL.

Remark 5.1 When the metric-based approach is driven by the maximization of
the solution accuracy for a fixed number of elements, Algorithm 5.1 can still
be used provided that the local tolerance τ in (38) is suitably modified.

6 Numerical results

We consider two test cases: the first is an academic benchmark, whereas the
second deals with a problem of possible interest in an environmental framework.
In both cases our purpose is to assess qualitatively the performance of the adap-
tive procedure in section 5. A deeper analysis from a quantitative viewpoint is
forthcoming.
We point out that the numerical tests below employ the modified estimator
proposed in Remark 4.1. Moreover the tuning parameter γ0 in (9) of the edge
stabilization term is set equal to 10−2.

6.1 A benchmark problem

We start from a relatively simple framework fitting thoroughly (4), but at the
same time exhibiting directional features. Namely, we refer to Example 1 in
section 5.1 in [1]. The domain Ω coincides with the rectangle (0, 1)×(0, 0.2); the

diffusion coefficient is ε = 10−3; the advective field is β = 2π
(
x2−0.1, x1−0.5

)T

(see Figure 2 (left)); the reaction σ is equal to 1; the source term is f = 0.
With reference to (3), we pick c = 1, c0 (see Figure 2 (right)) as the solution to
(1) with the above data except that

f = 5
{

exp
(
− (x1 − 0.2)2 + (x2 − 0.1)2

0.02

)
+ exp

(
− (x1 − 0.8)2 + (x2 − 0.1)2

0.02

)}
,

while n(q, q) = α
∫
Ω q

2 dΩ. Two different choices are made for the Tikhonov
regularization parameter α. The expected solution u to (4) should be a “pertur-
bation” of c0, as small as possible, the smaller α. The observation function c0
reaches its maximum values along the 45◦ diagonal passing through the center
of the domain. It is also characterized by steep boundary layers all along the
outflow of the domain.
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Figure 2: Advective field β and observation c0 for the benchmark problem.
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Figure 3: Second adapted grid for the benchmark problem and for α = 1:
global grid (top-left); a zoom around the center of Ω (right); a detail of the
upper-right boundary layer (bottom-left).
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Figure 4: Final adapted grid for the benchmark problem and for α = 1: global
grid (top-left); a zoom around the center of Ω (right); a detail of the upper-
right boundary layer (bottom-left).

Figure 5: State (left) and adjoint state (right) solutions to the benchmark
problem on the last adapted grid for α = 1.
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Figure 6: Third adapted grid for the benchmark problem and for α = 10−4:
global grid (top-left); a zoom around the center of Ω (right); a detail of the
upper-right boundary layer (bottom-left).
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Figure 7: Final adapted grid for the benchmark problem and for α = 10−4:
global grid (top-left); a zoom around the center of Ω (right); a detail of the
upper-right boundary layer (bottom-left).

Figure 8: State (left) and adjoint state (right) solutions to the benchmark prob-
lem on the last adapted grid for α = 10−4.

The linear system arising from the discrete equations (6)-(8) is solved by the
sparse LU-decomposition in UMFPACK ([12]).

Let us first take α = 1. We assess the adaptive Algorithm 5.1 starting from
a uniform initial mesh consisting of 4226 elements. We fix a maximum number
of iterations equal to 10 and choose a global tolerance equal to 10−3.
Figure 3 (top-left) and 4 (top-left) show the second and final adapted grid, re-
spectively, together with two details around the center of the domain (right) and
the upper right boundary layer (bottom-left). A comparison of the figures high-
lights the remarkable difference in the number of triangles: the second adapted
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grid has 14785 elements against 7068 of the last adapted mesh. Moreover, in
the first case the triangles are more scattered in attempting at capturing all the
directional features. On comparing these features with c0 in Figure 2 (right), we
may notice a grid refinement also in areas not meaningful for c0. Actually, this
can be justified by the plot in Figure 5 (right), i.e., by the behaviour of the ad-
joint state variable λ. This sounds consistent with the spirit of the goal-oriented
approach and with the idea leading to our adaptive procedure which merges the
information coming from the state, the adjoint state and the gradient equation
according to (35). Notice that the contribution of the control variable in (35)

via the term
(
R q

K

)2
G

∗
K(q) vanishes as R q

K = 0 due to the gradient equation
(5)3.
Figure 5 (left) displays the state variable obtained on the last adapted mesh.
The mismatch with respect to the observation c0 in Figure 2 is justified by the
relatively large value assumed for the Tikhonov regularization parameter α. As
expected, a reduction of this value down to 10−4 allows us to obtain a state
variable closer to c0 (see Figure 8, left).
Keeping the value α = 10−4, and still employing 10 maximum iterations and
a global tolerance 10−3, we obtain the grids in Figure 6 (top-left) and 7 (top-
left), at the third and last iteration, respectively. It is apparent the absence of
the adjoint state contribution in this case. This finds a justification in Figure
8 (right) which represents λ on the tenth adapted grid and clearly stresses its
smallness. On comparing both the corresponding whole meshes and the two
zooms, we appreciate the more anisotropic nature of the final adapted grid.

6.2 An environmental application

In this section we focus on a test case of some environmental interest. In par-
ticular, we study the diffusion and the transport of a certain pollutant emitted
by industrial chimneys in the presence of a strong wind. The goal is to measure
the concentration of such a pollutant in an observation area, e.g., a town, and
consequently to keep it below a given attention level by suitably regulating the
chimneys emission.
This aim is similar to the one pursued in Section 4.2 in [14], but cast in an
anisotropic framework. The employment of an anisotropic setting is justified by
the evident directional features induced by the strong advective field (wind).
Under reasonable assumptions the phenomena at hand can be modeled via the
2D linear scalar advection-diffusion-reaction equation in (1) (see, e.g., [17]). The
main assumptions behind this model can be thus summarized:

• the diffusion and transport of the pollutant is tracked on a x1 − x2 plane
parallel to soil at an effective height H coinciding with the mean cross-
section of the emitted plumes;

• air motion is described by a medium wind field plus additional terms mod-
eling the turbulent diffusion. With reference to (1)1, β takes into account
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Figure 9: Reference configuration for the two-chimney test case (left) and initial
mesh (right).

the medium wind field, while the turbulent diffusion is represented by the
function ε. The molecular diffusion is thus neglected;

• the 3D concentration of the plumes follows the Gaussian model u(x1, x2, x3) =
P (x1, x2, x3)u(x1, x2), where

P (x1, x2, x3) = exp
(
− 1

2

[x3 −H
σ3

]2)
+ exp

(
− 1

2

[x3 +H

σ3

]2)

models the vertical distribution along the x3 axis and the reflection from
the soil, and σ3 = σ3(x1, x2) represents the vertical dispersion coefficient
depending on the atmospheric stability class and soil orography ([17]). Our
interest is for neutral atmospheric conditions in the presence of rural and
urban soil;

• in the urban scale approximation, the reaction term can be neglected.

Let us describe the environmental configuration under investigation (see
Figure 9 (left)). We identify the computational domain Ω with the rectangle
(−5, 5) × (−4, 4) km. We are tracking the sulfur dioxide (SO2) concentration
associated with two emitting chimneys, both characterized by an effective height
H = 100 m. A maximum emission rate F = 800 gs−1 is assumed for the two
chimneys, inducing a maximum emission density qmax = Fσ−1

3 σ−2
12 gs−1m−3,

σ12 being the horizontal dispersion coefficient. Notice that in the definition of
qmax both σ12 and σ3 are evaluated at r = 2000 m. The emission areas E1 and
E2 are then modeled by two circular regions centered at (−3, 0), (−3, 1.5) km,
respectively, both with radius equal to 50 m (see Figure 9 (left)), the emission
density being here assumed constant. The expression adopted for σ12 and σ3 is

σ12 = 0.12 r (1 + 0.00025 r)−0.5m, σ3 = 0.04 r (1 + 0.0002 r)−0.5m (40)
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Figure 10: Sixth adapted grid for the two-chimney test case: global grid (left);
a zoom around the chimneys (top-right) and the town (bottom-right).
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Figure 11: Final adapted grid for the two-chimney test case: global grid (left);
a zoom around the chimneys (top-right) and the town (bottom-right).

according to the hypotheses advanced for the atmospheric conditions and the
orography. The variable r in (40) measures the (common) horizontal component
of the distance of any point in Ω from either the emission sources, i.e., r =
max(1000 |x1 + 3|, 100) m. The max avoids the vanishing of r at x1 = −3.

With reference to the model problem (1), we complete the specification of
the data by choosing: β = (W, 0)T , with W = 2.5 ms−1; ε = σ2

12W (2r)−1;
f = 0; finally the control q plays the role of the emission density in gs−1m−3.
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Concerning the boundary conditions, we assign homogeneous Neumann data
except on the boundary {(x1, x2) : x1 = −5 km,−4 < x2 < 4 km}, where a
homogeneous Dirichlet condition holds. The Neumann data can be incorporated
in the a posteriori analysis of section 4 in a straightforward way. In more detail,
it suffices to suitably redefine the boundary state and adjoint state residuals in
(19) and (21).
Moving to the control framework, since we are interested in monitoring the SO2

concentration over the urban area TOWN in Figure 9 (left), we have to suitably
modify the definition of the cost functional in (3). In particular we take

J(u, q) = J(u) =
1

2

∫

TOWN

(cu− c0)2 d TOWN,

where the observation c0 represents the attention level fixed to 150 µgm−3; the
observation operator c coincides with the projection to the soil P (x1, x2, 0) =
2 exp

(
− 0.5H2 σ−2

3

)
. Notice that the Tikhonov regularization parameter is

neglected in this case.
The observation space H coincides with L2(TOWN), while Q reduces to R

2. This
latter definition simplifies the optimal control problem: we are led to work in a
finite dimensional framework (R2) so that the discrete problem (6)-(8) is solved
by the Newton method in one iteration.

Figures (10) (left) and (11) (left) gather the sixth and the tenth adapted grids
yielded by Algorithm 5.1 by selecting a global tolerance equal to 103 and for a
maximum number of 10 iterations. Notice that the choice of the global tolerance
is consistent with the expected value for J , of about 6000 (µgm−3)2 km2. The
modest grid refinement of the two grids upwind the chimneys pertains to the
goal-oriented effect. As appreciable in Figure 12 (bottom-right), the adjoint state
problem detects the regions mostly influencing the cost functional J , including
the zone behind the chimneys. Moreover, the adjoint state solution exhibits
a strong boundary layer across the Dirichlet boundary. We remark also that
the Gaussian model is not suited for describing the phenomenon upwind the
emitting sources.
The two details in Figures 10 (right) and 11 (right) zoom in on the areas around
the chimneys and the town. They both highlight the strong anisotropic features
of the adapted meshes, detected in a slightly clear-cut way on the last grid. The
number of mesh elements is 3903 versus 3322 in the two cases, respectively.

The optimal values returned by the adaptive procedure at the last iteration
are q1 = 0.155 qmax gs−1m−3 and q2 = 0.402 qmax gs−1m−3 for the two emissions
in E1 and E2, respectively. This suggests that, in order to keep the SO2 con-
centration below the attention level, the first chimney has to operate about at
15.5% of its full power, while E2 is allowed to work at a greater power, of about
40% of its maximum capacity. The corresponding minimum and maximum SO2

concentration values over the town are 3.42 and 150.5 µgm−3. This corroborates
the real effectiveness of the resulting control policy.
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Figure 12: SO2 concentration at soil on the initial (top-left) and last adapted
(top-right) grid; SO2 concentration at the effective height H (bottom-left) and
adjoint state solution (bottom-right) on the last adapted grid.

The different emission density distribution of the two chimneys finds a confir-
mation in Figure 12. The two plots on top display the SO2 concentration at
soil computed on the initial (left) and on the last adapted (right) grid, while
the bottom-left plot shows the same quantity at the effective height on the last
adapted mesh. It is clear that E2 has a greater power. The improvement brought
by the adaptive procedure is corroborated by the higher sharpness of the contour
lines. The adjoint state variable in Figure 12 (bottom-right) lets E2 be more
free to emit at a larger extent, E2 being at the side of the influence area of λ.

7 Conclusions

The proposed anisotropic mesh adaptation procedure driven by a suitable a pos-
teriori error estimator seems promising in the light of the numerical assessment
performed in section 6. This work represents the first step towards a broader
range of validations. Also a more thorough quantitative investigation still needs
to be carried out.
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