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Abstract

In this study, we focus on a specific application, the modeling and
simulation of drug release from cardiovascular drug eluting stents. In
particular, we analyze the drug release dynamics from the stent coat-
ing, where the drug is initially stored, to the arterial wall surrounding
the stent. The main challenge in addressing this problem consists in
accounting for multiple space scales. We propose a new multiscale
model for the drug release that significantly cuts down the compu-
tational cost. This model allows us to consider a realistic problem
setting, which is applied for the numerical experiments.

1 Introduction

Drug eluting stents (DES) are apparently simple medical implanted devices
used to restore blood flow perfusion into stenotic arteries. However, the
design of such devices is a very complex task because their performance in
widening the arterial lumen and preventing further restenosis is influenced
by many factors such as the geometrical design of the stent, the mechanical
properties of the materials and the chemical properties of the drug that is
released, as discussed in [13, 17].

∗This work has been supported by Fondazione Cariplo, Milan, Italy, under the project
”Modellistica matematica di materiali microstrutturati per dispositivi a rilascio di far-
maco”, by the Italian Institute of Technology (Istituto Italiano di Tecnologie) with
the project ”NanoBiotechnology - Models and Methods for Local Drug Delivery from
Nano/Micro Structured Materials” and by the Policlinico di Milano with the project
”Sistemi di Bioingegneria virtuale: Realizzazione di un modello per la identificazione e
correzione dei difetti nel Sistema Venoso”.
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In this framework, mathematical models and numerical simulation tech-
niques play a relevant role in understanding what are the most appropriate
choices for the optimal design of DES. Indeed, several mathematical models
have been developed to address the fundamental questions of pharmacoki-
netics, i.e. to estimate the total amount of drug to be released and the
characteristic time scale of the release process. The model proposed by
Higuchi, see [10, 11] is a milestone in this field. However, the drug release
rate has been studied by Higuchi in one space dimension and for the case
of constant coefficients, exploiting the analytical solutions of the governing
equations in this simplified setting. For this reason, the Higuchi model and
its variants are not suitable to address directly problems with complex ge-
ometries, such as the case of stents. Nevertheless, some of their restrictive
assumptions have been removed in subsequent studies, we refer to [18] for
an overview and in particular to [4] for the analysis of the case with time
dependent coefficients. Recently, see [5], a more advanced model has been
proposed for the study of the drug dose, namely the cumulative concen-
tration along the release period, on an axialsymmetric geometrical setting.
The work presented in [5] definitely overrides the main limitations of the
original Higuchi model, but the fully three-dimensional and time dependent
problem is not considered yet. This is the aim of the present work, that we
address by means of a multiscale approach putting together the main ideas
at the basis of the Higuchi model together with a general treatment of the
geometrical setting. The resulting problem is then efficiently addressed by
means of suitable numerical approximation techniques.

The main difficulties of this work arise from the need to deal with phe-
nomena that take place on multiple scales in space and time. Concerning the
space scales, we remind that DES for cardiovascular applications are minia-
turized metal structures that are coated with a micro-film containing the
drug that will be locally released into the arterial walls for healing purposes.
The thickness of this film generally lays within the range of microns. As re-
gards the time scales, we observe that the release of drug is deliberately very
slow. In general, it persists until a few weeks after the stent implantation.

To address these topics, we start from a general model for mass transfer
through heterogeneous media, consisting on an advection-diffusion-reaction
equation for each different layer of material or tissue into the stent and the
arterial walls, see for instance [15, 22]. Such model has already been applied
in [12] for computational studies about drug release from stents. However,
we point out that simulation studies based on this model involve extremely
high computational costs and by consequence, to our knowledge, only studies
concerning simplified stent geometries have been pursued so far. Starting
from this point, we propose a multiscale model for mass transfer from a thin
layer, which significantly cuts down the computational efforts needed for the
simulation of the drug release from stents. Another difficulty arise from the
fact that the simulation of drug release represents a stiff problem, whose
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numerical approximation requires the application of an adaptive stepping
strategy. For a preliminary analysis, we adopt the simple strategy proposed
in [14] and we combine it with some a-priori knowledge of the behavior of
the solution.

To sum up, combining a multiscale model for mass transfer with suit-
able numerical discretization methods it is possible to obtain simulations in-
volving realistic expanded stent geometries, obtained in [19], and long time
scales. The efficacy of our approach is demonstrated by means of numerical
results concerning this realistic situation.

2 The mathematical model

2.1 General settings

Our mathematical model describing drug release from DES is basically ob-
tained putting together a suitable model for the dynamics of the drug into
the polymeric substrate with a corresponding model for mass transfer into
the arterial walls. To this purpose, we assume that the tissues constituting
the arteries as well as the stent coating behave as homogeneous and isotropic
porous media with respect to the filtration of plasma and the transfer of
molecules. In order to set up a mathematical model, we address at first the
governing equations for the space dependence of the drug concentration in
the stent coating and in the arterial walls. Then, the complete model is
obtained by putting together these operators in the time dependent setting
and balancing them with suitable forcing terms.

Concerning the dynamics of the drug inside the stent coating, we assume
that it is simply governed by diffusion. As shown in [4], this assumption
holds true when the initial concentration of the drug into the polymeric
matrix is equal or very close to the solubility of the drug. In this case it is
possible to neglect the phase transition process of the drug from the solid
state to the dissolved state inside the matrix, and consider that all the drug
is in the dissolved state from the beginning of the analysis. Exploiting a
thermal analogy, we address a Stefan problem in the limit of high Stefan
numbers.

We introduce a domain Ωc ⊂ R
3 given by the thin polymeric layer sur-

rounding the stent and we denote with nc its outer unit normal vector.
Moreover, let Γ be the interface between Ωc and the arterial walls. Let
d(t,x) be the concentration of the dissolved drug in the coating, where t
and x are the time and space coordinates respectively. We assume that
d(t,x) is governed by the diffusion operator −Dc∆d, where Dc is the diffu-
sivity of the drug inside the polymer. This operator must be complemented
by suitable boundary conditions that are determined observing that no drug
transfer takes place from the stent coating to the metallic struts of the stent.
Then, the space dependence of the concentration d is governed by the linear
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operators Lcd and Bcd such that,

Lcd := −Dc∆d, in Ωc,

Bcd := ∇d · nc, on ∂Ωc \ Γ.

As regards the arteries, we remind that the arterial wall is a complex
structure that consists in several concentric layers. Precisely, going from the
lumen to the outer wall we find the endothelium, the intima, the internal
elastic lamina, the media and finally the adventitia. Each layer has differ-
ent physical properties. The plasma filtration and the transfer of molecules
in such structure can be described by the so called multilayer model, in-
troduced in [6] and evolved by [15] and [22] with the aim to analyze the
absorption of low density lipoproteins into the arterial walls. However, we
make here a simplification of the complex multilayered structure of the wall,
more precisely we assume that the arterial wall is an homogeneous medium,
whose physical properties are, for simplicity, the ones corresponding to the
intermediate layer, namely the media. Furthermore, we neglect the dynam-
ics of the drug into the blood flow. More precisely, we take into account that
the drug released into the arterial wall may be partially transferred into the
blood flow. This transfer takes place through a membrane of permeability
Pw that represents the endothelium. However, once the drug has reached
the blood flow, we assume that it is immediately transported away without
influencing the downstream region of the artery.

In this context, let us consider the computational domain Ωw, given by
a truncated portion of the arterial wall, where Γa is the outer wall tissue,
Γi is the interface with the blood, Γw are the artificial sections and Γ is
the interface with the coating. We denote with nw and n the unit normal
vectors associated to Ωw and Γ = ∂Ωw∩∂Ωc, respectively. The arbitrariness
of the choice of n will not influence the set up of the model. A simplified
shape of these domains is illustrated in Figure 1.

arterial wall
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Figure 1: Computational domains Ωw and Ωc.

Let us denote with a(t,x) the volume averaged concentration of the
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drug dissolved into the plasma permeating the arterial walls. According
to our physical assumptions, the dynamics of the concentration into the
arterial walls is governed by the advection-diffusion operator −Dw∆a+ u ·
∇a, where Dw is the diffusivity of the drug into the arterial tissue and u

is the velocity field describing the filtration of the plasma inside the tissue.
This operator is complemented by the following boundary conditions on
∂Ωw. At the interface Γi between the wall and the lumen we prescribe a
homogeneous Robin condition −Dw∇a · nw − Pwa = 0. Moreover, on the
artificial boundaries, Γw, we prescribe a homogeneous Neumann condition
∇a · nw = 0, exploiting the circumferential and longitudinal periodicity of
the stent struts. Then, we assume that the concentration is constant along
the normal direction of the external wall Γa and then also on this part of
boundary we prescribe ∇a ·nw = 0. To summarize the governing equations
for the concentration in the arterial walls, we introduce the linear operators
Lwa and Bwa such that,

Lwa := −Dw∆a+ u · ∇a, in Ωw,

Bwa :=

{
−Dw∇a · nw − Pwa on Γi,
∇a · nw on Γa ∪ Γw.

Finally, suitable transmission conditions must be satisfied by a and d at
the interface Γ between Ωw and Ωc. Such conditions require the continuity
of the concentration and of the corresponding flux according to Fick’s law.
They are summarized by the following operator,

B(a, d) :=

{
a− d, on Γ,
Dw∇a · n −Dc∇d · n, on Γ.

Remark 2.1 In some cases, the polymeric coating on the stent is further
covered by a thin film, which do not contains any drug, with the aim to
slow down the release process. This additional layer is called topcoat. It is
possible to model the topcoat as a membrane of infinitesimal thickness. In
this case, the continuity of concentrations across Ωc and Ωw does not hold
any more. By consequence, the first equation of B(a, d) should be replaced
by −Dc∇d · nc = PΓ(d − a), where PΓ is the permeability relative to the
topcoat.

To proceed, according to [17, 26], we observe that the drug into the
arterial wall can assume two different states: the state where the drug is
dissolved into the plasma permeating the interstices between cells, whose
volume averaged concentration is a(t,x), and the state where the drug at-
taches to specific sites of the extra-cellular matrix of the tissue. Let us
denote with b(t,x) the density of the free binding sites in the tissue, with
b0(x) their initial concentration in the arterial wall and with c(t,x) the con-
centration of the drug attached to the extra-cellular matrix. We assume
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that the drug in the state c(t,x) can no longer diffuse or be transported by
plasma. By virtue of the mass conservation principle, we immediately get
c(t,x) = b0(x) − b(t,x). The equilibrium between the dissolved drug and
the free binding sites is represented by the following equation,

a+ b
k1→ c, c

k2→ a+ b, in Ωw, (1)

where k1, k2 are the association and dissociation constants. Then, the dy-
namics of the concentration in the arterial walls is also influenced by a
reaction term,

Nw(a, b) := k1ab+ k2(b− b0), in Ωw.

We observe that Nw(a, b) is a nonlinear operator that does not involve
derivatives of a and b. Consequently it does not influence the boundary
conditions represented by Bw.

To sum up, our pharmacokinetic model corresponds to the following sys-
tem of equations that accounts for diffusion, transport and chemical binding
of the drug inside the tissue, as well as diffusion inside the coating of the
stent, 




∂ta+ Lwa+ Nw(a, b) = 0, in (0, T ] × Ωw,

∂td+ Lcd = 0, in (0, T ] × Ωc,

∂tb+ Nw(a, b) = 0, in (0, T ] × Ωw,

Bwa = 0, on (0, T ] × ∂Ωw \ Γ,

Bcd = 0, on (0, T ] × ∂Ωc \ Γ,

B(a, d) = 0, on (0, T ] × Γ,

(2)

together with suitable initial conditions that prescribe that the drug is ini-
tially gathered only into the stent coating with uniform concentration d0 > 0,
namely we set:

a|t=0 = a0 = 0, b|t=0 = b0, d|t=0 = d0.

Finally, the velocity field u(t,x) describing the plasma filtration through
the arterial walls together with the corresponding pressure p(t,x) are gov-
erned by means of the Darcy’s law of filtration,

u = − kb

µb
∇p, ∇ · u = 0, in Ωw,

where kb and µb are the hydraulic permeability of the arterial walls and the
viscosity of the blood plasma respectively. To prescribe suitable boundary
conditions we require that u·nw = 0 on Γw for symmetry and that u·nw = 0
on Γ because we assume that the plasma can not penetrate inside the stent
coating. Moreover, we observe that the filtration of plasma inside the arterial
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walls is driven by a decreasing pressure gradient from the inner to the outer
part of the artery. By consequence, setting the zero level of the pressure
to the standard atmospheric pressure, we require that p = δp(t) on Γi and
p = 0 on Γa, where 70 ≤ δp(t) ≤ 120 mmHg is the over-pressure induced
by the heartbeat. We notice that δp(t) is assumed to be uniform, and thus
independent of x ∈ Γi. In conclusion, the filtration velocity inside the
arterial walls is governed by the operator,

D(u, p) :=





u + kb

µb
∇p in Ωw,

∇ · u in Ωw,

p on Γa,

p− 1 on Γi,

∇p · nw on Γw ∪ Γ,

and exploiting the linearity of the previous operator the desired velocity and
pressure are given by the following problem,

D(ū, p̄) = 0, in Ωw, D(ū, p̄) = 0 on ∂Ωw,
u(t,x) = δp(t) · ū(x), p(t,x) = δp(t) · p̄(x).

(3)

Equation (2) represents to our knowledge the most realistic model to
describe the drug release from the stent. It consists of two second-order
parabolic partial differential equations on adjacent domains, (2)a and (2)b,
respectively, coupled by means of the transmission conditions on Γ expressed
by (2)f . Moreover, to take into account the reactions between the drug
and the arterial tissue, we also consider the zero-order partial differential
equation (2)c, in other words an ordinary differential equation for each point
of Ωw. This equation couples a and b nonlinearly. It is clear that the
numerical approximation of equation (2) is a very challenging task. The
aim of this work is to develop suitable strategies and algorithms that make
it possible to apply (2) to a realistic problem.

2.2 Outline of the analysis of the coupled problem

In this section we look at the main lines of the well posedness analysis of
the model. Since this is not the principal objective of this work, we will not
address rigorously all the details of this study.

Problem (2) features two different kind of difficulties. On one side, the
unknowns a(t,x) and b(t,x) are coupled on Ωw by means of the nonlinear
term Nw(a, b). On the other side, a(t,x) and d(t,x) interact on Γ through
linear transmission conditions.

In order to simplify the technicalities of this analysis, even though this
does not correspond to the geometrical configuration of our reference ap-
plication, we assume that Ωc, Ωw ⊂ R

3 are open and connected domains
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with regular boundaries ∂Ωc, ∂Ωw of class C1+ε with ε > 0. This is easily
verified if Ωc is embedded into Ωw. Furthermore, we remind that the oper-
ators Lc and Lw are characterized by constant coefficients and we assume
that the corresponding initial and boundary conditions are compatible. We
immediately observe that the initial conditions for a and d are incompatible
with the interface equation B(a, d) = 0 on Γ. To override this drawback we
restrict our analysis to (0, T ]. By consequence, given a generic domain for
the space variables Ω, we look for solutions in the following space,

S(Ω, T ) := {u(t,x) ∈ C0
(
(0, T ] × Ω̄

)
s.t.

u(·,x) ∈ C1
(
(0, T ]

)
∀x ∈ Ω and u(t, ·) ∈ C2(Ω) ∀t ∈ (0, T ]}.

In what follows, we will consider the triplets of functions (a, b, d) ∈ S(Ωw, T )×
S(Ωw, T )×S(Ωc, T ). For simplicity, we introduce S := S(Ωw, T )×S(Ωw, T )×
S(Ωc, T ).

Then, in order to prove the existence of such problem, we follow the
framework proposed by Pao, see [20], Chapter 8. First of all, let us introduce
the definition of upper and lower solutions of problem (2). In particular, the
triplets (ã, b̃, d̃), (â, b̂, d̂) ∈ S are called upper and lower solutions of (2) if
they satisfy respectively,





∂tã+ Lwã+ Nw(ã, b̃) ≥ 0, ∂tâ+ Lwâ+ Nw(â, b̂) ≤ 0 in (0, T ] × Ωw,

∂td̃+ Lcd̃ ≥ 0, ∂td̂+ Lcd̂ ≤ 0, in (0, T ] × Ωc,

∂tb̃+ Nw(ã, b̃) ≥ 0, ∂tb̂+ Nw(â, b̂) ≤ 0, in (0, T ] × Ωw,
Bwã ≥ 0, Bwâ ≤ 0, on (0, T ] × ∂Ωw \ Γ,

Bcd̃ ≥ 0, Bcd̂ ≤ 0, on (0, T ] × ∂Ωc \ Γ,

B(ã, d̃) = 0, B(â, d̂) = 0, on (0, T ] × Γ,
ã− a0 ≥ 0, â− a0 ≤ 0, on {t = 0} × Ωw,

d̃− d0 ≥ 0, d̂− d0 ≤ 0, on {t = 0} × Ωc,

b̃− b0,≥ 0, b̂− b0,≤ 0, on {t = 0} × Ωw.

We notice that in these definitions we require that the interface conditions
between Ωw and Ωc, coupling a and d, are exactly satisfied. This prevents
the arbitrary choice of the signs in the operator B(a, d) to influence the
analysis of the problem.

Property 1 The triplets (ã, b̃, d̃) = (d0, b0, d0) and (â, b̂, d̂) = (0, 0, 0) are
upper and lower solutions of problem (2).

According to this result, we define B as the sector of S such that,

B := {(a, b, d) ∈ S s.t. 0 ≤ a(t,x) ≤ d0, 0 ≤ b(t,x) ≤ b0, 0 ≤ d(t,x) ≤ d0}.

Property 2 The function Nw(a, b) is Lipschitz continuous and monotone
non-decreasing in [â, ã] × [b̂, b̃] = [0, d0] × [0, b0].
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Then, we propose a constructive method to identify a solution of the
problem at hand. Given suitable initial guesses (ã, b̂, d̂), (â, b̃, d̃), by means
of the following linear problems we build up two corresponding sequences,

that we denote with (a(k), b(k), d(k)), (a(k), b
(k)
, d

(k)
) ∈ S respectively,





∂ta
(k) + Lwa

(k) = Fw(a(k−1), b(k−1)), in (0, T ] × Ωw,

∂td
(k) + Lcd

(k) = 0, in (0, T ] × Ωc,

Bwa
(k) = 0, on (0, T ] × ∂Ωw \ Γ,

Bcd
(k) = 0, on (0, T ] × ∂Ωc \ Γ,

B(a(k), d(k)) = 0, on (0, T ] × Γ,

a(k) = a0, on {t = 0} × Ωw,

d(k) = d0, on {t = 0} × Ωc,

(4)

{
∂tb

(k) = Fw(a(k−1), b(k−1)), in (0, T ] × Ωw,

b(k) = b0, on {t = 0} × Ωw,
(5)

where Fw(a, b) := −Nw(a, b). The existence and uniqueness of weak solu-
tions a(k) ∈ L2

(
0, T ;H1(Ωw)

)
and d(k) ∈ L2

(
0, T ;H1(Ωc)

)
is ensured by the

fundamental principles of domain decomposition methods, see [24] for a gen-
eral treatment and [25] for the specific case of problem (4). Moreover, thanks
to the regularity of the domain and of the data, we also conclude that the
weak solution coincides with the strong one, precisely a(k) ∈ S(Ωw, T ) and
d(k) ∈ S(Ωc, T ). As regards problem (5), we notice that it can be seen as an
initial value problem depending on the parameter x ∈ Ωw. By virtue of the
Picard-Lindelof theorem, see [9], and thanks to the regularity of a(t,x) and
Fw(a, b), we conclude that it admits a solution in S(Ωw, T ) for any T > 0.
Furthermore, we will make use of the following multi-domain version of a
classical positivity property of linear parabolic operators, see for instance
[20], Lemma 2.2.1.

Lemma 1 Let a ∈ S(Ωw, T ) and d ∈ S(Ωc, T ) be such that,





∂ta+ Lwa ≥ 0, in (0, T ] × Ωw,
∂td+ Lcd ≥ 0, in (0, T ] × Ωc,
Bwa ≥ 0, on (0, T ] × ∂Ωw \ Γ,
Bcd ≥ 0, on (0, T ] × ∂Ωc \ Γ,
B(a, d) = 0, on (0, T ] × Γ,
a ≥ 0, on {t = 0} × Ωw,
d ≥ 0, on {t = 0} × Ωc.

Then, a ≥ 0 in [0, T ] × Ωw and d ≥ 0 in [0, T ] × Ωc.

Sketch of the proof. This property holds true because problem (4) is
equivalent, in the sense of weak solutions, to a single-domain problem fea-
turing discontinuous coefficients on Ω. Then, we recover Lemma 1 exploiting
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the single-domain positivity result applied to weak solutions, which is ob-
tained by means of a cut-off technique (see for instance [7]) together with the
additional regularity results arising from the smoothness of the sub-domains
and of the local data. �

To proceed, mimicking Lemma 8.2.2 of [20], we assert that the sequences

(a(k), b(k), d(k)) and (a(k), b
(k)
, d

(k)
) satisfy the following property.

Lemma 2 If Propositions 1 and 2 hold true, then the sequences (a(k), b(k), d(k))

and (a(k), b
(k)
, d

(k)
) satisfy the following inequalities

w(k−1) ≤ w(k) ≤ w(k) ≤ w(k−1) for w = a, b, d. (6)

Sketch of the proof. The proof can be subdivided in three steps.

First step: we set a(0) = â, b
(0)

= b̃, d
(0)

= d̃ and we introduce the
following auxiliary functions,

r(0) = a(1) − a(0), s(0) = b
(0) − b

(1)
, z(0) = d

(0) − d
(1)
.

We replace them into problems (4), (5) and we apply Lemma 1 together
with the trivial conclusion that ∂ts

(0) ≥ 0 and s(0)(t = 0) ≥ 0 imply s(0) ≥ 0
for t > 0. By this way, we assert that r(0) ≥ 0, s(0) ≥ 0, z(0) ≥ 0, or
equivalently

a(1) ≥ a(0), b
(1) ≤ b

(0)
, d

(1) ≤ d
(0)
.

Second step: we set a(0) = ã, b(0) = b̂, d(0) = d̂ and correspondingly,

r(0) = a(0) − a(1), s(0) = b(1) − b(0), z(0) = d(1) − d(0).

Proceeding as in the first step we obtain, a(1) ≤ a(0), b(1) ≥ b(0), d(1) ≥ d(0).

Third step: we introduce r(1) = a(1) − a(1), s(1) = b
(1) − b(1), z(1) = d

(1) −
d(1) and exploiting again the positivity lemma we assert that r(1), s(1), z(1) ≥
0. This allows us to conclude that,

w(0) ≤ w(1) ≤ w(1) ≤ w(0), with w = a, b, d.

The result (6) follows by means of the recursive application of the three
steps. �

Finally, we conclude this analysis with the following result that is ob-
tained mimicking Theorem 8.3.2 of [20], to which we refer for a detailed
proof.

Theorem 2.2 (Existence and uniqueness) Under assumptions of Lemma
2, problem (2) admits a unique solution (a, b, d) ∈ B. Moreover, the se-

quences (a(k), b(k), d(k)), (a(k), b
(k)
, d

(k)
) converge to (a, b, d) as referred by

(6).
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Sketch of the proof (existence). The existence of solutions is obtained
combining Lemma 2, the dominated convergence theorem and the integral
representation by means of Green’s functions of the solutions of the linear
problems (4) and (5). �

Theorem 2.2 is also interesting from a more applicative perspective, be-
cause it suggests that the solution of the coupled problem (2) can be ap-
proximated by means of a fixed point iterative procedure. Moreover, it has
the following straightforward consequences that will be particularly useful
in the development of a multiscale model.

Property 3 (Boundedness) Owing to Theorem 2.2 and to the definition
of B, the solution of problem (2) satisfy,

0 ≤ a(t,x) ≤ d0, ∀(t,x) ∈ [0, T ] × Ωw,

0 ≤ b(t,x) ≤ b0, ∀(t,x) ∈ [0, T ] × Ωw,

0 ≤ d(t,x) ≤ d0, ∀(t,x) ∈ [0, T ] × Ωc.

Property 4 (Maximum Principle) Owing to Proposition 3 and to the
Maximum Principle (see for instance Theorem 2.1.5, [20]), the maximum of
a(t,x) lies on ∂Ωw for any t > 0. Furthermore, because Γ is the only subset
of ∂Ωw where ∇a · nw > 0 is admissible, the maximum of a(t,x) lies on Γ.

A direct consequence of Propositions 3 and 4 is that a(t,x) is an increasing
function with respect to time on any x ∈ Γ, for suitably small times t > 0.

3 Reduced models for mass transfer from a thin

layer

For the numerical discretization of problem (2) we aim to apply a finite dif-
ference scheme in time and a finite element method for the space dependence.
For the second task, we need to build up a suitable computational mesh ap-
proximating Ωw and Ωc. In order to apply standard finite element solvers, it
is useful that the computational meshes of Ωw and Ωc are conforming. Since
Ωc corresponds to a very thin layer, the construction of a reasonably regular
computational mesh requires to consider many elements into Ωc and also
into the region of Ωw neighboring Γ. From the computational viewpoint,
this is a strong limitation to the efficacy of the finite element method for
the simulation of our problem in realistic cases where Ωc may be 7 µm thin,
while Ωw is comparable to a cylinder 2 mm wide and 10 mm long with a wall
thickness of 0.5 mm, as illustrated in Figure 1. For this reason, in the next
section we focus on the development of a multiscale model that allows us to
approximate the mass transfer from a thin layer without the requirement to
fully discretize the smaller scales. This overrides the problem to build up a
computational mesh inside the thin coating.
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First of all, let us describe the interface Γ by means of the mapping

x : ω ⊂ R
2 → Γ ⊂ R

3, x = x(ξ1, ξ2), ∀(ξ1, ξ2) ∈ ω.

This mapping introduces a local system of curvilinear coordinates, whose
covariant vectors are ai = ∂ξi

x, i = 1, 2, a3 = (a1 × a2)|a1 × a2|−1. The
vectors a1 and a2 define the tangent plane to Γ in the point x(ξ1, ξ2) and
a3 is the normal unit vector to this plane. For each point x ∈ Γ we consider
the tangent surface dσ = (x − ∑2

i=1 dx
iai,x +

∑2
i=1 dx

iai) and the volume
dV = dσ × [0,∆l], being ∆l the thickness of the coating, assumed to be
independent of x ∈ Γ.

To set up a multiscale model, we remind that the coating is extremely
thin and thus the concentration derivatives in the normal direction with re-
spect to the coating surface are much higher with respect to the derivatives
in the direction tangential to the surface. In other words, we assume that
the drug concentration on the interface Γ, namely a(t,x), is quasi-uniform
with respect to the characteristic scale of the coating, which is ∆l. As a
consequence of this hypothesis, we can assign in the volume dV a concen-
tration profile d(t, z;x), z ∈ (0,∆l), depending only on z, that is the axial
coordinate along the normal direction a3.

This is a common basis to develop different multiscale models described
in the following sections.

3.1 A preliminary model: the Higuchi formula

In order to build up a model for drug release from stents, a possible ap-
proach is to apply the principles of the Higuchi model, (proposed in [10])
into a multiscale framework. When the initial charge of the drug in the poly-
meric substrate is comparable with solubility of the drug, the Higuchi model
is analogous to the heat conduction problem through a semi-indefinite and
planar slab, where the heat is initially homogeneously dispersed and where
the external medium acts as a perfect sink. Under these simplified con-
ditions, it is possible to derive an explicit formula for the concentration
d(t, z;x) where z ∈ (−∞, 0), see [1] and [4]. Precisely, we obtain the simi-
larity solutions,

d(t, z;x)

ds
= 1 − erf

(
z√

4Dct

)
, z ∈ (−∞, 0), t ∈ (0, T ], x ∈ Γ,

where ds is the solubility of the drug, assumed to be equivalent to the initial
concentration inside the coating, namely ds = d0. Owing to the Fick’s law
of diffusion, from the previous expression we calculate the flux of drug J
that is released per unit surface at time t,

J(t;x) = −Dc∂zd(t, z = 0;x) =

√
Dcd2

s

πt
, t ∈ (0, T ], x ∈ Γ. (7)
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We observe that J(t;x) does not depend on x ∈ Γ, consequently we simply
write J(t). This expression can be exploited to replace the governing equa-
tion of the drug concentration into the stent coating, namely (2)b, by means
of a Neumann-type boundary condition providing the drug release rate into
the arterial walls. This condition complements the equations governing a
and b. Precisely, by virtue of the Higuchi formula, problem (2) becomes,





∂ta+ Lwa+ Nw(a, b) = 0, in (0, T ] × Ωw,

∂tb+ Nw(a, b) = 0, in (0, T ] × Ωw,

Bwa = 0, on (0, T ] × ∂Ωw \ Γ,

Bhig a = 0, on (0, T ] × Γ,

(8)

where Bhig a := Dw∇a · nw − J(t).
This model gives a very simple law for the release dynamics, without

solving any differential problem into the stent coating. We notice that ex-
pression (7) represents exactly the release dynamics in the limit t→ 0, but
it is inaccurate for long time scales when the finite thickness of the coating
influence the release process. Indeed, denoting with q(t) the amount of drug
released at time t, and with q(∞) the total amount of drug charged in the
coating at the initial time, owing to (7) we obtain that the fraction of drug
that has been released at time t is given by,

f(t) :=
q(t)

q(∞)
=

√
4Dct

π∆l2
, (9)

where ∆l represents the uniform thickness of the stent coating. We observe
that the quantity f(t) reaches the value 1 in a finite time. In other words, for
the Higuchi model the total amount of drug that is released is unbounded on
any arbitrarily long period. This limitation is mainly due to the simplifying
assumptions of the model, which do not allow to account for the equilibrium
of the concentration gradients between the polymer matrix and the arterial
walls. In the following section we aim to override these drawbacks.

3.2 An improved model for long time scales

We apply the analogy of the diffusion problem inside the stent coating with
the unsteady-state heat conduction in a uniform slab of finite thickness equal
to ∆l. A similar approach has already been applied in [21] to describe the
interaction between Ωc and Ωw in a simplified 1D setting. However, in the
present work, we apply some analytical tools similar to the ones proposed
in [21] with the aim to develop a multiscale model in a general 3D setting.

To start with, we propose the following approximate model for the dy-
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namics of the drug inside the coating,





∂td̃−Dc ∂
2
z d̃ = 0 in (0, T ] × (0,∆l),

∂z d̃ = 0 on (0, T ] × {z = 0},
d̃ = α on (0, T ] × {z = ∆l},
d̃ = d0 on {t = 0} × (0,∆l),

(10)

where α is a constant parameter which represents the drug concentration of
the external medium. This problem admits the following similarity solutions,

d̃(t, z) − α

d0 − α
= s(t, z) :=

∞∑

n=0

2(−1)n

(n+ 1/2)π
e−(n+1/2)2kt cos

((
n+

1

2

)
π
z

∆l

)
,

(11)
where k = π2Dc/∆l

2, see [1].
Then, we remind that the transmission conditions imply that d(t, z =

∆l;x) = a(t,x) for any x ∈ Γ. Furthermore, we observe that the analysis
of the problem, see in particular Propositions 3 and 4, allows us to conclude
that a(t,x) is a positive function and it is monotonically increasing with
respect to t for a suitably small period. Finally, we notice that a(t,x)
satisfy the additional assumption to be quasi-steady. More precisely, since
|Ωw| � |Ωc|, the time evolution of a(t,x), x ∈ Γ, is much slower than the
variation of the concentration d(t, z;x) inside the coating.

In this setting, we identify the parameter α of model (10) with the func-
tion a(t,x) and we assume that the adimensional concentration inside the
coating is given by expression (11). However, the scaling factor now depends
on the variable concentration a(t,x) instead of the constant parameter α.
Precisely, we have,

d(t, z;x) − a(t,x)

d0 − a(t,x)
= s(t, z). (12)

It is clear that the function d(t, z;x) does not satisfies problem (2) exactly,
but it is a good approximation of the solution owing to the particular be-
havior of a(t,x).

In order to couple the coating with the arterial wall we exploit the trans-
mission condition that requires the continuity of the fluxes. By means of
the Fick’s law of diffusion and thanks to (12), we have

J(t,x) = −Dc∂zd(t,∆l;x) = ϕ1(t)(d0 − a(t,x)), (13)

where J(t,x) is the flux of drug (per unit of surface) outgoing Γ and entering
Ωw and we have set

ϕ1(t) :=
2Dc

∆l
ψ(t), ψ(t) :=

∞∑

n=0

e−(n+1/2)2kt.
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Moreover, let ρ(t,x) be the mean value of the drug concentration in the
volume dV , precisely,

ρ(t,x) :=
1

dV

∫

dV
d(t, z;x) dω =

1

∆ldσ

∫ ∆l

0
d(t, z;x) dz

=
(
ϕ2(t)d0 + ϕ3(t)a(t,x)

)
, (14)

where

ϕ2(t) := 2φ(t), ϕ3(t) := 1 − 2φ(t), φ(t) =

∞∑

n=0

e−(n+1/2)2kt

(n+ 1/2)2π2
.

In conclusion, replacing equation (2)b with a boundary condition arising
from the simplified model given by equation (12), problem (2) reduces to
the following,





∂ta+ Lwa+ Nw(a, b) = 0, in (0, T ] × Ωw,

∂tb+ Nw(a, b) = 0, in (0, T ] × Ωw,

Bwa = 0, on (0, T ] × ∂Ωw \ Γ,

Ba = 0, on (0, T ] × Γ.

(15)

where, owing to (13) we obtain that

Ba := Dw∇a · nw + ϕ1(t)(a− d0), on Γ, (16)

and the dynamics of the drug inside the coating is described by (14).
We notice that the transmission conditions B(a, d) = 0 are now replaced

by Ba = 0 on Γ, that is a simple Robin-type boundary condition comple-
menting the first equation of (15). Although this model is formally similar
to (8), it has the advantage to account for a possible growth of a(t,x) and
of the fact that the thickness of the coating is finite and rather small. By
consequence, we expect that the present model will be more suitable than
the Higuchi’s one for the study of drug release over long time scales. Con-
versely, both models (15) and (8) are accurate for the initial phase of the
release process.

Remark 3.1 We finally observe that the previous analysis can be extended
putting together equation (13) and (14) by means of the mass conservation
principle. The application of this principle in the control volume dV gives,

dV ∂tρ(t,x) = −dσJ(t,x),

and substituting (13) and (14), we obtain

2dtϕ2(t)
(
d0 − a(t,x)

)
+ ϕ3(t)∂ta(t,x) =

2Dcψ(t)

∆l2
(
a(t,x) − d0

)
,
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leading to an ordinary differential equation for each point x ∈ Γ, which
completely determines the evolution in time of a(t,x) for x ∈ Γ. Then, the
Robin boundary condition (16) can be equivalently replaced by a Dirichlet-
type condition providing the value of a(t,x) on (0, T ]×Γ. This observation
allows us to set up a multiscale model analogous to (15) in the case where the
stent is covered by a topcoat to slow down the release process, see remark
2.1.

4 Numerical discretization

In a general three dimensional setting, it is not possible to further simplify
problem (15). In order to obtain an approximate solution, we need to resort
to suitable numerical discretization techniques.

4.1 The time advancing scheme

We notice that the Higuchi formula (7) immediately suggests that the rate
of change of the concentrations in the coating and the arterial walls is ex-
tremely high at the beginning of the process and very slow at the end of
it. Consequently, the set up of an effective adaptive strategy for the time
step ∆tn is a crucial requirement to accurately capture the dynamics of the
drug release. We present here the time discretization scheme in a general
framework, and we will address the definition of the adaptive strategy later
on.

Let us introduce a partition of the global time interval into subintervals
whose length is non-uniform. Given t0 = 0, let us set tn = tn−1+∆tn, n ∈ N,
for a suitable time step ∆tn > 0. Then, given a function ξ depending on
t we set ξn = ξ(tn). Therefore, using an implicit Euler scheme, the time
discretization of the reduced model given by (14)-(15) at time tn, reads as
follows,





an − an−1

∆tn
+ Lwa

n + Nw(an, bn) = 0, in Ωw,

bn − bn−1

∆tn
+ Nw(an, bn) = 0, in Ωw,

Bwa
n = 0, on ∂Ωw \ Γ,

Bnan := Dw∇an · nw + ϕn
1 (an − d0) = 0, on Γ,

(17)

ρn =
(
ϕn

2d0 + ϕn
3a

n
)
, on Γ. (18)

Finally, we observe that the dynamics of drug release are effectively de-
scribed by the evolution of the amount of drug in the stent Mc(t) and in the
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wall Mw(t). At each time step tn these quantities are given by,

Mn
w =

∫

Ωw

(
an(x) + cn(x)

)
dV, Mn

c = ∆l

∫

Γ
ρn(x)dσ. (19)

4.2 Finite element approximation

Let us introduce the following inner products

(w,v)Ωw
=

∫

Ωw

w · v dω, (w,v)Σ =

∫

Σ
w · v dσ,

where Σ ⊂ ∂Ωw. Moreover, we consider the space W = {w ∈ L2(Ωw) :
∇ · w ∈ L2(Ωw), w · nw = 0 ∀x ∈ Γw ∪ Γ}, where L2 is the usual Lebesgue
space and we denote with bold face the spaces of vector functions.

Let us start by considering the weak formulation related to the Darcy
problem (3). Let us introduce the following bilinear form:

c(q,v) = −
∫

Ωw

q∇ · v dω,

Then, the variational formulation related to system (3) reads as follows.

Problem 1 Find ū ∈ W and p̄ ∈ L2(Ωw) such that,

kb

µb
(ū,v)Ω + c(p̄,v) = −

∫

Γi

v · nw, ∀v ∈ W ,

c(q, ū) = 0, ∀q ∈ L2(Ωw).

To proceed, we assume that Ωw can be approximated by means of a
polyhedron. Then, let Th be an admissible and quasi-uniform triangulation
of Ωw. Furthermore, we assume that the interface Γ can be approximated
by means of the faces of Th.

For the discretization of problem 1 we consider a mixed-hybrid finite
element formulation based on Raviart-Thomas elements, for which we re-
fer to [2]. By means of this method we approximate

[
ū, p̄

]
by means of[

ũh, p̃h

]
K

∈
[
RT

0,P0
]

for any element K ∈ Th. Then, the velocity ũh is

projected by means of the standard L2 inner product on the space X1
h of

vector valued linear finite elements on Th. By this way, we obtain ūh. Fi-
nally, for each tn, the value of un

h ∈ X1
h is computed according to equation

(3)b.
Now, let us detail the space discretization of system (17). We notice

that the weak solution an of problem (17) should be sought in the Sobolev
space H1(Ωw), while ρn belongs to H1/2(Γ), the space of the traces on
Γ of functions belonging to H1(Ωw), see [7]. The solution bn of (17) also
belongs to H1(Ωw), provided that the coefficients of the problem are regular.

17



Then, let Vh := X1
h be the space of the piecewise linear and continuous

finite elements on Th. This is the space where we set up the discrete weak
counterpart of (17). Correspondingly, being Λh the space of piecewise linear
and continuous functions on the faces of Th that belong to Γ, we have ρh ∈
Λh. Finally, let Nh := dim(Vh) andMh := dim(Λh) be the number of degrees
of freedom of our discrete problem.

Given un
h, the numerical approximation at time tn of (3), let us introduce

the bilinear forms associated to the second order operator Lw and to the
nonlinear term Nw, complemented by the boundary conditions given by Bw

and Bn. More precisely, ∀ah, vh ∈ Vh, we set

Ln
w(ah, vh) :=Dw(∇ah,∇vh)Ωw

+ (un
h · ∇ah, vh)Ωw

+ ϕn
1 (ah, vh)Γ + Pw(ah, vh)Γi

,

Gn
L(vh) :=ϕn

1 (d0, vh)Γ,

that are the discrete weak counterpart of Lwa, Bwa, Bn
wa, while the fol-

lowing forms,

Nw(ah, bh, vh) := k1(ahbh, vh)Ωw
+ k2(bh, vh)Ωw

, ∀ah, bh, vh ∈ Vh,

GN (vh) := k2(b0, vh)Ωw
, ∀vh ∈ Vh,

correspond to the nonlinear term Nw(ah, bh). Then, the discrete weak for-
mulation of problem (17) reads as follows.

Problem 2 Given un
h, the numerical solution of (3) at time tn, and given

an−1
h , bn−1

h ∈ Vh and ρn−1
h ∈ Λh, find an

h and bnh ∈ Vh such that for all
vh ∈ Vh,





1
∆tn (an

h − an−1
h , vh)Ωw

+ Ln
w(an

h, vh) + Nw(an
h, b

n
h, vh) = Gn

L(vh) + GN (vh),

1
∆tn (bnh − bn−1

h , vh)Ωw
+ Nw(an

h, b
n
h, vh) = GN (vh).

(20)
Then compute ρn

h ∈ Λh given by (18).

Problem 2 can be further split into a sequence of linear problems by
means of an iterative method that will be addressed in detail in Algorithm
1. Then, the convergence with respect to h and ∆t of each linearized sub-
problem can be analyzed in the framework of numerical approximation of
linear parabolic problems. We refer for instance to [23], and in particular
to Corollary 11.3.1, Ch. 11, for a convergence result that exactly fits our
case. Clearly, we expect first order convergence with respect to both ∆t and
h. This can be regarded as a considerable limitation of the present study.
Moreover, we observe that our discretization scheme is not conservative with
respect to the space discretization. By consequence, the mass conservation
principle is not locally respected. A possibility, to improve this situation is
to consider a Runge-Kutta/Discontinuous-Galerkin (RK/DG) scheme, see
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[3] for the case of convection-diffusion equations. Such scheme looks partic-
ularly effective to our case because it merges the conservativity of the DG
discretization with the high accuracy of the RK schemes to advance in time.
Furthermore, it is also particularly suited to treat non-linear problems. The
efficacy of such scheme will be addressed in a forthcoming study.

Let us now introduce the algebraic counterpart of Problem 2. To this
aim, we introduce ξk, k = 1, . . . , Nh, the standard Lagrangian basis func-
tions of Vh. Moreover, let a, b, c ∈ R

Nh and ρ ∈ R
Mh the vectors that

correspond to the expansion of ah, bh, ch and ρh with respect to the basis
ξk. We remind that ch is given by ch = b0−bh. For such vectors we introduce
the following discrete norms,

‖v‖w := ‖vh‖L1(Ωw) and ‖v‖Γ := ‖vh‖L1(Γ).

If an
h and cnh are positive functions, owing to (19) we notice that ‖a‖w +

‖c‖w corresponds to the total amount of drug present in the arterial wall.
This property will be useful later on. In this setting, the bilinear form Lw

corresponds to the following matrix,
[
Ln

w

]
ij

: = Ln
w(ξj , ξi)

= Dw(∇ξj,∇ξi)Ωw
+ (un

h · ∇ξj, ξi)Ωw
+ ϕn

1 (ξj , ξi)Γ + Pw(ξj, ξi)Γi
.

In order to set up the algebraic counterpart of Nw(an
h, b

n
h, ξi) we introduce

the following matrices,

[
Nw(b)

]
ij

:= k1

∫

Ωw

Nh∑

k=1

[b]kξkξiξj,
[
Nw(a)

]
ij

:= k1

∫

Ωw

Nh∑

k=1

[a]kξkξiξj. (21)

Moreover, we denote with
[
M

]
ij

= (ξj , ξi)Ωw
,

[
MΓ

]
ij

= (ξj , ξi)Γ, i, j = 1, . . . , Nh,

the mass matrices related to the domain Ωw and to the interface Γ respec-
tively. According to this notation, the algebraic problem related to problem
(20) reads as follows.

Problem 3 Given un
h, an−1 ∈ R

Nh , bn−1 ∈ R
Nh and ρn−1 ∈ R

Mh, find an

and bn ∈ R
Nh such that





(
1

∆tnM + Ln
w +Nw(bn)

)
an + k2Mbn = gn

L,

(
1

∆tnM +Nw(an) + k2M
)
bn = gn

N ,

(22)

where the right hand sides gn
L, g

n
N correspond to the following expressions,

gn
L =

1

∆tn
Man−1 + ϕn

1M
Γd0 + k2Mb0,

gn
N =

1

∆tn
Mbn−1 + k2Mb0.
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Then, compute ρn ∈ R
Mh with

ρn = ϕn
2d0 + ϕn

3an on Γ. (23)

To proceed, we observe that Problem 3 is a system of two coupled and
nonlinear algebraic equations in the unknowns an and bn, whose solution
requires to resort to an iterative method. In particular, omitting for the
sake of clearness the temporal index n, we consider the following fixed-point
iterations.

Algorithm 1 For any n > 0, given an admissible initial guess, for instance
a(0) = an−1, b(0) = bn−1, for k = 1, 2, . . . find a sequence a(k), b(k) such
that





(
1

∆tM + Lw

)
a(k) +Nw(b(k−1))a(k−1) + k2Mb(k−1) = gL,

(
1

∆tM + k2M
)
b(k) +Nw(a(k−1))b(k−1) = gN .

The iterations are arrested when the following convergence test is satisfied
for a suitable tolerance,

‖a(k) − a(k−1)‖w

‖a(k)‖w
+

‖b(k) − b(k−1)‖w

‖b(k)‖w

< tol.

The convergence of Algorithm 1 is stated by the following result.

Lemma 3 For any n > 0, if ∆tn is small enough, the nonlinear system of
equations (22) in Problem 3 admits an unique solution that is the limit of
the sequence defined by algorithm 1 for any choice of the initial guess.

Proof. Let us rewrite system (22) as a fixed point problem (omitting for
the sake of simplicity the index n), precisely F (z) = z, where

z =




a

b


 and F =




∆t(M + ∆tLw)−1
(
gL − k2Mb −Nw(b)a

)

∆t(M + ∆tk2M)−1
(
gN −Nw(a)b

)


 .

Owing to (21), we observe that for any closed subset D ∈ R
Nh and for any

p, q, r, s ∈ D, the following inequality holds true,

‖Nw(p)q −Nw(r)s‖ ≤ max
p,r∈D

[
‖Nw(p)‖, ‖Nw(r)‖

]
‖q − s‖. (24)

For simplicity we denote C := maxp,r∈D

[
‖Nw(p)‖, ‖Nw(r)‖

]
. Then, for

any two points z = [p, q]T and y = [r, s]T ∈ R
Nh × R

Nh endowed with the
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Euclidean norm ‖z‖2 = ‖p‖2 + ‖q‖2, exploiting (24) we obtain,

‖F (z) − F (y)‖2 =

=‖ − ∆t k2 (M + ∆tLw)−1M(q − s) − ∆t (M + ∆tLw)−1 (Nw(q)p −Nw(s)r)‖2

+ ‖ − ∆t (M + ∆tk2M)−1 (Nw(p)q −Nw(r)s)‖2

≤∆t2 k2
2 ‖(M + ∆tLw)−1M‖2 ‖q − s‖2 + ∆t2 ‖(M + ∆tLw)−1‖2 C2 ‖p − r‖2

+ C2

(
∆t

1 + ∆tk2

)2

‖M−1‖2 ‖q − s‖2.

By observing that lim∆t→0(M + ∆tLw)−1 = M−1, we can state that F is
a contraction if ∆t is small enough. Then, the result follows from standard
application of the contraction mapping theorem (see, e.g., [16]). �

We point out that in Algorithm 1 we treat the non-linear term explicitly,
since it makes easier to pursue the convergence analysis. However, in the
numerical experiments we consider a semi-implicit treatment of the non-
linear terms, because the latter scheme is expected to converge slightly faster
than the former one.

4.3 An adaptive time stepping algorithm

We have already noticed that the drug release process features a very fast
initial phase that progressively slows down approaching to an equilibrium
state. From the mathematical point of view, this means that the simulation
of the drug release requires the application of an adaptive stepping strategy
to maintain a reasonable computational cost.

Although the Higuchi formula is an approximate model for long time
scales, by virtue of its simplicity it turns out to be extremely useful to
set up or to suitably tune an adaptive time stepping strategy. Since we
are mainly interested in the analysis of the release process, we set up an
adaptivity strategy based on the increment of the amount of drug that is
released from the stent to the arterial walls. In other words, we aim to find a
suitable sequence of time steps, tn, such that a constant fraction of the total
amount of drug is released in each time slab. We notice that this problem
can be solved exactly in the framework of the Higuchi model.

First of all, expression (9) allows us to estimate when most of the drug
will be released into the arterial walls. In particular, setting f(t) = 1 into
(9) we obtain that the emptying time of the stent coating is given by,

te :=
π∆l2

4Dc
.

Proceeding similarly, we compute a sequence of time steps that satisfy
our objective. By definition, we know that the image of the time integration
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interval [0, te] through the function f(t) is the unit interval [0, 1]. Then, let
η be the constant fraction of drug that we aim to release at each time step.
Let us introduce a uniform partition of [0, 1] into sub-intervals of length η,
such that N := 1/η is an integer, for simplicity. Correspondingly, we define
the sequence fn = nη with n = 0, . . . , N . The time steps that we look for
correspond to the mapping of the sequence f n into the interval [0, te] by
means of equation (9). Precisely, we obtain,

tn =
π∆l2

4Dc
(fn)2, n = 0, . . . , N, (25)

∆tn =
π∆l2

4Dc

[
(fn)2 − (fn−1)2

]
=
π∆l2

4Dc
η2(2n− 1), n = 1, . . . , N. (26)

This is an a-priori adaptive strategy for the time steps. We notice that the
sequence ∆tn grows linearly. According to the restrictions of the Higuchi
model, this strategy should be particularly effective at the beginning of the
release process, but it is not completely reliable for long time scales.

To override this drawback, we aim to extend the ideas underlying (25)
and (26) to a more general framework. We adopt the strategy proposed in
[14] to set up an adaptive time stepping algorithm based on the increment. In
particular, reminding that c(t,x) = b0 − b(t,x) represents the concentration
of the drug attached to the extra-cellular matrix, we address the quantity,

ηn :=
‖an − an−1‖w + ‖cn − cn−1‖w + ∆l‖ρn − ρn−1‖Γ

‖an‖w + ‖cn‖w + ∆l‖ρn‖Γ
.

Owing to the definition of ‖ · ‖w and ‖ · ‖Γ, it corresponds to the increment
of the total amount of drug that is released from the stent coating plus the
amount that enters the arterial walls within each time step. By virtue of
the mass conservation principle, these quantities should be equivalent in a
closed system. By consequence, we conclude that ηn ' 2η, where η appears
into (26). Then, starting from the time step ∆tn suggested by (26), we aim
to suitably correct it when it is not optimal. In particular, we notice that
(26) provides a recipe to compute ∆tn given ∆tn−1, more precisely,

µn
1 :=

∆tn

∆tn−1
=

2n− 1

2n− 3
, n = 2, . . . , N.

Then, in order to maintain ηn to be bounded into a suitable interval, namely
ηmin ≤ ηn ≤ ηmax, the time step ∆tn is modified according to constant de-
refinement and refinement correction factors, µ2 > 1, σ2 = 1/µ2 respectively.
In particular, we choose the interval (ηmin, ηmax) such that 1

2(ηmin+ηmax) '
2η, according to the heuristic criterion ηn ' 2η. Furthermore, the de-
refinement parameter is chosen such that µ2 = (ηmin + ηmax)/(2ηmin), in
order to make sure that the time step is suitably rescaled when ηn goes
slightly out of the bounds (ηmin, ηmax). We observe that all these settings
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finally depend on the reference increment η. The corresponding adaptive
scheme is translated in the following algorithm.

Algorithm 2 Given ∆tmin, ∆tmax, an−1, cn−1, ρn−1 and ∆t̃n = µn
1 ∆tn−1,

we carry out the following steps:

Solve. By means of Algorithm 1, find ãn, c̃n, ρ̃n the solution of Problem
3 and compute the increment,

η̃n :=
‖ãn − an−1‖w + ‖c̃n − cn−1‖w + ∆l‖ρ̃n − ρn−1‖Γ

‖ãn‖w + ‖c̃n‖w + ∆l‖ρ̃n‖Γ
.

Test. According to η̃n, three options are available:

If η̃n > ηmax refine and iterate: set ∆t̃n = max{σ2∆t̃
n,∆tmin}

and go back to solve.

If η̃n < ηmin de-refine and advance: set ∆tn = min{µ2∆t̃
n,∆tmax},

an = ãn, cn = c̃n, ρn = ρ̃n and go to the following time step.

If ηmin ≤ η̃n ≤ ηmax advance: set ∆tn = ∆t̃n, an = ãn, cn =
c̃n, ρn = ρ̃n and go to the following time step.

Reminding that our time discretization scheme is only first order accu-
rate, the key point is to choose a suitably small increment, η, that ensures
an effective compromise between computational efforts and accuracy, in par-
ticular mass conservation. In alternative, more advanced schemes can be
addressed, based for instance on the estimation of the local truncation error
rather than the increment, see for instance [8].

5 Numerical results

In this section, we present some numerical results in order to assess the
efficacy of the multiscale model proposed in Sect. 3. In particular, we
consider the computational domain in Fig. 2, left, representing a portion of
a truncated coronary vessel, whose radius is 1.3mm, in which a drug eluting
stent is implanted, as depicted in Figure 2, right. The virtual thickness of
the stent is given by ∆l = 7 · 10−3 mm. To create this deformed domain, a
finite element simulation of the expansion of the vessel has been performed
in order to approximate the displacement of the arterial wall under the force
due to the growth of the ballon on which the stent is placed. This study is
reported in [19].
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Figure 2: Computational domain (left) and a detail of the interface Γ (red
color, right).

Then, an appropriate tetrahedral finite element grid has been generated
using the mesh generator GAMBIT (Gambit, Fluent Inc., Labanon, NH,
USA). Local grid refinement near the interface to the stent strut is applied
to capture the expected high concentration gradients, for a total number of
1098680 elements. Both the Darcy Problem 1 and the mass transfer Problem
2 are solved with the finite element library LIFE V, written in C++ and
developed at MOX - Politecnico di Milano, INRIA - Paris and CMCS -
EPFL - Lausanne, see www.lifev.org.

Finally, to perform the numerical simulations we use the following values
for the parameters that correspond to the release of heparin and are neces-
sary to set up problem (2): Dw = 7.7·10−6 mm2/s, Dc = 5·10−10 mm2/s, Pw =
2 · 10−7mm/s, b0 = 0.5, k1 = 1mm3/(mol s), k2 = 10−2. We refer to [26]
for the values of k1, k2 and to [19, 17] for a discussion of the remaining ones.
With these parameters we obtain te ' 1 day. In this case, accounting for
the pulsatile pressure variations into the Darcy model turns out to be a very
demanding task from the computational point of view. By consequence, we
do not include this feature in our simulations and we set δp = 70mmHg.

As regards the set up of the time step adaptivity strategy, we consider
η = 2 · 10−3 into (26) and thus N = 500. According to the heuristic cri-
terion ηn ' 2η we choose ηmin = 3 · 10−3 and ηmax = 5 · 10−3 such that
1
2(ηmin + ηmax) = 2η. Then, we obtain the value of the de-refinement factor
of Algorithm 2 from the expression µ2 := (ηmin + ηmax)/(2ηmin) = 1.333.
Moreover we set ∆tmin = 0.1s and ∆tmax = 600s= 10min. In figure 3 we
compare the sequences ∆tn and ∆t̃n generated by equation (26) and Algo-
rithm 2 respectively. We notice that they satisfy ∆tn ≤ ∆t̃n for any n > 0
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Figure 3: Adaptive time step ∆t.

and in particular ∆tn = ∆t̃n for 0 < n ≤ N = 500 that is the range where
equations (25) and (26) can be applied. Consequently, only the step advance
occurs along the execution of Algorithm 2, that is ηmin ≤ η̃n ≤ ηmax. This
confirms that the a-priori adaptivity strategy based on the Higuchi model
turns out to be effective also in the case of model (15).

Concerning the physiological interpretation of the results, we show in
Fig. 4 the concentration of the free drug and of the corresponding free
binding sites at different times. We notice that the drug is progressively
transferred from the stent to the neighboring arterial wall, and even after a
relatively long time, e.g. 1 day, the distribution of the drug inside the wall
is substantially influenced by the geometrical design of the stent.

In Fig. 5 we show the dynamics ofMc(t) andMw(t) for model (15). Their
values are normalized with respect to the total amount of drug. First of all,
we notice that almost the 50% of the drug is lost by diffusion into the blood
flow through the interface between the lumen and the arterial wall. Secondly,
we observe that the concentration of the drug in the vessel wall is mainly
present in the state c rather than the state a. This is explained observing
that the direct reaction (1) is much faster than the inverse one because in
our case k1 >> k2. Indeed, most of the drug is permanently attached to the
specific sites of the extra-cellular matrix of the tissue. From the applicative
point of view, this fact has both favorable and adverse implications. On one
side it increases the residence time of the drug into the arterial walls, on the
other side it prevents the uniform distribution of the drug.

Finally, in figure Fig. 6 we compare the release profiles Mc(t) and Mw(t)
of models (8) and (15). We observe that model (15) can be applied to study
the drug release on an arbitrarily long time scale that can exceed the emp-
tying time te, highlighted with a vertical line. Furthermore, comparing the
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Figure 4: The concentration of the dissolved drug after 6, 12, 18 and 24 hours
is reported on the left from top to bottom. On the right, the corresponding
concentration of the free binding sites is depicted.
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Figure 5: The dynamics of Mc(t) and Mw(t) for model (15).
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release profiles for models (8) and (15), we observe that the latter provides
a release rate slower than the Higuchi model, especially for long time scales,
when the concentration gradients between the stent and the arterial walls
become negligible. These observations agree with the more realistic basic
assumptions at the basis of model (15).

6 Concluding remarks

The multiscale method and the corresponding numerical scheme illustrated
in this work represent a novel and effective technique to describe the drug
release from a cardiovascular stent. This approach makes it possible to
satisfy the main requirements of the application at hand, which consist on
accounting for the very complex geometrical design involving different space
scales and on following the dynamics of the system for a long time period.
Finally, this methodology is not restricted to stents, but could also be useful
for any application where a drug or other chemical substances are slowly
released from a thin layer coating a device.
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