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Abstract

Some engineering applications, for instance related to fluid dynamics in
pipe or channel networks, feature a dominant spatial direction along which
the most relevant dynamics develop. Nevertheless, local features of the
problem depending on the other directions, that we call transverse, can be
locally relevant to the whole problem. We propose in the context of ellip-
tic problems such as advection–diffusion–reaction equations, a hierarchical
model reduction approach in which a coarse model featuring only the dom-
inant direction dynamics is enriched locally by a fine model that accounts
for the transverse variables via an appropriate modal expansion. We intro-
duce a domain decomposition approach allowing us to employ a different
number of modal functions in different parts of the domain according to the
local complexity of the problem at hand. The methodology is investigated
numerically on several test cases.

1 Introduction and motivations

Many engineering applications exhibit a dominant direction that introduces an
anisotropy in the most salient features of the problem. For instance, river dynam-
ics, blood flow problems or air dynamics in internal combustion engines exhibit
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Figure 1: Full 2D representation of a channel with a bridge (top); geometrical
multiscale reduction (middle); hierarchical model reduction (bottom).

a main direction represented by the river bed, the vascular axial direction or the
engine pipes.

For the sake of computational efficiency, it is sometimes possible in these
cases to resort to downscaled models where only the dominant space dependence
is considered. In haemodynamics, 1D models based on the Euler equations are
used quite often (see, e.g., [11, Chap. 10]). Likewise in river hydrodynamics
the flow can be generally modeled by the 1D shallow water equations (see, e.g.,
[24]). Nevertheless the simplifying assumptions at the basis of these downscaled
models can locally fail, whenever the transverse dynamics become relevant. This
could be due to a local reduction (stenosis) or enlargement (aneurysm) of a blood
vessel, to the presence of an air-box in a combustion engine or to a bridge or a lake
along a channel or a river network, respectively (see Figure 1, top for an example
in the last framework). As a consequence, one would like to locally enhance
the 1D approximation via a suitable higher-dimensional correction. A possible
solution is the so-called geometrical multiscale approach (see, e.g., [10, 18, 15]
and [11, Chap. 11]), where the downscaled model is locally replaced by a full 3D
or 2D one (see Figure 1, middle).

Here we undertake a different methodology, referred to as hierarchical model
reduction following the pioneering works of Babuška and Vogelius [21, 22] which
address a different context, namely heat conduction in plates and shells. In the
present paper, the problem at hand (the so-called full model) is reformulated by
tackling in a different manner the dependence of the solution on the dominant

2



direction and on the transverse ones. The former is spanned by a classical 1D
piecewise polynomial basis of a finite element space. The latter are expanded
into a modal basis. The number of included modes determines the accuracy
of the adopted model, according to the complexity of transverse dynamics (see
Figure 1, bottom). We end up with a hierarchy of problems (the reduced models)
that, in principle, can be tuned arbitrarily close to the full one.

The main feature of the present work is to address the situation where the
level of model reduction can vary locally in the computational domain. This
raises the issue of properly enforcing the matching conditions between adjacent
subdomains. Similarly to what is done in the geometrical multiscale approach,
we introduce a domain decomposition scheme to impose the matching between
the areas characterized by different modal bases. This local reduction proce-
dure is clearly advantageous from a computational viewpoint, whenever the full
solution exhibits localized dynamics along the transverse directions. Indeed,
our approach leads to solving a system of coupled problems, which are 1D, in
contrast to the geometrical multiscale approach where problems with different
dimensions (1D with 2D or 3D) are solved. The system dimension depends on
the number of modal functions. In particular this work focuses on elliptic prob-
lems, e.g., advection–diffusion–reaction problems in pipe or channel networks
(for an example of global model reduction in hydrodynamics we refer to [2]).
Hierarchical local model reduction also paves the way to a model adaptation
procedure which automatically detects the local level of model refinement to
equilibrate, for instance, modeling and discretization errors. This will constitute
the subject of the second part of this work ([16]).

This paper is organized as follows. In section 2 we describe the reference
framework: we introduce the differential problem of interest and select a partic-
ular kind of computational domains, suited to the hierarchical model reduction
we have in mind. Section 3 focuses on the simplified setting of global model re-
duction, by extending the preliminary analysis carried out in [9]. We define the
reduced space and the reduced discrete formulation and we present numerical
experiments. The local model reduction is carried out in section 4. We describe
the domain decomposition scheme used to couple the local models with a dif-
ferent level of accuracy. Then, the methodology is assessed numerically. Some
conclusions are drawn in the last section.

2 The setting

Let us introduce the weak form of the general elliptic problem to be approxi-
mated

find u ∈ V : a(u, v) = F(v) ∀v ∈ V, (1)

with a(·, ·) and F(·) a bilinear and a linear form, respectively, and V a Hilbert
space. Boundary conditions are discussed below. Since we are interested in
second-order elliptic problems, we assume that V ⊆ H1(Ω). Standard notation
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for the Sobolev spaces, as well as for the spaces of functions bounded a.e. in Ω,
is adopted. In the sequel, we denote with ‖ ·‖V := ‖ ·‖H1(Ω) the norm associated
with the space V , while |ω| stands for the measure of a generic (1D, 2D or 3D)
set ω.
Suitable assumptions are made on the problem data to guarantee continuity and
coercivity of a(·, ·) on V and continuity of F(·) as well. Lax-Milgram Lemma
ensures well-posedness of problem (1). Hereafter, we refer to (1) as to the full
problem.

We assume Ω to coincide with the d-dimensional fiber bundle

Ω =
⋃

x∈Ω1D

{x} × γx,

where Ω1D is a (supporting) one-dimensional domain, while γx ⊂ R
d−1 represents

the (d− 1)-dimensional (transverse) fiber associated with the generic point x ∈
Ω1D. Thus we distinguish in Ω a leading direction, represented by Ω1D, and a
set of secondary orthogonal transverse directions, associated with the fibers γx.
This approach differs with respect to the setting used in [21, 22, 23, 1, 3] where
1D models are associated with the transverse directions while the supporting
fiber has dimension (d− 1).

For the sake of simplicity, we assume Ω1D = ]x0, x1[ (see Figure 2). The
more general case of a curved supporting fiber can also be considered. For any
x ∈ Ω1D, let us introduce the map

ψx : γx → γ̂d−1 (2)

between the generic fiber γx and a reference fiber γ̂d−1 of the same dimension.
The notation z = (x,y) and ẑ = (x, ŷ) is adopted to denote a generic point in
Ω and the corresponding point in Ω̂, respectively via the map Ψ : Ω → Ω̂, where
x ∈ Ω1D and ŷ = ψx(y) with y ∈ γx. The role played by Ψ is to map the current
domain Ω into a reference domain Ω̂ = Ω1D × γ̂d−1 where the computations are
easier and carried out once and for all (see Figure 2). Without loss of generality,
we assume that x ∈ Ω1D if and only if (x,0) ∈ Ω. In 2D, it is often possible to
take for the map ψx in (2) the linear transformation defined by

ŷ = ψx(y) =
1

L(x)
y, (3)

where L(x) = |γx| denotes the length of the fiber γx. In 3D the choice (3) is
also possible in some situations, for instance when Ω is a cylindrical domain
(see Figure 2, bottom). To discuss boundary conditions, let us partition the
boundary of Ω into three disjoint sets Γ0, Γ1, and Γ∗ such that

Γ0 = {x0} × γx0
, Γ1 = {x1} × γx1

, Γ∗ =
⋃

x∈Ω1D

{x} × ∂γx. (4)
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Figure 2: Examples of the map Ψ in (2): the 2D (top) and the 3D (bottom)
setting.

On each of these three sets either homogeneous Dirichlet or Neumann boundary
conditions are enforced. It is also possible to assign non-homogeneous Dirichlet
data on Γ0 and on Γ1 (see Remark 3.1 below for a further discussion).

In the sequel, we assume that for all x ∈ Ω1D, ψx is a C1-diffeomorphism. We
also assume that the transformation Ψ is differentiable with respect to z. This
second assumption amounts to a smoothness hypothesis on Γ∗, i.e., Γ∗ cannot
have kinks. We denote with

J (z) =
∂Ψ

∂z
=




1 0

∂ψx

∂x
∇yψx


 ∈ R

d×d

the Jacobian associated with the map Ψ, where ∇y stands for the gradient with
respect to y. The first row is the same as in the identity matrix since the map
Ψ does not modify the supporting fiber Ω1D. In particular, we introduce the
notation

D1(z) =
∂ψx

∂x
∈ R

d−1, D2(z) = ∇yψx ∈ R
(d−1)×(d−1).

In the 2D case with the linear map (3), there holds

D1(z) = −L′(x)

L2(x)
y, D2(z) =

1

L(x)
.

In general (both 2D and 3D cases), via the Jacobian matrix J , all the integrals
on Ω can be reduced to integrals on the reference domain Ω̂, since

∫

Ω

f(x,y) dz =

∫

bΩ

f
(
x, ψ−1

x (ŷ)
) ∣∣ det

(
D−1

2

(
x, ψ−1

x (ŷ)
))∣∣ dẑ, (5)
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where D−1
2 is the so-called deformation gradient tensor.

3 Global model reduction

This section provides the formulation and the approximation of the reduced
problem in the simplest situation of a global model reduction, that is, when the
same number of modal functions is used along the transverse directions, uni-
formly on Ω1D. Numerical results are also presented to assess the methodology.

3.1 Formulation of the globally reduced problem

We approximate problem (1) by exploiting the fiber structure introduced on Ω.
We consider accordingly two basic components:

1. a space V1D spanned by functions defined on the one-dimensional domain
Ω1D. In the present context of second-order elliptic problems, V1D ⊆
H1(Ω1D). The choice for the space V1D must be compatible with the
boundary conditions enforced on Γ0 and on Γ1; for instance, if a homo-
geneous Dirichlet boundary condition is assigned on Γ0, functions in V1D

vanish at x0;

2. a modal basis of functions {ϕk}k∈N
∗ ∈ H1(γ̂d−1), orthonormal with respect

to the L2-scalar product on γ̂d−1, i.e., such that

∫

bγd−1

ϕk(ŷ)ϕl(ŷ) dŷ = δkl ∀k, l ∈ N
∗, (6)

with δkl the Kronecker symbol. Different choices are possible for the modal
basis {ϕk}k. We can use trigonometric functions (associated with Fourier
expansions), Legendre polynomials, or wavelets, the index k having differ-
ent meanings accordingly. If a homogeneous Dirichlet boundary condition
is enforced on Γ∗, the modal basis functions must vanish on the boundary
of γ̂d−1.

By combining the space V1D with the modal basis {ϕk}k, we define the
reduced space

Vm =

{
vm(x,y) =

m∑

k=1

ṽk(x)ϕk(ψx(y)), with ṽk ∈ V1D, x ∈ Ω1D, y ∈ γx

}
, (7)

where m ∈ N
∗ is a given integer, fixed a priori. Owing to the orthonormality

condition (6), the frequency coefficients ṽk in (7) are identified by the relation

ṽk(x) =

∫

bγd−1

vm

(
x, ψ−1

x (ŷ)
)
ϕk(ŷ) dŷ with k = 1, . . . ,m. (8)
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To obtain a well-defined and convergent approximation to the full problem
(1), two properties of the space Vm in (7) are required:

i) conformity hypothesis: Vm ⊂ V , ∀m ∈ N
∗ ;

ii) spectral approximability hypothesis:

∀ v ∈ V lim
m→+∞

(
inf

vm∈Vm

‖v − vm‖V

)
= 0.

The so-called reduced problem reads: for any m ∈ N
∗,

find um ∈ Vm : a(um, vm) = F(vm) ∀vm ∈ Vm. (9)

The well-posedness of the formulation (9) immediately stems from the conformity
hypothesis i) and the well-posedness assumed on (1). Moreover, because of the
conformity hypothesis i), the modeling error em ∈ V given by the difference
u− um satisfies the modeling orthogonality property

a(em, vm) = 0 ∀vm ∈ Vm. (10)

Relation (10) readily leads to the spectral optimality property

‖em‖V ≤ C inf
vm∈Vm

‖u− vm‖V ,

where C depends on both the continuity and the coercivity constants of a(·, ·).
Convergence of um to u thus follows from the spectral approximability hypothesis
ii). Consequently, the modeling error can be controlled by suitably tuning the
modal index m in the reduced formulation (9).

Exploiting in (9) the modal representation um(z) =
∑m

j=1 ũj(x)ϕj(ψx(y)) ∈
Vm yields

m∑

j=1

a(ũjϕj , ϑϕk) = F(ϑϕk) (11)

for any ϑ = ϑ(x) ∈ V1D and for any k = 1, . . . ,m. The frequency coefficients
ũj ∈ V1D are the actual unknowns of the numerical problem. Solution to (11)
requires to solve a system of coupled 1D problems. If the indexm is small enough
(e.g., m ≤ 10), this procedure is expected to be more convenient than solving
the complete problem (1). In practical applications, the appropriate choice of
the index m represents a non-trivial task. Some examples will be provided in
sections 3.4 and 4.3.

Remark 3.1 The conformity hypothesis i) can hold only if suitable assumptions
are made on the boundary conditions and on the smoothness of the maps ψx.
Non-homogeneous Dirichlet boundary conditions can be easily dealt with if, for
instance, the Dirichlet data are given by linear combinations of the modal basis
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functions, i.e., in the form
∑

j∈J cjϕj , with J ⊂ [1,m], mapped onto Γ0 or Γ1

(see, e.g., section 3.4.3). In this case, for all 1 ≤ j ≤ m, non-homogeneous
Dirichlet data equal to cj if j ∈ J and equal to zero otherwise are enforced
on the frequency coefficients ṽj at x0 or x1. In general we can impose any
non homogeneous Dirichlet data after approximating it via the corresponding
projection onto span{ϕk}m

k=1.

Remark 3.2 The rate of modal convergence depends on the adopted modal basis
as well as on the regularity of u (see, e.g., [5, 8, 6, 7]). In the context of
problems posed on thin domains, specific choices for the modal functions are
discussed in [21, 22] to guarantee both asymptotically (as the plate thickness
becomes infinitesimal) and spectrally (as the number of modes grows to infinity)
optimal estimates of the modeling error.

3.2 The case of 2D advection-diffusion-reaction problems

We particularize the reduced formulation (11) to a linear advection-diffusion-
reaction (ADR) problem completed with full homogeneous Dirichlet boundary
conditions. For the sake of simplicity we consider the 2D case. The full space V
coincides with H1

0 (Ω), while V1D coincides with H1
0 (Ω1D). Moreover, the modal

functions ϕk vanish on Γ∗. The bilinear and linear forms in (1) are given by

a(u, v) =

∫

Ω

µ∇u · ∇v dxdy +

∫

Ω

(
β · ∇u+ σu

)
v dxdy and F(v) =

∫

Ω

fv dxdy,

(12)
respectively, where β = (β1, β2)

T . Usual regularity assumptions are made on
the data to guarantee the well-posedness of such a weak formulation, namely
µ ∈ L∞(Ω), β ∈ [W 1,∞(Ω)]2, σ ∈ L∞(Ω), f ∈ L2(Ω), µ is uniformly positive on
Ω, and σ − 1

2∇·β is non-negative on Ω. Under these assumptions, the bilinear
form a(·, ·) is H1

0 (Ω)-coercive.
We exploit the gradient expansion

∇z

(
w(x)ϕs(ψx(y))

)
= ϕs(ψx(y))

[
dw(x)

dx

0

]
+ w(x)ϕ′

s(ψx(y))

[
D1(z)

D2(z)

]
(13)

for s = 1, . . . ,m and for any w ∈ V1D, where ∇z is the gradient with re-
spect to z, while ϕ′

s(ψx(y)) stands for dϕs/dŷ at the point ψx(y). Notice that
D2(z) ≡ ∂ψx/∂y is a scalar quantity since we are solving a 2D problem. The
determinant

∣∣ det
(
D−1

2

(
x, ψ−1

x (ŷ)
))∣∣ in (5) thus reduces to the absolute value∣∣D−1

2

(
x, ψ−1

x (ŷ)
)∣∣.

By applying (13) to each gradient of the bilinear form in (12) and by suitably
reordering the resulting terms, we obtain the following system of 1D problems
(we refer to [9] for the detailed computations): for j, k = 1, . . . ,m, find ũj ∈
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H1
0 (Ω1D) such that, ∀ϑ ∈ H1

0 (Ω1D),

m∑

j=1

{ ∫

Ω1D

[
r̂ 1,1
kj (x)

dũj(x)

dx

dϑ(x)

dx
+ r̂ 1,0

kj (x)
dũj(x)

dx
ϑ(x) + r̂ 0,1

kj (x) ũj(x)
dϑ(x)

dx

+ r̂ 0,0
kj (x) ũj(x)ϑ(x)

]
dx

}
=

∫

Ω1D

[ ∫

bγ1

f(x, ψ−1
x (ŷ))ϕk(ŷ)

∣∣D−1
2

(
x, ψ−1

x (ŷ)
)∣∣ dŷ

]
ϑ(x) dx,

(14)

with

r̂ s,t
kj (x) =

∫

bγ1

r s,t
kj (x, ŷ)

∣∣D−1
2

(
x, ψ−1

x (ŷ)
)∣∣ dŷ for s, t = 0, 1, (15)

where

r 1,1
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕk(ŷ),

r 0,1
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕ′

j(ŷ)ϕk(ŷ)D1

(
x, ψ−1

x (ŷ)
)
,

r 1,0
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕ

′

k(ŷ)D1

(
x, ψ−1

x (ŷ)
)

+ β1

(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕk(ŷ),

r 0,0
kj (x, ŷ) = µ

(
x, ψ−1

x (ŷ)
)
ϕ′

j(ŷ)ϕ
′

k(ŷ)
{[

D1

(
x, ψ−1

x (ŷ)
)]2

+
[
D2

(
x, ψ−1

x (ŷ)
)]2

}

+ ϕ′

j(ŷ)ϕk(ŷ)
{
β1

(
x, ψ−1

x (ŷ)
)
D1

(
x, ψ−1

x (ŷ)
)

+ β2

(
x, ψ−1

x (ŷ)
)
D2

(
x, ψ−1

x (ŷ)
)}

+ σ
(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕk(ŷ).

The quantities r̂ s,t
kj collect the transverse contributions. We also observe that

using the map ψx, the reduced system is fully solved on the reference rectangle
Ω̂ in place of the physical domain Ω.

Let u = (ũ1, . . . , ũm) and v = (ϑ1, . . . , ϑm) be in W = [H1
0 (Ω1D)]m. Let D,

A, B, and R be R
m,m-valued fields defined on Ω1D such that, for j, k = 1, . . . ,m

and x ∈ Ω1D,

Dkj(x) = r̂ 1,1
kj (x),

Akj(x) = r̂ 0,1
jk (x),

Bkj(x) =

∫

bγ1

β1

(
x, ψ−1

x (ŷ)
)
ϕj(ŷ)ϕk(ŷ)

∣∣D−1
2

(
x, ψ−1

x (ŷ)
)∣∣ dŷ,

Rkj(x) = r̂ 0,0
kj (x).

Then, the left-hand side of the reduced problem (14) defines the bilinear form

a(u, v) =

∫

Ω1D

[
D
du

dx
· dv
dx

+ (A + B)
du

dx
· v + A

T
u · dv

dx
+ Ru · v

]
dx. (16)
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Integrating by parts the third term on the right-hand side and assuming enough
smoothness to define d

dxA leads to

a(u, v) =

∫

Ω1D

[
D
du

dx
· dv
dx

+ (A − A
T )
du

dx
· v + B

du

dx
· v +

(
R − dAT

dx

)
u · v

]
dx.

(17)
The first term on the right-hand side corresponds to a diffusion contribution
since the matrix D is symmetric and uniformly positive definite; the third term
represents an advection contribution since the matrix B is symmetric; the last
term corresponds to a reaction term. We observe that the second term cannot
be directly identified with an advection term since the matrix (A−AT ) is skew-
symmetric. We emphasize that the properties of the bilinear form a(·, ·) on W
are inherited directly from those of the bilinear form a(·, ·) associated with the
full problem. In particular, equipping W with the norm ‖u‖W = ‖Eu‖H1(Ω),
with the extension operator

E : W ∋ u 7−→ Eu(x, y) =
m∑

k=1

ũk(x)ϕk(ψx(y)) ∈ H1
0 (Ω), (18)

the above assumptions imply that a(·, ·) is W -coercive.

Remark 3.3 Computations in (14) simplify under particular assumptions on
the data. For instance, for constant coefficients µ, β, and σ, the orthonormality
condition (6) implies that r̂ 1,1

kj = 0 if k 6= j, as well as all the terms multiplied by
ϕj(ŷ)ϕk(ŷ) provide a non-zero contribution only for k = j. A further interesting
simplification occurs when the map ψx is affine, since D2

(
z
)

reduces to L(x)−1.
In particular, when the physical domain itself coincides with a rectangle (i.e.,
L=constant in (3)), all the terms involving D1

(
z
)

vanish.

Remark 3.4 As peculiar simplification, we consider the 2D Poisson equation
((12) with µ = 1, β = 0, σ = 0) completed with full homogeneous Dirichlet
boundary conditions. We make the simplest possible choice for the reduced space
Vm by setting m = 1 in (7). Then we resort to the linear map (3), assuming
L ∈ C2(Ω1D). The coefficients in (15) simplify into

r̂ 1,1
11 (x) = L(x), r̂ 1,0

11 (x) = r̂ 0,1
11 (x) =

L′(x)

2
,

r̂ 0,0
11 (x) =

1

L(x)

∫

bγ1

[
ϕ′

1(ŷ)
]2

{[
L′(x) ŷ

]2
+ 1

}
dŷ.

The reduced formulation (14) thus becomes: find ũ1 ∈ H1
0 (Ω1D) such that

∫

Ω1D

L(x)
dũ1(x)

dx

dϑ(x)

dx
dx+

∫

Ω1D

L(x) γ(x) ũ1(x)ϑ(x) dx =

∫

Ω1D

L(x) f̃1(x)ϑ(x) dx,
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where

γ(x) =
1

[
L(x)

]2

∫

bγ1

[
ϕ′

1(ŷ)
]2

{[
L′(x) ŷ

]2
+ 1

}
dŷ − L′′(x)

2L(x)

is the reactive coefficient of the reduced formulation, and f̃1 is the (first) fre-
quency coefficient associated with the forcing term f , according to definition (8).

The coefficient γ further simplifies into
[
L(x)

]−2 ∫
bγ1

[
ϕ′

1(ŷ)
]2
dŷ when Ω itself

coincides with a rectangle (since L′(x) = L′′(x) = 0).

Remark 3.5 We highlight that even a purely diffusive problem (i.e., β = 0

and σ = 0 in (12)) yields low-order contributions in the reduced framework.
However, the first-order terms yielded by the hierarchical reduction are always
weighted by the diffusive coefficient µ itself. Consequently possible instabilities
due to a dominant advection or reaction should be in general avoided provided
that the deformation indices D1(z) and D2(z) are small enough.

3.3 Discretization of the reduced problem

Since the reduced formulation actually coincides with a system of equations
posed on the 1D domain, we have to introduce a partition of Ω1D to obtain the
discrete counterpart of (9). Let Th be a subdivision of Ω1D into subintervals
Kj = (xj−1, xj) of width hj = xj − xj−1, and set h = maxj hj. We introduce
a conforming finite element space V h

1D ⊂ V1D associated with the partition Th,
such that dim(V h

1D) = Nh < +∞. Then we add the following assumption:

iii) density hypothesis:

∀u1D ∈ V1D lim
h→0

d1D(u1D, V
h
1D) = 0,

where d1D(·, ·) denotes the distance induced by the norm ‖·‖V1D
:= ‖·‖H1(Ω1D)

in V1D.

The discrete reduced formulation can thus be stated as

find uh
m ∈ V h

m : a(uh
m, v

h
m) = F(vh

m) ∀vh
m ∈ V h

m, (19)

where the space V h
m is given by

V h
m =

{
vh
m(x,y) =

m∑

k=1

ṽ h
k (x)ϕk(ψx(y)), with ṽ h

k ∈ V h
1D, x ∈ Ω1D, y ∈ γx

}
.

(20)
Because of the conformity assumption on the discrete space V h

1D, there holds

V h
m ⊂ Vm. (21)
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3.3.1 Convergence

We denote with ehm = u − uh
m ∈ V the global error taking into account both

the model (u − um) and the discretization (um − uh
m) error contribution. The

following convergence result holds.

Proposition 3.1 Let u be the solution to the full problem (1) and let uh
m solve

the reduced discrete problem (19). There holds

lim
m→+∞

lim
h→0

uh
m = u in V.

Proof. Fix m ≥ 1. Using the conformity relation V h
m ⊂ Vm, it is readily inferred that

‖um − uh
m‖V ≤ C inf

vh
m
∈V h

m

‖um − vh
m‖V ,

with C a constant depending on the continuity and coercivity constants of the bilinear
form a(·, ·). Moreover, for all vh

m ∈ V h
m,

(um − vh
m)(x,y) =

m∑

k=1

[
ũk(x) − ṽ h

k (x)
]
ϕk(ψx(y)),

with ũk ∈ V1D and ṽ h
k ∈ V h

1D, for all k = 1, . . . ,m. It is clear that there exists a constant
C′, depending on ψx, for every x ∈ Ω1D, and on the set {ϕk}m

k=1, such that

‖um − vh
m‖V ≤ C′

m∑

k=1

‖ũk − ṽ h
k ‖V1D

.

Since m is fixed, the density assumption iii) guarantees that this upper bound tends to
zero as h→ 0. Hence,

lim
h→0

uh
m = um in V .

Letting m→ +∞ yields the conclusion. �

Concerning the rate of convergence of the whole reduction procedure (model
reduction plus finite element discretization) some results are already available
in the literature. In [6] a combined Fourier–finite element method is used to
approximate an elliptic problem and error estimates, additively depending on
h and m, are derived with respect to anisotropic Sobolev norms. The same
kind of analysis is pursued in [7] where a 3D Navier-Stokes problem with one
direction of periodicity is approximated via a Fourier pseudo-spectral scheme
along such a direction and by means of finite elements with respect to the other
directions. A Fourier-finite element approach is applied in [13] to the 3D Poisson
equation solved on an axisymmetric domain with reentrant edges. L2– and H1–
convergence results, preserving the splitting between the modal index and the
discretization step contributions, are derived. We refer to section 3.4.1 for a
numerical convergence study of the discrete reduced formulation (19).

12



3.3.2 Algebraic formulation

The discrete counterpart of the 1D system (11) is the following: find {ũh
j }m

j=1 ∈
[V h

1D]m, such that
m∑

j=1

a(ũh
j ϕj , ϑlϕk) = F(ϑlϕk) (22)

with k = 1, . . . ,m, and where ϑl, for l = 1, . . . ,Nh, is a generic basis function of
the discrete space V h

1D. By expanding the unknown coefficients ũh
j in terms of

the finite element basis {ϑi}Nh

i=1 (i.e., ũh
j (x) =

∑Nh

i=1 ũ
h
j,i ϑi(x)) and by suitably

varying the indices k and l, we obtain a linear system characterized by a mNh ×
mNh block matrix A, whose pattern is represented in Figure 3. The indices k and
j, associated with the modes, identify the “macro-structure” of A, i.e., run on
the block-rows and block-columns, respectively; on the other hand, the indices l
and i, related to the finite element basis, span the rows and columns, respectively
of each block. Each Nh ×Nh-block Akj preserves the sparsity pattern peculiar

=

Nh f1

Nh Nh

NhNh

f2

fm

Nh

j = 1 j = m

Nhk = 1

k = m ũh
m

Akj

i = 1 ... i = Nh

l = 1

l = Nh

.

.

.

Nh

ũh
2

ũh
1

Figure 3: Sketch of the linear system corresponding to the discrete reduced
formulation (22), with [fk]l = F(ϑlϕk), for k = 1, . . . ,m and l = 1, . . . ,Nh.

to the adopted finite element approximation. This provides two advantages.
First of all, a 1D finite element matrix can be characterized by a structured
sparsity pattern, with benefits both in storing and solving the associated system.
Moreover, all the coupled 1D problems in (22) share the same pattern, that can
be consequently stored once for all.
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3.4 Numerical tests

The reliability and effectiveness of the global model reduction is numerically in-
vestigated in a 2D framework. For this purpose the choice of the reduced space
Vm is clearly a crucial issue. A priori it should stem from a trade-off between
the need to capture the main features of the full solution and the necessity to
limit the computational costs. In the numerical experiments we adopt the most
straightforward approach (a sort of trial-and error strategy): we compute the
approximate solution uh

m starting from m = 1; then we gradually increase such
a value until a sort of “stagnation” (no significative change occurs from a qual-
itative viewpoint) is detected in the reduced solution. A more mathematically
sound technique will be proposed in [16] in view of an automatic selection of m.

In section 3.4.1 we study the convergence of this procedure on two test cases
with analytical solution. In the two subsequent sections, we assess the perfor-
mance of the approach on two test cases where local transverse dynamics are
induced either by a strong heterogeneity in a problem coefficient (section 3.4.2)
or by the shape of the domain Ω (section 3.4.3). We use continuous piecewise
linear finite elements to generate the space V h

1D, while we employ sinusoidal func-
tions for the modal basis {ϕk}k. In all cases, homogeneous Dirichlet boundary
conditions are enforced on the boundary Γ∗. To compute the integrals of the sine
functions we employ at least four quadrature nodes per wavelength (Gaussian
quadrature formulas).

3.4.1 Test cases with analytical solutions

As a consequence of the selection of a sinusoidal-finite element discretization,
convergence rates can be inferred from the results in [6], where a (complete)
Fourier expansion is used along the transverse directions. Consider the anisotropic
Sobolev space

Hr,s(Ω1D × γ̂1) = L2(γ̂1;H
r(Ω1D)) ∩Hs(γ̂1;L

2(Ω1D)),

where r, s ≥ 0 are integers, L2(ρ;X) =
{
w : ρ→ X measurable s.t.

∫
ρ ‖w(η)‖2

X dη <

+∞
}
, Hs(ρ;Y ) =

{
w ∈ L2(ρ;Y ) s.t. ∂kw/∂ηk ∈ L2(ρ;Y ) for 0 ≤ k ≤ s

}
, with

ρ ⊂ R and X and Y Hilbert spaces. Let Hr,s
p (Ω1D × γ̂1) define the closure, with

respect to the graph-norm on Hr,s(Ω1D × γ̂1), of the space C∞
p (Ω1D × γ̂1) of the

C∞-functions periodic, together with all their derivatives, with respect to the
y-direction (see [12, 14] for more details).

Using sine functions in the modal expansion precludes a priori any spectral
convergence rate, even with smooth solutions, e.g., C∞-functions (see [5]). If
the exact solution belongs to H2,2

p (Ω̂), the expected convergence result for ehm is
the one stated in Theorems 2.1 and 3.2 in [6], namely quadratic for the L2-norm
and linear for the H1-norm, with respect to both m−1 and h.
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Table 1: L2–norm of the global error for test case 1.

m h = 0.4 h = 0.2 h = 0.1 h = 0.05
1 6.4002e-03 6.3963e-03 6.3961e-03 6.3961e-03
2 1.8722e-03 1.8544e-03 1.8534e-03 1.8533e-03
4 6.2963e-04 5.7332e-04 5.6989e-04 5.6968e-04
8 3.0156e-04 1.5193e-04 1.3840e-04 1.3753e-04
16 2.6991e-04 7.0620e-05 3.2539e-05 2.8613e-05
32 2.6848e-04 6.4911e-05 1.6881e-05 6.6991e-06

Table 2: H1–norm of the global error for test case 1.

m h = 0.4 h = 0.2 h = 0.1 h = 0.05
1 4.5228e-02 4.5220e-02 4.5220e-02 4.5220e-02
2 2.1754e-02 2.1720e-02 2.1718e-02 2.1718e-02
4 1.1480e-02 1.1410e-02 1.1405e-02 1.1405e-02
8 5.1457e-03 4.9812e-03 4.9714e-03 4.9708e-03
16 2.3528e-03 1.9656e-03 1.9406e-03 1.9390e-03
32 1.5137e-03 7.8628e-04 7.2129e-04 7.1716e-04

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

m

‖e
h m
‖ L

2

 

 

h=0.4
h=0.2
h=0.1
h=0.05
order=2

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

m

‖e
h m
‖ H

1

 

 

h=0.4
h=0.2
h=0.1
order=1

Figure 4: Test case 1: modal convergence of the global error for different choices
of the step h: L2–norm (left), H1–norm (right).

Test case 1 The analytical solution is chosen to be u1(x, y) = y2 (1−y)2 (0.75−
y)x (2 − x), with (x, y) ∈ Ω̂ = (0, 2) × (0, 1), so that u1 ∈ H2,2

p (Ω̂). Figure 4
and Tables 1 and 2 collect the values of the error with respect to both the L2-
and the H1-norm. The expected dependence of the error on m is evident for
h small enough. For high values of m the convergence rate is biased by the
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discretization error. The L2-norm is more strongly affected by the choice made
for the discretization step. The choice h = 0.05 is the only exception, the order
2 being preserved, at least till m = 32. On the contrary, the H1-norm exhibits
a slight superconvergence, already for rather large values of h (the reduction
factor of ‖ehm‖

H1(bΩ) is about 2.5, for a fixed h). Concerning the convergence

of ehm with respect to the discretization step, we observe a marginal sensitivity
to the mesh size, at least until a sufficiently high number of transverse modes
is reached. This trend is particularly evident for the H1-norm (all the curves
coincide until m = 8 in Figure 4, right) and can be ascribed to the dominance
of the modeling error over the discretization error.

Test case 2 The analytical solution is now chosen to be u2 = y2 (1−y)2 (0.75−
y)x (2− x) exp(sin(2πx)) on Ω̂ = (0, 2) × (0, 1), so that u2 ∈ H2,2

p (Ω̂). We sum-
marize the corresponding results in Figure 5 and in Tables 3 and 4. Notice the
different choice made for m and h with respect to Figure 4. The x-variations
of the function u2 require now a finer finite element discretization step with re-
spect to function u1. A different behavior of the H1-error is observed in terms of
modal convergence (compare with Figure 4, right). The expected linear modal
convergence is now achieved only for h small enough, and the superconvergence
is less marked with respect to the first test case. On the contrary, the discrep-
ancy between u1 and u2 is less striking if we consider the L2-norm of the error
(compare with Figure 4, left), even if to achieve quadratic modal convergence, a
smaller h is required for u2.

Table 3: L2–norm of the global error for test case 2.

m h = 0.2 h = 0.1 h = 0.05 h = 0.025 h = 0.0125
1 9.7946e-03 9.6712e-03 9.6628e-03 9.6622e-03 9.6622e-03
2 3.3444e-03 2.8388e-03 2.8022e-03 2.7998e-03 2.7997e-03
4 2.0354e-03 9.8200e-04 8.6881e-04 8.6109e-04 8.6060e-04
8 1.8575e-03 5.1679e-04 2.3959e-04 2.0980e-04 2.0779e-04
16 1.8464e-03 4.7517e-04 1.2691e-04 5.2235e-05 4.3452e-05

Table 4: H1–norm of the global error for test case 2.

m h = 0.2 h = 0.1 h = 0.05 h = 0.025 h = 0.0125
1 8.3525e-02 7.8041e-02 7.7221e-02 7.7153e-02 7.7149e-02
2 5.0836e-02 3.7018e-02 3.4631e-02 3.4428e-02 3.4415e-02
4 4.1715e-02 2.2288e-02 1.7952e-02 1.7552e-02 1.7524e-02
8 3.8655e-02 1.5718e-02 8.5003e-03 7.6166e-03 7.5533e-03
16 3.8031e-02 1.4096e-02 4.8870e-03 3.1033e-03 2.9445e-03
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Figure 5: Test case 2: modal convergence of the global error for different choices
of the step h: L2–norm (left), H1–norm (right).

Concerning the finite element convergence, we observe for u2 a greater sensitivity
of the error to the value chosen for h. Moreover, fewer modes are now sufficient
to detect the expected convergence rate, at least when the step h is large enough,
so that the discretization error is not dominated by the modeling one.

3.4.2 Test case 3: diffusion heterogeneity

For the sake of simplicity we assume henceforth the partition Th to be sufficiently
fine to neglect the discretization error. The physical domain Ω coincides with
the trapezoidal portion of R

2 bounded, counterclockwise, by the straight lines
x = 0, for 0 ≤ y ≤ 1; y = −0.1x, for 0 ≤ x ≤ 4; x = 4, for −0.4 ≤ y ≤ 1.4;
y = 1+0.1x, for 0 ≤ x ≤ 4. We solve the pure diffusive problem −∇·(µ∇u) = f ,
completed with full homogeneous Dirichlet boundary conditions. The viscous
coefficient is µ(x, y) = 1 + 100χD(x, y) so that it takes on large values in the
circular region D =

{
(x, y) : (x − 1)2 + (y − 0.25)2 < 0.1

}
only, with χD the

characteristic function associated with D. The source term is selected identically
equal to 1. Figure 6, top-left, shows the corresponding (full) solution u. The
area where the viscosity is larger can be easily recognized by the deformation of
the contour lines.

We apply the global model reduction procedure moving from the computa-
tionally cheapest choice m = 1 up to m = 9. Figure 6 gathers the contour plots
of the discrete reduced solutions corresponding to the values m = 1, 3, 5, 7, 9, and
for h = 0.05. It is evident that the accuracy of uh

m increases as m gets larger.
The local variation of the diffusion coefficient requires a rather large number of
modes overall. While a few modal functions (e.g., 3) are enough to capture the
behavior of u in the region 1.7 ≤ x ≤ 4, at least 7 modes are necessary to get a
sufficiently detailed approximation to the full solution, matching the behavior of
u also in correspondence with D. No relevant change occurs when moving from
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m = 7 to m = 9.
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Figure 6: Global model reduction (test case 3): full solution and reduced ap-
proximations uh

1 , uh
3 , uh

5 , uh
7 , uh

9 (top-bottom, left-right).

3.4.3 Test case 4: the wavy channel

This test case is of interest in haemodynamics, modeling a Bellhouse oxygenator
for extra-corporeal circulation (see, e.g, [4]). In particular, we model oxygen
transport inside a wavy channel consisting of two symmetric sinusoidal sections
(see Figure 7). This geometry is typical of mass transfer devices such as blood
oxygenators or membrane separators.

The computational domain coincides with the region of R
2 whose bound-

aries are defined by the functions (listed in counterclockwise order) x = 0, for
1 ≤ y ≤ 2; y = 1 − 0.25 sin(2πx), for 0 ≤ x ≤ 2; x = 2, for 1 ≤ y ≤ 2;
y = 2 + 0.25 sin(2πx), for 0 ≤ x ≤ 2. We solve here the advection-diffusion
problem (12) with σ = 0, µ(x, y) = 1, and β(x, y) = (100, 0)T . The solution
u represents the oxygen concentration in the blood. The problem is completed
with mixed boundary conditions. In particular we assign a nonhomogeneous
Dirichlet condition at the inflow, by prescribing u(x, y) =

√
2 sin(2πy) at the

inflow x = 0; a homogeneous Dirichlet condition on the curved boundaries; a
homogeneous Neumann condition at the outflow x = 2. Finally we choose as
forcing term f ≡ 0.
The corresponding (full) solution u is displayed in Figure 7. Notice how the
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Figure 7: Wavy channel test case : full solution.

main stream of the motion, driven by the field β, is modified by the irregular
shape of the domain. This triggers transverse dynamics as shown by the bending
of the contour lines.

We resort to the global model reduction procedure to approximate u, starting
from m = 1 and then choosing larger values. In Figure 8 we show the contour
plots of the discrete reduced solutions uh

1 , uh
3 , uh

5 , uh
7 , uh

9 , and uh
11, for h =

0.01. We do not resort to any stabilization scheme since the choice made for
h guarantees that the local Péclet number corresponding to an advective field
(100, 0)T is strictly less than 1. However, the actual advective term in the
reduced formulation (14) depends also on D1(z). This last contribution could
make locally the chosen h insufficient to ensure the stability of the discretization
scheme. This could explain the negative minimum values associated with some
of the reduced solutions (−0.0824 for uh

3 , −0.0069 for uh
7), in contrast to the

minimum value 0 of the full solution (to make a fair comparison between the
full and reduced frameworks, we have employed the same color map in all the
contour-plots, ranging from the minimum to the maximum value of the reduced
solutions). In contrast to test case 3, the full solution exhibits a complex behavior
on the whole domain. Thus small values of m do not ensure enough accuracy
to the reduced solution: at least m = 9 modes have to be employed to achieve a
reasonable approximation.

4 Local model reduction

The strategy proposed in the previous section to select the reduced space exhibits
an evident drawback: to accurately approximate a full solution with local strong
transverse components, we are compelled to use a large number of modes over
the whole domain, i.e., also where the transverse dynamics are not relevant. For
instance, in the example of Figure 6, three sine functions guarantee a reliable
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Figure 8: Global model reduction (wavy channel test case). reduced approxi-
mations uh

1 , uh
3 , uh

5 , uh
7 , uh

9 , uh
11 (top-bottom, left-right).

reduced solution on the right half of the domain, while at least nine modes
have to be employed in the left half. This implies an unnecessary increase of
the computational costs. A computationally more effective approach consists in
employing different values form in different parts of the domain. Large values for
m are associated with the zones where the transverse dynamics are meaningful,
while small values are selected where the 1D behavior is dominant. We refer
to this last approach as local model reduction in contrast to the global model
reduction addressed in section 3.
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4.1 Formulation of the locally reduced problem

The key point in local model reduction is to couple reduced solutions with a dif-
ferent number of modal components on various subdomains of Ω. In principle,
the modal index can change in correspondence with each element Kj of the par-
tition Th. In practice, a few subdomains of Ω1D, grouping consecutive elements,
are used, each featuring a fixed value of m. For this reason, we introduce a par-
tition of Ω1D into s non-overlapping macro subintervals Ω1D,i, with i = 1, . . . , s,
such that ∪s

i=1Ω1D,i = Ω1D, and the corresponding multi-index m = {mi}s
i=1

collecting the number of modes selected on each Ω1D,i. We consequently identify
in Ω the subdomains Ωi =

⋃
x∈Ω1D,i

{x} × γx, for i = 1, . . . , s.
To formulate the locally reduced problem and its finite element discretization

in the case of a modal multi-index m, we need to modify the definition of the
reduced spaces in (7) and (20). Accordingly, we first introduce the space

Vm =
{
vm(x,y) : vm(x,y)

∣∣
Ω1D,i

=

mi∑

k=1

ṽk

∣∣
Ω1D,i

(x)ϕk(ψx(y))

∀i = 1, . . . , s, with ṽk ∈ V1D, x ∈ Ω1D, y ∈ γx

}
,

resorting to mi modal functions on each Ω1D,i for i = 1, . . . , s. When we move
from Ω1D, j to Ω1D, j+1, for j = 1, . . . , s− 1, we are a priori in the presence of a
model discontinuity if mj 6= mj+1 (see Remark 4.1 for the details). As a result,
Vm is not necessarily a subspace of V and we set V ′

m
= Vm ∩ V .

Likewise the multi-index discrete reduced space is defined as

V h
m

=
{
vh
m

(x,y) : vh
m

(x,y)
∣∣
Ω1D,i

=

mi∑

k=1

ṽ h
k

∣∣
Ω1D,i

(x)ϕk(ψx(y))

∀ i = 1, . . . , s, with ṽ h
k ∈ V h

1D, x ∈ Ω1D, y ∈ γx

}
.

Again, because of possible model discontinuities, V h
m

is not necessarily a con-
forming approximation space of V and we set V h

m

′
= V h

m
∩ V .

The local reduced formulation and the corresponding finite element dis-
cretization take the form (9) and (19), the spaces Vm and V h

m being replaced
by V ′

m
and V h

m

′
, respectively. To enforce the matching at model discontinu-

ities so as to work directly with the spaces Vm and V h
m

, we consider a domain
decomposition approach (see Remark 4.1). This is the focus of the next section.

4.2 A domain decomposition approach

Subdomains with a different number of modal functions are connected via an
iterative substructuring method. This approach is new in this context. Alter-
native techniques based on an appropriate redefinition of the reduced space are
pursued, e.g., in [1, 3, 23].
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For the sake of simplicity we consider the case of two macro subintervals
Ω1D,1 and Ω1D,2, separated by ξ ∈ Ω1D. Let {ξ} × γξ be the interface between
Ω1 =

⋃
x∈Ω1D,1

{x} × γx and Ω2 =
⋃

x∈Ω1D,2
{x} × γx. The modal index m is set

to m1 and m2 on Ω1 and Ω2, respectively. We denote with uh
mi

, for i = 1, 2,
the restriction to Ωi of the discrete reduced solution uh

m
. Finally we assume

homogeneous Dirichlet boundary conditions on Γ0 and Γ1.
Let us define the spaces V h

mi
and V h

mi,0
associated with the subdomain Ωi for

i = 1, 2, as

V h
mi

=
{
vh
mi

(x,y) =

mi∑

k=1

ṽ h
k

∣∣
Ω1D,i

(x)ϕk(ψx(y)),

with ṽ h
k ∈ V h

1D, x ∈ Ω1D,i, y ∈ γx and vh
mi

∣∣
∂Ωi∩(Γ0∪Γ1)

= 0
}
,

and V h
mi,0

= {vh
mi

∈ V h
mi

: vh
mi

∣∣
γξ

= 0}. Moreover let V m
bγd−1

= span{ϕk}m
k=1 be

the function space spanned by the first m modes, for any m ∈ N
∗.

We consider the following relaxed Dirichlet/Neumann scheme (see, e.g., [17,
20]). Starting from λ0 ∈ V m1

bγd−1

◦ ψξ, we build, for k = 0, 1, . . ., the sequences

{uh,k
m1

}k, {uh,k
m2

}k such that

uh,k+1
m1

∈ V h
m1

:





a1(u
h,k+1
m1

, vh
m1

) = F1(v
h
m1

) ∀vh
m1

∈ V h
m1,0,

uh,k+1
m1

(γξ) = λk;
(23)

uh,k+1
m2

∈ V h
m2

:





a2(u
h,k+1
m2

, vh
m2

) = F2(v
h
m2

) ∀vh
m2

∈ V h
m2,0,

a2(u
h,k+1
m2

, R2µ) = F2(R2µ) + F1(R1µ)

− a1(u
h,k+1
m1

, R1µ) ∀µ ∈ V m2

bγd−1
◦ ψξ,

(24)

with
λk+1 = ω uh,k+1

m2

∣∣
γξ

+ (1 − ω)λk, (25)

where ai(·, ·) and Fi(·), for i = 1, 2, are the restrictions to the subdomain Ωi of
the bilinear and linear forms in (1), respectively, while Ri is a suitable prolonga-
tion operator from the interface γξ to the whole subdomain Ωi, with i = 1, 2 (see
below for the definition). Here V m1

bγd−1
◦ ψξ is the function space spanned by the

first m modes mapped back to the physical fiber γξ. The update of this function
is relaxed via the parameter ω > 0.

The interface value λk as well as the weak residual on the right hand side of
(24)2 enforcing the Neumann data combine solutions involving a different num-
ber of modal functions. Therefore, suitable matching procedures are required.
To fix the ideas, let us assume m1 < m2. We distinguish two cases:

– when we compute λk+1 via the relation (25), we have to “reduce” the

modal dimension of the solution uh,k+1
m2

since λk+1 belongs to V m1

bγd−1
◦ ψξ:
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the reduction is obtained simply by discarding the extra components of
uh,k+1

m2
. Likewise, the operator R1 prolongates the value µ ∈ V m2

bγd−1
◦ ψξ to

Ω1 after neglecting the last (m2 −m1) components of µ;

– to evaluate the right hand side of (24)2 we have to “augment” the modal

dimension of the quantity F1(R1µ) − a1(u
h,k+1
m1

, R1µ) before adding it to
F2(R2µ): this is obtained by setting the (m2 −m1) lacking components of

F1(R1µ) − a1(u
h,k+1
m1

, R1µ) to zero.

Remark 4.1 The adopted matching procedure does not yield necessarily an H1-
conforming approximation uh

m
. In more detail the domain decomposition scheme

guarantees, up to the demanded tolerance, a continuous matching between the
common modal components (corresponding to the minimum value between m1

and m2) and the associated fluxes. For instance, if m1 > m2 we recover the
continuity of the solution also in correspondence with the remaining (m1 −m2)
modes (the last (m1 − m2) frequency coefficients are indeed identically equal
to zero for both uh

m1
and uh

m2
at the interface) whereas we do not ensure the

continuity of the corresponding fluxes. If m1 < m2 we have the continuity of the
fluxes but not necessarily the continuity of the frequency coefficients associated
with the last (m2 −m1) modes. As a consequence an H1-conforming local model
reduction occurs only if m1 > m2.

From a computational viewpoint, both problems (23) and (24) lead to solve a

system of coupled 1D problems in the form (11). The sequences {uh,k
m1

}k and

{uh,k
m2

}k converge to the approximate solutions uh
m1

and uh
m2

, respectively, pro-
vided that a suitable value for the parameter ω is chosen.

The above procedure can be generalized to boundary conditions of differ-
ent type (see, e.g., [17, 20] for the details) as well as to a larger number of
subdomains. In this last case, a particular attention has to be paid to the well-
posedness of each subproblem. In this respect, an appropriate assignment of the
interface conditions is required on each subdomain. We refer to section 4.3.3 for
a practical example.

4.3 Numerical experiments

The local model reduction is assessed on three 2D test cases. The first two deal
with two subdomains, while the last one involves three subdomains.

4.3.1 Test case 5

We focus on the test case used in [9] to assess the reliability of the global model
reduction procedure. We solve on the rectangular domain Ω = (0, 2) × (0, 1)
a Poisson problem featuring a local heterogeneity in the source term and com-
pleted with full homogeneous Dirichlet boundary conditions. The forcing term is
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the characteristic function f(x, y) = χD1∪D2∪D3
(x, y) associated with the three

circular regions D1 =
{
(x, y) : (x − 1.5)2 + (y − 0.5)2 ≤ 0.01

}
, D2 =

{
(x, y) :

(x−0.5)2+(y−0.25)2 ≤ 0.01
}
, andD3 =

{
(x, y) : (x−0.5)2+(y−0.75)2 ≤ 0.01

}
.

The corresponding full solution u exhibits consequently three peaks in D1, D2,
and D3. Figure 9 displays the contour plot of u. The three peaks yield appre-
ciable transverse features over the whole domain.

Figure 9: Test case 5: full solution.

With a view to the local model reduction we observe that more pronounced
transversal dynamics are localized in the left part of Ω (note also the steep gra-
dients near (0.5, 0) and (0.5, 1)). This suggests employing a higher number of
modes in this part of the domain. The same conclusion is drawn in [9] even
if in a global model reduction framework: while four modes allow us to match
the full solution in correspondence with D1, at least eight modes are required to
detect the two peaks at D2 and D3. Thus, we resort to the domain decompo-
sition approach upon identifying the two subdomains of Ω, Ω1 = (0, 1) × (0, 1)
and Ω2 = (1, 2) × (0, 1). We apply the relaxation scheme (23)-(25) by making
different choices for the modal indices m1 and m2. Concerning the parameters
involved in such a scheme, we keep the following values, independently of the
number of modes: λ0 is the function identically equal to zero; ω = 0.5; we
set the convergence tolerance for the relative error to 10−3; finally, the same
discretization step h = 0.02 is used on both the domains.

We make the following three choices for the modal indices: m1 = 4, m2 = 2;
m1 = 5, m2 = 3; m1 = 7, m2 = 5. The domain decomposition scheme converges
after 2 iterations for each of these three pairs of values. Figure 10 illustrates
the contour plots corresponding to the second iteration for the choices m1 = 4,
m2 = 2 (top) and m1 = 5, m2 = 3 (bottom), while Figure 11 displays the
reduced solution of both the iterations obtained with m1 = 7 and m2 = 5. Even
if the behavior of the full solution is detected qualitatively in all the three cases,
the choice m1 = 7, m2 = 5 is the only one that captures the exact solution
from a quantitative viewpoint also (compare the height of the three peaks in
Figures 10 and 11).
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Figure 10: Local model reduction (test case 5): second iteration of the domain
decomposition scheme for the choice m1 = 4, m2 = 2 (top) and m1 = 5, m2 = 3
(bottom).

Figure 11: Local model reduction (test case 5): first (top) and second (bottom)
iteration of the domain decomposition scheme for the choice m1 = 7, m2 = 5.

25



The local reduced solution {u0.02,2
7 , u0.02,2

5 } is quantitatively in good agree-
ment with the global reduced one u0.02

9 proposed in [9] as a reliable approximation
to the full solution in Figure 9. On the contrary, for m1 = 4, m2 = 2, the peaks
are not sharply reproduced, in particular the one in correspondence with D1 (see
Figure 10, top). For m1 = 5, m2 = 3, the two peaks in Ω1 have approximately
the correct height while the one in Ω2 is still too low (see Figure 10, bottom).
Finally, we observe that the model discontinuity at the interface x = 1 turns
out to be really small for all the three choices of m1 and m2. This discontinuity
has to be ascribed to the domain decomposition algorithm since we are in the
presence of a conforming local reduced solution, being m1 > m2 in all the three
cases.

4.3.2 Test case 6

We apply the local model reduction procedure to test case 3. Since we remarked
in section 3.4.2 that few modes allow us to describe correctly the full solution
u far from D while more modal functions are required on the left part of the
domain, we split Ω into the subdomains Ω1 and Ω2 separated by the interface
γξ = {(ξ, y) with ξ = 2} and choose m1 > m2, i.e., conforming reduced solutions.

We make two different choices for the modal indices: m1 = 5, m2 = 3 and
m1 = 7, m2 = 3. The parameters of the domain decomposition algorithm are
set exactly as for test case 5, except for the discretization step h now equal
to 0.05 on both Ω1 and Ω2. With both choices for {m1,m2}, the relaxation
scheme converges after 4 iterations. In Figure 12 we show the output of the
fourth iteration for m1 = 5, m2 = 3. A slight model discontinuity appears at
the interface γξ, resulting essentially from the domain decomposition algorithm.

The reduced solution {u0.05,4
5 , u0.05,4

3 } is similar to uh
5 in Figure 6. In particular

the full solution is poorly captured in the top-left area above D. This justifies
the subsequent choice m1 = 7, m2 = 3, resorting to an increased number of
modal functions in Ω1 only.

Figure 12: Local model reduction (test case 6): fourth iteration of the domain
decomposition scheme for the choice m1 = 5, m2 = 3.
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Figure 13 gathers the results of the first, second, and fourth iteration associated
with this choice. The third iteration is omitted since it coincides qualitatively
with the last one. The area above D is now correctly described already at
the second iteration. Moreover, the model discontinuity at γξ is damped from
the second to the fourth step of the relaxation scheme. The reduced solution
{u0.05,4

7 , u0.05,4
3 } is comparable with uh

7 (or uh
9) in Figure 6. We observe that the

model discontinuity does not significantly change when the difference m1 −m2

increases (compare Figure 12 with Figure 13, bottom).

Figure 13: Local model reduction (test case 6): first (top), second (middle) and
fourth (bottom) iteration of the domain decomposition scheme for the choice
m1 = 7, m2 = 3.
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Figure 14: Test case 7: full solution.

4.3.3 Test case 7

This test case is meant to assess the local model reduction procedure in the
presence of more than two subdomains. We approximate problem (12) on Ω =
(0, 3)× (0, 1) with µ = 1, β = (−20, 0)T (a backward field), σ = 0, and f(x, y) =
1000χD4∪D5

(x, y), where D4 and D5 are the ellipsoidal regions defined by D4 ={
(x, y) : (x − 1.5)2 + 0.4 (y − 0.25)2 ≤ 0.01

}
and D5 =

{
(x, y) : (x − 1.5)2 +

0.4 (y − 0.75)2 ≤ 0.01
}
. Full homogeneous Dirichlet boundary conditions are

enforced on ∂Ω. Figure 14 displays the contour plot of the full solution. Owing
to the strong advective field and the assigned boundary conditions, the solution
is basically flat for x > 1.7, while it exhibits large variations in the first part
of the domain with boundary layers along the lines {(x, 0), for 0 ≤ x ≤ 1.5},
{(0, y), for 0 ≤ y ≤ 1}, and {(x, 1), for 0 ≤ x ≤ 1.5}.

We divide Ω into three subdomains, Ω1 = (0, 1) × (0, 1), Ω2 = (1, 2) × (0, 1),
and Ω3 = (2, 3) × (0, 1), and resort to m1, m2, and m3 modal functions, re-
spectively. Algorithm (23)-(25) is thus generalized. In particular, full Dirichlet
boundary conditions are assigned on ∂Ω1 (homogeneous on ∂Ω ∩ ∂Ω1 and the
interface value λk

1 along ∂Ω1 ∩ ∂Ω2); on the other hand, on ∂Ω2 and ∂Ω3 we
impose mixed boundary data (a homogeneous Dirichlet condition on ∂Ω2 ∩ ∂Ω
and ∂Ω3 ∩ ∂Ω; the interface value λk

2 on ∂Ω2 ∩ ∂Ω3, from the left; a Neumann
condition on ∂Ω1 ∩ ∂Ω2 and on ∂Ω2 ∩ ∂Ω3, from the right). To run the domain
decomposition algorithm we need the standard parameters twice: the initial val-
ues λ0

1 and λ0
2, both selected identically equal to zero; the relaxation parameters

ω1 = 0.5 and ω2 = 0.5 to speed up the coupling between Ω1 and Ω2, and Ω2 and
Ω3, respectively; the convergence tolerance for the relative error set to 10−3.

The same discretization step h equal to 0.05 is employed in the three sub-
domains. This guarantees the local Péclet number to be strictly less than 1.
Notice that the advective coefficient of the reduced formulation (14) reduces to
the x-component of β, since the quantity D1(z) is identically 0.
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Figure 15: Local model reduction (test case 7): first, fourth, seventh, and tenth
iteration (top-bottom) of the domain decomposition scheme for the choice m1 =
1, m2 = 3, m3 = 1.
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Figure 16: Local model reduction (test case 7): first, fourth, seventh, and tenth
iteration (top-bottom) of the domain decomposition scheme for the choice m1 =
3, m2 = 5, m3 = 1.
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The first selection for the modal indices is m1 = 1, m2 = 3, m3 = 1. The
chosen parameters lead the relaxation scheme to converge after ten iterations.
Figure 15 collects the contour plots associated with the first, fourth, seventh,
and last iteration. The full solution is reasonably well described already at the
seventh step. A model discontinuity at x = 1 can be observed. It relaxes during
the consecutive iterations, even if it can be still detected in the last reduced
solution {u0.05,10

1 , u0.05,10
3 , u0.05,10

1 }. It can be verified that a smaller discretization
step does not reduce the model jump significantly. This can be justified by the
fact that the first interface is located in an area where the transverse dynamics
are strongly relevant. Moreover, according to Remark 4.1, we are in the presence
of an actual model discontinuity since m1 < m2. On the contrary, no model
discontinuity appears around x = 2 where the solution is completely flat and
since m2 > m3.

To improve the quality of the reduced solution we have assessed a second
(richer) choice for the modal indices, namely m1 = 3, m2 = 5, m3 = 1. We pre-
serve the values above for the parameters of the relaxation scheme. Convergence
is reached again after ten steps. By comparing the corresponding contour plots
in Figures 15 and 16, we recognize a significant improvement in terms of model
discontinuity. It is clearly damped in the presence of the richer modal basis
expansion. A low sensitivity with respect to the choice made for h is observed
also in this case.

This example highlights the importance of the position of the interface be-
tween two adjacent subdomains for the effectiveness of the present approach. An
automatic collocation of such an interface driven by some a posteriori estimation
is currently under investigation ([16]).

5 Conclusions and perspectives

We have proposed a hierarchical model reduction procedure to deal with prob-
lems characterized by a main stream direction (from blood to river flows, or
internal combustion engines) with possible local transverse perturbations. The
dominant direction is reflected by the computational domain at hand, which can
be identified with a fiber bundle aligned with the main stream itself.

The key-idea is to derive a hierarchy of 1D reduced models; the simplest one
coincides with a purely 1D problem associated with the leading direction. By
hierarchically enriching it via suitable modal functions, we obtain more accurate
reduced models that better capture the transverse dynamics of the problem at
hand. Independently of the spatial dimension where the full problem is posed,
the reduced formulation leads to a system of 1D problems associated with the
main stream and coupled by the transverse dynamics. The system size depends
on the number of modal functions. Consequently, computational saving with
respect to the solution of the full problem is expected when few modes are
switched on along the transverse directions and, especially, in the context of 3D
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applications.
The hierarchical model reduction procedure provides an alternative approach

to the geometrical multiscale approach (see, e.g., [11, Chap. 11]), where models
with a different dimension (for instance, 1D with 2D or 3D) are coupled. Both
approaches resort to a domain splitting matching the different solutions. How-
ever, the domain decomposition associated with the hierarchical reduction yields
an easier and faster relaxation scheme compared with the geometrical multiscale
approach.

Many important aspects deserve further investigation. First of all, the set-
up of a modeling adaptive procedure to automatically associate different modal
indices with different parts of the domain according to the local heterogeneities
of the problem at hand. This goal is pursued in the second part of this paper
[16]. We refer, e.g., to [1, 3, 23] for an a posteriori error analysis in the context of
thin domains, and to [19]. A second issue is to generalize the hierarchical model
reduction procedure to more complex problems (e.g., Oseen or Navier-Stokes
equations).
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