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Abstract

This study proposes a methodological approach to investigate gender
disparities in education, particularly focusing on the schooling phase and
its influence on career trajectories. The research applies multilevel linear
models to analyse student performance concerning various factors, with a
specific emphasis on gender-specific outcomes. The study aims to identify
and test context-specific independencies that may impact educational dis-
parities between genders. The methodology includes the introduction of
supplementary parameters in multilevel models to capture and examine
these independencies. Furthermore, the research proposes encoding these
novel relationships in graphical models, specifically stratified chain graph
models, to visualize and generalize the complex dependencies among co-
variates, random effects, and gender influences on educational outcomes.

Keyword:Context-specific independence, Multilevel models, Graphi-
cal models, Gender, Education.

1 Introduction

A central aim of Horizon Europe is to formulate effective strategies for in-
tegrating the gender perspective, which primarily involves delving deeper
into research and innovation into the gender dimension [26]. Gender dis-
parity manifests in various aspects of contemporary society, often reflect-
ing deeply rooted structural inequalities. Some of the most important
areas where it is evident include economic inequality, healthcare access,
political representation, social and cultural norms, legal and institutional
barriers, and education. The educational journey can be pinpointed as
the initial stage where a gender disparity emerges, subsequently influ-
encing career trajectories. Stereotypes regarding “appropriate” fields of
study often contribute to the underrepresentation of women in Science,
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Technology, Engineering, and Mathematics (STEM). Gender studies have
traditionally traced back these gender differences to disparities in educa-
tional outcomes [10]. While girls tend to outperform boys in reading, the
gap in mathematics is structurally in favour of boys in most European
countries [5]. Meanwhile, establishing a fair educational system is rec-
ognized as a necessary step in the political agendas of global economies
[9].

The educational achievements of students result from a cumulative
process in which various inputs are transformed into outputs. Key inputs
and determinants of these outputs include socio-economic background,
personal and psychological characteristics, school environment, students’
habits and much more. These factors interact dynamically, influencing
one another and evolving throughout a student’s academic journey. Many
educational and economical studies have analyzed the gender gap in edu-
cation in terms of performances, but most of them assume that the deter-
minants of educational achievement have the same impact across gender.
While boys and girls share some common determinants, few studies show
that significant gendered differences persist. For instance, studies in [1, 7]
show that socioeconomic status (SES) and parental involvement signifi-
cantly affect educational performance but operate differently by gender.
Girls often benefit more from supportive parental involvement, especially
when mothers are employed or educated, suggesting a stronger influence
of maternal role modeling. Boys, however, appear more influenced by
higher parental pressures within affluent families, and they may struggle
more without such support, particularly in low-SES households. In terms
of student perceptions and attitudes, the work in [27] shows that boys
typically report greater self-efficacy in subjects like mathematics but are
more likely to disengage academically when faced with challenges. Girls
tend to underestimate their abilities in STEM, which can be compounded
by higher levels of anxiety and stereotype threats in these areas. Girls’ ad-
vantage in reading literacy sometimes translates into better performance
in math items with high reading demands, illustrating an interplay be-
tween skills. Lastly, also school and classroom environment results to
have gender-specific effects. Boys tend to benefit from active teaching
methods and strong peer engagement in STEM. Conversely, girls often
thrive when female teachers provide role models and construct gender-
sensitive curricula, especially in traditionally male-dominated fields like
STEM [14, 4].

These evidences highlight the importance of modelling student achieve-
ments’ determinants with a special focus on the boys’ and girls’ hetero-
geneity, by assuming different educational production functions [2].
In this perspective, this research endeavours to elucidate the factors per-
tinent to the schooling phase that mostly affect students achievements,
examining the ones that exert gender-specific effects on the outcome. We
leverage data from the OECD Programme for International Student As-
sessment (PISA) database (www.oecd.org/en/about/programmes/pisa.html)
of fifteen-years old students attending Italian schools. The aim of the pa-
per is twofold. The former is to model the educational process by investi-
gating the factors that influence its evolution, with a gender perspective.
The latter is to test and visualize in an effective way the gender-specific de-
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pendencies between students characteristics and achievements. To achieve
this, we follow a structured two-steps pipeline. First, we identify key areas
of student characteristics, categorizing them based on an assumed hier-
archy of influence. This hierarchy distinguishes between primary charac-
teristics - those inherent and immutable - and secondary characteristics,
which may be shaped or influenced by the primary ones. At the highest
level of this hierarchy is our main target variable: students’ PISA math-
ematics scores. To explore the relationships among these characteristics,
we build regression and classification models that, by including interac-
tion terms, examine how the association among variables vary by gender.
Gender-specific relationships are quantified using these interaction terms.
When modelling the student performance, we take into account the nested
nature of students within schools by means of a multilevel model [25], to
disentangle the effects exerted by the two different data levels. Second,
in order to properly capture the complexity of the phenomenon and, in
particular, the gender-specific dependencies, we employ graphical mod-
els based on chain graphs. These models, originally theorized in studies
employing the Lauritzen-Wermuth and Frydenberg (LWF) chain graph
framework [17], [11], have since demonstrated their suitability for ana-
lyzing hierarchical data [12]. They leverage the graphical representation
to illustrate various dependencies among covariates and random effects.
This methodology offers powerful tools for investigating the relationship
between covariates themselves and the effect of covariates on the target
variable. The inclusion of the interaction term - with gender, in our
specific case - into the models allows to identify and test the so-called
Context-Specific Independence (CSI) [3], where the context is represented
by gender.
The CSIs can be seen as particular conditional independencies that ex-
ist only for certain modalities of the conditioning variable. Under this
setting, it is interesting to see where a certain mode of a variable blocks
the relationship between two other factors. If so, we can argue that this
particular characteristic plays a crucial role in determining independence.
In our case study, identifying the CSIs related to gender provides a deeper
understanding of the subtle, indirect ways gender differences manifest
within the educational production function. These differences often go
beyond direct measures of academic achievement, revealing nuanced path-
ways through which various factors influence the learning processes of boys
and girls differently. By analyzing these associations, we can uncover how
specific influences - such as socio-economic conditions, school environ-
ments, psychological traits, and cultural resources - interact with gender
to shape educational behaviors and outcomes.
The proposed approach allows us to differentiate factors that are uniquely
associated with boys or girls, highlighting variables that may require
gender-specific attention, helping us identify factors that exhibit contrast-
ing effects across genders. Such insights are crucial for designing targeted
interventions aimed at reducing disparities and support equitable learn-
ing opportunities for all students. In the context of graphical models, the
representation of CSIs, or asymmetrical independence relations in general,
has been dealt with in different models. The representational aspect of
these relationships is just as important as the mathematical formalization

3



of the problem, as it requires finding a way to add new information to the
graph in a manner that ensures clarity, effectiveness, and ease of commu-
nication. Different ways have been proposed in the literature. In [3], the
authors suggest to introduce supplementary conditional nodes for captur-
ing CSIs in Bayesian Network. An alternative visualization, for undirected
graphs, was proposed in [15], where the starting graph is enriched by split
trees taking into account the different contexts (i.e. oriented arcs repre-
senting the levels of the variables are introduced). Other representations
can be find in [16] with the introduction of nodes representing the cate-
gories. In [19] the CSIs are captured and learnt by means of the staged
tree which is a suitable tool for representing asymmetrical relationships.
In this work, we take advantage of the stratified graphs that were pro-
posed in [23]. These objects add a label to certain edges reporting the
conditions according to which the edge disappears. In [22], the strati-
fied graph is extended to chain graphs in order to capture the CSIs in
the graphical models proposed by [28]. In this work, we propose a new
graphical model that exploits the stratified graph to represent the CSIs in
multilevel block recursive regression models, namely stratified multilevel
LWF chain graph models. The final model will therefore be able to con-
sider variables belonging to different blocks whose system of relationships
is more complex than the classical regression model. It will be able to cap-
ture the unobservable effect due to subjects belonging to different groups.
Finally, it will be able to represent both the direct effect of gender on
the other variables and indirectly by studying the changing relationships
when gender changes.
The paper is structured as follows: in Section 2 we present the OECD-
PISA dataset we employ in the analysis; Section 3 describes the methodol-
ogy and Section 4 reports the results; in Section 5 we draw our conclusions.

2 OECD-PISA Data

OECD PISA assesses student performance, on a triennial basis, in sci-
ence, mathematics, reading, collaborative problem solving and financial
literacy, since 2000. The ability of 15-year-olds to use their skills to meet
real-life challenges are measured in these subjects. For our analysis, we
observe 2018 data. The survey [24] covers the entire Italian country,
analysing 6455 students, attending 512 schools, scattered throughout the
country. The sample includes students attending both general and voca-
tional schools, but, given the different educational programs offered by the
two types of schools, we opted to analyse students data only from general
schools1. After deleting students with missing values in the variables of in-
terest, our sample consists of 3465 students attending 238 general schools.
The main target variable is the maths PISA test score (math PISA score)
obtained by the student, that takes values on a scale [0,100]. Together
with it, students, parents and school principals have to fill out tailored
questionnaires that create a huge and rich database. The variables that
we include in our analysis regard different areas. In particular, we con-

1A supplementary analysis can be performed on students attending vocational schools.
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sider (X1) demographic characteristics (e.g., gender, socioeconomic index,
cultural possession at home, parents’ educational level, immigrant status
and school grade), (X2) students’ habits (study time, use of internet and
video games), (X3) a series of indicators built by PISA summarizing the
perception that the student has of the school he/she is attending and
the support received by teachers, and (X4) a component inherent to the
psychological characteristics of the student and to his/her motivation at
school. Table 1 reports the list and description of the variables used in the
analysis, while Table 2 reports their descriptive statistics, for the entire
sample and separately for boys and girls.

Variable Description Type
school id Anonymous school ID factor
math PISA score Maths PISA student score num

X1

gender Student gender (0 = male, 1 = female) binary
immig Immigrant status (0 = native Italian, binary

1 = 1st or 2nd generation immigrant)
misced Student mother’s level of education on a scale [0-6] int

(0 = primary education not completed,
6 = postgraduate)

cultural possession Std. ind. of cultural possessions at home num
home educ resources Std. ind. of home educational resources num
ESCS Std. ind. of economic, social and cultural status num
late Indicator for late-enrolled student binary
early Indicator for late-enrolled student binary

X2

video games Indicator of video-game devices user binary
internet Indicator of frequent internet user for fun binary
mmins Learning time (minutes per week) - mathematics num
tmins Learning time (minutes per week) - total num

X3

sc DISCRIM Std. ind. of perceived discriminatory school climate num
sc BELONG Std. ind. of the sense of belonging to school num
sc PERCOMP Std. ind. of perceived competitiveness in the school num
sc PERCOOP Std. ind. of the perceived cooperation climate in the school num
TEACHSUP Std. ind. of the perceived teacher support num

X4

EMOSUPS Std. ind. of perceived parents’ emotional support num
COGFLEX Std. ind. of student’s cognitive flexibility num
GFOFAIL Std. ind. of the student fear of failure num
COMPETE Std. ind. of student competitiveness num
EUDMO Std. ind. of student ‘Eudaemonia’: meaning in life num

Table 1: List and explanation of the student-level variables used in the analysis.
Legend: Std. ind. = Standardized indicator built by OECD-PISA.

3 Method

3.1 Multilevel model with context-specific con-
straints

Let us consider a target n ˆ 1 continuous variable Y and a set of covari-
ates collected in the n ˆ p matrix X, that can be either continuous or
categorical. The set of possible values assumed by the generic Xk is R,
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Variable % / Median (IQR) % / Median (IQR) % / Median (IQR)
All Girls Boys

math PISA score 0.46 (-0.15, 1.03) 0.31 (-0.28, 0.87) 0.73 (0.15, 1.29)

X1

gender 1: 62%; 0:38% - -
immig 1: 6.2%; 0: 93.8% 1: 6%; 0: 94% 1: 6.3%; 0: 93.7%
misced 4 (4, 6) 4 (4, 6) 4 (4, 6)
cultural possession 0.46 (0.05, 0.84) 0.45 (0.05, 0.84) 0.52 (0.05, 0.84)
home educ resources 1.18 (-0.14, 1.18) 1.18 (-0.14, 1.18) 1.18 (-0.14, 1.18)
ESCS 0.09 (-0.54, 0.83) 0.01 (-0.61, 0.74) 0.25 (-0.40, 0.92)
late 1: 7.3%; 0: 92.7% 1: 6.2%; 0: 95.8% 1: 9%; 0: 91%
early 1: 7.7%; 0: 92.3% 1: 7.9%; 0: 92.1% 1: 7%; 0: 93%

X2

video games 1: 60%; 0: 40% 1: 48%; 0: 52% 1: 78%; 0: 22%
internet 1: 77%; 0: 23% 1: 74%; 0: 26% 1: 81%; 0: 19%
mmins 200 (165, 275) 180 (165, 250) 240 (180, 300)
tmins 1,620 (1,540, 1,800) 1,620 (1,540, 1,800) 1,620 (1,485, 1,750)

X3

sc DISCRIM -0.53 (-1.15, 0.21) -0.66 (-1.15, 0.20) -0.42 (-1.15, 0.48)
sc BELONG 0.05 (-0.44, 0.68) 0.03 (-0.45, 0.68) 0.16 (-0.34, 0.68)
sc PERCOMP -0.23 (-0.61, 0.55) -0.23 (-0.77, 0.29) -0.23 (-0.61, 0.69)
sc PERCOOP -0.30 (-0.94, 0.60) -0.30 (-0.94, 0.60) -0.28 (-0.94, 0.60)
TEACHSUP -0.03 (-0.63, 0.70) -0.09 (-0.71, 0.70) 0.00 (-0.60, 0.70)

X4

EMOSUPS 0.22 (-0.66, 1.03) 0.22 (-0.66, 1.03) 0.21 (-0.66, 1.03)
COGFLEX -0.41 (-0.83, 0.22) -0.46 (-0.87, 0.18) -0.25 (-0.83, 0.22)
GFOFAIL 0.05 (-0.61, 0.46) 0.11 (-0.38, 0.82) -0.20 (-0.69, 0.46)
COMPETE 0.20 (-0.57, 0.79) -0.10 (-0.57, 0.57) 0.20 (-0.27, 1.18)
EUDMO -0.27 (-0.98, 0.26) -0.31 (-0.98, 0.26) -0.17 (-0.86, 0.26)

Table 2: Descriptive statistics of student-level variables. Binary variables are
described as percentages, while numerical variables as median and IQR. De-
scriptive statistics are reported for the entire sample and separately for girls
and boys. All OECD-PISA numerical indicators are standardized.

if Xk is continuous, and Ik “ t1, 2, . . . , Iku, if Xk is categorical. A linear
model is defined as:

Y “ β01n ` Xβ1 ` ϵ (1)

where β “ pβ0,β1q is the pp ` 1q´dimensional vector of parameters and
ϵ „ Np0,Σq is the error vector.

In such a model, CSIs can be identified by including interaction terms.
In particular, the CSIs that we aim to identify are a generalization of
conditional independence relationships in the following form. Let X be a
vector of random variables, let A, B, and C be three subsets of variables’
indices, and XC be a subset of categorical variables taking values in IC “
Ś

kPC Ik, where
Ś

denotes the Cartesian product between all vectors Ik

with k P C. Then, a CSI is defined as:

XA K XB |XC “ iC , iC P KC Ă IC , (2)

where KC is the subset of values taken by XC for which conditional
independence in the formula holds. For each value of XC in ICzKC

the independence in formula 2 is no longer verified2. This concept can

2The definition of context-specific independence can also be extended to continuous con-
ditioning variables, see [23], but it is beyond the scope of this paper.
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be extended in the contest of regression and classification models where a
continuous or categorical variable of interest Y is regressed against a set of
P predictorsX and we are interested in estimating the association between
Y and X, conditionally on a dichotomous - without loss of generality -
variable X̃. In this case, the CSI for each p “ 1, . . . , P , can be expressed
as:

Y K Xp|X´p, when X̃ “ 0, Y M Xp|X´p, when X̃ “ 1, (3)

or vice-versa, where X´p contains all predictors P but the p´ th and
X̃ is the conditioning variable for which we want to investigate the CSI
relationships, which plays the role ofXC in formula 2. In order to estimate
these CSIs, model in Eq. 1 can be modified as3:

Y “ β01n ` Xβ1 ` pX´X̃ ˆ X̃qβ2 ` ϵ. (4)

where we assume that X̃ is one of the variables contained in X and X´X̃ is

the covariates matrix without the column referring to X̃. By introducing
the interaction term between each variable in (XzX̃) and X̃, we are able
to investigate the association between each variable in (XzX̃) and Y ,
conditionally on X̃.

When data have a hierarchical structure, the procedure can be ex-
tended as follows. Let us consider a target continuous variable Yij for
the i ´ th subject (first level unit) of the j ´ th cluster (second level
unit), with i “ 1, . . . , nj and j “ 1, . . . , J and a set of covariates Xij “

pX1,ij , . . . , Xk,ij , . . . , Xp,ijq described as above. The multilevel linear model
[25] is defined as:

Yij “ β0 ` b0j ` pβ1 ` b1jqXij ` ϵij (5)

where ϵij „ Np0, σ2
q are the first level residuals and bj “ pb0j , b1jq „

Np0,Ωpp`1qˆpp`1qq are the second level residuals, for each cluster j. Fur-
ther, the correlation between the residuals and the covariates is assumed
to be null. The CSIs for the conditioning variable X̃ can be derived from
the following formula:

Yij “ β0 ` b0j ` pβ1 ` b1jqXij ` pβ2 ` b2jqX̃ijX´X̃,ij ` ϵij . (6)

The term pβ2 `b2jqX̃ijX´X̃,ij models the interaction between X̃ and the
other covariates, investigating both the heterogeneity at individual level
(through the fixed-effects β2) and at second level (through the random
effects b2j). On one hand, for each k “ 1, . . . , p, having β1k ` b1kj “ 0
suggests that, when X̃ij “ 0, the variable Xk,ij has no effect on the tar-
get variable Yij . On the other hand, having β1k ` b1kj ` β2k ` b2kj “ 0

3The generalization to the case of a categorical response Y is straightforward.
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suggests that the previous independence holds when X̃ij “ 1.

Definition 3.1 Given the multilevel model in formula 6, the CSIs in
formula 3 correspond to the following constraints:

• Yij K Xkij |X̃1ij “ 0 corresponds to β1k ` b1kj “ 0

• β1k ` b1kj ` β2k ` b2kj “ 0 corresponds to Yij K Xk,ij |X̃ij “ 1

Therefore, by means of hypothesis tests on these parameters, we are
able to identify the CSIs, investigating both the average CSIs in the popu-
lation (identified by the parameters β) and cluster-specific CSIs (identified
by the parameters b).

3.2 Chain Graphical Models

Basic notation on LWF chain graph model Graphical models
are tools that exploit graphs to give an effective representation of how a
set of variables interacts. For the future understanding of the work, it
is necessary to spend a few lines recalling definitions from graph theory.
The notation used echoes the work of [11].
A graph, G, is a mathematical object composed of two sets, one of vertices
V and edges E. The edges can be undirected, i.e. if eij “ pvi, vjq P E then
eji “ pvj , viq P E and represented by a segment, or they can be directed,
i.e. if eij P E, then eji R E and represented by an arrow.
Two vertices vi and vj are adjacent, vi „ vj , if eij , eji P E. If vi Ñ vj , vj
is a parent of vi and vi is a child of vj . A path is a sequence of consecutive
edges, while a directed path must respect the direction of the arrow.
A graph is entirely described by the nature of its arcs, so if all the arcs
are undirected, the graph will be undirected, if all the arcs are directed
you will have an directed graph. The latter becomes a directed acyclic
graph if cycles -directed paths beginning and ending in the same node-
are forbidden.
In an undirected graph, a set of nodes C separates two disjoint subsets of
vertices A and B if each path between one node in A to one node in B
passes from some nodes in C.
Let A be a subset of the nodes in V , the induced sub-graph GA “ tA,EA, u

where EA “ E X pA ˆ Aq.
A chain graph, G “ pV,Eq, is a graph where the set of vertices V is
clustered in different components, namely chain blocks, T “ tTku, and
the set of edges, E, contains undirected arcs if the linked vertices belong
to the same chain block, directed arcs otherwise. In addition, the cycles
and semi-cycles are forbidden. The chain blocks form a partially ordered
set where a block descends from another only if there is a directed path
between the two components. of a set A adds to the boundary the set
itself, i.e. clpAq “ bdpAq Y A. The ancestral, anpAq set of A is obtained
by removing all the chain blocks descending from A.
Finally, the definition of moral graph, Gm, for a chain graph extends the
one provided for the directed acyclic graph, [17], i.e., it is obtained by ap-
plying two steps: all the directed edges are replaced by undirected edges
and additional edges are added between unlinked nodes that are parents
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Figure 1: (a) Chain Graph G; (c) moral graph pGanp123qqm; (c) moral ancestral
graph pGanp123qqm; (d) moral ancestral graph pGanp12qqm

of the same node in the original chain graph G.
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Example 1
Figure 1 (a) shows a chain graph where the blocks are formed by p1, 2q; p3q

and p4, 5q respectively. The moral graph associated with the entire graph
is shown in Figure 1 (b), where the arc between nodes 1 and 2 is added
because they both point to the same node. Ancestral sets are obtained
by recursively removing the terminal components. Thus we get p1, 2, 3q

and p1, 2q. The correspondent moralized induced subgraphs are depicted
in Figure 1 (c) and (d).
Let X “ pX1, . . . , Xpq be a random vector obeying a probability distribu-
tion P of both categorical and quantitative variables. A graphical model
able to describe the joint distribution of X as a recursive multivariate
regression model is presented by the chain graph model proposed by [17]
and [11], hereafter LWF chain graph model. In this model, the chain
blocks represent the regression structures. Specifically, oriented arcs de-
fine the relationship between dependent variable, represented by the node
to which the arc points, and covariates, represented by all nodes from
which the arc starts. This allows us to describe through a single graph,
complex systems where some variables play only the role of targets (final
component of the graph), and some variables play only the role of covari-
ates (initial components of the graph). All remaining components can be
in turn either targets or covariates, depending on the subset of variables
considered. Thus, if A,B Ď V are two disjoint sets of vertices correspond-
ing to two components and the oriented arcs start from the nodes in A
and point to the nodes in B, then XB represents a set of covariates for
XA.
As detailed in [17], the variables depicted in the graph can be either qual-
itative or quantitative. In the graph, the different nature of the variable is
represented by a different color of the vertex contour, black for qualitative
variables and grey for quantitative variables.
The global LWF Markov property, also known as the block concentration
Markov property, states the rules to express separation sets in a graph as
independencies in the probability distribution P.

Definition 3.2 Let G “ tV,Eu be a chain graph. The joint probabil-
ity P of a random vector X is said global G´Markovian if XA K XB |XC

whenever C separates A and B in pGanpAYBYCqq
m, where pGanpAYBYCqq

m

is the moralized subgraph induced by the smallest ancestral set containg
A Y B Y C.
Example 2
Consider a random vector X “ tX1, . . . , X5u represented by the graph in
Figure 1. X is globally G-Markovian if its probability function P satisfies
the list of independencies obtained by applying the definition 3.2. Thus,
from the moral graph in (b), we find that 3 separates the sets p4, 5q and
p1, 2q, thus X45 K X12|X3. Further, p4q separates p5q and p3, 4, 5q which
implies X5 K X123|X4. The moral graph in (c) is complete thus there are
no separator sets. Finally, from the last moral graph in (d), we obtain the
marginal independence X1 K X2.
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Figure 2: (a) Graph with nodes representing individual variables Y1, Y2 and Y3;
(b) the correspondent plate notation.

Multilevel chain graph models Chain graphical models adapted
to describe the relationships of a mixed model expressed in formula 1,
were proposed in [12] and [13]. Here, the authors adapt the LWF chain
graphical models to consider the dependence among data within each clus-
ter. With this aim, they propose adding one extra node for each random
effect. These additional nodes represent unobserved variables, thus we
use a squared shape for the node, instead of the classical circle, to de-
pict the hidden nature of the variable.To emphasize independence among
observations conditioned on random effects, it was essential to introduce
individual nodes for the response variable, representing the target variable
for each statistical unit.
In this work, we take advantage of the plate notation to represent the in-
dividual nodes, for each observation in the cluster j´th and the random
effect associated with each cluster. The plate notation consists of replac-
ing a series of repeated variables with a single indexed node enclosed in
a rectangle specifying the number of variables that the single node repre-
sents. An example is shown in Figure 2 where on the left are represented
N conditionally independent random variables given the variable b, while
on the right, the same relationship is synthesized with the plate represent-
ing a single node with the index N indicating the number of synthesized
variables.

Example 3 The graph in Figure 2 (a) represents the variable Y observed
on 3 subjects and a variable X. By conditioning concerning the variable
X, the Yi are mutually independent. This situation is summarised in
graph (b) where the generic variable Yi is shown inside a plate specifying
the maximum value assumed by the index i.

11



Stratified LWF chain graph model. We are now extending the
multilevel LWF chain graph model to also incorporate CSIs, as specified
in the model outlined in formula 4 through the parameter constraints
described in definition 3.1. In this context, the only variable with an
undirected effect captured through CSIs is the dichotomous variable X̃.

To represent this new type of independence, we require a mathemati-
cal structure that accounts for the presence or absence of an arc based on
specific values taken from a subset of the parent nodes. In [22], a strati-
fied graph was proposed to encapsulate the Markov property discussed in
[28]. In this work, we propose utilizing a stratified graph for this different
graphical model.

The fundamental idea behind these graphs is to add labeled edges, re-
ferred to as strata, to the traditional edges, which can be either directed
or undirected. The label on these edges indicates the conditions under
which the arc is deleted from the graph. Each of these representations
illustrates the graph in a distinct context.

By considering the CSIs in formula 3, the class of labeled arcs, L,
contains bi-variate objects of the form Lijpx̃q “ peij , x̃q, where the edge
that is present in the labeled arc, epLijpx̃qq, belongs to the set of edges,
i.e. epLijpx̃qq “ eij P E, and x̃ P t0, 1u. Then, we can define the stratified
graph as follows.

Definion 3.3 A stratified CG, SG “ tV,E, Lu, is a chain graph with
nodes V and edges E, and with a list of labeled arcs reported in L. An
example of SG is provided in Figure 3 where the class of labeled arcs is
composed only of one element LY,X1px̃ “ 1q. Thus, when the variable
X̃ “ 1 the graph changes and the arc between Yij and X1 vanishes.
A Stratified LWF (S-LWF) chain graph model takes advantage of the SG
to represent the joint probability distribution P of a random vector. This
new configuration is able to represent a model as depicted in formula 6
and its generalization.
The SG in Figure 3 represents the pure response variable Yij in double
plate, one for the individuals indexed with i “ 1, . . . , nj and one for
the clusters indexed with j “ 1, . . . , J . The last plate also contains the
random intercept b0j , in a squared node to highlight its hidden nature. In
addition, the remaining nodes represent two pure covariates, X̃ and X1.
The color of the contour of the nodes suggests the nature of the variables,
black for the qualitative and gray for the quantitative ones.

To clarify the relationship underlying the S-LWF chain graph model,
we extract a full chain graph and a series of reduced chain graphs to cover
any situation. The full chain graph is obtained by replacing any labeled
arc with the corresponding unlabeled arc and represents the classical con-
ditional independencies. In constrast, for any strata, it is possible to build
a reduced graph, obtained by deleting the corresponding labeled arc and
replacing the other labeled arcs with the corresponding unlabeled arcs.
These reduced graphs represent the CSIs.
Given a stratified chain graph, SG “ tV,E, Lu, full chain graph is GF

“

tV,Eu. Given a stratified chain graph, SG “ tV,E, Lu, for any x̃ such
that there is at least one edge eij with Lijpx̃q ‰ H, the reduced chain
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Figure 3: (a) Stratified graph SG with L “ tpYij , X1q; x̃ “ 1u, individual nodes
Yij and b0j are placed in 2 plates, the first representing individuals i “ 1, . . . , nj ,
and the second representing clusters j “ 1, . . . , J ; (b) the correspondent full
graph Gfull; (c) the reduced graph SGRpLY X1

px̃ “ 1qq.

graph, GR
px̃q “

␣

V,ER
x̃

(

, where the element of ER
x̃ in position pi, jq,

eRij “ eijIrLijpx̃q“Hs. Thus, the generic element eRij of ER
x̃ is null if

epLijpx̃qq ‰ 0, and equal to the correspondent element on the matrix E
otherwise.

The Markov property for a S-LWF chain graph model is derived by
applying the LWF MP in formula 3.2 to the corresponding full and re-
duced chain graphs,the resulting list of independencies hold for the general
context (G1) and for each specific context (G2).

Definition 3.4 Given a stratified chain graph, SG “ tV,E, Lu, and a
random vector X with joint probability distribution P , we say that P is
global Markovian w.r.t. SG if:

G1) XA K XB |XC whenever A and B are separated in pGfull
anpAYBYCq

q
m

and

G2) XA K XB |X̃ “ x̃, whenever X̃ separatesA andB in pGR
anpAYBYX̃q

px̃qq
m

for any x̃ such that there is at least one edge eij with Lijpx̃q ‰ H.

Example 4
Figure 3 (b) reports the full graph of (a). The structure of the two graphs
is identical, the only distinction being the absence of the labels in the
latter. From this figure, we can identify the general independences that
hold for each context. In this case, we get that the response variables
Yij of all subjects i “ 1, . . . , nj within the same group j are mutually
independent given the random effect b0j and the covariates. Further, the
random effect is independent of the covariates X̃ and X1. The graph
in Figure 3 (c) reports the reduced graph in the context of X̃ “ 1. In
this reduced graph, the missing edge suggests that Y K X1|X̃ “ 1. The
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following theorem establishes the connection between the graph structure
and the constraints on the parameters in model 4.

Theorem 1 Let SG “ tV,E, Lu be a stratified chain graph, and let X
be a random vector with joint strictly positive probability distribution P.
Then the following statements are equivalent:

C1 X is globally SG-MP according to the definition 3.2;

C2 The parameters in the (multilevel) regression model as in definition
3.1 holds 0 for all separator sets

Proof. From C1 to C2: Consider the MPs in definition 3.2. If X is
globally SG-Markovian, then, according to G1, X is also G-Markovian
w.r.t. the full graph Gfull

“ tV,Eu. Independencies identified in this
manner constrain the parameters of a block regression to zero as de-
scribed in [17] and [12]. Further, according to G2, the conditional dis-
tribution of XzX̃|X̃ “ x̃ is also G-Markovian w.r.t. any reduced graph
GR

“ tV,Eu px̃q, for x̃ P t0, 1u. This result leads to constraints on param-
eters that are not available on the classic linear regression model because it
should involve the variable X̃ and the other variables included in XA and
XB according to G2. These additional parameters are the ones added to
the model 4 and denoted with β2 and the possible random slope b2.
From C2 to C3: As outlined in [17] and [12], we implement a block
regression procedure that expresses one dependent variable as a function
of the variables represented by nodes in the same component, as well as
those in components that have at least one directed arc pointing to the
aforementioned component. This approach allows us to model the depen-
dence between two variables represented by nodes in the same component
and in different components, using specific parameters. Based on the re-
sults in definition 3.1, certain constraints on these parameters lead to CSI
statements that correspond to those depicted in the SG model.

3.3 Learning procedure

To investigate the CSIs of interest, we construct a set of models that
relies on specific assumptions about the educational production functions,
particularly emphasizing the sequential nature of student characteristics.
The assumed structure is illustrated in Figure 4. Specifically, we make
the following assumptions:

• Variables in X1

– These represent the initial characteristics of students, which are
immutable and cannot be predicted by any other variables.

• Variables in X4

– These are predictable based on other variables within X4 and
variables in X1

– Model for X4: For each variable in X4, we build a regression
or classification model where predictors include variables in X1

and the remaining variables within X4.
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Figure 4: Directed acyclic graph representing the assumption on the graph
structure.

• Variables in X3

– These are predictable based on other variables within X3 and
variables in X1

– Model for X3: For each variable in X3, we build a regression
or classification model where predictors include variables in X1

and the remaining variables within X3.

• Variables in X2

– These are predictable based on other variables within X2 and
variables in X1, X3 and X4

– Model for X2: For each variable in X2, we build a regression
or classification model where predictors include variables in X1,
X3, X4 and the remaining variables within X2.

• Y (math pisa score)

– This is predictable based on variables in X1,X2,X3,X4

– Model for Y : We construct a multilevel regression model
where predictors include variables inX1,X2,X3,X4, along with
a random intercept4 to account for group-level (i.e., school-level)
effects5.

4More complex models that include random slopes could also be considered. Here, based
on the results of a preliminary exploratory analysis, which did not indicate heterogeneity in
gender effects across schools, we decided to include only a random intercept in the model.

5We specify that, in models for responses in X1,X2,X3,X4, we do not consider the nested
structure of students within schools because the involved student characteristics might be the
result of an over-time process, during which students attended different schools.
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For each model involving response variables in the sets Y,X2,X3,X4, we
adhere to the following procedure:

• the variable gender (from X1) is included as a single covariate and
as an interaction term with all other predictors;

• a backward stepwise procedure is implemented to identify the sig-
nificant variables and interaction terms;

• following the stepwise selection, the final model is constructed with
a specific distinction between the coefficients (β) for males and fe-
males for covariates where the interaction with gender is found to be
significant. If, for a given covariate, the coefficient β is significant for
females but not for males (or vice-versa), this indicates the presence
of a CSI.

4 Results

Results of the four final sets of models built by following the structure in
Figure 4 are reported in Table 4 and represented in the graphs in Figure
5. Table 4 reports the coefficients relative to CSIs (identified by CSI label
equal to F or M), as well as the coefficients that exert both significant but
different effects on the response across genders (identified by CSI label
equal to A). Figure 5 reports a graph for each set of models. Each graph
shows a directed edge when a covariate is predictive of the response, in-
dependently of gender; an undirected edge when the two variables are
mutually predictive, again independently of gender; a bold edge (either
directed or undirected) marked by ‘F’ or ‘M’ when we observe a CSI6.

6Edges marked by ‘F’ indicates that the covariate is predictive for males, but not for females
and edges marked by ‘M’ indicates that the covariate is predictive for females, but not for
males.
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X1. =(1) gender; (2) immig; (3) misced; (4) cultural_possession;
(5) home_educ_resources; (6) ESCS; (7) late; (8) early.
X2. =(1) video_games; (2) internet; (3) mmins; (4) tmins.
X3. =(1) sc_DISCRIM; (2) sc_BELONG; (3) sc_PERCOMP; (4) sc_PERCOOP; (5) TEACHSUP.
X4. =(1) EMOSUPS; (2) COGFLEX; (3) GFOFAIL; (4) COMPETE; (5) EUDMO.
 boj =Random Intercept
 Yij =math_PISA_score

Figure 5: SG corresponding to the four block regressions. Top left: target vari-
ables belong to X4 and predictors belong to X1. Top right: target variables
belong to X3 and predictors belong to X1. Bottom left: target variables be-
long to X2 and predictors belong to X1, X3, and X4. Bottom right: target
variable is Y and predictors belong to X1, X2, X3, and X4.
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Contest-specific independencies
Given our focus on the CSIs related to gender, we begin by examining
the coefficients that are significant exclusively for one of the two genders.
It is noteworthy that most CSIs do not directly appear in the statistical
model that predicts student achievement as measured by PISA scores.
Instead, these influences are more prominent in the models describing the
underlying dynamics that precede and shape this final outcome. These
intermediary dynamics reveal intricate patterns of gender-based differ-
ences in how certain factors influence students’ habits, behaviours, and
perceptions.

In particular, the majority of gender-based disparities emerge in the
variables that define students’ study habits (variables in X2). For in-
stance, boys’ study time in mathematics (mmins) is associated with cul-
tural possession, access to home educational resources, and experiences
of perceived discrimination at school. These factors, however, do not
significantly influence girls’ study time. Conversely, girls’ study time in
mathematics is influenced by a different set of factors: the socio-economic
index (SES), early school enrollment, fear of failure, and the perceived
support of their teachers (these variables do not significantly affect boys
in this context). The use of video games (video games) also exhibits
gender-specific predictors. For boys, being a late-enrolled student reduces
the likelihood of engaging in video games. In contrast, this factor does not
appear significant for girls. On the other hand, for girls, cultural posses-
sion and the level of their mother’s education play pivotal roles. Cultural
possession has a positive association with video game usage among girls,
while the mother’s education level shows a negative relationship. These
associations are not observed in boys. Gender differences are also evident
in the determinants of internet usage (internet). For girls, internet use
is positively associated with cultural possession, highlighting the role of
enriched cultural resources in shaping digital habits. For boys, however,
such association is not observed. Instead, boys’ internet use is positively
influenced by cognitive flexibility and their perception of emotional sup-
port, suggesting a more psychologically driven dynamic.

In terms of students’ perception of the environment, some gender-
based differences are observed. Late-enrolled girls, for instance, tend
to report higher levels of perceived discrimination (sc DISCRIM) and a
lower sense of cooperation (sc PERCOOP) within their schools. Boys, on
the other hand, experience an increase in perceived school competitive-
ness (sc PERCOMP) as their mother’s education level rises. Additionally,
boys’ perception of teacher support (TEACHSUP) decreases as their socio-
economic index increases, indicating a complex interplay between socio-
economic status and the perceived quality of educational relationships.

Significant gender differences are also evident in the associations that
involve students’ psychological characteristics. For boys, fear of failure
(GFOFAIL) is influenced by cultural possession and socio-economic status,
but these factors are not significant predictors for girls. Competitiveness
(COMPETE) among boys is positively associated with cultural possession
and eudaemonia (a measure of well-being), while it decreases with socio-
economic status. For girls, an intriguing pattern emerges where eudae-
monia (EUDMO) decreases as cultural possession increases, suggesting that
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these resources may shape girls’ well-being differently than boys’.
Finally, when examining the direct association of CSIs with PISA

achievement (math PISA score), gender-specific patterns persist. For boys,
internet usage positively correlates with higher PISA scores. However, this
association is not observed for girls, suggesting that the way digital habits
influence academic performance varies across genders.

Dependent Variable Covariate β̂M se(β̂M ) pvalueM β̂F se(β̂F ) pvalueF CSI lable
tmins mmins 0.3789 0.1113 7e-04 0.6746 0.0973 0 A
mmins ESCS -0.0117 3.4606 0.9973 14.0928 2.7278 0 M
mmins cultural possession -9.9636 3.0313 0.001 -2.2286 2.4911 0.371 F
mmins home educ resources 5.0078 2.2508 0.0262 0.2286 1.7926 0.8985 F
mmins early1 2.6638 6.9351 0.7009 -24.5863 5.2937 0 M
mmins GFOFAIL -1.9992 1.979 0.3125 4.4128 1.5811 0.0053 M
mmins sc DISCRIM -4.8573 1.8977 0.0105 -1.1157 1.7427 0.5221 F
mmins TEACHSUP 0.2629 1.8897 0.8894 5.8007 1.4931 1e-04 M
video games misced 0.0453 0.0475 0.3402 -0.0649 0.032 0.0422 M
video games cultural possession -0.0538 0.1004 0.5919 0.1488 0.0709 0.0359 M
video games late1 -0.4478 0.2202 0.042 0.1972 0.1896 0.2983 F
video games internet1 0.8062 0.1586 0 0.4597 0.1019 0 A
internet cultural possession -0.0614 0.1056 0.561 0.2085 0.078 0.0075 M
internet video games1 0.8114 0.1588 0 0.465 0.102 0 A
internet EMOSUPS 0.1617 0.0783 0.0388 0.0079 0.0537 0.8835 F
internet COGFLEX 0.2602 0.0913 0.0044 -0.0426 0.0635 0.5026 F
sc DISCRIM late1 -0.0108 0.0833 0.897 0.3597 0.0776 0 M
sc DISCRIM sc PERCOMP 0.1724 0.0251 0 0.0878 0.019 0 A
sc BELONG ESCS 0.1588 0.0329 0 0.0799 0.0282 0.0046 A
sc BELONG sc PERCOOP 0.1917 0.0244 0 0.269 0.0192 0 A
sc PERCOMP misced 0.0493 0.0183 0.0072 0.0135 0.0147 0.3588 F
sc PERCOMP sc PERCOOP 0.1124 0.0277 0 -0.0641 0.0217 0.0031 A
sc PERCOOP late1 -7e-04 0.0919 0.9943 -0.2 0.0833 0.0164 M
sc PERCOOP sc BELONG 0.2136 0.0281 0 0.3143 0.0225 0 A
sc PERCOOP sc PERCOMP 0.1102 0.0265 0 -0.0489 0.0199 0.0142 A
TEACHSUP ESCS -0.0984 0.033 0.0029 -0.0359 0.0261 0.1689 F
TEACHSUP sc DISCRIM -0.0802 0.027 0.0029 -0.1711 0.0247 0 A
COGFLEX cultural possession 0.1526 0.0319 0 0.228 0.0262 0 A
COGFLEX GFOFAIL -0.1506 0.0236 0 -0.0712 0.0193 2e-04 A
COGFLEX EUDMO 0.1211 0.0234 0 0.1863 0.0191 0 A
GFOFAIL ESCS -0.0722 0.0328 0.028 -0.0082 0.0258 0.7501 F
GFOFAIL cultural possession 0.1426 0.0398 3e-04 0.0231 0.0336 0.491 F
GFOFAIL COGFLEX -0.1845 0.0297 0 -0.0902 0.0242 2e-04 A
COMPETE ESCS -0.1257 0.0437 0.0041 0.032 0.0355 0.367 F
COMPETE home educ resources 0.0995 0.0316 0.0017 0.0284 0.0255 .2657 F
COMPETE EUDMO 0.1877 0.0274 0 0.0383 0.0227 0.0914 F
EUDMO cultural possession 0.034 0.0354 0.337 -0.0642 0.0296 0.0299 M
EUDMO COGFLEX 0.153 0.0294 0 0.226 0.0236 0 A
EUDMO COMPETE 0.1675 0.0252 0 0.0353 0.0204 0.0845 F
math PISA score internet 0.2016 0.0501 0.0001 0.0377 0.0349 0.2796 F

Table 3: Results of the CSIs identified in the four sets of models. For each CSI,
we report the coefficient β with its standard error and pvalue, for both boys
and girls. Column CSI label indicate the gender for which the two variables of
interest result to be conditionally independent.

Further gender-specific differences
Apart from the CSIs, other coefficients are also significant in describing
education dynamics for both genders, albeit with differing effects. These
are labeled with CSI label = A in Table 4. Evidences show that the asso-
ciation between the time spent to study mathematics and the time spent
to study in general is nearly twice as strong in females compared to males.
The association between the use of video games and the internet usage
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is much stronger in males than in females. Males who perceive higher
levels of competition perceive also higher levels of discrimination in the
school, with an effect that is greater than in females. The positive effect of
socio-economic status on the sense of belonging to school is nearly twice as
strong in males compared to females. The positive association between the
perceived cooperation and the sense of belonging to school is significantly
higher in females than in males. The only variable that exerts a significant
opposite effect between boys and girls is the perceived cooperation when
used to predict the perception of competition. In particular, the perceived
level of cooperation on average increases the perception of competition in
males but reduces it in females. The positive effect of the sense of belong-
ing on the perception of cooperation is stronger in females than in males.
The negative effect of teacher support on perceived discrimination is more
pronounced in females than in males. For females, the effect of cultural
possession on cognitive flexibility is on average stronger than for males.
For both genders, the association between cognitive flexibility and fear
of failure is negative and significant, but it is more pronounced in males.
This suggests that the cognitive flexibility has a stronger impact on de-
creasing the fear of failure in males than in females. The positive effect
of eudaemonia on the cognitive flexibility is stronger in females than in
males. Lastly, the positive effect of the cognitive flexibility on eudaemonia
is significantly higher in females than in males.

Again, most of the gender-based differences are observed in the models
describing the underlying dynamics that precede and shape the final stu-
dent achievement. No gender-based differences emerge in the association
between student-level characteristics and math PISA score. However, also
school-related factors may encompass unobserved gender-based dispari-
ties. Indeed, the percentage of variability explained (PVRE) in Model
4 is 26.18%, indicating significant heterogeneity in the determinants of
student achievement across schools. This heterogeneity could potentially
obscure additional gender differences that may manifest in specific schools
or geographical regions and that could be further explored.

5 Conclusion

This study introduces a methodological framework for examining gender
disparities in education, leveraging stratified chain graphical models and
multilevel statistical analyses. By focusing on the interplay between con-
textual, sociocultural, psychological factors and gender, the research high-
lights the nuanced ways in which factors such as socio-economic status,
cultural possession, school environment, and psychological traits shape
students’ educational outcomes differently for boys and girls.

Key findings reveal that while some determinants of educational achieve-
ment are shared across genders, significant differences persist in how these
factors interact to determine students’ habits and perceptions. For exam-
ple, boys’ study habits are more influenced by resources such as cultural
possessions and experiences of discrimination, whereas girls’ study time
correlates strongly with socio-economic status, teacher support, and fear
of failure. Similarly, gendered patterns emerge in the use of technology,
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where boys’ internet use aligns with cognitive flexibility and emotional
support, while girls’ usage is tied to cultural resources.

These insights underscore the importance of gender-specific approaches
in education policy and practice. By identifying CSIs unique to each gen-
der, we can design targeted interventions aimed at addressing disparities
and fostering equitable opportunities. For instance, programs that en-
hance teacher support or alleviate fear of failure may be particularly ben-
eficial for girls, while initiatives that improve boys’ sense of belonging and
address perceived discrimination could better support their educational
journey.

The innovative use of stratified chain graphical models in this work
enhances our ability to model interdependencies across variables and con-
texts, offering a comprehensive understanding of the dynamics at play.
This methodological contribution not only provides a clearer visualiza-
tion of complex dependencies but also sets a precedent for future research
on educational inequality. Further research could explore the applicabil-
ity of these methods in diverse educational settings, e.g. investigating the
dynamics within vocational schools, or in more complex multilevel con-
texts, e.g. investigating the dynamics related to gender across schools or
geographical areas, broadening the scope of their impact.

In conclusion, this study contributes valuable insights into the mech-
anisms underpinning gender disparities in education and provides action-
able guidance for promoting gender equity.
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