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Abstract
Statistical analysis for populations of networks is widely applicable, but challenging as

networks have strongly non-Euclidean behavior. Graph Space is an exhaustive framework
for studying populations of networks which are weighted or unweighted, uni- or multi-layer,
directed or undirected, labelled or unlabelled. Viewing Graph Space as the quotient of a
Euclidean space with respect to a finite group action, we show that it is not a manifold, and
that its curvature is unbounded from above. Motivated by these geometric properties, we
define geodesic principal components, and we introduce the Align All and Compute algo-
rithm, which allows the computation of statistics on Graph Space. The statistics and algo-
rithm are empirically validated on one simulated study and two real datasets, showcasing the
framework’s potential utility. The whole framework is implemented in a publically available
GraphSpace Python package.

Keywords:Network-valued/Graph-valued data, Computational Geometric Statistics, Quotient Space,
Graph Space, Geodesic Principal Components
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1 Introduction

In recent years, a soaring attention in the scientific community has been devoted to the analysis

of tree- and network data. In many different fields, graph representation of the phenomenon has

proven to be very useful. Several examples are available in medicine, social science, chemistry,

finance, and many other fields. The scientific literature has so far primarily focused on analyzing

networks in a first generation (Wang and Marron, 2007) setting, i.e. the analysis and modelling

of a single network datum. The second generation approach refers to the analysis of a population

of network-valued data. The need for second generation modelling arises in a series of applied

problems, including analysis of brain connectivity (Simpson et al., 2013; Durante et al., 2017),

anatomical trees (Feragen et al., 2013; Wang and Marron, 2007), and mobility networks (von

Ferber et al., 2009). In these works, the aim is to analyse not just one network, but a set, or popu-

lation, of networks. If every network has the same nodes, the problem could be re-framed in the

analysis of a set of adjacency matrices. However, if the networks describe the same phenomenon,

but have different numbers of nodes and different node labels, the mathematical challenges in the

analysis become numerous and different.

Populations of tree- or network data have been studied under different perspectives: Nonlinear

data spaces such as the Billera-Holmes-Vogtmann space of leaf-labeled trees (Billera et al., 2001),

or spaces of unlabeled trees (Feragen et al., 2010, 2013) are examples of non-Euclidean spaces in

which tree- and network data can be analysed with geometric tools. Euclidean embeddings form

a separate analysis strategy, where trees or networks are embedded in Euclidean space through

different approaches such as kernel methods (Shervashidze et al., 2011), convolutional neural

networks (Duvenaud et al., 2015), or feature selection algorithms (Bunke and Riesen, 2011). If

one is interested in ”simple” tasks such as prediction of class labels, cluster memberships, or a

scalar variable, Euclidean Graph Embedding is often a scalable and powerful choice. However,
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Euclidean Graph Embedding methods do not ensure that every point in the embedding space

is actually a network, and probabilistic models therefore typically assign nonzero probability to

points that do not represent networks, causing problems in extending statistical tools to these

embedding spaces. Particularly challenging are problems whose answer is a network, such as

averages, interpolation, denoising, network-valued regression models, etc. As a response to these

limitations, Object Oriented Data Analysis (Marron and Alonso, 2014) aims to model ”objects”

– in our case, networks – as residing in a space of precisely such objects, ensuring that every

point in the embedding space is a meaningful object. However, most existing works in this

category have so far focused on tree-valued data rather than networks in general. Among existing

models, Ginestet et al. (2017) proposes a model where networks’ Laplacian matrices are smoothly

injected into a sub-manifold of a Euclidean space; Simpson et al. (2013) and Durante et al. (2017)

face the problem of generating and performing test on a population of networks; and Chowdhury

and Mémoli (2017) and Chowdhury and Mémoli (2018) study a metric space of networks up to

weak isomorphism, which allows the grouping of similar nodes. As a precursor to our work, Jain

and Obermayer (2009) introduced an interesting and flexible general space of ”Structures”, which

we call, when restricted to the special case of graphs, ”Graph Space”. This is a natural space for

graphs with different or equal number of nodes, and with labelled or unlabelled nodes. Within

Graph Space, networks can also be weighted or unweighted, uni- and multi-layer, directed and

undirected, and with different types of attributes on both edges and nodes. The same Graph Space

independently appears in two recent preprints, namely Kolaczyk et al. (2017), which studies the

behavior of Fréchet mean in Graph Space, as well as in Guo et al. (2019), which proposes a

simpler algorithm for principal components, analogous to the tangent space approaches known

from manifold statistics (Fletcher and Joshi, 2004). An early version of our approach, which is

analogous to intrinsic geodesic principal components from manifold statistics (Huckemann et al.,

2010), was presented in the conference proceedings Calissano et al. (2019).
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This paper provides a detailed study of the nonlinear nature of the geometry of the Graph

Space, showing that even if it is not a manifold, it is a geodesic space with several properties.

We prove that its curvature is unbounded from above, which renders standard approaches to

nonlinear statistics unpractical, at least in terms of proving their convergence. We propose sta-

tistical algorithms that are guaranteed to converge to local optima, and discuss, in particular, the

characteristics of the Fréchet Mean computed with this algorithm, compared to other common

approaches. We introduce an intrinsic version of geodesic principal components for a population

of unlabelled networks, and motivated by our proven geometric properties, propose the Align All

and Compute (AAC) Algorithm, inspired by Generalized Procrustes Analysis (Gower, 1975).

To demonstrate the potential utility and flexibility of this framework, we illustrate our algo-

rithms using three different datasets, showing our performance of the framework in both captur-

ing topological and attribute variation. These datasets include a simulated dataset of undirected

networks with scalar attributes on edges; a real, visually informative dataset of hand written

letters (Kersting et al., 2016; Riesen and Bunke, 2008) with vector valued node attributes and

scalar edge attributes; and a mobility dataset describing the mobility fluxes of citizens between

provinces in Lombardy region (Italy) at different hours and for different modes of transportation.

The paper is organized as follows: In Section 2, we introduce Graph Space, and we describe

its geometrical properties in Section 3. Section 4 presents the definition of geodesic principal

components (GPCs) for network valued data and the introduction of the Align All and Compute

Algorithm to estimate statistics on Graph Space such as Fréchet Mean and GPCs. The previ-

ous theoretical results are discussed in the three empirical examples on both simulated and real

datasets in Section 5. All the proposed theory is implemented in the python package GraphSpace

available on GitHub (Calissano et al., 2020).

4



2 Graph Space

We consider graphs as triples G = (V,E,a) where the node set V has at most n elements, and the

edge set E ⊂ V 2 has maximal size n2. The nodes and edges are attributed with elements of an

attribute space A, which in this paper is assumed to be Euclidean, via an attribute map a : E→ A.

Here, the map a allows us to describe attributes on both edges and nodes, as we use self loop

edges (diagonal elements) to assign attributes to nodes. From here on, we represent networks

mathematically as graphs, and consider these terms equivalent.

In our modelling, we shall represent graphs with fewer nodes than n as having n− |V | ad-

ditional null nodes, allowing graphs to be represented via fixed-size adjacency matrices. More

precisely, a graph with scalar attributes is completely specified by the adjacency matrix of di-

mension n×n, residing in a space X = Rn2
of flattened adjacency matrices. If the attributes are

vectors of dimension d, the graph is represented by a tensor of dimension n×n×d, residing in a

space X = Rn×n×d .

In many real world applications, populations of graphs describe the same phenomenon in

different contexts (e.g. routes of different airline companies, or brain connectivity networks of

different patients). Different nodes’ labels or order make it challenging to investigate similarities

between the topology and attributes of different graphs, and this is often alleviated by explicit or

implicit matching of graph nodes. When the graphs are represented as n×n adjacency matrices,

matching two graphs corresponds to finding optimal permutations of their nodes. The group T

of node permutations can be represented via permutation matrices, acting on X through matrix

multiplication. The binary operation:

· : T ×X → X ,(T,x) 7→ T x

thus defines an action of the group T on X . We call the obtained quotient space XT = X/T Graph

Space, and each element of X/T is a graph G, represented as an equivalence class [x] = T x which
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contains all the flattened adjacency matrices in X which can be obtained from x by permuting

nodes. Note that this Graph Space is a special case of the A-attributed r-structures introduced by

Jain and Obermayer (2009), which includes hyper-graphs and more general attribute types. The

graphs considered in this paper can be considered A-attributed 2-structures with A Euclidean.

We illustrate the construction of Graph Space with a simple example:

Example 1. Consider the two weighted networks shown in Figure 1. To represent these as

points in Graph Space: Add a fictional null node to the first graph; randomly enumerate the

nodes; represent them in two weighted, symmetric adjacency matrices as shown in Figure 1.

The adjacency matrices can be vectorized as a vector of dimension nine (e.g the first network

Figure 1: Example of two simple weighted undirected networks x1 and x2 and their matrix repre-

sentations.

becomes [0,4,0,4,0,0,0,0,0]). The space of flattened adjacency matrices X is thus R9, and the

two networks are represented by two points in R9. The permutation action can be represented

as a binary 9×9 matrix: The permutation reorders the nodes and consequently the edges of the

network by permuting the rows and columns of its adjacency matrix, and hence also the positions

of the elements in the flattened matrix representation xi. For example, if the nodes 2 and 3

are permuted in the first network, we obtain the new permuted vector [0,0,4,0,0,0,4,0,0]. Each

point [xi] in the quotient space X/T consists of all possible permuted versions of xi (i.e. permuting

the rows and columns of the associated adjacency matrix). Now, the equivalence classes [x1] and

[x2] are points in X/T , and the maximal size of an equivalence class in X/T is 3!.
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Remark 1. In practice, the maximum number of nodes n can limit the possible node matchings,

and hence also the geometric relationship, between two graphs. To make sure no such limitations

are present, set n = 2max(|ni|).

For symmetric adjacency matrices it would suffice to represent them with the upper triangular

part. For the sake of generalization we keep the more complete representation.

3 On the geometry of Graph Space

As the Graph Space X/T is the quotient of the total space X of flattened adjacency matrices with

respect to the node permutation group T , any metric dX on X defines a quotient pseudometric

dX/T ([x1], [x2]) = min
t∈T

dX(tx1,x2)

on X/T which, since the permutation group T is finite, is indeed a metric. Examples of commonly

used metrics on X include the lp metrics for p ∈ (0,∞], where p = 2 gives the Euclidean distance

used in this paper, and p = 1 gives the Manhattan distance.

Remark 2. The l1 distance on X generates the very well known graph edit distance (Sanfeliu and

Fu, 1983) on X/T , under the assumption that n is sufficiently large to allow all possible edit paths

between the graphs in the dataset. Note that in the graph edit distance, geodesics are not unique,

as edit operations can be made in different order with no effect on the total edit cost. Generalizing

manifold statistics based on geodesics to graphs based on graph edit distance is therefore futile.

While Graph Space X/T is a metric space, it is not a manifold, even with the Euclidean

distance on X . This follows from the fact that the structure of the isotropy subgroup Tx = {t ∈

T |tx = x} varies for different points x ∈ X (Bredon, 1972). One reason why this happens is

that, as explained in the previous section, forcing the networks to all have the same number of
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nodes generates networks with a subset of null nodes. As a permutation t ∈ T which acts only

on the null nodes of a flattened adjacency matrix x ∈ X does not have any effect on the adjacency

matrix, such x will have a larger isotropy subgroup than generic points in X . As a consequence,

the well-known tools from manifold statistics are unfortunately not applicable to Graph Space.

As is commonly done in manifold statistics (Fletcher and Joshi, 2004; Huckemann et al.,

2010; Kendall, 1984; Srivastava et al., 2005; Zhang and Fletcher, 2013; Pennec et al., 2006;

Fletcher, 2013; Mallasto and Feragen, 2018) as well as in more general nonlinear statistics (Turner

et al., 2014; Nye, 2011, 2014; Duncan et al., 2018; Feragen and Nye, 2020; Bačák, 2014; Nye

et al., 2017; Miller et al., 2015; Sturm, 2003; Feragen et al., 2013, 2011), we will utilize geodesics,

or shortest paths, to define and compute statistical properties in Graph Space. In the absence

of a manifold structure, we will define and understand geodesics, statistical properties built on

geodesics, and their properties, by utilizing geometric constructions from metric geometry (Brid-

son and Haefliger, 1999). To that end, we dedicate this section to surveying necessary concepts

from metric geometry and applying them to uncover geometric properties of Graph Space.

3.1 Basic geometric properties of Graph Space: Distances and geodesics

Given a general metric space (X,dX), the length of a path γ : [0,1]→ X is given by

l(γ) = sup
x0=γ(0),x1,...,xm=γ(1)

m

∑
i=1

dX(xi−1,xi), (1)

where the supremum is taken over all approximations x0 = γ(0),x1 = γ(t1), . . . ,xm−1 = γ(tm−1),xm =

γ(1) of γ of some finite length m, where 0 < t1 < .. . < tm−1 < 1. Thus, the length of a path can

be thought of as the supremum over lengths of all finite approximations of the path.

Given two points a,b ∈ X, a geodesic from a to b is a path γ : [0,1]→ X such that γ(0) = a,

γ(1) = b and l(γ) = dX(a,b). The metric space (X,dX) is said to be a length space if, for every
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two points a,b ∈ X, we have

dX(a,b) = inf{l(γ) | γ : [0,1]→ X s.t. γ(0) = a,γ(1) = b}.

That is, the distance between any two points a,b is the infimum over lengths of paths connecting

them. Moreover, X is a geodesic space if every two points a,b ∈ X are connected by a geodesic

γ from a to b – that is, there actually exists a path attaining the infimum length.

Lemma 1. Graph Space is a geodesic space.

Proof. This result follows from standard properties of metric spaces. As our total space X is

Euclidean, it is in particular a length space. Since Graph Space X/T is a metric space, X/T

is a length space by (Bridson and Haefliger, 1999, Lemma I.5.20). Moreover, as X/T is the

quotient with respect to a finite group, and X is locally compact, the quotient X/T is also locally

compact (Bredon, 1972, Theorem I.3.1). Note that any Cauchy sequence ([xi])i∈N in X/T is the

image under π of a Cauchy sequence (tixi)i∈N in X such that for some M ∈ N, and for i, j ≥M,

we have dX(tixi, t jx j) = dX/T ([xi], [x j]. Since X is complete, the sequence (tixi)i∈N converges to

some point x ∈ X , and hence the sequence ([xi])i∈N converges to [x] ∈ X/T . In other words, X/T

is complete. Thus, X/T is a geodesic space by the Hopf-Rinow theorem (Bridson and Haefliger,

1999, Proposition I.3.7).

Lemma 2. There exist points yε ,zε ∈ X/T which are connected by more than one geodesic.

Proof. We give an example in the case where node- and edge attributes are scalar. Note that the

same example can be adapted to vector valued node- or edge attributes by appending this scalar

value with zeros. Let ε > 0, and consider the two graphs yε and zε shown in the top row on the left

hand side of Figure 2. There are two geodesic paths between these two graphs. The first consists

of interpolating the node attributes with the node matching indicated by the planar embedding
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Figure 2: Depending on their node alignment, the two graphs yε and zε differ either in node

attributes or in edge attributes, and there exist two different geodesics γn and γe connecting the

two graphs: One which interpolates node attributes and one which interpolates edge attributes,

respectively. These two geodesics are illustrated via their midpoints γn
mid and γe

mid .

of the nodes. The midpoint of this geodesic is the graph γn
mid shown on the left hand side of the

bottom row. The second geodesic between yε and zε consists of interpolating the edge attributes

with the node matching indicated by the coloring of the nodes. The midpoint of this geodesic is

the graph γe
mid shown on the right hand side of the bottom row. The two points connected by two

geodesics are illustrated schematically on the right hand side.

Corollary 3. Geodesics connecting pairs of points are not generally unique in X/T .

3.2 The curvature of Graph Space

Curvature affects properties which are important for defining and computing statistical quantities,

most notably geodesics (shortest paths) and conditions for their uniqueness. As Graph Space is

not a manifold, we will utilize more general concepts of curvature from metric geometry (Bridson

and Haefliger, 1999).
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Figure 3: Left: A geodesic triangle in X. Right: the corresponding comparison triangles in

hyperbolic space H2, the plane R2 and the sphere S2, respectively.

First consider the Graph Space where edges and nodes have real attributes a : E → R. We

will show that the curvature of this Graph Space is not bounded from above, which affects our

ability to find unique geodesics even locally. In metric geometry, curvature is approached through

comparison with model spaces Mκ of curvature κ . Different model spaces are used for negative,

zero and positive κ . When κ < 0, the model space is the hyperbolic space of negative curvature

κ , namely Mκ = Hκ . For κ = 0, the model space is M0 = R2, namely the Euclidean plane.

Finally, for κ > 0, the model space is the sphere of curvature κ , namely Mκ = S2
κ . An important

property of the model spaces of curvature κ is that they are each accompanied by an diameter

Dκ , such that any two points a,b ∈ B(x,Dκ) for any x ∈Mκ can be joined by a unique geodesic.

We can compare any given geodesic space (X,dX) to any one of the model spaces using

comparison triangles, as follows: A geodesic triangle abc in X consists of vertices a,b,c ∈ X

joined by geodesic edges γab, γbc and γac. We assume that a,b and c are all contained in a ball of

perimeter < 2Dκ . We can then construct a comparison triangle āb̄c̄ in the model space Mκ with

vertices ā, b̄ and c̄ joined by geodesic edges γ̄āb̄, γ̄b̄c̄ and γ̄āc̄, whose lengths are the same as the

lengths of the edges γab, γbc and γac in abc. See Figure 3 for an illustration.

Definition 1 (CAT (κ) space, curvature in the sense of Alexandrov). Let (X,dX) be a geodesic

metric space, and let abc be a geodesic triangle in X as described above. Note that any point x
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from the segment γbc has a corresponding point x̄ on the segment γ̄b̄c̄ in the comparison triangle,

such that dMκ
(x̄, b̄) = dX(x,b). If

dX(x,a)≤ dMκ
(x̄, ā) (2)

for every such x, and similarly for any x on γab or γac, then the geodesic triangle abc satisfies the

CAT (κ) condition. The metric space X is a CAT (κ) space if any geodesic triangle abc in X of

perimeter < 2Dκ satisfies the CAT (κ) condition given in eq. 2. Geometrically, this means that

triangles in X are thinner than triangles in Mκ . The metric space X has curvature ≤ κ in the

sense of Alexandrov if it is locally CAT (κ).

Note that the properties of the model space in relation to its diameter Dκ also transfer to

geodesic spaces X which are CAT (κ) (Bridson and Haefliger, 1999, Proposition II.1.4): Given

any x ∈ X, any two points a,b ∈ B(x,Dκ)⊂ X can be joined by a unique geodesic. In particular,

Dκ = ∞ for κ ≤ 0, meaning that in non-positively curved spaces, any two points can be joined by

a unique geodesic, regardless of their distance. Moreover, Dκ ≥ π√
κ

for κ > 0, meaning that the

lower the bound on the (positive) curvature, the larger the radius within which all pairs of points

have unique connecting geodesics.

Figure 4: Consider the graph [x] ∈ X/T shown on the left. A ball about [x] of any radius Rκ > 0

will always contain two graphs [yε ] and [zε ], as shown second and third. As we saw in Figure 2,

these two points are connected by two different geodesics.
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Theorem 4 (The curvature of Graph Space is unbounded from above). Graph space does not

have curvature ≤ κ in the sense of Alexandrov for any κ ∈ R. In particular, for any graph

[x] ∈ X/T and any Rκ > 0, we can – by assuming a sufficiently high maximal number of nodes n

– find two graphs [yε ], [zε ] ∈ B([x],Rκ)⊂ X/T which are connected by two geodesics.

Proof. Let [x], [yε ] and [zε ] be as in Figure 4. Note that for any radius Rκ > 0, there will exist

an ε > 0 such that [yε ], [zε ] ∈ B([x],Rκ). Moreover, as argued in Lemma 3, there will always be

two equally long shortest paths connecting [yε ] and [zε ]. Thus, by (Bridson and Haefliger, 1999,

Proposition II.1.4), Graph Space is not locally CAT (κ) at [x] for any κ , and thus cannot have

curvature ≤ κ in the sense of Alexandrov for any κ .

To prove the final statement, consider any graph [x] and assume that the maximal number n

of nodes considered in a graph is sufficiently high to construct the graphs [yε ] and [zε ] shown in

Figure 5, which can be constructed to both be arbitrarily close to [x]. Now, again, there exist two

geodesics connecting [yε ] and [zε ].

Remark 3. Note that while all of the results and examples above considered the case where node

and edge attributes were real valued (A =R), the proofs hold equally well for vector valued node

and edge attributes (A = Rp).

Figure 5: For any graph [x], we can find two graphs [yε ] and [zε ] arbitrarily close to it, which are

connected by more than one geodesic.
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4 Statistics

As discussed in the previous section, the curvature of Graph Space is unbounded from above.

The total space X is, on the other hand, Euclidean, and we will utilize this to compute statistics in

Graph Space. In particular, we propose as a general strategy the Align All and Compute (AAC)

algorithm, closely related to Generalized Procrustes Analysis (Gower, 1975), which consists of

iteratively selecting an optimal representative from every equivalence class in Graph Space and

computing the wanted statistic with those representatives on the total space. In this section,

we first introduce the AAC algorithm in the context of estimating the Fréchet Mean. Next, we

extend the concept of geodesic principal components (Huckemann et al., 2010) to Graph Space,

and utilize the AAC algorithm to estimate the geodesic principal components.

4.1 The Fréchet Mean

Consider the total space X , the Graph Space X/T obtained by quotienting out the action of the

permutation group T on X , and a set of observations {[x1], . . . , [xk]} ∈ X/T . A basic quantity in

nonlinear statistics is the Fréchet mean:

Definition 2. The Fréchet mean of a sample {[x1], . . . , [xk]} ∈ X/T is given

[x̄] = argmin
[x]∈X/T

k

∑
i=1

dX/T ([x], [xi])
2. (3)

We note that for any geodesic space, the mean of two points is characterized as the midpoint

of any geodesic connecting the two points. Thus, as illustrated in Figure 6, we obtain as a direct

consequence of Corollary 3 and Theorem 4:

Corollary 5. Fréchet means are not generally unique in Graph Space X/T . In fact, as shown by

Figure 5, for any graph [x] ∈ X/T and any radius ε > 0, there will be sets of points in B([x],ε)

(e.g. {[yε ], [zε ]}) whose Fréchet mean is not unique.
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Figure 6: Since geodesics are

not necessarily unique in Graph

Space X/T , Fréchet means are

not necessarily unique either.

Even if Graph Space geodesics and means are not gener-

ally unique, we might hope for generic uniqueness similar to

the results shown for tree spaces in Feragen and Nye (2020).

However, even in cases where means are not unique, they are

still useful, and their computation an important open prob-

lem. In nonlinear statistics, a number of algorithms exist to

compute means either approximately (Sturm, 2003; Bačák,

2014; Miller et al., 2015; Afsari et al., 2013; Arnaudon et al.,

2013; Arnaudon and Miclo, 2014; Bonnabel, 2013; Hauberg

et al., 2015; Turner et al., 2014), or via heuristics (Feragen

et al., 2011; Billera et al., 2001; Jain and Obermayer, 2008),

whose applicability and efficiency vary with the complexity

of the underlying nonlinear data space.

A popular strategy for computing Fréchet means in geodesic spaces is the iterative ”midpoint”

algorithm which obtains an updated mean estimate by stepping 1/k along the geodesic from a

current mean estimate to a kth random sample from the dataset. In Euclidean space, this com-

putes the mean in finite time when samples are made without replacement. The same ”without

replacement” strategy is applied for trees in Feragen et al. (2011) and for graphs in Jain and Ober-

mayer (2008), but these finite time algorithms do not generally return the mean in tree- or Graph

Space, and should be considered heuristics. When running the algorithm with replacement, there

are a number of scenarios in which it is known to converge towards the Fréchet mean, includ-

ing non-positively curved spaces (Sturm, 2003; Bačák, 2014; Miller et al., 2015) and certain

Riemannian manifolds of bounded curvature (Chakraborty and Vemuri, 2015; Arnaudon et al.,

2013; Arnaudon and Miclo, 2014). Note, in particular, that for Riemannian manifolds, this al-

gorithm is a special case of stochastic gradient descent (Bonnabel, 2013). While this algorithm
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is easy to generalize to Graph Space, its convergence proofs usually require bounded curvature

to have some level of uniqueness for geodesics. This leads us to consider another strategy for

computing means, which we call Aligned All and Compute (AAC).

We remind the reader that the metric on Graph Space is given by

dX/T ([x1], [x2]) = min
t∈T

dX(tx1,x2),

which naturally leads to the concept of optimal position (Huckemann et al., 2010) of one point

with respect to another.

Definition 3. Given x̃ ∈ X and t ∈ T , the point tx̃ is in optimal position with respect to x ∈ X if

dX(tx̃,x) = min
t ′∈T

dX(t ′tx̃,x) = dX/T ([x̃], [x]).

That is, the equivalence class [x̃] ∈ X/T contains (at least) one point tx̃ ∈ [x̃] which has minimal

distance to x, and this point is in optimal position with respect to x.

The distance dX/T between two points in the Graph Space X/T corresponds exactly to the

distance in X after posing one point in optimal position with the other. We now define the AAC

algorithm, which is based on iteratively first posing observations in optimal position with respect

to the current mean estimate, then re-estimating the mean based on the aligned observations,

and repeating until convergence. In the case of computing Fréchet means of shapes, the AAC

algorithm coincides with generalized Procrustes analysis (Gower, 1975).

This algorithm provides an estimate of a Fréchet Mean which is independent of the order of

the data, and with improved convergence properties:

Theorem 6. AAC for Fréchet Mean (Algorithm 1) converges in finite time. Moreover, assume

that Graph Space X/T is endowed with a probability measure η which is absolutely continuous

with respect to the pushforward of the Lebesgue measure m on X. In particular, for A ⊂ X/T ,
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Algorithm 1: AAC for the Fréchet Mean
Data: {[x1], . . . , [xk]} ⊂ X/T observations in X ; a threshold ε > 0

Result: An estimate of the Fréchet Mean of {[x1], . . . , [xk]}.

Initialization: Select randomly an observed graph and randomly a representative:

x̃ = x̃i ∈ [xi] ∈ {[x1], . . . , [xk]};

while s > ε do
Put every observation in optimal position with the representative x̃, obtaining an

aligned set of representatives {x̃1, x̃2, . . . , x̃k} ⊂ X ;

Compute the Fréchet Mean x̄ in X of {x̃1, x̃2, . . . , x̃k};

Compute s = dX(x̃, x̄);

Set x̃ = x̄;

Return [x̄]

we have η(A) = 0 if m(π−1(A)) = 0. Let the dataset [x1], . . . , [xk] is sampled from η; now with

probability 1, the estimator found by Algorithm 1 is a local minimum of the Fréchet function

k

∑
i=1

d2
X/T ([x], [xi]). (4)

Proof. See Appendix.

While we show that it theoretically converges in finite time, this might still be a long time,

and we thus also add a convergence threshold ε in Algorithm 1.

Note also that our algorithm in practice relies on inexact graph matching, as graph matching

is generally NP complete. We thus cannot be sure that our computed means were, in fact, based

on completely correct graph matching. However, alternative mean algorithms also rely on graph

matching, and are therefore similarly affected.
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4.2 Geodesic Principal Component Analysis

In this section we introduce Geodesic principal components (GPCs) in Graph Space, follow-

ing Huckemann et al. (2010), and propose an AAC algorithm for their computation. Consider the

canonical projection to the Graph Space X/T :

π : X → X/T := {[p] : p ∈ X}.

Definition 4. Denote by Γ(X) the set of all straight lines (geodesics) in X . Following Huckemann

et al. (2010), a curve δ is a generalized geodesic on the Graph Space X/T , if it is a projection of

a straight line on X :

Γ(X/T ) = {δ = π ◦ γ : γ ∈ Γ(X)}. (5)

Just like we defined optimal alignment of sample graph representatives with a fixed graph rep-

resentative, we shall also utilize optimal alignment of sample graphs with a generalized geodesic:

Definition 5. Consider [x]∈ X/T , t ∈ T and δ a generalized geodesic in X/T with representative

γ ∈ Γ(X). The graph representative tx ∈ X is in optimal position with respect to γ on X if

dX(tx,γ) = dX/T ([x],δ ).

In the Graph Space, the optimal positioning is selecting the best representative x∈ [x] (i.e. the

”best” node permutation) with respect to a point or a curve, in order to perform computation on

the total space X . The optimal positioning of a point with respect to a generalized geodesic is a

two step alignment procedure.
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Algorithm 2: Algorithm for Optimal Position with respect to a generalized geodesic
Data: A point x ∈ [x], a straight line γ ∈ Γ(X), the domain [smin,smax]

Result: t∗ ∈ T such that t∗x is in optimal position wrt γ .

for s← smin to smax do
Find t(s) := argmint∈T dX(tx,γ(s))

Find s∗ = argmins∈[smin,smax] dX(t(s)x,γ(s));

Return t∗ = t(s∗)

The obtained t∗ ∈ T is the permutation such that the point t∗x∈ [x] is the closest representative

of [x] to the geodesic γ in the interval selected. Since Graph Space is not an inner product space,

we consider two generalized geodesics to be orthogonal if they have orthogonal representatives

in Γ(X). We can define a set of geodesic principal components and a strategy to compute them

based on the residuals.

Definition 6. Consider the canonical projection of the Graph Space π : X → X/T of X and

consider a set {[x1], . . . , [xk]} ⊂ X/T of graphs, [x] ∈ X/T , and δ ∈ Γ(X/T ). The Generalized

Principal Components for the set {[x1], . . . , [xk]} are defined as:

• The first geodesic principal component δ1 ∈ Γ(X/T ) is the generalized geodesic minimiz-

ing the sum of squared residuals:

δ1 = argmin
δ∈Γ(X/T )

k

∑
i=1

(d2
X/T ([xi],δ )) (6)

• The second geodesic principal component δ2 ∈Γ(X/T ) minimizes (6) over all δ ∈Γ(X/T ),

having at least one point in common with δ1 and being orthogonal to δ1 at all points in com-

mon with δ1.

• The point µ ∈ X/T is called Principal Component Mean if it minimizes

k

∑
i=1

(d2
X/T ([xi], [µ])

2) (7)
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where [µ] only runs over points x̃ in common with δ1 and δ2.

• The jth geodesic principal component is a δ j ∈ Γ(X/T ) if it minimizes (6) over all gener-

alized geodesics that meet orthogonally δ1, . . . ,δ j−1 and cross µ .

Algorithm 3: AAC to compute the geodesic principal components
Data: {[x1], . . . , [xk]} ∈ X/T observations in X

Result: Geodesic principal components δ1, . . . ,δk ∈ Γ(X/T )

Initialize:

Select randomly x̃i ∈ [xi] {[x1], . . . , [xk]};

Align all the observations to the representative x̃i, obtaining a set of points

{x̃1, x̃2, . . . , x̃k} ∈ X in optimal position with respect to x̃i;

Perform PCA on {x̃1, x̃2, . . . , x̃k} in X obtaining γ1, . . . ,γk ∈ Γ(X);

Project onto Γ(X/T ) as δi = π ◦ γi;

Set δ̃1 = δ1, . . . , δ̃k = δk

while s > ε do
Align all the points {[x1], [x2], . . . , [xk]} with respect to the generalized geodesic

δ̃ , obtaining a new set of aligned points x̃1, x̃2, . . . , x̃k ∈ X using Algorithm 2;

Perform PCA on {x̃1, x̃2, . . . , x̃k} in X obtaining γ1, . . . ,γk ∈ Γ(X);

Project onto Γ(X/T ) as δi = π ◦ γi;

Compute a step distance function s = f (δ̃i,δi);

Set δ̃1 = δ1, . . . , δ̃k = δk.
Return δ1, . . . ,δk ∈ Γ(X/T )

Note that, due to the curvature of the space discussed in Section 3, the Fréchet mean is not

ensured to be the same as the Principal Component Mean. Having equipped Graph Space with all
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the required definitions, we propose the AAC algorithm to compute the geodesic principal com-

ponents (see Algorithm 3). A possible choice for the step distance function f is the proportion of

variance explained by the first geodesic principal component at the current and the previous step.

Again, the AAC algorithm converges in finite time, and in the case of the first GPC we can

show that it converges to a local minimizer of the sum of squared residuals function:

Theorem 7. AAC for GPCA (Algorithm 3) converges in finite time. Assume that Graph Space

X/T is endowed with a probability measure η which is absolutely continuous with respect to

the pushforward of the Lebesgue measure m on X, and let the dataset [x1], . . . , [xk] be sampled

from η . Now with probability 1, the estimator of the first GPC found by Algorithm 1 is a local

minimum of the sum of squared residuals function

k

∑
i=1

d2
X/T (δ , [xi]). (8)

where δ ∈ Γ(X/T ).

Proof. See Appendix.

For the case of the higher GPCs, we do not have a proof of local minimization of (6) and

Algorithm 3 should be considered a heuristic.

5 Experiments on real and simulated data

In this section, we illustrate the introduced Graph Space statistics via three case studies emphasiz-

ing the framework’s flexibility to model different graph features such as directed and undirected

edges, or scalar and vector attributes, on both nodes and edges. Each computation of distances

and geodesics require graph matching, which is an NP-complete problem with many existing
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heuristics for inexact matching (Emmert-Streib et al., 2016; Conte et al., 2004). In the simula-

tions we use the graduate assignment algorithm (Gold and Rangarajan, 1996) for inexact match-

ing. All experiments are conduced using our GraphSpace python package, which is available

on github (Calissano et al., 2020). Implementation details are listed in the package description.

The convergence threshold ε used in the AAC algorithms is set to ε = 0.001 in Algorithm 1 and

ε = 0.01 in Algorithm 3.

Figure 7: The five networks used to simulate the dataset in Case study 1.

5.1 Case study 1: Undirected Networks with Scalar Edge Attributes
Mean Without Alignment

Figure 8: Theoretical Fréchet mean; Fréchet

mean in X ; Fréchet Mean computed via AAC.

The scale is the same as in Figure 7.

We simulate networks with real-valued node-

and edge attributes as follows. Figure 7

shows five networks with edge attributes

{100,80,60,40,20} as shown by the darkness

of the color, whose equivalence classes in X/T

we term {[x1], [x2], [x3], [x4], [x5]}. We gener-

ate a synthetic dataset consisting of 50 obser-

vations randomly sampled in a stratified fashion by randomly picking one of the five equivalence

classes [xi], i = 1,2,3,4,5, and then we randomly pick an element from this equivalence class by
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randomly permuting the network’s nodes. The Fréchet mean and the GPCs are computed using

our AAC algorithm, which works on the quotient space X/T . These results are compared to

Fréchet means and principal components computed on X , using the initial graph representations,

as well as theoretically correct results which can be computed as for this particular synthetic

dataset, the alignment can be made by hand. Figure 8 shows the three computed Fréchet means.

The mean computed with the AAC algorithm is a good estimate of the theoretical one, both in

terms of topological structure and edge weights. The mean obtained in the X space is a complete

weighted network shown in Figure 8, capturing neither the topology nor the weights.

For GPCA, Figure 9(a) shows the cumulative proportion of variance explained as a function

of number of GPCs, and Figure 9(b) visualizes the graph variation along the first two principal

components. Note that the Graph Space GPCs obtained using AAC capture the same quantitative

and visual level of variance as the theoretical GPCs, while this does not hold for the Euclidean

version. In particular, the two GPCs explain more then 90% of the original data variance, and

the visualization of the 1st principal component shows how it runs from a single edge to the full

structure.

5.2 Case study 2: Undirected Networks with Vector Attributes

As an intuitive visual example with real data with vectors attributes, we subsample 20 cases of

the letter ”A” from the well known hand written letters dataset (Kersting et al., 2016; Riesen

and Bunke, 2008). As shown in Figure 10(a), every network has node attributes consisting of

the node’s x- and y-coordinates, and binary (0/1) edge attributes indicating whether nodes are

connected by lines. In Figure 10(a), the Fréchet Mean is shown, underling how the framework is

capturing both the topology and the node coordinates. Figure 10(b) plots network variation along

the three GPCs. Note in particular how the principal components are capturing the variability

in the way the letter A could be written: the variability of the length and the inclination of the
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(a) Proportion of variance explained is shown by varying the number of the GPCs.

0 120-120

(b) The first two Geodesic Principal Components are shown by plotting the original data projected along

the corresponding geodesic (only the q = 0.1,0.25,0.5,0.75,0.9 quantiles are shown).

Figure 9: GPCA analysis for Case study 1.
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[0.72, 0.63]

[1.45, 2.53]

[2.42, 0.71]

[0.82, 1.56]
[2.13, 1.40]

[0.71, 0.74]

[1.52, 2.50]

[2.28, 0.69]

[0.90, 1.47] [2.11, 1.46]

A Datum Fréchet Mean

(a) Left: A datum extracted from the A dataset. Every unlabelled node has a bidimensional real valued

attribute, while every edge has a 0,1 attribute. Right: The Fréchet mean.
Dataset Projected along the Eigen vector1 Dataset Projected along the Eigen vector1 Dataset Projected along the Eigen vector1 Dataset Projected along the Eigen vector1 Dataset Projected along the Eigen vector1

1st GPC (27.3%)
Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2

2nd GPC (18.3%)
Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3

3rd GPC (15.6%)

(b) Visualization of the GPCs. 0.1,0.25,0.5,0.75,0.9 quantile of the projected scores are shown for the

first three GPCs.

Figure 10: GPCA analysis for Case study 2.
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horizontal bar, the angle between the vertical bars, and the reciprocal positions of the bars.

5.3 Case study 3: Directed Networks with Vector Attributes

Our final example uses a mobility dataset from Open Data Regione Lombardia (Region, Region).

The dataset consists of origin-destination matrices of the commuting flux of people between the

11 provinces of the Lombardia Region in northern Italy. For every hour of a representative day

in 2014, the fluxes were collected counting the number of people travelling by private mobility

mode (car), railway system (train or metro), bus public transport system, or bike. This results in

a set of 24 multi-layer networks, represented as graphs whose edge attributes are vectors in R4.

Each coordinate represents the flux associated to one of the mobility modes.

Figure 11, top, shows the multi-level networks associated with four different hours (left), as

well as the Fréchet Mean on Graph space X/T computed with the AAC algorithm (right). Note

that the density of the layers are well represented by the mean. By looking at the permutation

of network nodes used to compute the mean and the geodesics, we see that most of the time

no permutation is performed (i.e. the node corresponding to a specific province at one hour

is matched to the node representing the same province at another hour). This means that even

if the province information is not stored in the graph, they are distinguished by their mobility

properties. The only permutation happens at 5 p.m., when the town of Brescia is permuted with

the town of Bergamo. These two towns are both important commuting satellites of Milan, so

their role is interchangeable with respect to the commuting flux in the afternoon. This application

shows how this framework does not suffer the possible risk of “over-matching” also in case where

the cardinality of the permutation group is pretty high (i.e., even though about 40 million possible

node permutations are available, no artificial permutations are introduced by the algorithm). In

Figure 11, bottom, we show that the majority of the variability is explained by the first GPC. The

first principal component captures 81% of the total variance, and we see that by moving along this
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Figure 11: Top left: Network of the fluxes between the Lombardia Region provinces at 2 a.m., 8

a.m., 5 p.m. and 10 p.m.. Top right: Fréchet Mean in Graph Space X/T for the mobility modes

bike, bus, rail and private. Bottom: GPCA performed on scaled data. The first GPC is shown,

by plotting the quantiles of the original data projected along the corresponding geodesic for each

one of the levels (q = 0.1,0.25,0.5,0.75,0.9). The GPC captures the density change along the

day for all the transportation modes except from Private car mode.
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component, the density of the layers changes, except from the private mode, which is a complete

graph at at every hour of the day. As expected, the first GPC captures the main variability of the

dataset, which resides in the difference in number of travels along the day, from early-morning

and late afternoon peaks to minima at night.

6 Discussion and conclusion

In this work, we study the Graph Space, as a particular case of Jain and Obermayer (2009). As

a quotient space, Graph Space allows a meaningful description of a population of networks with

both same nodes across the population, i.e. the permutation action is the identity, and different

nodes. Moreover, Graph Space allows Euclidean attributes of any dimension on nodes and edges.

To perform statistics on the Graph Space, we studied the geometrical properties of the Graph

Space such as the metric, the curvature (which we prove to be unbounded from above), and the

non uniqueness of the geodesics and the Fréchet Mean. To overcome the problems induced by

unbounded curvature, we propose a general algorithm (Align All and Compute Algorithm - AAC)

useful to compute statistics on the Graph Space. First, we apply the AAC for the estimation of the

Fréchet mean, showing convergence to a local minimum of the variance function in finite time.

Second, we introduce the concept of geodesic principal component - GPC - on Graph Space, and

perform GPC analysis for populations of network-valued data using the AAC algorithm. GPCA

is a useful tool to summarize the complexity of network valued datasets, as well as identifying the

major topological and attribute variations. We show the practical utility of the framework on three

case studies: A simulated study, showing how AAC for Fréchet Mean and GPCs estimates the

expected theoretical results, and two real world examples including both directed and undirected

networks, as well as both scalar and vector attributes. The examples emphasize that GPCA is

an efficient tool to decompose the complexity and visualize the variability in a population of

28



networks.

Networks are a powerful and natural mathematical representation of various phenomena. Due

to its flexibility, Graph Space can offer interesting practical application in different field such as

chemistry, economy, social science, medicine etc. Note that Graph Space is analogous to the

classical shape analysis (Kendall, 1984; Dryden and Mardia, 1998), with graph nodes analogous

to landmarks. In this sense, Graph Space might also be a potential alternative to shape analysis

when the indexing of landmarks is unknown or the number of landmarks varies. On a related

note, as our computation of means and principal components is essentially a generalization of

generalized Procrustes analysis, our estimators may suffer from similar biases as those shown

to exist for shapes (Miolane et al., 2017). As a further development, the analysis of networks

with non-Euclidean attributes is a first interesting extension of the current framework. Moreover,

the AAC algorithm is a general strategy to compute statistics on the Graph Space, so it can be

extended to other statistical tools, such as regression and classification.
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mannian and its applications to computer vision. In Proceedings of the IEEE International

Conference on Computer Vision, pp. 4229–4237.

Chowdhury, S. and F. Mémoli (2017). Distances and isomorphism between networks and the

stability of network invariants. arXiv preprint arXiv:1708.04727.

Chowdhury, S. and F. Mémoli (2018). The metric space of networks. arXiv preprint

arXiv:1804.02820.

Conte, D., P. Foggia, C. Sansone, and M. Vento (2004). Thirty years of graph matching in pattern

recognition. International journal of pattern recognition and artificial intelligence 18(03),

265–298.

Dryden, I. and K. Mardia (1998). Statistical analysis of shape. Wiley.

Duncan, A., E. Klassen, and A. Srivastava (2018). Statistical shape analysis of simplified neu-

ronal trees. The Annals of Applied Statistics 12(3), 1385–1421.

Durante, D., D. B. Dunson, and J. T. Vogelstein (2017). Nonparametric Bayes modeling of

populations of networks. Journal of the American Statistical Association 112(520), 1516–

1530.

Duvenaud, D. K., D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez- Bombarelli, T. Hirzel,

A. Aspuru-Guzik, and R. P. Adams (2015). Convolutional networks on graphs for learning

molecular fingerprints. In Advances in Neural Information Processing Systems, pp. 2224–

2232.

31



Emmert-Streib, F., M. Dehmer, and Y. Shi (2016). Fifty years of graph matching, network align-

ment and network comparison. Information Sciences 346, 180–197.

Feragen, A., S. Hauberg, M. Nielsen, and F. Lauze (2011). Means in spaces of tree-like shapes.

In IEEE International Conference on Computer Vision (ICCV), pp. 736–746.

Feragen, A., F. Lauze, P. Lo, M. de Bruijne, and M. Nielsen (2010). Geometries on spaces of

treelike shapes. In Asian Conference on Computer Vision, pp. 160–173. Springer.

Feragen, A. and T. M. W. Nye (2020). Statistics on stratified spaces. In Riemannian Geometric

Statistics in Medical Image Analysis, pp. 299–342. Elsevier.

Feragen, A., M. Owen, J. Petersen, M. Wille, L. Thomsen, A. Dirksen, and M. de Bruijne (2013).

Tree-space statistics and approximations for large-scale analysis of anatomical trees. In Infor-

mation Processing in Medical Imaging, Volume 7917 of Lecture Notes in Computer Science,

pp. 74–85. Springer.

Fletcher, P. T. (2013). Geodesic regression and the theory of least squares on Riemannian mani-

folds. International Journal of Computer Vision 105(2), 171–185.

Fletcher, P. T. and S. Joshi (2004). Principal geodesic analysis on symmetric spaces: Statistics of

diffusion tensors. In Computer vision and mathematical methods in medical and biomedical

image analysis, pp. 87–98. Springer.

Ginestet, C. E., J. Li, P. Balachandran, S. Rosenberg, and E. D. Kolaczyk (2017, 06). Hypothesis

testing for network data in functional neuroimaging. The Annals of Applied Statistics 11(2),

725–750.

Gold, S. and A. Rangarajan (1996). A graduated assignment algorithm for graph matching. IEEE

Transactions on pattern analysis and machine intelligence 18(4), 377–388.

32



Gower, J. C. (1975). Generalized Procrustes analysis. Psychometrika 40(1), 33–51.

Guo, X., A. Srivastava, and S. Sarkar (2019). A quotient space formulation for statistical analysis

of graphical data. arXiv preprint arXiv:1909.12907.

Hauberg, S., A. Feragen, R. Enficiaud, and M. J. Black (2015). Scalable robust principal compo-

nent analysis using Grassmann averages. IEEE transactions on pattern analysis and machine

intelligence 38(11), 2298–2311.

Huckemann, S., T. Hotz, and A. Munk (2010). Intrinsic shape analysis: geodesic PCA for Rie-

mannian manifolds modulo isometric Lie group actions. Statist. Sinica 20(1), 1–58.

Jain, B. and K. Obermayer (2008). On the sample mean of graphs. In 2008 IEEE International

Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),

pp. 993–1000. IEEE.

Jain, B. J. and K. Obermayer (2009). Structure spaces. Journal of Machine Learning Re-

search 10(Nov), 2667–2714.

Kendall, D. (1984). Shape manifolds, Procrustean metrics, and complex projective spaces. Bul-

letin of the London Mathematical Society 16(2), 81–121.

Kersting, K., N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann (2016). Benchmark data sets

for graph kernels.

Kolaczyk, E., L. Lin, S. Rosenberg, J. Xu, and J. Walters (2017). Averages of unlabeled networks:

Geometric characterization and asymptotic behavior. arXiv preprint arXiv:1709.02793.

Mallasto, A. and A. Feragen (2018). Wrapped Gaussian process regression on Riemannian man-

ifolds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 5580–5588.

33



Marron, J. S. and A. M. Alonso (2014). Overview of object oriented data analysis. Biometrical

Journal 56(5), 732–753.

Miller, E., M. Owen, and J. S. Provan (2015). Polyhedral computational geometry for averaging

metric phylogenetic trees. Advances in Applied Mathematics 68, 51 – 91.

Miolane, N., S. Holmes, and X. Pennec (2017). Template shape estimation: correcting an asymp-

totic bias. SIAM Journal on Imaging Sciences 10(2), 808–844.

Nye, T. M. W. (2011). Principal components analysis in the space of phylogenetic trees. The

Annals of Statistics 39, 2716–2739.

Nye, T. M. W. (2014). An algorithm for constructing principal geodesics in phylogenetic

treespace. IEEE/ACM Trans. Comput. Biology Bioinform. 11(2), 304–315.

Nye, T. M. W., X. Tang, G. Weyenberg, and R. Yoshida (2017). Principal component analysis
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Appendix for Populations of Unlabeled Networks:

Graph Space Geometry and Geodesic Principal

Components.
Proof of Theorem 6 and Theorem 7.

Proof of Theorem 6

Proof. First, we prove convergence in finite time. Algorithm 1 consists of two steps repeated

iteratively. Consider the function
k

∑
i=1

d2
X(µ

cur,xcur
i ), (9)

where, at any point in time, µcur is the current representative in X of the current estimate of

the Fréchet mean, and xcur
i is the current representative (with current optimal node alignment to

µcur) in X of the sample point [xi]. Note that the first step, aligning data points to the current

representative of the current mean estimate, cannot increase the value of (9) as an improved

alignment would indeed lower the value of (9). Similarly, the second step, which is the re-

estimation of the Fréchet mean given the new alignments, also cannot increase the value of (9)

as, again, an improved estimate would lower its value. Moreover, if the value of (9) stays fixed

two iterations in a row, the algorithm will terminate. Thus, the iterative algorithm will never see

the same set of sample-wise alignments twice. As there are only finitely many such sets, the

algorithm is forced to terminate in finite time.

Next, we move to convergence to a local minimum. Let [µ] ∈ X/T be the estimated mean,

let µ ∈ X be a representative of it, and let x1, . . . ,xk ∈ X be optimally aligned representatives

of the sampled graphs (as in the final step of the AAC algorithm). We will show below that
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with probability 1, there exists some ε > 0 such that for any µ ′ ∈ BX(µ,ε), the representatives

x1, . . . ,xk are also optimally aligned with µ ′. In this case, since µ is a local minimizer of (9)

within B(µ,ε), and dX/T ([µ
′], [xi]) = dX(µ

′,xi) for all µ ′ ∈ BX(µ,ε), the estimated mean graph

[µ] is a local minimizer of (4).

In order to prove the existence of such an ε > 0, we rely on the following lemma:

Lemma 8. Given representatives x1, . . . ,xk of [x1], . . . , [xk] with mean µ in X, the following holds

with probability 1:

For all i = 1, . . . ,k and for all t ∈ T \Txi ,

d(µ,xi) 6= d(µ, txi),

where Txi is the stabilizer Txi = {t ∈ T |txi = xi}.

If the lemma holds, then we may define

δ = min{d(µ, txi)−d(µ,xi) | i = 1, . . . ,k, t ∈ T \Txi}> 0.

We now set ε = δ

2 and consider µ ′ ∈ BX(µ,ε). We wish to show that for all i = 1, . . . ,k and all

t ∈ T \ Txi , we have d(µ ′,xi) < d(µ ′, txi), namely that the optimal representative of [xi] is left

unchanged for all i.

Note that by the definition of δ , we have

d(µ,xi)≤ d(µ, txi)−δ ,

and by the triangle inequality, we have

d(µ ′,xi)≤ d(µ ′,µ)︸ ︷︷ ︸
<ε= δ

2

+d(µ,xi)
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and

d(µ, txi)≤ d(µ,µ ′)︸ ︷︷ ︸
<ε= δ

2

+d(µ ′, txi).

We compute

d(µ ′,xi)≤ d(µ ′,µ)︸ ︷︷ ︸
< δ

2

+d(µ,xi)<
δ

2
+d(µ,xi)≤

δ

2
+d(µ, txi)−δ <−δ

2
+

δ

2
+d(µ ′, txi)= d(µ ′, txi),

which completes the proof of Theorem 6 under the assumption that Lemma 8 holds.

Proof of Lemma 8. In order to prove the lemma, we will show that the set

XT =

([x1], . . . , [xk]) ∈ (X/T )k

∣∣∣∣∣ d(µ,xi) = d(µ, txi) for some representatives x1, . . . ,xk,

i = 1, . . . ,k and t ∈ T \Txi


has measure ηk(XT ) = 0, where ηk is the product measure induced by η on X/T × . . .×X/T︸ ︷︷ ︸

k

.

For each element t ∈ T , denote by X t = {x ∈ X |tx = x} the fixed point set of t. Note that

ηk(XT ) = mk(π
−1(XT )), and that

π
−1(XT ) =

k⋃
i=1

⋃
t∈T

Xi,t ,

where

Xi,t = {(x1, . . . ,xk) ∈ X× . . .×X \X t︸ ︷︷ ︸
ith

× . . .×X |dX(µ,xi) = dX µ, txi)} ⊂ X×·· ·×X︸ ︷︷ ︸
k

.

The preimage f−1(0) of the function

f : X×·· ·×X︸ ︷︷ ︸
k

→ R, (x1, . . . ,xk) 7→ d2
X(µ,xi)−d2

X(µ, txi)
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satisfies

f−1(0)∩X× . . .×X \X t︸ ︷︷ ︸
ith

× . . .×X = Xi,t .

We show that f is a submersion on X × . . .×X \X t︸ ︷︷ ︸
ith

× . . .×X by showing that it has nonzero

gradient. We can rewrite

f (x1, . . . ,xk)= (
1
k

k

∑
j=1

x j−xi)
T (

1
k

k

∑
j=1

x j−xi)−(
1
k

k

∑
j=1

x j−txi)
T (

1
k

k

∑
j=1

x j−txi)=
2
k

k

∑
j=1

(
xT

j txi− xT
j xi
)
.

For j 6= i we obtain

∇x j f (x1, . . .xk) =
2
k
(txi− xi)

which is nonzero for (x1, . . . ,xk) ∈ X× . . .×X \X t︸ ︷︷ ︸
ith

× . . .×X . It follows that f is a submersion on

X× . . .×X \X t︸ ︷︷ ︸
ith

× . . .×X . As a result, the set

f−1(0)∩X× . . .×X \X t︸ ︷︷ ︸
ith

× . . .×X = Xi,t

has codimension 1 and, in particular,

mk(Xi,t) = mk( f−1(0)∩X× . . .×X \X t︸ ︷︷ ︸
ith

× . . .×X) = 0.

But then,

ηk(Xk) = mk(π
−1(XT )) = mk

(
k⋃

i=1

⋃
t∈T

Xi,t

)
≤

k

∑
i=1

∑
t∈T

mk(Xi,t) = 0,

which proves the lemma.
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Proof of Theorem 7

Proof of Theorem 7. The proof of convergence of AAC for GPCA follows the exact same strat-

egy as for the Fréchet mean in Theorem 6, noting:

• The algorithm converges in finite time because every step either decreases or leaves un-

changed the value of the sum of squared residuals for representatives in X :

k

∑
i=1

d2(xi,γ)

with respect to the first GPC δ ∈ Γ(X/T ) and its representative γ ∈ Γ(X).

• For the first GPC, the algorithm converges to a local minimum of (6) following the same ar-

gument as above. Here, the ε-neighborhood of the obtained estimate δ has to be considered

on the Grassmannian manifold of 1-dimensional subspaces of X .
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