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Abstract

We present a topology optimization based procedure aiming at the optimal placement
(and design) of the supports in problems characterized by a time dependent construction
process. More precisely, we focus on the solution of a time-dependent minimal compliance
problem based on the classical Solid Isotropic Material with Penalization (SIMP) method.
In particular, a continuous optimization problem with the state equation defined as the
time-integral of a linear elasticity problem on a space-time domain is firstly introduced and
the mean compliance over a time interval objective functional is then selected as objective
function. The optimality conditions are derived and a fixed-point algorithm is introduced
for the iterative computation of the optimal solution. Numerical examples showing the
differences between a standard SIMP method, which only optimizes the shape at the final
time, and the proposed time-dependent approach are presented and discussed.

1 Introduction

Topology optimization is a powerful design tool that is extensively adopted in many branches
of engineering to find optimal layouts that maximize target performances, see [2, 11, 5].
The conventional approach searches for the distribution of a prescribed amount of isotropic
material such that the so–called compliance (twice the elastic strain energy computed at
equilibrium) is minimized. A suitable interpolation can be adopted to penalize the mechanical
properties of the elastic body depending on the local values of the unknown density field.
In most cases, 0–1 solutions can be straightforwardly found implementing the well–known
SIMP (Solid Isotropic Material with Penalization) [1]. Different methods are available in the
literature to solve the so–called volume-constrained minimum compliance problem: among
the others, one can use Optimality Criteria, see, e.g., [9] or methods of sequential convex
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programming such as CONLIN [6] and MMA [12]. All the above iterative approaches generally
resort to the adoption of the finite element method to solve the equilibrium equation and
compute the objective function and its sensitivity with respect to the design variables.

In general, most of the approaches for topology optimization deals with loads that are
time–independent, with the main goal of optimizing a structure for an assigned set of con-
straints/supports. The work in [4] firstly introduced a design formulation attacking simulta-
neously the structural topology and the constraint locations, introducing new variables and
enforcing a prescribed amount of allowable support. Afterwards, the work by [15] introduced
a two–step procedure for the integrated layout design of supports and structures. Supports
are intended as components that are partially embedded into the design domain and sub-
jected to the applied boundary conditions. First, the optimal position of movable support
components is found along a prescribed boundary of the design domain, then the layout op-
timization of the support components and the structure is performed. Both approaches cope
with time–independent loads.

Several formulations exist to cope with the dynamic compliance of structures, see e.g. [8, 7]
and [13] but, to the authors’ knowledge, no numerical method has been investigated yet to
cope with the optimal design of supports in problems involving time dependent construction
stages. For the sake of exposition, let us consider a specimen with a prescribed shape that is
manufactured through a sequence of construction steps requiring the adoption of a suitable
set of supports. The self–weight of the specimen is the prevalent design load that, in turn,
depends itself on the evolution in time of the construction process. Hence, the bearing elements
should be optimized to provide the stiffest support throughout the stages. This means that
the compliance–based objective function should account not only for the final configuration,
but also for all the intermediate shapes that are handled during the construction.

The need for the solution of the outlined design problem arises in many fields of appli-
cations, see, e.g., the construction of a bridge or the distribution of supports to perform 3D
printing of complex shapes. Additive manufacturing, also known as 3D printing, nowadays is
extensively used to create prototypes from digital models. Successive layers of material are
laid down by a three–dimensional printer requiring support structures to sustain overhanging
surfaces. Up to now, not any shape or geometry can be printed in real time, because a suitable
set of supports must be engineered before synthesizing the three–dimensional object. Support
structures remarkably affect not only the processing times but also the material consumption
so their rationale design is crucial to improve the overall process of 3D printing. It must be
finally remarked that additive manufacturing itself is a fertile area of research for topology
optimization. In fact, 3D printing fills the gap between topology optimization and application,
since any computed optimal design can be printed with minimal limitations on its complexity,
see [14].

Goal of this work is to propose a new approach for the optimal placement (and design)
of the supports in problems involving construction stages, thus including the inherent time–
dependent nature of the process.

To this aim, a continuous optimization problem adopting a state equation defined as the
time–integral of a linear elasticity problem on a space–time domain is formulated, while the
objective function is given by the time-averaged compliance. The optimality conditions for
this optimization problem are derived and a fixed-point algorithm is introduced for the it-
erative computation of the optimal solution. The equivalence between the integral-in-time
formulation, used for the theoretical derivation of the optimality conditions, and a pointwise-
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in-time formulation of the state equation, exploited in the numerical approximation, is shown.
The discretization of the optimization problem is finally obtained by considering n interme-
diate time instants ti (and the corresponding spatial domains Ω(ti)) and solving a sequence
of linear elasticity problems on Ω(ti) with the finite element method. Numerical simulations
obtained with this evolutionary topology optimization procedure have been firstly announced
in [3], while in the present work we supply the theoretical framework in which the evolution-
ary continuous problem is defined as well as a detailed derivation of the resulting numerical
scheme.

The outline of the paper is as follows. Sections 2 and 3 define the continuous and discrete
topology optimization problems with the aim of designing the supports of an object exhibiting
the minimum mean compliance over a time interval. Section 4 provides numerical examples
showing the differences between a conventional SIMP method, which only optimizes the shape
at the final time, and the proposed time–dependent approach. Section 5 provides final remarks
on the presented methodology.

2 The continuous evolutionary topology optimization problem

In this section we describe the topology optimization problem which will be instrumental to
optimally place the supports of the target object to be printed.

2.1 Preliminaries

Let us consider an hold-all cylindrical space domain Ω = E × (0, h) ⊂ Rd−1 × R+, with
d = 2, 3 and E a subset of Rd−1. Each point in Ω reads as x = (x∗, y), where x∗ denotes
the planar component while y is the vertical one. Once the printing process is complete,
i.e. for t = T , the target object O will occupy a certain subset Ω1 ⊂ Ω, while for t < T
it will occupy intermediate configurations Ω1(t) such that Ω1(t) ⊂ Ω. In view of the above
discussion, the value h represents the height of the object at the final time T . For future
use, we also introduce the subdomain Ω0 ⊂ Ω identifying the region where a priori the user
does not want to introduce any support. Next, we introduce a time-dependent domain Ω(t)
that changes during the additive manufacturing process and represents the region where the
3D printer can add material (either belonging to the object or to the supports). We assume
that Ω(t) grows in the direction given by the coordinate y with constant velocity v0, i.e.
Ω(t) = {(x∗, y) ∈ E × (0, h) : 0 < y < v0t}. Accordingly, we have Ω1(t) = Ω(t) ∩ Ω1 (see
Figure 1). Clearly, at the final time T = h/v0, we have Ω(T ) = Ω and Ω1(T ) = Ω1.

In order to set up the topology optimization problem, we need to introduce a proper space-
time domain and a suitable functional space. First, we define a proper space-time domain QT
which is only a subset of Ω× [0, T ]. This is motivated by the fact that at each time t we do
not want to consider the whole Ω, but just a subset Ω(t). In view of this, we set (see Figure
2)

QT = ∪t∈[0,T ]

{
(x, t) : x ∈ Ω(t)

}
. (2.1)

Then we introduce the functional space Ṽ whose members are collections of displacement
fields, one for each time in [0, T ]. Let ΓD ⊂ ∂Ω be the portion of the boundary where the
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Figure 1: a) Reference space domain. b) Space domain relative to time t. Ω(t) is located
below the dotted line, corresponding to the height v0t).

object is anchored. In the following we assume for simplicity that ΓD is a subset of the lower
boundary E × {0}. The functional space Ṽ reads as follows

Ṽ =

{
u : QT → Rd s.t. u(x, s) ∈ H1

0,ΓD
(Ω(s)) for a.e. s ∈ [0, T ],∫ T

0

∥∥u(x, s)
∥∥2

H1
0,ΓD

(Ω(s))
ds < +∞

}
.

(2.2)

In the sequel we will denote by u(s) := u(x, s) the displacement field at time s. Finally,
we define V as the quotient set of Ṽ with respect to almost everywhere equivalence. The
following result shows that V is an Hilbert space when endowed with a proper scalar product.

Proposition 1. V is an Hilbert space endowed with the scalar product

(
u,v

)
V =

∫ T

0

∫
Ω(t)
∇u(t) : ∇v(t) dxdt. (2.3)

Proof. Since it can be easily proved that (·, ·)V is a scalar product, in the sequel we just show
the completeness. Let {uj}j≥1 ∈ V be a Cauchy sequence such that (possibly passing to
subsequences and with an abuse of notation) there holds

‖uj+1 − uj‖V ≤
1

2j
∀j ≥ 1. (2.4)

In the following we prove that {uj} is convergent in V. For t ∈ [0, T ] let us introduce the
sequence {gn(t)}n≥1 with

gn(t) =

n∑
j=1

‖uj+1(t)− uj(t)‖H1
0 (Ω(t)).

It is immediate to verify that the sequence gn is monotone increasing and ‖gn‖L2(0,T ) ≤ C
for every n, where the constant C is independent of t. Employing the Monotone Convergence
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Theorem we get that the sequence gn(t) pointwise converges to a finite limit g(t) a.e. in the
time interval. Moreover, it holds

‖g‖L2(0,T ) ≤ ‖gn − g‖L2(0,T ) + ‖gn‖L2(0,T ) < +∞. (2.5)

On the other hand, by using the triangle inequality, for m ≥ n ≥ 2 we have a.e. in the time
interval.

‖um(t)− un(t)‖H1
0 (Ω(t)) ≤ ‖um(t)− um−1(t)‖H1

0 (Ω(t)) + . . .+ ‖un+1(t)− un(t)‖H1
0 (Ω(t))

≤ g(t)− gn−1(t).

Hence, {uj(t)}j≥1 is a Cauchy sequence in H1
0 (Ω(t)). As this latter space is complete, there

exists u(t) such that
‖uj(t)− u(t)‖H1

0 (Ω(t)) → 0 for j → +∞, (2.6)

a.e in time. Moreover, employing the triangle inequality together with (2.5) and the fact that
u1 ∈ V we have for j ≥ 1

‖uj(t)‖H1
0 (Ω(t)) ≤

j−1∑
k=1

‖uk+1(t)− uk(t)‖H1
0 (Ω(t)) + ‖u1(t)‖H1

0 (Ω(t))

≤ g(t) + ‖u1(t)‖H1
0 (Ω(t)) ∈ L2(0, T ). (2.7)

Finally, combining (2.6)-(2.7) with the Dominated Convergence Theorem we conclude that

‖uj − u‖V → 0 for j → +∞,

i.e. uj → u in V.

2.2 Design space

In this section we introduce the design variable which describes the material distribution. As it
is common in topology optimization, it is introduced as a non-dimensional density distribution
ρ. More specifically, in our framework we define the set of admissible densities as follows

Uad =
{
ρ(x) ∈ L2(Ω) : ρ ≥ ρmin a.e. in Ω, (2.8a)

ρ ≤ 1 a.e. in Ω, (2.8b)

ρ = ρmin a.e. in Ω0, (2.8c)

ρ = 1 a.e. in Ω1, (2.8d)∫
Ω
ρ dx ≤ C

}
(2.8e)

Proposition 2. Uad is a closed and convex set.

Proof. Let {ρn}n be a sequence in Uad, such that ρn → ρ in L2(Ω). It exists a subsequence
{ρnk}k such that ρnk → ρ a.e., and so (2.8a)-(2.8d) are satisfied by the limit. Since L2(Ω) ↪→
L1(Ω), then ρn → ρ in L1(Ω) and so

∫
Ω ρ dx ≤ C. Thus Uad is closed. Convexity is trivial to

be proved.
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Figure 2: Space-time domain QT .

2.3 State Equation

We require that at each time t, the state variable u(t) has to satisfy a linear elasticity problem
on Ω(t). We define a bilinear form associated to time t as follows:

aρ(u,v; t) =

∫
Ω(t)

E(ρ(x))∇su(t) : ∇sv(t) dx (2.9)

where E(ρ(x)) = Eρ(x)E0, being E0 the elasticity tensor of the considered material, and
Eρ(x) is the dimensionless Young modulus, given by the SIMP interpolation, i.e.

Eρ(x) = Emin + ρ(x)p(1− Emin). (2.10)

We introduce the following pointwise-in-time problem: find u ∈ V such that

aρ(u,v; t) = l(v; t) ∀v ∈ H1
0,ΓD

(Ω) a.e. t ∈ [0, T ], (2.11)

where l(v; t) is the continuous functional on H1
ΓD

(Ω(t)) representing the external load at time
t associated with the weight of the target object. In view of this, the functional l(v; t) is
defined as:

l(v; t) =

∫
Ω1(t)

ρ0g · v dx, (2.12)

being ρ0 the density of the material used by the printer and g the gravity force.
We now show that the pointwise-in-time problem (2.11) is equivalent to the following

“averaged” problem: find u ∈ V such that

āρ(u,v) = l̄(v) ∀v ∈ V, (2.13)
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where we define:

āρ(u,v) =
1

T

∫ T

0
aρ(u,v; t) dt (2.14)

l̄(v) =
1

T

∫ T

0
l(v; t) dt. (2.15)

Proposition 3. Problems (2.11) and (2.13) are equivalent.

Proof. First, let us show that (2.13) implies (2.11). We suppose by contradiction that (2.13)
holds, but (2.11) does not. There exists a function v∗ ∈ H1

0,ΓD
(Ω) and a positive measure set

D ⊂ [0, T ], such that
aρ(u,v

∗; t) > l(v∗; t) ∀t ∈ D. (2.16)

Now by taking in (2.13)
v = v∗1D(t) (2.17)

we get the contradiction, i.e.

1

T

∫ T

0
aρ(u,v; t) dt− 1

T

∫ T

0
l(v; t) dt > 0. (2.18)

Now, let us show that (2.11) implies (2.13). Since H1
0,ΓD

(Ω) is separable, it admits a

countable basis {wj}j∈N. Let us consider v ∈ V; for almost any t ∈ [0, T ], v(t) ∈ H1
0,ΓD

(Ω(t))

and it can be extended to a function (that we call v(t) as well) in H1
0,ΓD

(Ω). We know that

the Fourier series of v(t) converges in H1
0,ΓD

(Ω):

vN (t) =
N∑
j=0

cj(t)wj

H1
0,ΓD

(Ω)
−−−−−−→ v(t) a.e. t ∈ [0, T ]. (2.19)

We apply (2.11) to each wj , multiply by cj(t) and sum over j, and we get:

aρ(u,vN ; t) = l(vN ; t) a.e. t ∈ [0, T ] (2.20)

where the negligible null measure set does not depend on N , since the countable union of null
measure sets has null measure. By letting N → +∞, we get:

aρ(u,v; t) = l(v; t) a.e. t ∈ [0, T ] (2.21)

and by integrating between 0 and T , and we get (2.13).

Remark 1. The integral-in-time formulation (2.13) is more suitable for the development of
the theory, while the pointwise-in-time formulation (2.11) will be useful for the numerical
approximation, since it allows us to compute the displacement field at each time independently
of the other times.

Well-posedness of problem (2.13) can be proved by Lax-Milgram lemma, since it is easy
to prove that bilinear form āρ(·, ·) is continuous and coercive on V × V for each ρ ∈ Uad, and
l̄(·) is continuous on V. The bound of the solution is independent of the choice of ρ ∈ Uad.
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2.4 Continuous topology optimization problem

Since we are interested in the whole time dependent printing process, we take as objective
functional the mean compliance (where the average is performed both in space and in time):

J =
1

T

∫ T

0
l(u; t) dt = l̄(u), (2.22)

where u solves the state equation.
Thus, the continuous time dependent topology optimization problem reads as follows

min
ρ∈Uad

l̄(u)

s.t. āρ(u,v) = l̄(v) ∀v ∈ V
(2.23)

or, more explicitly:

min
ρ∈Uad

1

T

∫ T

0
l(u; t) dt

s.t.
1

T

∫ T

0

∫
Ω(t)

Eρ(x)E0∇su(t) : ∇sv(t) dxdt =
1

T

∫ T

0
l(v; t) dt ∀v ∈ V.

(2.24)

We remark that by means of the equivalence between (2.11) and(2.13), the optimization
problem (2.24) reduces to a form close to the classical SIMP based minimum compliance
problem. Thus, most of the well known solution methods for the classical SIMP problem,
such as OC, MMA and CONLIN, can be applied the the evolutionary problem at hand. In
particular, in this paper we will consider the OC (Optimality Conditions) method.

2.5 The optimality conditions

In this section we derive optimality conditions for the optimization problem (2.23). The
associated Lagrangian function is:

L = l̄(u) −
(
āρ(u, ū)− l̄(ū)

)
+ Λ

(∫
Ω
ρ(x) dx− C

)
+

∫
Ω
λ+(x)

(
ρ(x)− 1

)
dx +

∫
Ω
λ−(x)

(
ρmin − ρ(x)

)
dx (2.25)

where ū ∈ V is the Lagrangian multiplier for the state equation (2.13), Λ is the multiplier
for the volume constraint (2.8e), λ+(x) for the constraint (2.8b) and λ−(x) for (2.8a). The
constraints (2.8c) are (2.8d) are not incorporated in the Lagrangian, but will be considered
later by projecting the solution on the space Uad.

By differentiating the Lagrangian function with respect to the state variable u we get the
adjoint equation: find ū such that

∂L
∂u

(ψ) = l̄(ψ)− āρ(ψ, ū) = 0 ∀ψ ∈ V.

Thanks to the symmetry properties of elasticity tensor Eijkl = Eklij , the adjoint variable ū
coincides with state variable u.
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Setting x = (x∗, y) and differentiating the Lagrangian function with respect to ρ we get:

∂L
∂ρ

(ξ) = − 1

T

∫ T

0

∫
Ω(t)

∂Eρ(x)

∂ρ
ξE0∇su(t) : ∇su(t) dxdt

+ Λ

∫
Ω
ξ dx +

∫
Ω
λ+(x)ξ dx−

∫
Ω
λ−(x)ξ dx

= − 1

T

∫ T

0

∫
Ω

∂Eρ(x)

∂ρ
ξE0∇su(t) : ∇su(t)1{y<v0t}(x) dxdt

+

∫
Ω

[
Λ + λ+(x)− λ−(x)

]
ξ dx

=

∫
Ω

[
− 1

T

∫ T

y/v0

∂Eρ(x)

∂ρ
E0∇su(t) : ∇su(t) dt+ Λ + λ+(x)− λ−(x)

]
ξ dx = 0

(2.26)

for all ξ ∈ L2(Ω). Hence, the set of optimality conditions reads as follows:

1
T

∫ T
y/v0

∂Eρ(x)
∂ρ E0∇su(t) : ∇su(t) dt = Λ + λ+(x)− λ−(x) a.e. x ∈ Ω

λ+(x) ≥ 0, ρ(x) ≤ 1, λ+(x)
(
ρ(x)− 1

)
= 0 a.e. x ∈ Ω

λ−(x) ≥ 0, ρ(x) ≥ ρmin, λ−(x)
(
ρmin − ρ(x)

)
= 0 a.e. x ∈ Ω

Λ ≥ 0,
∫

Ω ρ(x) dx ≤ C, Λ

(∫
Ω ρ(x) dx− C

)
= 0.

(2.27)

Thus, at a stationary point the following holds:
Ψ(x) = Λ if ρmin < ρ(x) < 1

Ψ(x) ≤ Λ if ρ(x) = ρmin

Ψ(x) ≥ Λ if ρ(x) = 1

(2.28)

where we have defined:

Ψ(x) =
1

T

∫ T

y/v0

∂Eρ(x)

∂ρ
E0∇su(t) : ∇su(t) dt

=
1

T

∫ T

y/v0

pρ(x)p−1(1− Emin)E0∇su(t) : ∇su(t) dt.

(2.29)

2.6 A Continuous fixed point algorithm

Building upon the necessary optimality conditions (2.28) we consider the following classical
fixed-point algorithm, where at each iteration the updated density is projected on the space
Uad by setting ρ = 1 on Ω1 and ρ = ρmin on Ω0:

ρK+1 =



ρmin if x ∈ Ω0

1 if x ∈ Ω1

max {(1− ζ)ρK , ρmin} if ρKB
η
K ≤ max {(1− ζ)ρK , ρmin},x /∈ (Ω1 ∪ Ω0)

min {(1 + ζ)ρK , 1} if ρKB
η
K ≥ min {(1 + ζ)ρK , 1},x /∈ (Ω1 ∪ Ω0)

ρKB
η
K else

(2.30)
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where we have defined:

BK(x) =
ΨK(x)

ΛK
=

=
1

ΛKT

∫ T

y/v0

pρ(x)p−1(1− Emin)E0∇su(t) : ∇su(t) dt .

(2.31)

The value of the multiplier ΛK should be chosen in order to satisfy the volume constraint.
Since the updated density ρK+1 is a continuous and non increasing function of ΛK , the value
of the multiplier can be computed by resorting, e.g., to a bisection algorithm. The variable ζ
is a move limit, and η is a tuning parameter. Both values can be adjust to improve efficiency
of the algorithm. Typical values are respectively 0.1 and 0.5. In the actual implementation
some filtering procedure must be taken into account to get a well-posed problem.

3 Discretization of the evolutionary topology optimization prob-
lem

In this section, we introduce the discretization of the problem (2.11) and we derive the discrete
counterpart of the optimization problem (2.23) that will be solved using the OC (Optimality
Conditions) method.

3.1 Finite-element space discretization

At the generic time instant t, we consider a computational grid Th(t) partitioning the domain
Ω(t) and we denote with Xh(t) the continuous linear finite element space defined on Th(t).
We introduce the finite element space of functions compatible with the boundary conditions:

Vh(t) =

{
uh ∈ Xh(t) s.t. uh = 0 on ΓD

}
. (3.1)

Let {ϕj}
Nh(t)
j=1 be a basis of Vh(t), where Nh(t) is the dimension of the space. The space

discretization of state equation (2.11) at time t reads:

find uh(t) ∈ Vh(t) s.t.

aρ(uh,vh; t) = l(vh; t) ∀vh ∈ Vh(t).
(3.2)

By writing uh(t) as linear combination of elements of the basis

uh(x, t) =

Nh(t)∑
j=1

uj(t)ϕj , (3.3)

we get the Galerkin approximation associated to time t:

AtUt = Ft (3.4)

where
[At]ij = aρ(ϕj ,ϕi; t), [Ut]j = uj(t), [Ft]i = l(ϕi; t). (3.5)
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3.2 Discretization in time

We consider a uniform subdivision of the time domain I and we solve the linear system (3.4)
at the N time instants tn = nT/N, n = 1, . . . , N . The collection of vectors {Ut0 , . . .UtN }
is the full discretization of the state variable u over the time interval I. For the sake of
simplicity, we consider a structured grid with a vertical discretization such that the grid Th
on the full space domain Ω can be split into the N horizontal layers E × [v0tn−1, v0tn] for
n = 1, . . . N . Under this hypothesis, given Th and a basis {ϕj}j∈V of the finite element space
Vh defined on Th, we can recover Vh(t) as the space generated by the subset of {ϕj}j∈V of
functions whose support has non-empty intersection with Ω(tn).

When multiple layers (N > 1) are used in the computation of the optimal time-averaged
compliance, the resulting approach will be referred to as multi-layer approach. Otherwise,
for N = 1 we recover the standard minimal compliance optimization that we will refer to as
single-layer approach.

3.3 Full discretization

Let Ke be a generic element of the mesh Th, with index e ∈ B. We denote with B0 and B1 the
sets of indexes of elements belonging to Ω0 and Ω1, respectively. The subset of mesh elements
contained in the domain Ω(tn) is denoted as Bn ⊂ B. Moreover, let ne indicate the value
of the smallest time step such that the element Ke belongs to Ω(tn) and let Ve be the set
of indexes of degrees of freedom associated with the element e. Thus the following relations
hold: ⋃

e∈B
Ke = Ω,⋃

e∈Bn

Ke = Ω(tn),

e ∈ Bn ⇐⇒ n ≥ ne.

(3.6)

We remark that the finite element approximation ρh of the density is piecewise constant
over the triangulation Th, while the state variable u is discretized by continuous in space (with
basis {ϕj}j∈V ) piecewise constant in time finite elements, i.e.

ρh(x) =
∑
e∈B

ρe1Ke(x),

uh(x, t) =

N∑
n=1

∑
j∈V

unjϕj(x)1(tn−1,tn](t).

(3.7)

We define

Ke
ij =

∫
Ke

E0∇sϕi : ∇sϕj dx,

fei =

∫
Ke

ρ0g ·ϕi dx,

(3.8)

and the following SIMP interpolation holds:

E(ρe) = Emin + ρpe(1− Emin). (3.9)
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Finally, the constraint (2.8e) reads as follows:∑
e∈B
|Ke|ρe ≤ C. (3.10)

In view of the above discussion, the discrete counterpart of the minimization problem
(2.23) reads as follows:

min
{ρe}

1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

fei u
n
i

s.t.
1

N

N∑
n=1

∑
e∈Bn

E(ρe)
∑
i,j∈Ve

Ke
iju

n
i v

n
j

=
1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

fei v
n
i ∀{vni }i∈Vn=1,...,N ⊂ R

∑
e∈B
|Ke|ρe ≤ C

ρmin ≤ ρe ≤ 1 ∀e ∈ B
ρe = ρmin ∀e ∈ B0

ρe = 1 ∀e ∈ B1.

(3.11)

The Lagrangian function for the discretized problem is defined as follows:

L =
1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

fei u
n
i −

1

N

N∑
n=1

∑
e∈Bn

(
E(ρe)

∑
i,j∈Ve

Ke
iju

n
i u

n
j − 1B1(e)

∑
i∈Ve

fei u
n
i

)

+ Λ

(∑
e∈B
|Ke|ρe − C

)
+
∑
e∈B

λ+
e

(
ρe − 1

)
+
∑
e∈B

λ−e
(
ρmin − ρe

)
.

(3.12)

where Λ is the Lagrangian multiplier for the constraint (2.8e), λ+
e for the constraint (2.8b)

and λ−e for (2.8a). The constraints (2.8c) are (2.8d) are not plugged in the Lagrangian, but
will be considered later by projecting the solution on the space Uad in (3.16).

If we differentiate the Lagrangian with respect to the state variable we get the discrete
version of adjoint equation, while deriving with respect to the design variables ρe we get:

∂L
∂ρe

(ξ) =
∑
e∈B

[
− 1

N

N∑
n=ne

(
pρp−1

e (1− Emin)
∑
i,j∈Ve

Ke
iju

n
i u

n
j

)
+ Λ|Ke|+ λ+

e − λ−e

]
ξ. (3.13)

By defining

Ψe =
1

N |Ke|

N∑
n=ne

(
pρp−1

e (1− Emin)
∑
i,j∈Ve

Ke
iju

n
i u

n
j

)
(3.14)
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we get the optimality conditions for the discretized problem which reads as follows
Ψe = Λ if ρmin < ρe < 1

Ψe ≤ Λ if ρe = ρmin

Ψe ≥ Λ if ρe = 1.

(3.15)

3.4 A fixed point algorithm for the discrete problem

Based on (3.15), it is possible to derive an Optimality Condition (OC) method that computes
a sequence {ρKe } approximating ρe by resorting to the following fixed-point algorithm: for
K ≥ 1

ρK+1
e =



ρmin if e ∈ B0

1 if e ∈ B1

max {(1− ζ)ρKe , ρmin} if ρKe (QKe )η ≤ max {(1− ζ)ρKe , ρmin}, e /∈ (B1 ∪B0)

min {(1 + ζ)ρKe , 1} if ρKe (QKe )η ≥ min {(1 + ζ)ρKe , 1}, e /∈ (B1 ∪B0)

ρKe (QKe )η elsewhere

(3.16)
where QKe = ΨK

e /Λ
K .

As in the continuous case, the value of ΛK can be computed by employing a bisection
algorithm. Moreover, some filtering procedure must be taken into account to get a well-posed
problem, see e.g. [10].

3.5 Description of the algorithm

In this section, we briefly summarize the different steps required to apply the proposed
methodology, from the pre-processing needed to setup the simulation to the actual opti-
mization loop.

1. Pre-processing

• Choose a cylindric reference space domain Ω and identify sub-domains Ω0 and Ω1.

• Subdivide time interval [0, T ] into N time steps.

• Build a spatial mesh Th on Ω, fine enough to describe the geometrical details of
the sub-domains Ω0 and Ω1 and conforming with the horizontal layers at y =
v0t1, . . . , v0tN .

• Build the finite element space Vh with its basis functions.

• Choose an initial design for the variables ρe (for instance a uniform distribution).

2. Optimization

• For each time step tn, compute the displacement field with the current value of the
design variable (see (3.4)).

• Compute for each mesh element the value of Ψe according to (3.14).

• Compute the current value of ΛK by bisection.

• Update the design variables ρe as in (3.16).

• Repeal until a stopping criterion is satisfied.
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4 Numerical results

A set of numerical test cases has been carried out to assess the properties of the proposed topol-
ogy optimization scheme for the design of support structures. The main objective is to show
that the proposed multi-layer approach, thanks to the fact that it minimizes the time-average
mean compliance during the printing process may lead to different optimal configurations
compared to those obtained from a standard single-layer minimal compliance problem for the
final shape object. We will also discuss under which conditions on the shape of the object
this difference may be more pronounced.

4.1 Test case 1

We first consider a self-supporting structure defined by a tapered beam which is joint to the
ground on the left (thinner) extreme and supported by a vertical pillar on the right (thicker)
extreme. The structure is depicted in black in Fig 3. The rectangular computational domain
expressed in meters is Ω = (0, 1)× (0, 0.5) and the prescribed active region Ω\Ω0∪Ω1, where
topology optimization procedure can add the supports, is the area below the structure (in
light grey in Fig. 3).

Figure 3: Computational domain for test case 1

The same material, thermoplastic polyurethane with density ρ0 = 1.1 · 103 Kg/m3 and
Young’s modulus E = 3 · 107 Pa, has been used for both the object and the supports. How-
ever, different materials could be easily considered in the proposed model. The topology
optimization has been performed on three mesh resolutions (50× 25, 100× 50, 200× 100) us-
ing a sensitivity filter with a fixed (that is, independent of the mesh size) filter size of 0.2. We
compare the results obtained using a standard single-layer approach for the final shape object
(Fig. 4, left), with the results of the proposed multi-layer approach using 25 time intervals
(Fig. 4, right).

The solution of the topology optimization problem is given by the distribution of material
in the active region. The main features of the solution, in particular the number of generated
supports, are captured even with a coarse grid and, in this respect, the solution is robust as
the space resolution is increased. However, position and size of the supports differ for the two
approaches. In particular, as shown in Fig. 4, in order to reduce the compliance in the first
phases of the printing process, the multi-layer approach generates a set of supports which are
shifted on the right and thickened. Indeed, the multi-layer approach in this way should be
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Figure 4: Results of test case 1: single-layer minimization (left), multi-layer minimization
(right). Increasing mesh resolution from top to bottom.

able to mitigate the possible transient effect related to the fact that the tapered beam is not
self-supporting at the beginning of the process.

The different solutions of the single and multi-layer approaches are obviously due to the
different functionals which are minimized. It is interesting to analyze the optimal solutions
solution obtained by the two approaches by evaluating the history of the compliance that each
solution would display during the printing process. In particular, for both optimal solutions,
we have solved a sequence of M = 50 linear elasticity problems, for the material distribution
restricted in the domain E × [0, v0tm] with tm = mT/M for m = 1, . . . ,M . The compliance
history for both cases is presented in Fig. 5. If, on one hand, the compliance at the final time
is lower for the single-layer approach (since in this case the compliance at t = T is exactly the
functional that is minimized), on the other hand, the shape obtained using the multi-layer
approach guarantees a significant reduction of the compliance over a large portion of the time
interval (since, in this case, it is the time integral that is minimized).
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Figure 5: Time-evolution of the compliance for the single-layer solution (solid line) and the
multi-layer solution (dashed-line) for test case 1.

4.2 Test case 2

A second test case is proposed, with the aim of highlighting under which conditions the
proposed multi-layer approach performs better than the standard one. We consider the two
structures, one with a squared profile and the other with a rounded profile, displayed in black
in Fig. 6. The structures are fixed on the ground and the domain expressed in meters is Ω =
(0, 1)×(0, 0.25), with the prescribed active region (where the support can be added) identified
by the grey region below the structure. The material properties and filtering procedure are
the same as for test case 1. For both structures we compare the solution obtained with a
standard (single-layer) minimum compliance optimization with the one obtained with the
proposed multi-layer approach.

Figure 6: Computational domains for test case 2: squared structure (left) and rounded struc-
ture (right)

When the squared structure is considered (see Fig. 7), the numerical results obtained with
the single and multi-layer approaches are virtually indistinguishable. This is not so surprising
since, due to the particular geometry of the squared structure, only the last layers during
the evolution can contribute significantly to the mean compliance, since the lateral vertical
structure are self-supporting and do not require any additional support. The result is that,
in this case, the functionals to be minimized by the two approaches are very similar and so
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are the resulting optimal shapes.

Figure 7: Results of test case 2 (squared structure): single-layer minimization (left), multi-
layer minimization (right). Increasing mesh resolution from top to bottom.

Remarkably, when the rounded structure is considered, the two approaches produce very
different optimal solutions as displayed in Fig. 8. In this case, the single-layer approach leads
to an optimal solution characterized by a double tree-like structure, while for the multi-layer
approach a pillar structure is obtained. When the evolutionary nature of the problem is
accounted for, the optimization is driven by the fact that at the early stages of the printing
process, two overhanging structures need to be supported. This results in an optimal shape
obtained with the multi-stage approach characterized by six vertical supporting structures
distributed non-uniformly along the domain width.

Figure 8: Results of test case 2 (rounded structure): single-layer minimization (left), multi-
layer minimization (right). Increasing mesh resolution from top to bottom.

17



5 Conclusion

We have presented a topology optimization scheme for the optimal placement and design of
support structures in problems involving construction stages (such as, e.g., additive manufac-
turing technologies). The proposed algorithm has been devised for facing the time-dependent
nature of this kind of processes, in order to compute the optimal material distribution which
minimizes the time-average compliance over a prescribed time interval.

By exploiting the equivalence between the integral-in-time formulation and the pointwise-
in-time formulation, it was possible, on one side, to prove the well-posedness of the continuous
problem and, on the other side, to derive the optimality conditions for the time-dependent elas-
ticity problem following the standard SIMP approach. This allowed us to define a fixed-point
iteration algorithm for the numerical solution of the resulting multi-layer discrete problem,
based on the Optimality Condition method.

This proposed numerical scheme, combined with standard filtering techniques, has been
used to perform a set of numerical tests. The optimal shapes obtained with the proposed
multi-layer approach has been compared with the results of a standard minimal compliance
topology optimization algorithm. The results show that the proposed method is able to
account for specific evolutionary situations, typical of additive manufacturing processes, such
as, for instance, the overhangs appearing in the early stages when printing a self-sustained
structure.
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