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Abstract
When using Newton iterations to solve nonlinear parametrized PDEs in the context of Reduced Basis (RB)
methods, the assembling of the RB arrays in the online stage depends in principle on the high-fidelity
approximation. This task is even more challenging when dealing with fully nonlinear problems, for which
the global Jacobian matrix has to be entirely reassembled at each Newton step. In this paper the Discrete
Empirical Interpolation Method (DEIM) and its matrix version MDEIM are exploited to perform system
approximation at a purely algebraic level, in order to evaluate both the residual vector and the Jacobian
matrix very efficiently. We compare different ways to combine solution-space reduction and system ap-
proximation, and we derive a posteriori error estimates on the solution accounting for the contribution of
DEIM/MDEIM errors. The capability of the proposed approach to generate accurate and efficient reduced-
order models is demonstrated on the solution of two nonlinear elasticity problems.

Keywords: Reduced Basis Method; Proper Orthogonal Decomposition; Empirical Interpolation Method;
Nonlinear Elasticity; Computational Mechanics.

1 Introduction
The rapid numerical solution of partial differential equations (PDEs) is of paramount importance
in PDE-constrained optimization, multi-scenario and/or real-time analysis, uncertainty quantifica-
tion. In all these contexts, reduced order modeling (ROM) techniques have proven to be reliable
alternatives to traditional high-fidelity techniques – such as the finite element method – providing
accurate solutions at a greatly reduced cost. This is usually achieved by seeking the solution in
a subspace of much smaller dimension N than the original finite dimensional space employed by
a full-order model (FOM), typically featuring a dimension Nh of several thousands, or even mil-
lions, of degrees of freedom depending on the application at hand. Very often, this is required for
parameter-dependent PDEs, namely, by considering varying inputs to the PDE problem, such as
initial and/or boundary conditions, physical coefficients or sources. The ability of a ROM to provide
the approximate solution to a PDE relies on (i) global, low dimensional spaces built over a set of
snapshots, that is, FOM solutions computed for a set of parameter inputs, and (ii) (Petrov)-Galerkin
projection to construct the low-dimensional N × N problem providing the ROM solution. In the
case of parametrized PDEs, the reduced basis (RB) method has been extensively used to perform
such a solution-space reduction, relying on greedy algorithms or proper orthogonal decomposition
to generate the reduced space.
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Being able to assemble and solve the reduced problem almost inexpensively is possible if the
ROM arrays are independent of the FOM dimension Nh; in this case, we exploit an Offline-Online
decomposition, since for any input parameter the ROM problem can be assembled in the online
phase by combining (possibly few) N -dimensional arrays stored during the offline phase – this
is nowadays a standard procedure when dealing with linear PDEs showing an affine parametric
dependence. In the case of more complex, nonaffine parametric dependence, constructing the ROM
for any new parameter would require to first assemble the FOM arrays, then to project them onto
the reduced space, thus entailing a computational complexity still of order Nh. To avoid this, an
affine approximation of the linear operators, which we can refer to as system approximation, has to
be computed during the offline phase. These two operations are usually performed sequentially in
the case of steady problems, or simultaneously in the case of time-dependent problems.

The empirical interpolation method (EIM) has been originally proposed in [4, 24] to approximate
nonaffinely parametrized functions, as well as tensor components, appearing in full-order operators,
prior to reduction; see, e.g., [18, 26] for applications in the framework of RB methods. The discrete
variant of EIM, the so-called Discrete Empirical Interpolation Method (DEIM), was originally
developed in [11] to efficiently deal with nonlinear problems, but has also been applied to nonaffinely
parametrized linear operators [2]. Nevertheless, very often an expensive pre-processing is required in
order to obtain a version of parametrized operators which EIM or DEIM can be applied to. More
recently, a matrix version of DEIM (MDEIM) has been developed [10] to approximate the full-
order parametrized operators in a purely algebraic way, independently of the way the parametrized
operators are generated, thus avoiding to act on parametrized functions and directly employing
parameter-dependent matrices. This technique has been employed in [30] to address the efficient
reduction of nonaffinely parametrized steady and time-dependent PDEs, with applications to PDE-
constrained optimization and coupled problems.

In the case of parametrized nonlinear PDEs, performing system approximation is mandatory
in order to assemble and solve at each step of a Newton method the reduced-order problem inde-
pendently of the dimension Nh of the underlying FOM. First applications dealing with semilinear
PDEs, as well as nonlinear PDEs featuring low-order polynomial nonlinearities, have exploited EIM
and DEIM to deal with nonlinear terms, see e.g. [18]; more recent applications can be found, e.g.,
in [43, 41, 29]. A slightly different alternative, the so-called best point interpolation method, has
been addressed in [31]. Note that in the case of nonlinear affine PDEs that are at most quadrati-
cally nonlinear in the state variable – such as in the case of Navier-Stokes equations – an efficient
ROM can be obtained without relying necessarily on EIM/DEIM, even if this implies decomposing
nonlinear terms into the sum of O(N2) terms, see e.g. [25].

In the case of higher-order, or nonpolynomial, nonlinearities, system approximation usually
goes under the name of hyper-reduction and several techniques have been proposed to recover an
approximate affine structure of nonlinear terms: besides EIM and DEIM, missing point estimation
[3] and gappy POD [15] have also been developed, e.g. within the so-called Gauss-Newton with
approximated tensors (GNAT) method, see e.g. [8].

Extending a recent methodology proposed in [30] for the efficient system reduction of parametrized
linear PDEs, in this paper we show how to take advantage of both DEIM and matrix DEIM to
perform, at a purely algebraic level, hyper-reduction of three-dimensional, fully nonlinear prob-
lems arising in computational mechanics. Matrix DEIM (MDEIM) has been recently proposed in
[9, 42, 10] to directly approximate the full operator instead than its nonlinear terms, as done in
the case of DEIM [11]. Indeed, although a DEIM approximation of vector arrays is a standard
technique in the framework of nonlinear reduced-order modeling, MDEIM for the approximation
of Jacobian matrices has only been exploited in a few applications so far, see e.g. [40]. Our pro-
posed DEIM/MDEIM framework thus allows to approximate all the structures arising from the
discretization of nonlinear parametrized PDEs and can be combined with RB methods where re-
duced spaces are obtained thanks to either greedy or POD techniques. We provide a detailed
comparison of different strategies obtained by interplaying DEIM/MDEIM system approximation
and POD solution-space reduction and we propose a new snapshots selection method based on the
introduction of a semi hyper-reduced problem, able to provide a great reduction of the computa-
tional time.
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Moreover, we develop a computable, residual-based a posteriori error bound that accounts for the
DEIM/MDEIM approximation errors. Such a POD-DEIM-MDEIM framework can in principle be
applied to any parametrized nonlinear PDE. Here we consider, for the sake of numerical examples,
two problems arising in nonlinear mechanics: a shear test on a Saint-Venant-Kirchoff material, and
a coupled electro-mechanical problem simulating (a simplified version of) cardiac contraction. This
latter can be seen as a first proof of concept of our proposed strategy, whose application to more
complex geometries within a time-dependent, electro-mechanical framework will be the object of a
forthcoming publication.

We point out that, differently than fluid dynamics, fewer problems in structural mechanics have
been tackled by means of reduced order models, due to their intrinsic complexity when dealing with
involved nonlinear constitutive laws. We mention former contributions dealing with linear elastic-
ity problems (see, e.g. [21, 27, 1]) and nonlinear elasticity of two-dimensional structures, featuring
e.g. polynomial nonlinearities [44], or homogenization techniques [44]. As for three dimensional
problems, preliminary applications of model order reduction to structural mechanics can be found
in [23], where the focus is on time dependent problems, but no hyper-reduction techniques are
considered. More recent contributions to nonlinear three-dimensional structural problems can be
found e.g. in [7, 22]. In [36] a POD-DEIM method has been recently applied to nonlinear structural
problems, however dealing with an approximation of the Jacobian matrix which still depends on
the high-fidelity problem dimension. In this work we exploit a MDEIM approximation strategy to
approximate the Jacobian matrix too, which is able to significantly reduce the computational time,
still retaining the accuracy of the FOM solution.

The structure of the paper is as follows. In Section 2 we introduce the RB methodology applied
to parametrized nonlinear problems. In section 3 we recall the POD technique, used to construct
the reduced space. In section 4 we first introduce the classical DEIM approach suitable for the
approximation of the residual vectors; then we show how the MDEIM technique can be extended
to nonlinear parametrized problems. Details of our reduced framework are then illustrated and
different strategies to obtain accurate DEIM basis are proposed. In the final part of the section we
also show the algorithms related to the Offline and the Online stages of the reduced order model
presented. A new reliable a posteriori error bound is provided in section 5. In section 6 we present
two different applications to nonlinear mechanical problems, in order to assess the computational
performance of the proposed strategy. Conclusions are drawn in section 8.

2 RB methods for nonlinear parametrized PDEs
In this work we aim to develop a reliable and efficient ROM for stationary nonlinear parametrized
problems: find u(µ) ∈ V such that

R(u(µ);µ) = 0 in V ′, (2.1)

being V = V (Ω0) a suitable Hilbert space and V ′ its dual; Ω0 ⊂ Rn, n = 2, 3 is the (reference)
spatial domain. Here we denote by µ = (µ1, . . . , µd) ∈ D a parameter vector and by D ⊂ Rd the
parameter domain. To solve problem (2.1) we rely on the Newton method, yielding at each step a
problem under the form

J(û(µ);µ)[δu(µ)] = −R(û(µ);µ),

arising from the linearization of (2.1) around û (the solution at the previous iteration). Here,
J(û(µ);µ) = DR(û(µ);µ) denotes the Fréchet differential of R evaluated at û. Our FOM for
approximating the solution of (2.1) is based on the finite element method. We introduce a finite-
dimensional approximation space Vh ⊂ V ,

Vh = Xr
h ∪ V, Xr

h = {vh ∈ (C0(Ω0))3 : vh|K ∈ Pr ∀K ∈ Th};

here Xr
h denotes the space of finite elements (FE) of degree r ≥ 1, Th a suitable triangulation of

the domain Ω0, h the mesh size and Nh = dim(Vh) the dimension of the FOM space, respectively.
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We then approximate the weak form of (2.1) by the finite element method yielding a nonlinear
algebraic system. By applying the Newton method we obtain the following iterative procedure:
given u

(0)
h (µ) ∈ RNh , for k = 0, 1, . . ., find δuh ∈ RNh s.t.{

J(u
(k−1)
h (µ);µ)δuh(µ) = −R(u

(k−1)
h (µ);µ),

u
(k)
h (µ) = u

(k−1)
h (µ) + δuh(µ)

(2.2)

and iterate until ||R(uk
h(µ);µ)||L2(Ω) < ε, being ε > 0 a small, fixed tolerance. Here

[J(u(µ);µ)]ij = 〈J(u(µ);µ)[ϕj ],ϕi〉, [R(u(µ);µ)]i = R(u(µ);µ)(ϕi), i, j = 1, . . . , Nh

are the components of the Jacobian J(u(µ);µ) ∈ RNh×Nh and the residual R(u(µ);µ) ∈ RNh ,
respectively, where {ϕj , j = 1, . . . , Nh} denote the basis functions of the FOM space Vh. Herein,
we refer to (2.2) as to our FOM (or high-fidelity model).

Solving the high-dimensional problem (2.2)1 can be rather expensive: the computational burden
is represented by the assembling of the Jacobian matrix, which can demand almost the entire CPU
time required by each Newton step. To reduce the computational complexity, we set up a projection-
based ROM: for any µ ∈ P the high-fidelity solution is approximated as

uh(µ) ≈ VuN (µ), N � Nh, (2.3)

being uN (µ) ∈ RN and V ∈ RNh×N a matrix collecting a set of reduced basis (RB) functions, and,
given u

(0)
N (µ), find δuN ∈ RN by solving for any k ≥ 1{

WTJ(Vu
(k−1)
N (µ);µ)VδuN (µ) = −WTR(Vu

(k−1)
N (µ);µ),

u
(k)
N (µ) = u

(k−1)
N (µ) + δuN (µ),

(2.4)

and iterate until ||WTR(Vu
(k)
N (µ);µ)||2 < εRB , being εRB > 0 a small, fixed tolerance. Problem

(2.4)1 is obtained by requiring that the (Petrov-Galerkin) projection over WN of the FOM residual
computed on the ansatz (2.3) vanishes, being the test space WN an N -dimensional space generated
by the columns of a matrix W ∈ RNh×N ; in the case where W = V, trial VN and test WN

spaces coincide, and we rely instead on a Galerkin projection. See, e.g. [35] for further details;
from now on we consider the Galerkin case, although the extension of the whole framework to the
Petrov-Galerkin case is straightforward.

3 Solution-space reduction: POD technique
Our RB method relies on proper orthogonal decomposition (POD) for the construction of the
reduced space (that is, the matrix V), and on DEIM/MDEIM hyper-reduction techniques to effi-
ciently assemble the Jacobian matrix and the residual vector appearing in (2.4)1. In this section
we recall the main properties of POD, which will be extensively employed also for the sake of basis
construction when performing hyper-reduction.

Starting from a set of ns solutions (also called snapshots) ui = uh(µi), i = 1, . . . , ns to the FOM
problem (2.2), POD constructs a low-dimensional basis of Vh retaining as much as possible of the
snapshots content of information. Here µ1, . . . ,µns

are randomly sampled points of D; more ad-
hoc strategies, such as latin hypercube sampling, could be exploited especially for high-dimensional
parameter spaces. The POD basis is obtained performing the singular value decomposition (SVD)
of the snapshot matrix

U = [u1 u2 . . . uns
] ∈ RNh×ns ,

thus yielding the factorization
U = ΦΣWT

where Σ = diag(σ1, σ2, . . .), being σ1 ≥ σ2 ≥ . . . ≥ σns
> 0 the ns singular values of U. The

POD basis ΦN of dimension N ≤ ns is obtained by collecting the first N left singular vectors of U ,

4



corresponding to the first N (largest) singular values, that is, ΦN = [φ1, . . . ,φN ] ∈ RN×Nh , with
N � ns; we can set the basis dimension N as the minimum integer such that∑N

i=1 σ
2
i∑ns

i=1 σ
2
i

≥ 1− εPOD,

given a suitable, small tolerance εPOD. The reduced basis provided by POD is optimal, meaning
that for any set {z1, . . . , zN} of N orthonormal vectors in RNh , the POD basis ΦN solves the
minimization problem

min

{
ns∑
i=1

‖ui −ΠZN
ui‖22, zi ∈ RNh , zTi zj = δij ∀i, j = 1, . . . , Nh

}
.

where ΠZN
u denotes the orthogonal projection of u ∈ RNh onto ZN = span{z1, . . . , zN} with

respect to the Euclidean norm ‖ · ‖2. In other words, the POD basis minimizes the sum of the
squared distances between each snapshot and the corresponding projection onto the subspace.
We summarize the POD method in Algorithm 1; different norms can also be used instead of the
euclidean one, see e.g. [35] for further details.

Algorithm 1 POD algorithm

INPUT: Snapshots matrix U ∈ RNh×ns , tolerance εPOD

OUTPUT: ΦN

1: Perform the SVD of U : U = ΦΣWT

2: Set the basis dimension N as the minimum integer such that∑N
i=1 σ

2
i∑ns

i=1 σ
2
i

≥ 1− εPOD

3: Construct ΦN = [φ1, . . . ,φN ] selecting the first N columns of the matrix Φ.

4 System approximation: DEIM/MDEIM techniques
The reduced Newton problem (2.4) still depends on the high fidelity dimension Nh. Indeed, the
Jacobian matrix and the residual vector depend on the solution computed at the previous step, so
that at each Newton step we would need to reassemble them, then to project them onto the reduced
space, in order to obtain the corresponding ROM arrays. Hyper-reduction is crucial in order to
avoid this stage, and then recover the usual offline-online decomposition, essential for computational
efficiency. For that, we rely on two DEIM algorithms: the former (see Sect. 4.1) is the classical
one, and is employed on residual vectors, whereas the latter (MDEIM, see Sect. 4.2) is suitable to
directly treat the Jacobian matrix.

4.1 DEIM for residual approximation
For the problem at hand, DEIM [11] allows to efficiently express the residual vector as a linear
combination of (possibly few) µ-independent terms so that, at each Newton step, the µ-dependent
weights of this combination can be efficiently computed by solving an interpolation problem. In
this work, we approximate the reduced residual in (2.4) as

VTR(VuN (µ);µ) ≈
mR∑
i=1

θiR(µ)VTφi
R, (4.1)

where φi
R ∈ RNh , i = 1, . . . ,mR, is a set of basis functions that can be computed (and stored)

offline once for all. We point out that, in order to obtain (4.1), we have to apply DEIM to a set of
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high-fidelity residual vectors of the form R(VuN (µ);µ) ∈ RNh and then to project the approximate
residual onto the reduced space at a later time. In particular, we project the residual vector onto
a low-dimensional subspace spanned by a basis ΦR ∈ RNh×mR such that

R(VuN (µ);µ) ≈ Rm(VuN (µ);µ) = ΦRθR(µ),

where θR(µ) ∈ RmR is a coefficient vector to be determined.
The basis ΦR can be computed (once for all) by performing POD on a set of snapshots

{R(VuN (µi);µi), i = 1, . . . , ns}. Since we are dealing with a nonlinear problem, in order to
obtain the residual snapshots R(VuN (µi);µi), we need in principle to solve the reduced problem
(2.4) for different values of µ and, at each Newton iteration, to store the computed residual vectors.
This would be expensive, since problem (2.4) requires to reassemble the residual vector and the
Jacobian matrix at each Newton step and then to project them onto the reduced space in order to
obtain the corresponding reduced order quantities. This issue will be addressed in section 4.4.

Regarding the coefficient vector θR(µ), it can be evaluated for each new µ by imposing a set of
m interpolation constraints on a subset ℘ = [℘1, . . . , ℘m] of entries of R(VuN (µ);µ), selected by
the DEIM algorithm (see Algorithm 2). In particular, θR(µ) is the solution of

ΦR|℘θR(µ) = R(VuN (µ);µ)|℘

where R(VuN (µ);µ)|℘ ∈ Rm and ΦR|℘ ∈ Rn×m are the restrictions of R(VuN (µ);µ) and ΦR to
the subset of indices ℘. We remark that, since at each Newton step the residual vector depends on
the reduced solution computed at the previous iteration, the same holds for the coefficient vector
θR(µ). Consequently, we need to compute a new θR(µ) at each Newton iteration.

Concerning the DEIM approximation, it can be shown that (see [11])

||R(µ)−Rm(µ)||2 ≤ ||(ΦR|℘)−1||2E(R(µ)) (4.2)

where E(R(µ)) = ||(I −ΦRΦT
R)R(µ)||2; this latter quantity can then be approximated by the first

discarded singular value in the POD computation of ΦR, i.e.

E(R(µ)) ≈ σmR+1.

We observe that this approximation holds for any µ provided that a suitable sampling of the
parameter domain has been carried out to construct the basis, see [11] for further details.

Remark 1. Constructing a basis able to retain as much as possible of the content of information
related to the residuals vectors can be a challenging task. Indeed, residual vectors usually vary over
a large range of values as they approach to the tolerance of the Newton method at the last Newton
steps, while assuming large values at the first steps. Thus, a large number mR of DEIM terms can
be needed in order to accurately approximate the residuals in our reduced order model. Dealing
with normalized or rescaled residuals does not seem to cure this difficulty. Another option is to
express the residuals as the sum of different (non vanishing) components and then to perform DEIM
separately on each component; nevertheless for the case at hand, this option does not represent a
more efficient alternative regarding the number of terms mR.

4.2 MDEIM for Jacobian approximation
In order to efficiently assemble the Jacobian matrix, we consider a matrix version of DEIM (MDEIM),
recently proposed in [9], [30] to efficiently handle nonaffine parametrized problems. In this work we
exploit this technique to perform hyper-reduction of those matrices arising in nonlinear parametrized
problems. We approximate the reduced Jacobian matrix under the form

VTJ(VuN (µ);µ)V ≈
mJ∑
i=1

θiJ(µ)VTJiV, (4.3)
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Algorithm 2 DEIM algorithm (as originally proposed in [11])

INPUT: Φ = [φ1, . . . ,φm] ∈ Rn×m made by linearly independent columns
OUTPUT: ℘ = [℘1, . . . , ℘m] ∈ Rm

1: ℘1 = maxpos{φ1}
2: Φ = [φ1], P = [e℘1

]
3: for k = 2, . . . ,m do
4: Solve (PTΦ)c = (PTφk)
5: r = φk −Φc
6: ℘k = maxpos{r}
7: Φ← [Φ φk], P← [P e℘k

]
8: end for

where Ji are µ-independent matrices that can be computed once for all and θiJ(µ) is a coefficient
vector. In general, MDEIM allows to approximate a parameter dependent matrix as a linear
combination of µ-independent matrices, weighed by µ-dependent coefficients. We thus can express
our Jacobian matrix J(VuN (µ);µ) ∈ RNh×Nh as:

J(VuN (µ);µ) ≈ Jm(VuN (µ);µ) =

mJ∑
i=1

θiJ(µ)Ji, (4.4)

being {Ji ∈ RNh×Nh , i = 1, . . . ,mJ} a set of µ-independent matrices. This approximation is
obtained by defining

j(VuN (µ);µ) = vec(J(VuN (µ);µ) ∈ Rn2

as the vector obtained by stacking all the columns of J(VuN (µ);µ) and approximating j(VuN (µ);µ)
by its DEIM counterpart

j(VuN (µ);µ) ≈ ΦJθJ(µ), ΦJ = [φ1, . . . ,φn] ∈ Rn2×mJ .

Then, the matrices Ji can be computed transforming each column φi ∈ Rn2

of ΦJ into a matrix
Ji ∈ RNh×Nh by reverting the vec operation, as

Ji = vec−1(φi).

The computation of ΦJ and θJ(µ) is analogous to the one described for the residual vectors. Thus,
we need to collect snapshots of J(VuN (µi);µi), i = 1, . . . , ns, which are evaluated in the reduced
solution. As already detected in the previous section, this is not a trivial issue, since it would
require ns solutions of (2.4), in addition to the ns solutions of the high-fidelity problem, required
to compute the basis V. Different strategies to face this problem are discussed in section 4.4. The
error bound (4.2) can be easily extended to the Matrix DEIM technique (see e.g. [30]), in order to
estimate the error between J and Jm. In particular, we have that

||J(µ)− Jm(µ)||2 ≤ ||(ΦJ |℘)−1||2||(I −ΦJΦT
J )J(µ)||2, (4.5)

where the norm ||(I −ΦJΦT
J )J(µ)||2 can be approximated by

||(I −ΦJΦT
J )J(µ)||2 ≈ σmJ+1,

provided that an accurate sampling of the parameter space has been performed.

Remark 2. Note that all matrices are stored in a sparse format. As a result, the actual dimension
of the vectorized matrices is nz rather than n2, where nz denotes the number of nonzero entries of
the matrix. See e.g. [41] for further details.

Remark 3. For nonsingular matrices, the Bauer-Fike theorem guarantees that, as M increases,
the singular values of the approximated matrix become closer and closer to the singular values of
the original matrix; see e.g. [17]. This property ensures that the approximate matrix is nonsingular,
and thus invertible at each Newton step, provided that a sufficiently large number of basis functions
is chosen.
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4.3 Efficient assembling on a reduced mesh
The DEIM algorithm allows to select a small subset of the grid nodes yielding a reduced mesh where
vectors and matrices are then efficiently assembled. In the FE context the entries of the residual
vector R are associated to the degrees of freedom of the problem so that R℘ can be computed
by simply integrating the residual only on the quadrature points belonging to the mesh elements
which provide a non-zero contribution to the entries ℘; this set of elements is usually referred to as
reduced mesh. Then, to compute the coefficient vector θR(µ) we need only to evaluate R on the
reduced mesh and the same holds for the Jacobian matrix.

Hence, substituting (4.1) and (4.3) into (2.4), the hyper-reduced problem can be expressed as
follows: given u

(0)
N,m ∈ RN , at each Newton step k ≥ 1 we seek δu(k)

N,m ∈ RN , satisfying
mJ∑
i=1

θiJ(µ)VTJiV δuN,m(µ) = −
mr∑
i=1

θiR(µ)VTRi

u
(k)
N,m(µ) = u

(k−1)
N,m (µ) + δuN,m(µ).

(4.6)

and iterate until ||
∑mr

i=1 θ
i
R(µ)VTRi||2 < εRB . For each new value of µ, we have to compute

only the coefficient vectors solving two interpolation problems. Consequently, during the online
stage the reduced residual and the reduced Jacobian matrix can be assembled on the respective
reduced meshes, exploiting previously computed arrays, thus yielding a significant reduction of
computational time, above all for fully nonlinear problems.

Remark 4. We observe that, instead of approximating the Jacobian matrix with MDEIM, we
could directly compute the derivative of the DEIM approximation of the residual by assembling
the Jacobian matrix on the reduced mesh obtained for the residual vector (see e.g. [23]). However,
since the approximation of the residual vectors often requires a considerable number of DEIM terms
(see Remark 1), the associated reduced mesh often turns out be larger than the MDEIM reduced
mesh. Therefore, using the MDEIM strategy to approximate the Jacobian matrix allows to obtain
a greater reduction in terms of computational costs.

4.4 A combined POD/DEIM/MDEIM strategy
Interlacing the generation of the reduced basis functions and of the arrays required to assemble the
hyper-reduced problem is not as straightforward as in the case of a linear elliptic problem, where
the system approximation can take place before the solution-space reduction. In this section we
discuss three possible strategies to combine the POD solution-space reduction and the proposed
DEIM/MDEIM system approximation, showing how to rely on collected snapshots related to the
solutions, the residual vectors and the Jacobian matrices. Indeed, as we will show, the choice of a
suitable snapshots selection strategy has a dramatic impact both on the computational saving and
on the accuracy of the reduced solution.

We recall that, during the offline stage, we need to solve the high-fidelity problem (2.2) ns
times, for properly selected parameter values. For each combination of the parameters and for each
Newton iteration k, we store the displacement u

(k)
h (µi), i = 1, . . . , ns. These quantities form the

snapshots matrix U required to compute the POD basis V for the solutions.
In addition, we need to construct the POD basis ΦR and ΦJ for DEIM and Matrix DEIM

approximations of the residual and the Jacobian matrix, respectively. We observe that the hyper-
reduced problem (4.6) is the approximation of the reduced problem (2.4). Thus, the best way to
construct the DEIM and MDEIM basis is to solve problem (2.4) ns times to collect the snapshots of
the residual vectors and the Jacobian matrices, required to assemble the snapshots matrices UR and
UJ . We point out that, using this strategy, the POD solution-space reduction is first performed,
while the bases associated to the the DEIM and MDEIM approximation of R and J are computed
at a later time; for this reason we refer to this strategy, described in Algorithm 3, as two-stages
HROM (hyper-reduced order model). Note that in this method, similarly to what is done in the
so-called GNAT procedure [8], the snapshots from which we construct the basis functions for both
J and R are computed by relying on the ROM, rather than on the FOM.

8



The major drawback of this strategy is that problem (2.4) is computationally demanding, since
it requires to reassemble the residual vector and the Jacobian matrix at each Newton step and then
to project them onto the reduced space in order to obtain the corresponding ROM arrays. Thus,
we would like to avoid the computation of ns solutions of this problem.

A possible way to overcome this issue may be a simultaneous solution-space approximation/sys-
tem reduction strategy, which can be performed by storing the snapshots of the residual vectors and
the Jacobian matrices when computing the solution of the high-fidelity problem. This single-stage
strategy (Algorithm 4) has been widely used in the RB literature, see e.g. [11, 36]; however, in
some cases, this method can provide a worst approximation of the residual vectors. In particular,
a large number of DEIM terms is often required in order to correctly approximate the high-fidelity
problem.

In this work, we propose a new enhanced strategy to collect the snapshots, referred to as hybrid
HROM (Algorithm 5). This strategy is based on the introduction of a semi hyper-reduced problem
involving a MDEIM approximation of the Jacobian matrix and a residual vector which is instead
exactly computed: given u

(0)
N,m ∈ RN , at each Newton step we search δu(k)

N,m ∈ RN , k ≥ 1 satisfying
mJ∑
i=1

θJi (µ)VTJiV δuN,m(µ) = −VTR(Vu
(k−1)
N,m (µ))

u
(k)
N,m(µ) = u

(k−1)
N,m (µ) + δuN,m(µ)

(4.7)

and iterate until ||VTR(Vu
(k)
N (µ);µ)|| < εRB . Solving this problem turns out to be significantly

faster than solving problem (2.4), since J is assembled only onto the reduced mesh. Not only,
problem (4.7) requires almost the same effort of the full hyper-reduced problem (4.6), since the
assembling of the Jacobian matrix takes almost the full time of a Newton iteration. Generating the
residual snapshots according to this method allows to correctly approximate the residual vectors
using a small number of bases, still retaining low offline computational costs.

Algorithm 3 Two-stages HROM

1: Select ns combinations of parameters {µ1, . . . ,µns
}

2: for i = 1, . . . , ns do
3: Solve problem (2.2) for µi

4: At each Newton iteration k:

• U← [U uk
h,i(µi)]

5: end for
6: V = POD(U, ε)
7: for i = 1, . . . , ns do
8: Solve problem (2.4) for µi

9: At each Newton iteration k:

• UJ ← [UJ vec(J(Vuk−1
N (µi),µi))]

• UR ← [UR R(Vuk−1
N (µi),µi)]

10: end for
11: ΦR = POD(UR, εR), ΦJ = POD(UJ , εJ).

4.5 Offline-Online decomposition
We remark that, during the offline stage, we first need to construct the basis V, ΦR and ΦJ using
one of the methods proposed in the previous section. In a subsequent stage, we use the DEIM
algorithm (2) to select the vectors of interpolation indices ℘R and ℘J in order to identify the nodes
of the reduced meshes and, consequently, the reduced meshes elements, which are a priori different
for the DEIM and the MDEIM cases. Finally, we compute and store all the structures required
during the online phase, see Algorithm 6.
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Algorithm 4 Single-stage HROM

1: Select ns combinations of parameters {µ1, . . . ,µns
}

2: for i = 1, . . . , ns do
3: Solve problem (2.2) for µi

4: At each Newton iteration k:

• U← [U uk
h,i(µi)]

• UJ ← [UJ vec(J(uk−1
h,i (µi),µi))]

• UR ← [UR R(uk−1
h,i (µi),µi)]

5: end for
6: V = POD(U, ε), ΦR = POD(UR, εR), ΦJ = POD(UJ , εJ).

Algorithm 5 Hybrid HROM

1: Select ns combinations of parameters {µ1, . . . ,µns}
2: for i = 1, . . . , ns do
3: Solve problem (2.2) for µi

4: At each Newton iteration k:

• U← [U uk
h,i(µi)]

• UJ ← [UJ vec(J(uk−1
h,i (µi),µi))]

5: end for
6: V = POD(U, ε), ΦJ = POD(UJ , εJ)
7: for i = 1, . . . , ns do
8: Solve problem (4.7) for µi

9: At each Newton iteration k:

• UR ← [UR R(Vuk−1
N (µi),µi)]

10: end for
11: ΦR = POD(UR, εR).

The online stage can then be performed in a very inexpensive way since, at each Newton step,
it only requires the assembling of the ℘R and ℘J on a small subset of the grid elements and the
solution of low dimensional linear systems. In particular, for each online Newton iteration, we
need to solve two interpolation problems and a N × N linear system to compute the solution,
see Algorithm 7. The cost of the online phase strictly depends on the number of DEIM/MDEIM
basis functions considered, especially for the Jacobian matrix, whose assembling is by far the most
expensive operation.

We point out that, in order to correctly integrate the Jacobian matrix and the residual on the
reduced mesh, we need at each Newton step the solution entries corresponding to the subset ℘̃
which contains all the nodes belonging to the elements of the reduced mesh. We report in figure
1 the sketch of a reduced mesh in a simple two-dimensional case; the set ℘ of the DEIM nodes is
highlighted in black while the set ℘̃ contains both the black and the blue nodes.

Specifically, we deal with two different subsets ℘̃R and ℘̃J , having two different reduced meshes
for the approximation of the residual vector and the Jacobian matrix. We introduce u|℘̃R

and u|℘̃J

as the restriction of the solution to the subsets ℘̃R ∈ Rm̃R and ℘̃J ∈ Rm̃J , respectively, and the
restriction matrices

P̃R = [e|℘̃R1
, e|℘̃R2

, . . .], P̃J = [e|℘̃J1
, e|℘̃J2

, . . .].

In order to efficiently compute u|℘̃R
and u|℘̃J

at each online Newton iteration, we pre-assemble the
matrices

SR = P̃RV ∈ Rm̃R×N , SJ = P̃JV ∈ Rm̃J×N

which allow to transform uN,m in u|℘̃R
= SRuN,m and u|℘̃J

= SJuN,m. The entire computational

10



Figure 1: Sketch of a reduced mesh in a simple two-dimensional case.

procedure is summarized in Algorithms 6 and 7.

Algorithm 6 Offline stage
1: Compute basis V, ΦR, ΦJ using Algorithm 4 or 5
2: Assemble offline structures:

• Ji
N = VTJiV, i = 1, . . .mj , Ji = vec−1(Φi

J)

• Ri
N = VTΦi

R, i = 1, . . . ,mr

3: ℘R=DEIM(ΦR), ℘J=DEIM(ΦJ)
4: Construct the reduced meshes and compute SR = P̃RV ∈ Rm̃R×N and SJ = P̃JV ∈ Rm̃J×N

Algorithm 7 Online stage
INPUT: µ
OUTPUT: uN,m(µ)

1: while ||R(k)
N || > ε do

2: Assemble R(k)(µ)|℘, J(k)(µ)|℘ on the reduced meshes
3: Compute the coefficient vectors solving the linear systems

ΦR|℘θR(µ) = R(k)(µ)|℘, ΦJ |℘θJ(µ) = J(k)(µ)|℘

4: Compute R
(k)
N (µ) =

∑MR

i=1 θ
i
R(µ)Ri

N , J
(k)
N (µ) =

∑MJ

i=1 θ
i
J(µ)Ji

N

5: Solve J
(k)
N (µ)δu

(k)
N,m(µ) = −R

(k)
N (µ)

6: u
(k+1)
N,m (µ) = u

(k)
N,m(µ) + δu

(k)
N,m(µ)

7: u|℘̃R
(µ) = SRu

(k+1)
N,m (µ), u|℘̃J

(µ) = SJu
(k+1)
N,m (µ)

8: end while

5 A posteriori error estimation
The aim of this section is to recover an a posteriori error estimator for the norm of the error
eN,m(µ) = uh(µ) − uN,m(µ) between the high-fidelity solution and the reduced solution. The
proposed error estimate accounts for both the error related to the solution-space reduction and the
errors associated with the DEIM and MDEIM approximations of R and J.

Let us denote by Xh the matrix associated to a discrete norm in Vh. Moreover, we define the
stability factor

βN
m(µ) = ||X1/2

h Jm(VuN,m(µ);µ)−1X
1/2
h ||

−1
2 = σmin(X

−1/2
h Jm(VuN,m(µ);µ)X

−1/2
h )
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and the quantity

r(µ) =
2

βN
m(µ)

(||Rh(VuN,m(µ);µ)||X−1
h

+ ||Jh(VuN,m(µ);µ)− Jm(VuN,m(µ);µ)||Xh,X
−1
h

),

where we denote the (Xh,X
−1
h ) norm of a generic matrix A ∈ RNh×Nh by

||A||Xh,X
−1
h

= sup
v∈RNh

||Av||X−1
h

||v||Xh

= sup
v∈RNh

||X−1/2
h AX

−1/2
h v||2

||v||2
∀A ∈ RNh×Nh .

Finally, we denote by Br(v) the closed ball centered in v with radius r.

Theorem 5.1. Assume that uN,m(µ) is a solution of problem (4.6) and that Jh(VuN,m(µ);µ)
is locally Lipschitz continuous at VuN,m(µ), i.e., there exists KN

h (µ) > 0 such that for all v ∈
Br(µ)(VuN,m(µ))

||Jh(VuN,m(µ);µ)− Jh(v;µ)||Xh,X
−1
h
≤ KN

h (µ)||VuN,m(µ)− v||Xh
. (5.1)

Moreover, we introduce

τN,1(µ) =
6KN

h (µ)||Rh(VuN,m(µ);µ)||X−1
h

(βN
m(µ))2

and

τN,2(µ) =
12KN

h (µ)||Jh(VuN,m(µ);µ)− Jm(VuN,m(µ);µ)||2
Xh,X

−1
h

(βN
m(µ))2

.

If τN,1(µ) ≤ 1 and τN,2(µ) ≤ 1, there exists a unique solution uh(µ) ∈ Br(µ)(VuN,m(µ)). Further-
more, the following a posteriori error estimate holds:

||uh(µ)−VuN (µ)||Xh
≤ 2

βm(µ)

(
||Rm(VuN (µ);µ)||X−1

h

+ ||Rh(VuN (µ);µ)−Rm(VuN (µ);µ)||X−1
h

+ ||Jh(VuN (µ);µ)− Jm(VuN (µ);µ)||2
Xh,X

−1
h

)
.

(5.2)

Proof. For the sake of notation, hereon we omit the µ-dependence. In order to prove the existence
of a unique solution uh in the closed ball Br(VuN,m), let us define the map H : RNh → RNh

H(v) = v − Jm(VuN,m)−1Rh(v),

and show that H is a strict contraction in Br(VuN,m). First, we prove that H maps Br(VuN,m)
into itself; indeed, for any v ∈ Br(VuN,m) we can write

H(v)−VuN,m = v − Jm(VuN,m)−1Rh(v)−VuN,m

= Jm(VuN,m)−1[Jm(VuN,m)(v −VuN,m)−Rh(v) + Rh(VuN,m)−Rh(VuN,m)].

Using the mean value theorem, we obtain

Rh(v)−Rh(VuN,m) =

∫ 1

0

Jh(VuN,m + s(v −VuN,m))(v −VuN,m)ds,

so that

H(v)−VuN,m = Jm(VuN,m)−1
[
(Jm(VuN,m)− Jh(VuN,m))(v −VuN,m)

+

∫ 1

0

(Jh(VuN,m)− Jh(VuN,m + s(v −VuN,m))(v −VuN,m)ds−Rh(VuN,m)
]
.
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Then,

||H(v)−VuN,m||Xh
≤ 1

βN
m

(
||v −VuN,m||Xh

||Jh(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

+ ||v −VuN,m||Xh

∫ 1

0

||Jh(VuN,m)− Jh(VuN,m + s(v −VuN,m))||Xh,X
−1
h
ds

+ ||Rh(VuN,m)||X−1
h

)
.

Using the Young inequality with ε = 1/KN
h and the Lipschitz property (5.1), we obtain

||H(v)−VuN,m||Xh
≤ 1

βN
m

( 1

2KN
h

||Jh(VuN,m)− Jm(VuN,m)||2
Xh,X

−1
h

+
3KN

h

2
||v −VuN,m||2Xh

+ ||Rh(VuN,m)||X−1
h

)
.

Recalling that v ∈ Br(VuN,m) and requiring that τN,1 ≤ 1 and τN,2 ≤ 1, we can get the following
bound

||H(v)−VuN,m||Xh
≤ 1

βN
m

[ 1

2KN
h

||Jh(VuN,m)− Jm(VuN,m)||2
Xh,X

−1
h

+
3KN

h

2

( 4

(βN
m)2
||Jh(VuN,m)− Jm(VuN,m)||4

Xh,X
−1
h

+
4

(βN
m)2
||Rh(VuN,m)||X−1

h
||Jh(VuN,m)− Jm(VuN,m)||2

Xh,X
−1
h

+
4

(βN
m)2
||Rh(VuN,m)||2

X−1
h

)
+ ||Rh(VuN,m)||X−1

h

]
,

so that

||H(v)−VuN,m||Xh
≤ 1

βN
m

(
2||Jh(VuN,m)− Jm(VuN,m)||2

Xh,X
−1
h

+ 2||Rh(VuN,m)||X−1
h

)
= r.

(5.3)
Therefore, H(v) ∈ Br(VuN,m). We now show that H is a strict contraction. Let us consider
v1,v2 ∈ Br(VuN,m), then

H(v1)−H(v2) = v1 − Jm(VuN,m)−1Rh(v1)− v2 + Jm(VuN,m)−1Rh(v2)

= Jm(VuN,m)−1
[
(v1 − v2)(Jm(VuN,m)− Jh(VuN,m))

+

∫ 1

0

Jh(VuN,m)− Jh(v2 + s(v1 − v2))(v1 − v2)ds
]
.

Thus, we obtain

||H(v1)−H(v2)||Xh
≤ 1

βN
m

(
||v1 − v2||Xh

||Jh(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

+KN
h ||v1 − v2||2Xh

)
≤ 1

βN
m

(
||Jh(VuN,m)− Jm(VuN,m)||Xh,X

−1
h

+KN
h R

)
||v1 − v2||Xh

≤
( 1

βN
m

||Jh(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

+
2KN

h

(βN
m)2
||Jh(VuN,m)− Jm(VuN,m)||2

Xh,X
−1
h

+
2KN

h

(βN
m)2
||Rh(VuN,m)||X−1

h

)
||v1 − v2||Xh

.

Recalling that τN,1 ≤ 1 and τN,2 ≤ 1, and thus also √τN,2 ≤ 1, we can obtain the following bound

||H(v1)−H(v2)||Xh
≤
( 1√

12KN
h

+
1

6
+

1

3

)
||v1 − v2||Xh

≤
( 1√

12
+

1

2

)
||v1 − v2||Xh

< ||v1 − v2||Xh
.
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Thanks to the Banach fixed-point theorem (see e.g. [12]), there exists a unique fixed point uh ∈
Br(VuN,m) of H, i.e. H(uh) = uh, hence Rh(uh) = 0. In conclusion, using (5.3) we have

||uh −VuN ||Xh
≤ 2

βm(µ)

(
||Rh(VuN )||X−1

h
+ ||Jh(VuN )− Jm(VuN )||2

Xh,X
−1
h

)
≤ 2

βm(µ)

(
||Rm(VuN )||X−1

h
+ ||Rh(VuN )−Rm(VuN )||X−1

h

+||Jh(VuN )− Jm(VuN )||2
Xh,X

−1
h

)
.

We observe that the provided error bound appearing on the left hand side of (5.2) still depends
on the high-fidelity residual and Jacobian matrix; the computation of these quantities may entail
high computational costs, especially if the error bound has to be evaluated for many values of the
parameters. A possible way to overcome this drawback is to exploit the DEIM error bounds (4.2)
and (4.5) in order to estimate the hyper-reduction error components. Recalling that

||v||X−1
h
≤ ||v||2

(λmin(Xh))1/2
, ||J||Xh,X

−1
h
≤ ||J||2

(λmin(Xh))1/2
,

for any v ∈ RNh , J ∈ RNh×Nh , we obtain the following "approximate" error estimate:

||uh(µ)−VuN (µ)||Xh
≤ 2

βm(µ)

(
||Rm(VuN (µ);µ)||X−1

h

+ ||Rh(VuN (µ);µ)−Rm(VuN (µ);µ)||X−1
h

+ ||Jh(VuN (µ);µ)− Jm(VuN (µ);µ))||2
Xh,X

−1
h

)
≈ 2

βm(µ)

(
||Rm(VuN (µ);µ)||X−1

h
+

σMR+1

(λmin(Xh))1/2
||(ΦR|℘)−1||2

+
σ2
MJ+1

λmin(Xh)
||(ΦJ |℘)−1||22

)
.

(5.4)

We remark that all the quantities appearing in (5.4) are easily computable; in particular, for
each new µ ∈ D, we need to evaluate only βm(µ) and Rm(VuN (µ)), which require exclusively the
approximations of the residual vector and of the Jacobian matrix based on DEIM and MDEIM
respectively. Nevertheless, we remark that the "approximated" error estimator in (5.4) may yield a
coarse overestimate of the real error thus leading to a less effective error bound, while the estimator
provided by (5.2) turns out to be sharper.

6 Numerical results
In order to show the effectiveness of the proposed framework, we present two different applications
related to nonlinear mechanical problems: a structural test on a simple geometry and a more com-
plex application to cardiac electromechanics. Numerical simulations have been entirely performed
within the parallel finite element library LifeV (see www.lifev.org).

Before addressing these two examples, let us briefly recall a general framework to formulate
our mechanical problems. We consider a reference configuration Ω0 and an actual configuration
Ω. A deformation is a map ϕ : Ω0 → Ω from the reference to the actual configuration, such that
x = ϕ(X) for any X ∈ Ω0, x ∈ Ω. The deformation gradient tensor F : Ω0 → Ω is defined as

F =
∂ϕ

∂X
.

Then, let us introduce the displacement vector field defined by the map

u : Ω0 → Ω, u(X) = ϕ(X)−X;
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the deformation gradient tensor can be written in terms of the displacement as

F = I +∇u.

We also denote by J = det(F) the determinant of F and by C : Ω0 → Ω, C = FTF the left
Cauchy-Green strain tensor. Denoting with W the strain energy function, we introduce the Piola
tensor P, related to W through the relation

P =
∂W
∂F

. (6.1)

In order to compute the deformation u of a body occupying the original deformation Ω0, the
problem we have to solve is given by the balance of the linear momentum (in material coordinates),
which reads as follows:

div(P(u(µ);µ)) = f(µ) in Ω0, (6.2)

with suitable boundary conditions, which will be detailed for each problem in the following sections.
This equation can be written under the form (2.1), where R(u(µ);µ) = div(P(u(µ);µ))−f(µ); the
high-fidelity solution of this equation can thus be computed relying on the Newton method (2.2).

6.1 Shear test for a cubic domain
In this first test case we assess the performance of the proposed method on a typical structural
mechanics problem; in particular, we perform a shear test on a cubic domain Ω0 = [0, 1]3. The high
fidelity approximation is built on a conforming mesh with 3072 elements and 729 vertices, resulting
in an high-fidelity space Vh of dimension Nh = 2187.

Figure 2: Test case 1: domain and computational grid.

We consider a Saint Venant-Kirchhoff material, which is characterized by the following strain
energy function

W(E) =
λ

2
[tr(E)]2 + µtr(E2),

where λ and µ are the Lamé constants and E = 1
2 (C − I) is the Lagrangian Green strain tensor.

We recall that the Lamé constants depend on the Young modulus E and the Poisson coefficient ν
through the following relation

λ =
νE

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
.

We point out that the choice of the Saint Venant-Kirchhoff material leads to the following Piola
tensor, which is characterized by a polynomial nonlinearity:

P = λtr(E)F + 2µFE,
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and the nonlinear mechanical problem we are going to solve reads as follows:

div(P(u(µ);µ)) = 0 in Ω0

P(u(µ);µ)n = gẑ on ΓN

P(u(µ);µ)n = 0 on Γfree

u(µ) = 0 on ΓD.

The Dirichlet and the Neumann boundaries are reported in Figure 2 together with the computational
mesh. For the case at hand, we consider the following parameters:

• Young modulus E ∈ [6 · 104, 7 · 104],

• Poisson coefficient ν ∈ [0.3, 0.4],

• External load g ∈ [1000, 2000].

In order to show the approximation properties of the proposed framework and to analyze its
performances we aim to compare the three options to obtain an HROM proposed in section 4.4.
In Figure 3 and 4 we report the normalized eigenvalues of the correlation matrix UTU, related to
the displacements, the Jacobian matrices and the residual vectors for the three options proposed.
We observe that in all cases there is a rapid decay of the eigenvalues magnitude, which guarantees
a satisfactory approximation of the displacements, the Jacobian matrices and the residual vectors
with a small number of basis functions.
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Figure 3: Normalized eigenvalues of the correlation matrix related to the displacement (left) and
the Jacobian matrix using the two-stages HROM (center) and the single-stage and hybrid HROM
(right).
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Figure 4: Normalized eigenvalues (blue) of the correlation matrix related to the residual vectors
using the two-stages HROM (left), the hybrid HROM (center) and the single-stage HROM (right).

We show in Figures 5 and 6 the average ||·||2 errors of the DEIM approximation for the Jacobian
matrix and the residual vectors using the three hyper-reduction options proposed. The error has
been computed over a test sample of 50 parameters, chosen during the online stage, different from
the ones used to compute the snapshots. These figures highlight that the two-stages and the hybrid
methods are able to capture the residual vectors and the Jacobian matrices relying on a significantly
smaller number of basis functions than the number of bases required by the single-stage HROM.

16



2 3 4 5 6 7 8 9 10

mJ

10
-5

10
-4

10
-3

10
-2

10
-1

5 10 15 20 25 30 35 40 45 50

mJ

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Figure 5: Average || · ||2 error related to the Matrix DEIM approximation of the Jacobian matrix
using the two-stages HROM (left) and the single-stage and hybrid HROM (right).
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Figure 6: Average || · ||2 error related to the DEIM approximation of the residual vectors using the
two-stages HROM (left), the hybrid HROM (center) and the single-stage HROM (right).

This difference can be explained recalling that the single-stage method tries to approximate residual
vectors arising from the ROM with a basis obtained from snapshots related to the FOM.

In Figure 7 we compare the error ||uh − VuN,m||Xh
as a function of the number of selected

basis functions and the related a posteriori error bound for the three hyper-reduction options. The
matrix Xh is associated with the norm induced in the discrete space by the continous H1-norm.
The error has been computed over our testing set of 50 randomly chosen parameters. The Figure
shows that we need less than 20 basis functions in order to correctly reproduce the high fidelity
solution.

The two-stages and the hybrid methods lead to similar results, requiring about 50 DEIM terms to
approximate the residuals and 10 or 20 basis, respectively, to correctly approximate the Jacobian
matrix. The hybrid method requires instead a huge number of basis functions (about 500) to
reconstruct the residual vectors. The number of DEIM and MDEIM terms to be used in the online
phase is chosen in order to guarantee the convergence of the reduced Newton problem for all the
parameter combinations considered.

Details related to the computational performances of the three methods are shown in Table 1.
We point out that the online CPU time required by the hybrid method is more than two times bigger
than the times required by the other two strategies, whereas the offline CPU times are comparable
in these two cases. Hence, we can conclude that the snapshots selection described in the single-stage
HROM is not enough accurate in order to construct an efficient ROM. On the contrary, both the
two-stages and the hybrid method allow to obtain a RB solution which correctly approximate the
high-fidelity solution, significantly reducing the computational time. Regarding the online stage,
these two strategies lead to comparable results, in terms of N and CPU times. However, the hybrid
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Figure 7: Average Xh error (red), a posteriori error bound (blue) and τ1 + τ2 (green) computed
over a testing set of 50 parameters using the two-stages HROM (up), the hybrid HROM (left) and
the single-stage HROM (right).

Two-stages HROM Hybrid HROM Single-stage HROM
Residual DEIM terms 50 50 500
Jacobian DEIM terms 10 20 50
RB time Jacobian assembling 0.07s 0.1s 0.22s
Offline time 3h30 2h15 2h
Online RB time 0.83s 0.9s 2s

Table 1: Comparison of the three different hyper-reduction options proposed.

method is the only one able to provide a reduction strategy characterized by accurate and fast
online stage and efficient offline phase. In fact, the offline time required by the hybrid method is
about 60% of the offline time associated to the two-stages method. This analysis underlines the
crucial role of the snapshots selection method in the construction of an efficient reduced framework.
The results obtained in this test case suggest that the hybrid method has to be preferred, since
it guarantees good approximation properties during the online stage, while retaining reasonable
offline computational costs.

In Figure 8 we report the high-fidelity solutions, the reduced solutions and their differences,
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computed for three different values of the parameters; we can observe that the reduced model is
able to preserve the accuracy of the high-fidelity model, showing a maximum difference between
the two solutions of about 10−6. Here, the reduced solutions have been computed using the hybrid
method, with N = 10, mR = 50 and mJ=20.

Figure 8: High-fidelity solutions (top), reduced order solutions (middle) and their differences (bot-
tom) for three different parameter values (µ1 = [6.2 ·104, 0.32, 1009.4], µ2 = [6.6 ·104, 0.37, 1685.43],
µ3 = [6.9 · 104, 0.39, 1920.39]).

Concerning the a posteriori error estimation, the proposed error bound has effectivity of about
O(102) and it can be considered a reliable estimation, provided that we are treating a fully nonlinear
problem. For the case at hand, it is possible to evaluate the Lipschitz constant KN

h (µ) explicitly,
obtaining

KN
h (µ) = (2λ+ 3µ)(2 + 2C + r(µ)),

where C = supµ∈D ||VuN,m(µ)||Xh
; see the appendix for a detailed derivation. As λ, µ and r are

19



parameters dependent, we denote by KN
h an upper bound of the Lipschitz constant:

KN
h (µ) ≤ KN

h = (2λmax + 3µmax)(2 + 2C + rmax) ∀µ ∈ D.

For the case we are considering, we obtain KN
h ≤ 106, where C has been numerically estimated as

the average value of ||VuN,m(µ)||Xh
, computed over a test sample of 100 parameters. In Tables 2, 3

and 4 we report further details and the values of τN,1 and τN,2 (computed using the three different
hyper-reduction approaches) varying the number of reduced basis functions, in order to show that
they are actually smaller than 1.

We observe that the hypoteses of Theorem 4.1 hold when N ≥ 10 for the two-stages method and
when N ≥ 7 for the hybrid and the single-stage method. This is due to the fact that we can obtain
inaccurate approximations of the high fidelity solution when considering too few RB functions. In
conclusion we achieve a computational speed-up of about one order of magnitude in terms of CPU
time, as we can see in Table 5, where we report some numerical details and data related to the
computational performance of our technique for the case at hand.

||Rh(VuN,m)||X−1
h

||Jh(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

τN,1 τN,2

N=4 14.624 32.017 1.515 253.5
N=7 0.791 2.304 0.088 1.313
N=10 0.098 0.565 0.012 0.079
N=15 0.006 0.405 7 · 10−4 0.040
N=20 0.004 0.191 1 · 10−4 0.009

Table 2: Values of τN,1 and τN,2 varying the number of reduced basis using the two-stages method.

||Rh(VuN,m)||X−1
h

||Jh(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

τN,1 τN,2

N=4 12.606 13.457 1.602 44.78
N=7 0.811 1.841 0.100 0.838
N=10 0.098 0.037 0.012 3·10−4

N=15 0.050 0.005 0.006 5·10−6

N=20 0.008 0.005 0.001 5·10−6

Table 3: Values of τN,1 and τN,2 varying the number of reduced basis using the hybrid method.

||Rh(VuN,m)||X−1
h

||Jh(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

τN,1 τN,2

N=4 19.316 9.345 1.715 21.599
N=7 0.819 1.713 0.118 0.726
N=10 0.087 0.076 0.011 0.0014
N=15 0.022 0.046 0.003 5·10−4

N=20 0.022 0.046 0.003 5·10−4

Table 4: Values of τN,1 and τN,2 varying the number of reduced basis using the single-stage method.

Number of FE dofs 2187 Number of RB dofs 10
POD tolerance 10−8 DEIM tolerance 10−12

Newton tolerance 10−10 MDEIM tolerance 10−10

FE time ∼ 10s FE time Jacobian assembling ∼ 1s
RB time (hybrid HROM) ∼ 0.9s RB time Jacobian assembling (hybrid HROM) ∼ 0.1s

Table 5: Numerical details (test case 1)
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6.2 Cardiac electromechanics in an idealized left ventricle
In this section we apply the proposed framework to the solution of a cardiac electromechanical
problem, whose equations are characterized by the presence of highly nonlinear terms, and we
present a numerical test on an idealized left ventricle geometry. Cardiac electromechanics is a
coupled problem consisting of an electrical subproblem, which describes the propagation of the
electrical signal triggering the heart contraction, and a mechanical subproblem, that describes the
deformations of the cardiac muscle. In this work, we consider the full electromechanical model and
we apply our reduction technique to the mechanical subproblem. This choice is motivated by the
fact that the electrical model is considerably fast compared with the mechanical one. Our ultimate
goal is to apply the proposed technique to the efficient characterization of the electromechanical
behavior of the heart in a range of scenarios described in terms of relevant physiological parameters.
Here, we perform a preliminary analysis relying on a static mechanical model, in order to assess
the performances of the proposed method when considering a coupled problem, characterized by a
complex constitutive law. The main limitation of this analysis is that a static mechanical model
only allows to investigate the first portion of the heart beat, characterized by small deformations
of the myocardium. The extension of the proposed framework to the solution of a time dependent
problem covering a complete heart beat is the object of a forthcoming work. We point out that
our method allows to consider parameters which are related with both the mechanical subproblem
(e.g. physical properties of the myocardium as the Young modulus) and the electrophysiology
(e.g. conductivity velocities), which thus affect the mechanics through the solution of the electrical
problem.

6.2.1 Problem setting

In this section we briefly describe the cardiac electromechanical model we adopt, focusing on the me-
chanical subproblem, see e.g. [34] for a general introduction to the subject. The common approach
to describe cardiac electrophysiology is to couple a ionic model, which describes the evolution of ion
concentrations and ionic currents in the cell, together with a tissue model describing the spreading
of the signal in the heart tissue. In this work we adopt the minimal model introduced by Bueno and
Orovio in [6], coupled with the monodomain model (a complete derivation can be found in e.g. [13]),
which are able to capture the relevant phenomena required to describe the normal electromechanical
coupling.

To describe the cardiac muscle displacements, we assume an orthotropic mechanical constitutive
law, that accounts for two preferred directions: muscular fibers and sheets directions, which are
essential to determine the ability of the ventricle to twist and swell correctly during the filling
phase. For the case at hand, we consider the hyperelastic model proposed in [20], characterized by
an invariant-based formulation. This model relies on the following strain energy function

W =
a

2b

[
eb(I1−3) − 1

]
+

af
2bf

[
ebf (I4,f0−1)2 − 1

]
+

as
2bs

[
ebs(I4,s0−1)2 − 1

]
+

afs
2bfs

[
ebfsI

2
8,f0s0 − 1

]
,

where f0, s0 are the two (fibers and sheets respectively) preferred directions and I1, I4,f0 , I4,s0 ,
I8,f0s0 are the invariants of the right Cauchy-Green strain tensor, defined as

I1 = tr(C), I4,f0 = f0 ·Cf0, I4,s0 = s0 ·Cs0, I8,f0s0 = f0 ·Cs0,

respectively. Coefficients of the Holzapfel-Ogden constitutive law are taken from the literature, see
e.g. [14]. Fibers and sheets vectors are computed using the algorithm proposed in [37]: the idea of
this procedure is based on the assumption that sheets are lying along the radial direction s0. Fibers
are then obtained constructing a rotation matrix which describes the rotation of the fiber field
around the s0 axis. Their orientation varies from an angle −θmax on the epicardium to an angle
+θmax on the endocardium. For an idealized human ventricle, we obtain the fibers distribution
shown in Figure 9.

In order to properly describe the myocardium deformations, we include a suitable incompress-
ibility constraint. In this work we consider a quasi-incompressible formulation such as the one
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Figure 9: Muscular fibers with θmax = 60◦ (left) and sheets (right).

described in [38, 19]. This formulation has different advantages with respect to a full incompress-
ible constraint, from both a modeling and a numerical viewpoint; see e.g. [33] for further details.
Moreover, in order to model the systolic part of the cardiac cycle, the active contraction of the
muscular fibers has to be included in the force balance. In order to couple electrophysiology and
mechanics, we need to define a modified Piola tensor P which depends on the solution of the elec-
trical problem. In this work we rely on the active stress approach (see e.g. [28, 16, 32]), where an
active contribution Pa is added to the Piola tensor; this latter thus becomes

Ptot = P + Pa,

where P is the classical Piola tensor defined in (6.1). Several expressions for Pa can be found in
literature, see e.g. [39, 5]. In this work we consider the following relation

Pa = Pa(u, H(vt)) = TaH
2(vt)Ff0 ⊗ f0,

where the activationH is a spatial field obtained by the solution of the following ordinary differential
equation for each x ∈ Ω (further details and parameters tuning can be found in [37]){

βḢ(vt) = αvt − 2TaH(vt) t ∈ (0, T ),

H(0) = H0.
(6.3)

Here Ḣ denotes the time-derivative of the activation, whereas vt is the transmembrane potential,
obtained by solving the electrophysiology problem on [0, t]. In conclusion, the full mechanical
problem reads as follows

div(Ptot(u;H(vt),µ)) = 0 in Ω0

Ptot(u;H(vt),µ)n = 0 on Γendo

Ptot(u;H(vt),µ)n + αu = 0 on Γepi, Γbase,

(6.4)

where we impose homogeneus Neumann boundary conditions on the endocardium and Robin bound-
ary conditions on the epicardium and on the base in order to avoid the presence of rigid motion.
We point out that homogeneus Neumann boundary conditions on the endocardium are not phys-
iological, since we are neglecting the pressure caused by the presence of blood in the ventricular
chamber. However, when solving an electromechanical model, the pressure value is unknown, and
thus we neglect the effect of the fluid on the ventricular deformation.

We observe that the full Piola tensor depends on the solution of the electrical problem, which
acts as a forcing term for the system. Moreover, although the mechanical model is static, it depends
on time through the electrical activation. We point out that in order to describe a full heart beat,
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the mechanical problem has to be solved at different time-steps. Here, we focus on a time interval
[0, tm], tm ≥ 0, that covers the first phase of the cardiac cycle; for each µ we thus solve the
electrophysiology problem until time tm and we compute the corresponding H(vtm), required to
solve problem (6.4) and then finally obtain the displacement u(µ).

6.2.2 Numerical results

The numerical test is performed on a geometrical configuration representing an idealized human
ventricle. The high fidelity approximation is built on a computational mesh (see Figure 10) with
3552 elements and 1181 vertices, resulting in a high-fidelity space Vh of dimension Nh = 3543.

Figure 10: Idealized left ventricle computational grid.

We consider the following parameters:

• Fibers inclination θmax ∈ [20◦, 80◦],

• Bulk modulus κ ∈ [3 · 105, 4 · 105],

• Isotropic coefficient a ∈ [3300, 3500].

We choose these parameters since they have a significant effect on the heart contraction. In
particular, the fibers orientation is noticeably different from one patient to another and can have
a crucial impact on the correct torsion and shortening of the ventricle. The Bulk modulus κ > 0
measures the material resistance to a uniform compression and plays an important role in the
imposition of the material incompressibility. The isotropic coefficient is instead related to the
stiffness of the cardiac muscle, and thus affects the ability of the ventricle to contract and the
ejected quantity of blood. However, other parameters could be relevant from a clinical viewpoint,
for instance the electrical conductivities of the myocardium, which affect the propagation of the
electrical signal and, consequently, the correct heart contraction. Analysis related to these electrical
parameters is currently ongoing.

For the case at hand, since the fibers inclination affects also the electrical equations, the elec-
trophysiology problem has to be solved for every new parameter value during the online phase in
order to compute the potential v, required to obtain the activation function. However, this task is
computationally affordable, since solving the electrical problem by means of a FE approximation
for the case at hand requires about 5 seconds. We underline that our method allows to consider pa-
rameters which are related with both the mechanical subproblem and the electrophysiology (such
as the fibers inclination), which thus affect the mechanics through the solution of the electrical
problem.

According to the analysis performed in section 6.1 the numerical results presented are obtained
using the proposed hybrid method (see Algorithm 5). We show in Figure 11 the eigenvalues of the
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correlation matrix related to the displacements, the residual vectors and the Jacobian matrices. In
Figure 12 we also report the error of the DEIM and MDEIM approximation computed over a test
sample of 40 parameters. We observe that the decay of both the eigenvalues and the DEIM and
MDEIM errors is slower than the decay obtained for the previous test case; this is essentially due
to the considerable complexity of this problem, originating from the highly nonlinear constitutive
law, the coupling with the electrophysiology and the choice of the parameters considered.
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Figure 11: Normalized eigenvalues (blue) of the correlation matrix related to the displacement
(left), to the Jacobian matrix (center) and to the residuals vector (right).
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Figure 12: Average || · ||2 error related to the MDEIM approximation of the Jacobian matrix (left)
and to the DEIM approximation of the residuals vector (right).

In figures 13 and 14 we show respectively the displacement field and the corresponding deforma-
tions obtained for three different value of the parameters. As we are analyzing the initial phase of
the heart beat, we observe small deformations, mainly concentrated in the ventricle apex, located
at the bottom of the ventricle. However, the displacement field underlines the torsion typical of the
myocardium contraction, caused by the presence of the muscular fibers.

We report in Figure 15 the high fidelity solutions, the RB solutions and the difference between
them obtained for three different values of the parameters, randomly chosen during the online stage.
We remark that the ROM is able to accurately approximate the high fidelity solution. Moreover,
evaluating the average Xh error of the solution over a test sample of 40 parameters, we obtain a
relative error equal to 10−3 with 40 basis functions (see Figure 16). In Figure 16 we report also the
a posteriori error bound (5.2) computed over the same testing set of 40 parameters; the difference
between the estimator and the effective error is less than 2 orders of magnitude.

We observe that the number of DEIM bases for the residual vector is remarkably higher with
respect to the number of terms selected for the Jacobian matrix (see also Remark 1). Indeed,
in order to guarantee the convergence of the Newton method for all parameters value we need
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Figure 13: Displacement field obtained for three different parameter values (µ1 = [39◦, 3.8 ·
105, 3465], µ2 = [52◦, 3 · 105, 3306], µ3 = [67◦, 3.6 · 105, 3400]).

Figure 14: Displacement on a section of the ventricle for three different parameter values (µ1 =
[39◦, 3.8 · 105, 3465], µ2 = [52◦, 3 · 105, 3306], µ3 = [67◦, 3.6 · 105, 3400]).

about 500 terms and 5 terms for the residual and the Jacobian matrix approximation, respectively.
However, a great reduction in computational time is achieved, since the effective bottleneck is the
assembling of the Jacobian matrix. Actually, the RB problem takes about 4 seconds, while the FE
problem requires about 2 minutes (see Table 6).

We report also in Figure 17 the reduced mesh obtained for the approximation of the Jacobian
matrix. The number of elements of the reduced mesh is extremely lower than the number of elements
of the full mesh, leading to a great reduction in the cost related to the assembling of the Jacobian
matrix; this computation takes about 0.12s on the reduced mesh while it requires about 7s on the
full mesh.

Number of FE dofs 3543 Number of RB dofs 20
POD tolerance 10−5 DEIM tolerance 10−10

Newton tolerance 10−3 MDEIM tolerance 10−4

Offline time 7h Number of parameters 3
Residual DEIM terms 500 Jacobian MDEIM terms 5
FE time Jacobian assembling 7s RB time Jacobian assembling 0.12s
FE time 120s Online RB time 4s

Table 6: Numerical details (test case 2)
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Figure 15: High-fidelity solutions (top), reduced order solutions (middle) and their differences (bot-
tom) for three different parameter values (µ1 = [78◦, 3.18 ·105, 3335.7], µ2 = [46◦, 3.58 ·105, 3416.5],
µ3 = [32◦, 3.78 · 105, 3456.7]).
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of 40 parameters.

Figure 17: Reduced mesh for the approximation of the Jacobian matrix.
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7 Conclusions
In this paper we have proposed a new reduction technique for nonlinear parametrized problems,
which combines proper orthogonal decomposition for the selection of basis functions, Galerkin
projection over a low dimensional subspace and a matrix discrete empirical interpolation (MDEIM)
technique for efficiently handling the nonlinear terms. The resulting ROM allows to evaluate the
problem solution at a very reduced computational cost, still retaining the same accuracy of the high
fidelity model.

We have also proposed a new snapshots selection strategy able to provide accurate and fast
online solutions, still retaining low offline computational times. We compared this strategy with
two different methods, in order to highlight advantages and drawbacks related to the proposed
approaches.

Moreover, we have characterized a new reliable a posteriori error bound, able to accurately
estimate the difference between the high-fidelity and the reduced solution, taking into account
separately the error components related to the Galerkin projection, the DEIM approximation of
the residual vectors and the MDEIM approximation of the Jacobian matrices.

The effectiveness of the proposed framework has been assessed on two different test cases. In the
first case we have performed a shear test on a cubic domain, relying on a Saint Venant-Kirchhoff
material which is characterized by a polynomial nonlinearity. Then, we applied our method to the
cardiac electromechanical problem, focusing on a time interval [0, tm], tm ≥ 0, that covers the first
phase of the heart beat. The extension to a complete heart beat is currently under investigation.
This application demonstrates that our reduction strategy can be efficiently used also when treating
problems characterized by very complex constitutive laws.

Appendix. Lipschitz constant derivation
We recall that the Piola tensor for a Saint Venant-Kirchoff material can be written under the
following form

P = λtr(E)F + 2µFE,

being E the Lagrangian Green strain tensor and F the deformation gradient tensor. We thus obtain
the following expression for the Jacobian of P:

〈Ju(w), z〉 = λ

∫
Ω0

[
(F : ∇w)(F : ∇z) +

1

2
(I1 − 3)(∇w : ∇z)

]
dΩ0

+ µ

∫
Ω0

[
(∇wC : ∇z) + (FFT∇w : ∇z)− (∇w : ∇z) + (F∇wTF : ∇z)

]
dΩ0.

In this section we want to show that Jh(VuN,m(µ);µ) is locally Lipschitz continuous at uN,m(µ),
i.e., there exists KN

h (µ) > 0 such that for all v ∈ Br(µ)(VuN,m(µ))

||Jh(VuN,m(µ);µ)− Jh(v;µ)||Xh,X
−1
h
≤ KN

h (µ)||VuN,m(µ)− v||Xh
.

We can define
C = sup

µ∈D
||VuN,m(µ)||Xh

;

then, for each v ∈ Br(µ)(VuN,m(µ)) it holds that

||v||Xh
≤ ||VuN,m(µ)||Xh

+ ||v −VuN,m(µ)||Xh
≤ C + r(µ).

For the sake of notation hereon we now omit the µ dependence.
In order to derive the Lipschitz constant, we employ the following inequality

|FT (VuN,m)F(VuN,m)− FT (v)F(v)| = |FT (VuN,m)(F(VuN,m)− F(v)) + (FT (VuN,m)− FT (v))F(v)|
≤ (2 + 2C + r)||VuN,m(µ)− v||Xh

.
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Then, it holds that

|〈JVuN,m
(w), z〉 − 〈Jv(w), z〉| = λ

∫
Ω0

(F(VuN,m) : ∇w)(F(VuN,m) : ∇z)− (F(v) : ∇w)(F(v) : ∇z)dΩ0

+
1

2
λ

∫
Ω0

(I1(VuN,m)− I1(v))(∇w : ∇z)dΩ0

+ µ

∫
Ω0

(∇w(FT (VuN,m)F(VuN,m)− FT (v)F(v)) : ∇z)dΩ0

+ µ

∫
Ω0

(∇w(F(VuN,m)FT (VuN,m)− F(v)FT (v)) : ∇z)dΩ0

+ µ

∫
Ω0

((F(VuN,m)∇wFT (VuN,m)− F(v)∇wFT (v)) : ∇z)dΩ0

≤ (2λ+ 3µ)(2 + 2C + r(µ))||VuN,m − v||Xh
||w||Xh

||z||Xh
.

(7.1)
Exploiting the definition of the || · ||Xh,X

−1
h

norm, it is possible to show that (7.1) finally implies

KN
h (µ) = (2λ+ 3µ)(2 + 2C + r(µ)).
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