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Abstract

We design and analyze an adaptive hp-finite element method (hp-AFEM) in dimen-
sions n = 1, 2. The algorithm consists of iterating two routines: hp-NEARBEST finds
a near-best hp-approximation of the current discrete solution and data to a desired accu-
racy, and REDUCE improves the discrete solution to a finer but comparable accuracy.
The former hinges on a recent algorithm by Binev for adaptive hp-approximation, and
acts as a coarsening step. We prove convergence and instance optimality.

1 Introduction

The discovery that elliptic problems with localized singularities, such as corner singu-
larities, can be approximated with exponential accuracy propelled the study and use of
hp-FEMs, starting with the seminal work of Babuška. The a priori error analysis origi-
nated in the late 70’s with the earliest attempts to study the adaptive approximation of
a univariate function, having a finite number of singularities and otherwise smooth, by
means of piecewise polynomials of variable degree [17, 22]. These results influenced Gui
and Babuška in their pioneering study of the convergence rate of the hp-approximation to
a one dimensional model elliptic problem in [26] and in their subsequent work [27], which
proves convergence of an adaptive hp-algorithm with a predicted rate. However, due to
the assumptions on the admissible error estimators, which appear to be overly restrictive,
the results in [27] cannot be considered completely satisfactory. Starting from the late
80’s the study of a posteriori error estimators and the design of adaptive hp-algorithms
has been the subject of an intense research. We refer to the book [39], and the survey
paper [15], as well as the references therein for more details.

However, despite the interest in hp-FEMs, the study of adaptivity is much less de-
veloped than for the h-version of the FEM, for which a rather complete theory has been
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developed in the last decade [23, 36, 6, 16, 44]; we refer to the survey [37]. Regarding the
hp-FEM, we mention [41, 24, 10, 3] which prove convergence without rates. The purpose
of this paper is to bridge this gap: we present a new hp-AFEM, which hinges on a recent
algorithm by Binev for adaptive hp-approximation [4, 5], and prove several properties
including instance optimality in dimensions n = 1, 2. The theory is complete for n = 1
but there are a couple of pending issues for n = 2, which we discuss below.

The success of hp-AFEM’s hinges on having solutions and data with suitable sparsity
structure, as well as practical algorithms that discover such a structure via computation.
This is why existing hp-AFEM software typically probes the current discrete solution
to learn about the local smoothness of the exact solution, but can only search around
the current level of resolution. We refer, in particular, to the algorithms presented in
[33, 1, 31, 32, 34] for strategies based on analyticity checks or local regularity estimation
(see also [41, 24]), to the algorithms in [20, 19, 18, 21] and [38] for strategies based on
the use of suitable discrete reference solutions, and to the algorithm in [35] for a strategy
based on comparing estimated and predicted errors.

1.1 Challenges of hp-Approximation

To shed light on the difficulties to design hp-AFEM, we start with the much simpler
problem of hp-approximation for n = 1. Let Ω := (0, 1) and K be a dyadic interval
obtained from K0 = Ω̄. Let p be the polynomial degree associated with K at a certain
stage of the adaptive algorithm, and denote D = (K, p). Given v ∈ L2(Ω) and p ≥ 0, let

eD(v) := min
ϕ∈Pp(K)

‖v − ϕ‖2L2(K) and QD(v) := argmin
ϕ∈Pp(K)

‖v − ϕ‖L2(K), (1.1)

the latter function being extended with zero outside K. The following algorithm gen-
erates a sequence of hp-decompositions (D`)

∞
`=0 and corresponding piecewise polynomial

approximations v` = vD`
. With v0 := QK0,0(v), for ` > 0 and any D = (K, p) ∈ D`,

• compute eK,p+1(v − v`) as well as eK′,p(v − v`) and eK′′,p(v − v`) for K ′ and K ′′

being the two children of K;

• if eK,p+1(v − v`) < eK′,p(v − v`) + eK′′,p(v − v`), then replace D by D̃ := (K, p+ 1)
in D`+1 and set

v`+1 := v` +QD̃(v − v`);

• otherwise, replace D by D′ := (K ′, p) and D′′ := (K ′′, p) in D`+1 and set

v`+1 := v` +QD′(v − v`) +QD′′(v − v`).

Although this algorithm is deliberately very rudimentary so as to simplify the discussion, it
mimics existing schemes that query whether it is more advantageous to refine the element
K or increase the polynomial degree p by a fixed amount, say 1. We wonder whether
such an algorithm may lead to near-optimal hp-partitions. In order to elaborate on this
question, we now present two extreme examples that illustrate the role of sparsity for the
design of hp-AFEM.

Example 1: Lacunary Function. For a given integer L > 0, let v be a polynomial of
degree p := 2L − 1, such that, on each dyadic interval K of generation 0 ≤ ` < L, v is
L2-orthogonal to the linear polynomials with vanishing mean. Since we need to impose 2`

orthogonality relations for each level `, we get altogether 1 + 2 + 22 + · · ·+ 2L−1 = 2L− 1
constraints. We thus realize that a nontrivial polynomial of degree p does exist because
it has 2L parameters. We also see that the algorithm above bisects all dyadic elements
K starting from K0 until reaching the level L, and that v` for all 0 ≤ ` < L is the
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piecewise constant function that takes the mean-value of v on each element in D`. Even
if the algorithm stops refining at level L and chooses from then on to raise the polynomial
degree by 1 in each of the p elements, then at least p new degrees of freedom have to
be added in each interval to represent v exactly. This leads to a total of p2 degrees of
freedom activated to capture a polynomial of degree p, thereby proving that this process is
non-optimal. We conclude that to be near-optimal, hp-AFEM must be able to backtrack
and review decisions made earlier. This process, from now on called coarsening, is missing
in most algorithms for hp-adaptivity except, for example, that of Demkowicz, Oden and
Rachowicz [20], for which there are no optimality results. The preceding function is
extremely sparse for hp-approximation, in fact a single polynomial, but its structure is
hard to discover in practice because of the sparsity gap.

Example 2: Non-degenerate Function. We now consider the canonical function
v(x) = xα with α < 1 on Ω = (0, 1), studied by DeVore and Scherer [22] and by Gui and
Babuška [26], which does not exhibit a sparsity gap. In fact, the following non-degeneracy
property is valid: there exist constants C1, C2 such that for all intervals K and polynomial
degrees p

C2 ≤
eK,p+1(v)

eK,p(v)
≤ C1.

The exponential rate of convergence derived a priori in [27], as well as the linear increase
of polynomial degrees starting from the origin, are based on this crucial property. Similar
results have been derived later for n = 2 by Babuška and Guo [28, 29] and for n = 3
by Schotzau, Schwab and Wihler [42, 43]; see [39] for a thorough discussion of the cases
n = 1, 2. It is thus conceivable, as observed in practice, that decisions made by hp-
AFEM’s with a building block such as that above do not produce unnecessary degrees of
freedom for problems such as Example 2. The lack of a coarsening step in most existing hp-
software could thus be attributed to the very special geometric features of point and edge
singularities, this being a special rather than a universal property to design an optimal
hp-AFEM.

1.2 Our contributions

Since we wish to account for a large class of functions (solutions and data), perhaps ex-
hibiting degeneracies such as in Example 1, our hp-AFEM includes a coarsening routine,
which we envisage to be unavoidable for obtaining optimality. Our hp-AFEM hinges on
two routines, hp-NEARBEST and REDUCE, and the former in turn relies on the adap-
tive hp-approximation routine by Binev [4, 5]. To describe them, let u = u(f, λ) ∈ H1

0 (Ω)
be the solution to a second order elliptic PDE on a domain Ω ⊂ Rn, n = 1, 2, with data
(f, λ), where f denotes forcing term(s) and λ parameters such as coefficients.

Given a reduction factor % ∈ (0, 1), a conforming hp-partition D, (discontinuous)
hp-FEM approximations (fD, λD) to (f, λ) over D, the routine REDUCE produces a
conforming hp-refinement D̄ such that the |·|H1 -error in the (continuous) hp-fem Galerkin
approximation on D̄ to the exact solution u(fD, λD) is less than ρ times the same Galerkin
error relative to the partition D. This routine will be implemented as an AFEM routine
that applies under a no-data-oscillation assumption.

The routine hp-NEARBEST deals with nonconforming meshes and subordinate dis-
continuous functions. Given a tolerance ε > 0, a generic function v ∈ H1(Ω), and data
(f, λ), hp-NEARBEST produces a nonconforming hp-partition D and suitable projec-
tions (fD, λD) of the data onto discontinuous hp-FEM spaces over D. The output is such
that the square root of a specific error functional is less than ε. This error functional
is defined as the sum of the squared broken | · |H1-error in the best (discontinuous) hp-
approximation over D to v and δ−1 times the squared hp-data oscillation osc2

D(f, λ) over
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D, for a sufficiently small penalty parameter δ > 0. In turn, osc2
D(f, λ) measures the er-

rors f −fD and λ−λD on the partition D in such squared local norms, that the following
bound, expressing the continuous dependence on data of the underlying linear problem,
holds:

|u− u(fD, λD)|H1(Ω) . oscD(f, λ). (1.2)

The procedure hp-NEARBEST is based on Binev’s algorithm and is instance optimal
for this functional.

Our algorithm hp-AFEM consists of a repetition of calls of hp-NEARBEST and
REDUCE with decreasing error tolerances. The calls of hp-NEARBEST, with v being
the current approximation to the solution u, are made to guarantee instance optimality
of the coarsened approximations. Coarsening, however, increases the error by a constant
factor. This must be compensated by a judicious choice of the reduction factor % of
REDUCE so that the concatenation of the two routines produces a converging sequence.
To realize this idea we must account for the following additional issues.

Making meshes hp-conforming: After a call of hp-NEARBEST, the generally non-
conforming hp-partition D has to be refined to a conforming one C(D) so that it can serve
as input for REDUCE. This is obviously an issue for dimension n = 2 but not for n = 1,
in which case one can take C(D) = D. One may wonder whether the cardinality of C(D)
can be bounded uniformly by that of D for n = 2. To see that the answer is negative
in general consider the following pathological situation: a large triangle of D with high
polynomial degree is surrounded by small triangles with polynomial degree 1. This is the
reason why, without further assumptions on the structure of the solution u, we cannot
guarantee for n = 2 an optimal balance between the accuracy of the hp-approximations
and the cardinality of the hp-partitions at stages intermediate to consecutive calls of
hp-NEARBEST. Resorting to a discontinuous hp-AFEM would cure this gap at the
expense of creating other difficulties.

Making functions continuous: In order to quantify the reduction factor % of RE-
DUCE we must be able to compare the (broken) H1(Ω)-errors of the best continuous and
discontinuous hp-FEM approximations over C(D). We show that the former is bounded
by the latter with a multiplicative constant which depends logarithmically on the maximal
polynomial degree for n = 2. This extends upon a recent result of Veeser for the h-version
of the FEM [45]. Such constant does not depend on the polynomial degree for n = 1. This
construction is needed for the analysis of hp-AFEM only but not its implementation.

Dealing with a perturbed problem: When, preceding to a call of hp-NEARBEST,
the current (continuous) hp-approximation to u has a tolerance ε, hp-NEARBEST will
be called with a tolerance h ε in order to guarantee optimality of the coarsened discon-
tinuous hp-approximation. In addition, hp-NEARBEST produces new approximations
(fD, λD) to the data to be used in the subsequent call of REDUCE. The prescribed
tolerance ensures, in view of the definition of the error functional, that oscD(f, λ) .

√
δ ε.

Hence, concatenating with (1.2), we are guaranteed that |u−u(fD, λD)|H1(Ω) .
√
δ ε. The

routine REDUCE approximates the solution u(fD, λD), and so cannot be expected to
produce an approximation to u that is more accurate than u(fD, λD). Therefore, in order
to obtain convergence of the overall iteration, the condition |u− u(fD, λD)|H1(Ω) ≤ ξε is
needed for some parameter ξ ∈ [0, 1), which is achieved by selecting the penalty parameter
δ to be sufficiently small.

The routine REDUCE will be implemented as an AFEM consisting of the usual
loop over SOLVE, ESTIMATE, MARK, and REFINE. For n = 1, we construct
an estimator that is reliable and discretely efficient, uniformly in p. Consequently, the
number of iterations to achieve some fixed error reduction % is independent on the maximal
polynomial degree.
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For n = 2, we employ the residual-based a posteriori error estimator analyzed by Me-
lenk and Wohlmuth [35], which turns out to be p-sensitive. We show that in order to
achieve a fixed error reduction, it suffices to grow the number of iterations more than
quadratically with respect to the maximal polynomial degree. This sub-optimal result is
yet another reason for optimality degradation at stages intermediate between two consec-
utive calls of hp-NEARBEST. Nevertheless, our result improves upon a recent one by
Bank, Parsania and Sauter [3], which requires the number of iterations to be proportional
to the fifth power of the maximal polynomial degree.

Throughout this work, we assume that the arising linear systems are solved exactly.
To control the computational cost, optimal iterative solvers, uniformly in the polynomial
degree would be required. We refer to [9] for an example.

This work is organized as follows. We present hp-AFEM within an abstract setting in
Sect. 2 and prove that it converges, and that the sequence of outputs of hp-NEARBEST
is instance optimal. We give a brief description of Binev’s algorithm in Sect. 3. In Sect.
4, we apply the abstract setting to the general 1-dimensional elliptic problem. Finally, in
Sect. 5 we apply the abstract theory to the Poisson equation in two dimensions.

The following notation will be used thoughout the paper. By γ . δ we will mean that
γ can be bounded by a multiple of δ, independently of parameters which γ and δ may
depend on. Likewise, γ & δ is defined as δ . γ, and γ h δ as γ . δ and γ & δ.

2 An abstract framework

We now present the hp-AFEM in two steps. We first deal with an ideal algorithm
and later introduce a practical scheme including REDUCE. We also discuss a possible
realization of REDUCE.

2.1 Definitions and assumptions

On a domain Ω ⊂ Rn, we consider a, possibly, parametric PDE

Aλu = f. (2.1)

Here the forcing f and the parameter λ (representing, e.g., the coefficients of the operator)
are taken from some spaces F and Λ̄ of functions on Ω, such that there exists a unique
solution u = u(f, λ) living in a space V of functions on Ω. We assume, for simplicity, that
V and F are Hilbert spaces over R.

We assume that we are given an essentially disjoint initial partition of Ω̄ into finitely
many (closed) subdomains (the ‘element domains’). We assume that for each element
domainK that we encounter, there exists a unique way in which it can be split into element
domains K ′ and K ′′, the ‘children’ of K, such that K = K ′ ∪K ′′ and |K ′ ∩K ′′| = 0. The
set K of all these element domains is therefore naturally organized as an infinite binary
‘master tree’, having as its roots the element domains of the initial partition of Ω̄. A finite
subset of K is called a subtree of the master tree when it contains all roots and for each
element domain in the subset both its parent and its sibling are in the subset. The leaves
of a subtree form an essentially disjoint partition of Ω̄. The set of all such ‘h-partitions’
will be denoted as K. For K, K̃ ∈ K, we call K̃ a refinement of K, and denoted as K ≤ K̃,
when any K ∈ K̃ is either in K or has an ancestor in K.

Our aim is to compute ‘hp-finite element’ approximations to u, i.e., piecewise polyno-
mial approximations, with variable degrees, w.r.t. partitions from K. In order to do so, it
will be needed first to replace the data (f, λ) by approximations from finite dimensional
spaces. For that goal as well, we will employ spaces of piecewise polynomials, with variable
degrees, w.r.t. partitions from K, as will be described next.
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For all K ∈ K, let VK , FK ,ΛK be (infinite dimensional) spaces of functions on K, such
that for any K ∈ K, it holds that, possibly up to isomorphisms,

V ⊆
∏
K∈K

VK , F =
∏
K∈K

FK , Λ ⊆
∏
K∈K

ΛK ⊆ Λ̄.

Here Λ is a subset of Λ̄, which contains all the parameters that will be allowed in our
adaptive algorithm hp-AFEM, and, for simplicity, has a Hilbert topology. For all (K, d) ∈
K×N (hereafter N stands for the set of all positive natural numbers) and Z ∈ {V, F,Λ}, we
assume finite dimensional spaces ZK,d ⊂ ZK of functions on K such that ZK,d ⊆ ZK,d+1,
ZK,d ⊂ ZK′,d × ZK′′,d, and Z ∩

⋃
K∈K,d∈N

∏
K∈K ZK,d is dense in Z.

In applications, VK,d will be a space of polynomials of dimension h d. For instance,
when K is an n-simplex, VK,d may be chosen as Pp(K), where the associated polyno-
mial degree p = p(d) can be defined as the largest value in N such that dimPp−1(K) =(
n+p−1
p−1

)
≤ d. This definition normalizes the starting value p(1) = 1 for all n ∈ N. Only

for n = 1, it holds that p(d) = d for all n ∈ N.
Analogously, the spaces FK,d and ΛK,d will be selected as (Cartesian products of)

spaces of polynomials as well, of degrees equal to p plus some constant in Z.
In the following, D ∈ K×N will denote an hp-element: it is a pair (KD, dD) consisting

of an element domain KD ∈ K, and an integer dD ∈ N. We will write ZD = ZKD,dD .
For all D ∈ K × N, we assume a projector QD : V × F × Λ → VD × FD × ΛD,

and a local error functional eD = eD(v, f, λ) ≥ 0, that, for (v, f, λ) ∈ V × F × Λ, gives a
measure for the (squared) distance between (v|KD , f |KD , λ|KD ) and its local approximation
(vD, fD, λD) := QD(v, f, λ). We assume that this error functional is non-increasing under
both ‘h-refinements’ and ‘p-enrichments’, in the sense that

eD′ + eD′′ ≤ eD when KD′ , KD′′ are the children of KD, and dD′ = dD′′ = dD;

eD′ ≤ eD when KD′ = KD and dD′ ≥ dD.
(2.2)

A collection D = {D = (KD, dD)} of hp-elements is called an hp-partition provided
K(D) := {KD : D ∈ D} ∈ K. The collection of all hp-partitions is denoted as D. For
D ∈ D, we set the hp-approximation spaces

ZD :=
∏
D∈D

ZD, (Z ∈ {V, F,Λ}),

and define
#D :=

∑
D∈D

dD.

In our applications, the quantity #D is proportional to the dimension of ZD, and
eD(v, fD, λD) is the sum of the squared best approximation error of v|KD from VD in
| · |H1(KD) and δ−1 times the square of the local data oscillation.

For D ∈ D, we set the global error functional

ED(v, f, λ) :=
∑
D∈D

eD(v, f, λ),

which is a measure for the (squared) distance between (v, f, λ) and its projection( ∏
D∈D

vD,
∏
D∈D

fD,
∏
D∈D

λD

)
∈ VD × FD × ΛD. (2.3)

For D, D̃ ∈ D, we call D̃ a refinement of D, and write D ≤ D̃, when both K(D) ≤ K(D̃),

and dD̃ ≥ dD, for any D ∈ D, D̃ ∈ D̃ with KD being either equal to KD̃ or an ancestor
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of KD̃. With this notation, (2.2) is equivalent to

E
D̃

(v, f, λ) ≤ ED(v, f, λ) ∀D̃ ≥ D. (2.4)

We will apply a finite element solver that generally operates on a subset Dc of the set of
hp-partitions D, typically involving a restriction to those D ∈ D for which the ‘h-partition’
K(D) is ‘conforming’. We assume that there exists a mapping C : D→ Dc such that

C(D) ≥ D ∀D ∈ D. (2.5)

We emphasize that even for D ∈ Dc, generally the space VD is not a subspace of V .
Conforming subspaces, used e.g. in Galerkin approximations, are defined as

V cD := VD ∩ V. (2.6)

With regard to (2.3), we introduce the notation

fD :=
∏
D∈D

fD, λD :=
∏
D∈D

λD,

but reserve the symbol vD to denote later a suitable near-best approximation to v ∈ V
from V cD.

2.2 A basic hp-adaptive finite element method

Our aim is for given (f, λ) ∈ F × Λ and ε > 0, to find D with an essentially minimal #D

such that ED(u(f, λ), f, λ) ≤ ε. We will achieve this by alternately improving either the
efficiency or the accuracy of the approximation. To that end, we begin by considering a
basic algorithm, which highlights the essential ingredients of a hp-adaptive procedure. We
make use of the two routines described below. The first routine is available and will be
discussed in Sect. 3. Since we are not concerned with complexity now, existence of the
second routine is a simple consequence of the density of the union of the hp-approximation
spaces in V .

• [D, fD, λD] := hp-NEARBEST(ε, v, f, λ)

The routine hp-NEARBEST takes as input ε > 0, and (v, f, λ) ∈ V × F × Λ,

and outputs D ∈ D as well as (fD, λD) such that ED(v, f, λ)
1
2 ≤ ε and, for some

constants 0 < b ≤ 1 ≤ B, #D ≤ B#D̂ for any D̂ ∈ D with E
D̂

(v, f, λ)
1
2 ≤ bε.

• [D̄, ū] := PDE(ε,D, fD, λD)

The routine PDE takes as input ε > 0, D ∈ Dc, and data (fD, λD) ∈ FD × ΛD. It
outputs D̄ ∈ Dc with D ≤ D̄ and ū ∈ V c

D̄
such that ‖u(fD, λD)− ū‖V ≤ ε.

The input argument v of hp-NEARBEST will be the current approximation to u(f, λ).
In an ‘h-adaptive’ setting, usually the application of such a routine is referred to as
‘coarsening’. Since the data (fD, λD) ∈ FD × ΛD of PDE is discrete, it will be said to
satisfy a no-data-oscillation assumption w.r.t. D.

We make the following abstract assumptions concerning the relation between the error
functional, the norm on V , the mapping (f, λ) 7→ u(f, λ), and the constant b of hp-
NEARBEST. We assume the existence of constants C1, C2 > 0 with

C1C2 < b, (2.7)
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such that

‖u(f, λ)− u(fD, λD)‖V ≤ C1 inf
w∈V

ED(w, f, λ)
1
2 ∀D ∈ D, ∀(f, λ) ∈ F × Λ, (2.8)

sup
(f,λ)∈F×Λ

|ED(w, f, λ)
1
2 − ED(v, f, λ)

1
2 | ≤ C2‖w − v‖V ∀D ∈ D, ∀v, w ∈ V. (2.9)

The condition (2.9) means that ED(w, f, λ)
1
2 is Lipschitz w.r.t. its first argument. In

our applications, we will verify this condition with C2 = 1. The condition (2.8) will be a
consequence of the continuous dependence (1.2) of the solution on the data, and the fact
that the error functional will contain the square of a data oscillation oscD(f, λ). Since
this term is penalized by a factor δ−1, we will be able to ensure (2.8) with C1 h

√
δ which

yields (2.7) by taking δ sufficiently small.

Our basic hp-adaptive finite element routine reads as follows.

hp-AFEM(ū0, f, λ, ε0)
% Input: (ū0, f, λ) ∈ V × F × Λ, ε0 > 0 with ‖u(f, λ)− ū0‖V ≤ ε0.

% Parameters: µ, ω > 0 such that C1C2 < b(1− µ), ω ∈ (C2

b ,
1−µ
C1

), µ ∈ (0, 1).

for i = 1, 2, . . . do
[Di, fDi

, λDi
] :=hp-NEARBEST(ωεi−1, ūi−1, f, λ)

[D̄i, ūi] := PDE(µεi−1,C(Di), fDi
, λDi

)
εi := (µ+ C1ω)εi−1

end do

Note that bω − C2 > 0, and that εi = (µ+ C1ω)iε0, where µ+ C1ω < 1.

Theorem 2.1. Assuming (2.7)-(2.9), for the sequences (ūi), (Di) produced in hp-AFEM,
writing u = u(f, λ), it holds that

‖u− ūi‖V ≤ εi ∀i ≥ 0, EDi(u, f, λ)
1
2 ≤ (ω + C2)εi−1 ∀i ≥ 1, (2.10)

and
#Di ≤ B#D for any D ∈ D with ED(u, f, λ)

1
2 ≤ (bω − C2)εi−1. (2.11)

Proof. The bound ‖u− ū0‖V ≤ ε0 is valid by assumption. For i ≥ 1, the tolerances used
for hp-NEARBEST and PDE, together with (2.8), show that

‖u− ūi‖V ≤ ‖u(fDi
, λDi

)− ūi‖V + ‖u− u(fDi
, λDi

)‖V
≤ µεi−1 + C1 EDi

(ūi−1, f, λ)
1
2 ≤ (µ+ C1ω)εi−1 = εi.

(2.12)

The first statement follows for all i ≥ 0. Using this and (2.9) implies the second assertion

EDi
(u, f, λ)

1
2 ≤ EDi

(ūi−1, f, λ)
1
2 + C2‖u− ūi−1‖V ≤ (ω + C2)εi−1 ∀i ≥ 1.

Let D ∈ D with ED(u, f, λ)
1
2 ≤ (bω − C2)εi−1. Then, again by (2.9), ED(ūi−1, f, λ)

1
2 ≤

bωεi−1 and so #Di ≤ B#D because of the optimality property of hp-NEARBEST.

The main result of Theorem 2.1 can be summarized by saying that hp-AFEM is
instance optimal for reducing ED(u(f, λ), f, λ) over D ∈ D. Recall that in our applica-
tions, ED(u(f, λ), f, λ) will be the sum of the squared best approximation error in u from
the nonconforming space VD =

∏
D∈D VD in the broken H1-norm and a squared data

oscillation term penalized with a factor δ−1.
Additionally, Theorem 2.1 shows linear convergence to u of the sequence (ūi) of

conforming approximations, in particular ūi ∈ V c
D̄i

where Dc 3 D̄i ≥ C(Di). Since
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εi = (µ + C1ω)iε0, the infinite loop in hp-AFEM can be stopped to meet any desired
tolerance.

The preceding algorithm hp-AFEM has the minimal structure for convergence and
optimality. Since the routine PDE neither exploits the current iterate nor work already
done, we present a practical hp-AFEM in Sect. 2.3 which replaces PDE by REDUCE.

Finally in this subsection, we comment on the implications of the instance optimality
result concerning class optimality. For N ∈ N, let DN := argmin{ED(u, f, λ)

1
2 : D ∈

D,#D ≤ N} and let the best approximation error be

σN := EDN
(u, f, λ)

1
2 .

Remark 2.1 (algebraic decay). If σN decays algebraically with N , namely supN N
sσN <

∞, then for the sequence (Di) produced in hp-AFEM, one infers that EDi(u, f, λ)
1
2

decays algebraically with #Di with the optimal rate: supi(#Di)
s EDi

(u, f, λ)
1
2 < ∞. In

other words, instance optimality implies algebraic class optimality.

Remark 2.2 (exponential decay). For hp-approximation, it is more relevant to consider
an exponential decay of σN , i.e., supN e

ηNτσN < ∞ for some η, τ > 0. This is precisely
the situation considered in [11, 12, 13] for adaptive Fourier or Legendre methods.

Let us asssume, for convenience, that σN = C#e
−ηNτ for some constant C# and

ignore in subsequent calculations that N has to be an integer. In view of Theorem 2.1,
let N and εi−1 be so related that σN = (bω − C2)εi−1 Since apparently #Di ≤ BN and

EDi(u, f, λ)
1
2 ≤ (ω + C2)εi−1, we deduce

sup
i

(
eη̃(#Di)

τ

EDi
(u, f, λ)

1
2

)
≤ C#(ω + C2)

bω − C2
,

with η̃ := B−τη.
On the other hand, we will see in Corollary 3.1 that the routine hp-NEARBEST

satisfies its optimality conditions for any B > 1, at the expense of b = b(B) ↓ 0 when
B ↓ 1. Moreover, as we have seen, in our applications we will be able to satisfy (2.7)–
(2.9) for any b > 0 by taking the penalization parameter δ small enough. Therefore, we
conclude that if σN decays exponentially, characterised by parameters (η, τ), then so do
the errors produced by hp-AFEM for parameters (η̃, τ), where η̃ = B−τη can be chosen
arbitrarily close to η (at the expense of increasing the supremum value). This situation is
much better than that encountered in [11, 12, 13].

2.3 The practical hp-adaptive finite element method

To render hp-AFEM more practical we replace the routine PDE by REDUCE, which
exploits the work already carried out within hp-AFEM and reads

• [D̄, ū] := REDUCE(%,D, fD, λD)

The routine REDUCE takes as input a partition D ∈ Dc, data (fD, λD) ∈ FD×ΛD,
and a desired error reduction factor % ∈ (0, 1], and produces a conforming partition
D̄ = D̄(D, %) ∈ Dc with D̄ ≥ D and a function ū ∈ V c

D̄
such that

‖u(fD, λD)− ū‖V ≤ % inf
v∈V c

D

‖u(fD, λD)− v‖V . (2.13)

Inside the practical hp-AFEM, the routine REDUCE will be called with as input
partition the result of mapping C : D→ Dc applied to the output partition of the preceding

9



call of hp-NEARBEST. In order to bound the right-hand side of (2.13), we make the
following assumption:

inf
w∈V c

C(D)

‖v − w‖V ≤ C3,D inf
(f,λ)∈F×Λ

ED(v, f, λ)
1
2 ∀D ∈ D, ∀v ∈ V. (2.14)

In our applications, the infimum on the right-hand side reads as the squared error in the
broken H1-norm of the best approximation to v from VD =

∏
D∈D VD. The left-hand

side reads as the squared error in H1
0 (Ω) of the best approximation to v from V cC(D) =

H1
0 (Ω)∩

∏
D∈D VD. The constant C3,D should ideally be independent of D. We will see in

Sect. 4 that this is the case for our application in dimension n = 1. However, for n = 2 we
will show in Sect. 5 that C3,D depends logarithmically on the largest polynomial degree;
this extends a result by A. Veeser [45].

Our practical hp-adaptive finite element routine reads as follows:

hp-AFEM(ū0, f, λ, ε0)
% Input: (ū0, f, λ) ∈ V × F × Λ, ε0 > 0 with ‖u(f, λ)− ū0‖V ≤ ε0.

% Parameters: µ, ω > 0 such that C1C2 < b(1− µ), ω ∈ (C2

b ,
1−µ
C1

), µ ∈ (0, 1).

for i = 1, 2, . . . do
[Di, fDi

, λDi
] :=hp-NEARBEST(ωεi−1, ūi−1, f, λ)

[D̄i, ūi] := REDUCE( µ
1+(C1+C3,Di

)ω ,C(Di), fDi
, λDi

)

εi := (µ+ C1ω)εi−1

end do

Corollary 2.1 (convergence and instance optimality). Assuming (2.7)-(2.9) and (2.14),
the sequences (ūi), (Di) produced in the practical hp-AFEM above satisfy properties
(2.10) and (2.11) in Theorem 2.1.

Proof. In view of the second part of the proof of Theorem 2.1, it is sufficient to prove that
‖u − ūi‖V ≤ εi. We argue by induction. If ‖u − ūi‖V ≤ εi−1, which is valid for i = 1,
then, after the ith call of hp-NEARBEST, (2.14) and (2.8) imply that

inf
v∈V c

C(Di)

‖u(fDi , λDi)− v‖V

≤ ‖u− ūi−1‖V + inf
v∈V c

C(Di)

‖ūi−1 − v‖V + ‖u− u(fDi
, λDi

)‖V

≤ εi−1 + C3,Di
EDi

(ūi−1, f, λ) + C1 EDi
(ūi−1, f, λ)

≤ (1 + (C3,Di
+ C1)ω)εi−1.

(2.15)

Consequently, after the subsequent call of REDUCE, it holds that ‖u(fDi , λDi)− ūi‖V ≤
µεi−1 according to (2.13). This result combined with (2.12) shows that ‖u− ūi‖V ≤ εi.

Remark 2.3 (complexity of hp-AFEM). Let us consider the case that the constants
C3,D, defined in (2.14), are insensitive to D, namely,

C3 := sup
D∈D

C3,D <∞. (2.16)

This entails that the reduction factor %i = µ
1+(C1+C3,Di

)ω of REDUCE satisfies infi %i >

0. Additionally, suppose that, given a fixed % ∈ (0, 1], REDUCE realizes (2.13) with

sup
D∈Dc

#D̄(D, %)

#D
<∞. (2.17)
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If, furthermore,

C4 := sup
D∈D

#C(D)

#D
<∞, (2.18)

then the sequences (Di)i and (D̄i)i produced in hp-AFEM are so that #D̄i . #Di. In
view of the optimal control over #Di, given by Theorem 2.1 and Corollary 2.1, we would
have optimal control over the dimension of any hp-finite element space created within
hp-AFEM. This ideal situation only happens in the one-dimensional case.

2.4 A possible realization of REDUCE

Let Aλ ∈ L(V, V ′) for all λ ∈ Λ̄ and define the associated continuous bilinear form
aλ(v, w) := 〈Aλv, w〉 for any v, w ∈ V , where 〈·, ·〉 denotes the duality pairing between
V and V ′. We assume that Aλ is symmetric, which is equivalent to the symmetry of
the form aλ. We furtherly assume that each aλ is continuous and coercive on V , with
continuity and coercivity constants α∗ ≥ α∗ > 0 independent of λ ∈ Λ̄. It is convenient
to introduce in V the energy norm |||v|||λ =

√
aλ(v, v) associated with the form aλ, which

satisfies
√
α∗‖v‖V ≤ |||v|||λ ≤

√
α∗‖v‖V for all v ∈ V . Let F ⊂ V ′.

Given D ∈ D and data (f, λ) ∈ F × Λ̄, the (Galerkin) solution uD(f, λ) ∈ V cD of

aλ(uD(f, λ), v) = 〈f, v〉 ∀v ∈ V cD (2.19)

is the best approximation to u(f, λ) from V cD in ||| · |||λ. In view of a posteriori error
estimation, we will consider Galerkin solutions from V cD only for data in FD × ΛD, i.e.,
for data without data oscillation w.r.t. D.

For D ∈ Dc, D ∈ D, let us introduce local a posteriori error indicators

ηD,D : V cD × FD × ΛD → [0,∞),

which give rise to the global estimator

ED(v, fD, λD) :=

(∑
D∈D

η2
D,D(v, fD, λD)

)1/2

. (2.20)

Given data (fD, λD) without data oscillation w.r.t. D, ED(v, fD, λD) will be used with
v = uD(fD, λD) as an estimator for the squared error in this Galerkin approximation
to u(fD, λD). It should not be confused with ED(v, f, λ), the latter being the sum of
local error functionals eD(v, f, λ), that estimates the squared error in a projection on
VD × FD × ΛD of (v, f, λ) ∈ V × F × Λ.

Given any M ⊂ D, it will be useful to associate the estimator restricted to M

ED(M, v, fD, λD) :=

(∑
D∈M

η2
D,D(v, fD, λD)

)1/2

.

We assume that ED satisfies the following assumptions:

• Reliability: For D ∈ Dc, and (fD, λD) ∈ FD × ΛD, there holds

‖u(fD, λD)− uD(fD, λD)‖V . ED(uD(fD, λD), fD, λD). (2.21)

• Discrete efficiency: For D ∈ Dc, (fD, λD) ∈ FD × ΛD, and for any M ⊂ D, there
exists a D̄(M) ∈ Dc with D̄(M) ≥ D and #D̄(M) . #D, such that

‖uD̄(M)(fD, λD)− uD(fD, λD)‖V & ED(M, uD(fD, λD), fD, λD). (2.22)
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Then a valid procedure REDUCE is defined as follows.

[D̄, uD̄] = REDUCE(%,D, fD, λD)
% Input: % ∈ (0, 1], D ∈ Dc, (fD, λD) ∈ FD × ΛD.
% Output: D̄ ∈ Dc with D̄ ≥ D, and the Galerkin solution uD̄ = uD̄(fD, λD).
% Parameters: θ ∈ (0, 1] fixed.
Compute M := M(%) ∈ N sufficiently large, cf. Proposition 2.1.
D0 := D; SOLVE: compute uD0(fD, λD)
for i = 1 to M do

ESTIMATE: compute {η2
D,Di−1

(uDi−1
(fD, λD), fD, λD) : D ∈ Di−1}

MARK: select Mi−1 ⊆ Di−1 with

E2
Di−1

(Mi−1, uDi−1(fD, λD), fD, λD) ≥ θ E2
Di−1

(uDi−1(fD, λD), fD, λD)

REFINE: Di := D̄(Mi−1)
SOLVE: compute uDi

(fD, λD)
end

D̄ := DM ; uD̄ = uDM
(fD, λD)

Proposition 2.1. Assuming (2.21) and (2.22), the number M = M(%) of iterations that
are required so that [D̄, uD̄(fD, λD)] = REDUCE(%,D, fD, λD) satisfies

‖u(fD, λD)− uD̄(fD, λD)‖V ≤ % inf
v∈V c

D

‖u(fD, λD)− v‖V

is at most proportional to log %−1, and #D̄ . #D, both independent of D ∈ Dc, and
(fD, λD) ∈ FD × ΛD. So both (2.13) and (2.17) are realized.

Proof. Since fD and λD are fixed, for simplicity we drop them from our notations. Ap-
plying (2.22) with D = Di−1 and Di = D̄(Mi−1), the definition of MARK, and (2.21)
we get

‖uDi
− uDi−1

‖2V & E2
Di−1

(Mi−1, uDi−1
, fD, λD)

≥ θE2
Di−1

(uDi−1
, fD, λD)

& θ‖u− uDi−1
‖2V .

This and the uniform equivalence of ‖ · ‖V and ||| · |||λD
=: ||| · ||| give the saturation property

|||uDi
− uDi−1

|||2 ≥ C∗θ|||u− uDi−1
|||2 (2.23)

for some positive constant C∗. Then, using Pythagoras’ identity

|||u− uDi
|||2 = |||u− uDi−1

|||2 − |||uDi
− uDi−1

|||2, (2.24)

we obtain the contraction property

|||u− uDi
||| ≤ κ|||u− uDi−1

||| (2.25)

for κ =
√

1− C∗θ < 1. We conclude that

‖u− uDM
‖V ≤

1
√
α∗
|||u− uDM

||| ≤ 1
√
α∗
κM |||u− uD|||

=
1
√
α∗
κM inf

v∈V c
D

|||u− v||| ≤
√
α∗

α∗
κM inf

v∈V c
D

‖u− v‖V .
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Enforcing
√

α∗

α∗
κM ≤ % yields M = O(log %−1). In addition, since #Di . #Di−1 for

1 ≤ i ≤M according to (2.22), the proof is complete.

Remark 2.4. The partition D̄(M) can be built by an ‘h-refinement’ or a ‘p-enrichment’,
or both, of the elements D ∈ M, if necessary followed by a ‘completion step’ by an
application of the mapping C in order to land in Dc. The estimate #D̄(M) . #D shows no
benefit in taking θ < 1, i.e., in taking a local, ‘adaptive’ refinement. In our algorithm hp-
AFEM, the adaptive selection of suitable hp partitions takes place in hp-NEARBEST.
Nevertheless, in a quantitative sense it can be beneficial to incorporate adaptivity in
REDUCE as well, by selecting, for a θ < 1, a (near) minimal set M ⊂ Di−1 in MARK.

Remark 2.5. The discrete efficiency of the estimator implies its “continuous” efficiency.
Indeed, taking M = D in (2.22) and denoting D̄ = D̄(D), and temporarily dropping fD
and λD from our notations, we have

ED(uD)2 . α∗‖uD̄ − uD‖2V ≤ |||uD̄ − uD|||2λ = |||u− uD|||2λ − |||u− uD̄|||2λ ≤ |||u− uD|||2λ
= inf
v∈V c

D

|||u− v|||2λ ≤ α∗ inf
v∈V c

D

‖u− v‖2V .

Consequently, recalling (2.21), a stopping criterium for REDUCE could be defined as
follows

EDi
(uDi

(fD, λD), fD, λD) ≤ C%ED(uD(fD, λD), fD, λD),

where C is a constant in terms of the “hidden constants” in (2.21) and (2.22), and α∗ and
α∗.

Assumptions (2.21)-(2.22) about reliability and discrete efficiency can be substituted
by the following three assumptions concerning the estimator. This will be used for our
application in two dimensions in Sect. 5.

• Reliability and efficiency: For D ∈ Dc, there exists RD, rD > 0, such that for
(fD, λD) ∈ FD × ΛD, and ||| · |||λD

=: ||| · ||| one has

rD E2
D(uD(fD, λD), fD, λD) ≤ |||u(fD, λD)− uD(fD, λD)|||2

≤ RD E2
D(uD(fD, λD), fD, λD);

(2.26)

• Stability: For D ∈ Dc, and all (fD, λD) ∈ FD × ΛD, v, w ∈ V cD one has

√
rD

∣∣∣ED(v, fD, λD)− ED(w, fD, λD)
∣∣∣ ≤ |||v − w|||. (2.27)

• Estimator reduction upon refinement: There exists a constant γ < 1, such
that for any M ⊂ D ∈ Dc, there exists a D̄(M) ∈ Dc with D̄(M) ≥ D, #D̄(M) . #D,
such that with S̄ := {D̄ ∈ D̄(M) : ∃D ∈M with KD̄ ⊂ KD},

E2
D̄(M)(S̄, uD(fD, λD), fD, λD) ≤ γ E2

D(M, uD(fD, λD), fD, λD)

E2
D̄(M)(D̄(M) \ S̄, uD(fD, λD), fD, λD) ≤ E2

D(D \M, uD(fD, λD), fD, λD),
(2.28)

for any (fD, λD) ∈ FD × ΛD.

With θ from REDUCE and γ from (2.28), we set γ̄ := (1 − θ) + θγ. For D ≤ D̂ ∈ Dc,
and (fD, λD) ∈ FD × ΛD, we define the squared total error to be

E2
D̂

(u
D̂

(fD, λD), fD, λD) := |||u(fD, λD)−u
D̂

(fD, λD)|||2+(1−
√
γ̄)r

D̂
E2
D̂

(u
D̂

(fD, λD), fD, λD).
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Proposition 2.2. Assume (2.26), (2.27), and (2.28), and, inside REDUCE, take D̄(M)
as defined in (2.28). Let D ∈ Dc, and (fD, λD) ∈ FD × ΛD. Then consecutive iterands
produced in REDUCE(%,D, fD, λD) satisfy

E2
Di

(uDi
(fD, λD), fD, λD) ≤

[
1− (1−

√
γ̄)2

2

rDi

RDi−1

]
E2
Di−1

(uDi−1
(fD, λD), fD, λD).

Furthermore, for D ∈ Dc and (fD, λD) ∈ FD × ΛD,

|||u(fD, λD)− uD(fD, λD)|||2 ≤ E2
D(uD(fD, λD), fD, λD) ≤ 2|||u(fD, λD)− uD(fD, λD)|||2.

Therefore, if sup
D∈Dc

RD < ∞ and inf
D∈Dc

rD > 0, then the statement of Proposition 2.1 is

again valid.

Proof. Since both fD and λD are fixed, we again drop them from our notations. Applying
MARK and (2.28) yields

E2
Di

(uDi−1
) ≤ γ̄ E2

Di−1
(uDi−1

). (2.29)

By virtue of (2.27), Young’s inequality, and (2.29), we have that for any ζ > 0,

E2
Di

(uDi) ≤ (1 + ζ)E2
Di

(uDi−1) + (1 + ζ−1)r−1
Di
|||uDi − uDi−1 |||2

≤ (1 + ζ)γ̄ E2
Di−1

(uDi−1) + (1 + ζ−1)r−1
Di
|||uDi − uDi−1 |||2.

By multiplying this inequality by
rDi

(1+ζ−1) , substituting ζ = γ̄−
1
2 − 1, and adding to

Pythagoras’ identity (2.24), we obtain

|||u−uDi |||2+(1−
√
γ̄)rDi E

2
Di

(Di, uDi) ≤ |||u−uDi−1 |||2+
√
γ̄(1−

√
γ̄)rDi E

2
Di−1

(Di−1, uDi−1).

We resort to (2.26) to bound the right-hand side as follows in terms of an arbitrary
β ∈ [0, 1]

β|||u− uDi−1
|||2 +

(
(1− β)

RDi−1

(1−
√
γ̄)rDi

+
√
γ̄
)

(1−
√
γ̄)rDi

E2
Di−1

(Di−1, uDi−1
).

We now observe that the following function of β attains its minimum at β∗

max
β

{
β,
(

(1− β)
RDi−1

(1−
√
γ̄)rDi

+
√
γ̄
)}
≥ β∗ := 1− 1−

√
γ̄

1 +
RDi−1

(1−
√
γ̄)rDi

.

The proof of the first statement follows from 1−
√
γ̄

1+
RDi−1

(1−
√
γ̄)rDi

≥ (1−
√
γ̄)2

2

rDi
RDi−1

. The second

statement is a direct consequence of (2.26), and the final statement follows directly from
the first two.

3 The module hp-NEARBEST

In this section we describe briefly the algorithm and theory recently developed by P. Binev
for hp-adaptive tree approximation [5], which constitutes the building block behind the
module hp-NEARBEST.
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3.1 h-Adaptive Tree Approximation

We first review the algorithm designed and studied by Binev and DeVore [7] for h-adaptive
tree approximation. Since, in this subsection, the local approximation spaces do not
depend on d, temporarily we identify an element D with the element domain KD, and D

with the h-partition K(D), the latter being an element of K.
Recall that for any K ∈ K, the set of all K ∈ K together with their ancestors form a

tree T, being a subtree of the master tree K. Conversely, given such a subtree T, the set
L(T) of its leaves is a partition in K.

For the moment, we will assume that the master tree K has only one root. In the next
subsection, in Remark 3.1, we will deal with the case that it has possibly multiple roots.

For any K ∈ K, let eK ≥ 0 be some local h-error functional. That means that it
satisfies the key property (2.2), that in this h-element setting reduces to subadditivity:

eK′ + eK′′ ≤ eK
where K ′ and K ′′ denote the children of K. The corresponding global h-error functional
reads

EK =
∑
K∈K

eK ∀K ∈ K.

The notion of a best h-partition w.r.t. this error functional is now apparent: for N ∈ N,
let

σN := inf
#K≤N

EK .

This quantity gives the smallest error achievable with h-partitions K with cardinality
#K ≤ N . In spite of the inf being a min, because the minimization is over a finite set,
computing a tree that realizes the min has exponential complexity.

A fundamental, but rather surprising, result of Binev and DeVore shows that a near-
best h-adaptive tree is computable with linear complexity. A key ingredient is a modified
local h-error functional ẽK defined as follows for all K ∈ K:

• ẽK := eK if K is the root;

• 1
ẽK

:= 1
eK

+ 1
eK∗

where K∗ is the parent of K and eK 6= 0; otherwise ẽK = 0.

This harmonic mean has the following essential properties: if eK � eK∗ , then ẽK ≈ eK ,
whereas if eK ≈ eK∗ , then ẽK ≈ 1

2eK . This means that ẽK penalizes the lack of success
in reducing the error from K∗ to K up to a factor 1

2 , provided eK = eK∗ , and always
1
2 ≤

ẽK
eK

< 1.
The practical method consists of applying a greedy algorithm based on {ẽK}K∈K: given

an h-partition KN , with #KN = N , construct KN+1 by bisecting an element domain
K ∈ K with largest ẽK . It is worth stressing that if lack of error reduction persists, then
the modified error functional ẽK diminishes exponentially and forces the greedy algorithm
to start refining somewhere else.

For eK being the squared L2-error in the best polynomial approximation on K of
a function v, this may happen when v has local but strong singularity. The simple,
but astute idea to operate on the modified error functionals is responsible alone for the
following key result.

Theorem 3.1 (instance optimality of h-trees [7]). Let the master tree K have one sin-
gle root. The sequence of h-partitions (KN )N∈N given by the greedy algorithm based on
(ẽK)K∈K provides near-best h-adaptive tree approximations in the sense that

EKN
≤ N

N − n+ 1
σn ∀n ≤ N.

The complexity for obtaining KN is O(N).
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We can interpret Theorem 3.1 as follows: given N let n = dN2 e be the ceiling of N/2,
whence N − n+ 1 ≥ N/2 and

EKN
≤ 2σdN2 e

. (3.1)

3.2 hp-Adaptive Tree Approximation

In this subsection, we return to hp-approximations. An element D is a pair (K, d) =
(KD, dD), with K being the element domain, and d an integer. The local error functional
eD ≥ 0 is required to satisfy (2.2), i.e., eK′,d + eK′′,d ≤ eK,d when K ′,K ′′ are the children
of K, and eK,d′ ≤ eK,d when d′ ≥ d. The corresponding global hp-error functional reads
as

ED =
∑
D∈D

eD ∀D ∈ D.

For N ∈ N, we set
σN := inf

#D≤N
ED

where #D =
∑
D∈D dD.

In our applications, dD is proportional to the dimension of the polynomial approxi-
mation space that is applied on KD so that #D is proportional to the dimension of the
global hp-finite element space. More precisely, given d, we take p = p(d) as the largest
integer for which

dimPp−1(K) =

(
n+ p− 1

p− 1

)
≤ d, (3.2)

and corresponding to D = (K, d), we choose Pp(d)(K) as approximation space. Conse-
quently, for n > 1, eK,d+1 = eK,d whenever p(d+ 1) = p(d).

We describe an algorithm, designed by Binev [4, 5], that finds a near-best hp-partition.
It builds two trees: a ghost h-tree T, similar to that in Sect. 3.1 but with degree dependent
error and modified error functionals, and a subordinate hp-tree P. The second tree is
obtained by trimming the first one and increasing d as described in the sequel.

Let K ∈ K, and let T denote its corresponding tree. For any K ∈ T, we denote by
T(K) the subtree of T emanating from K, and let d(K,T) be the number of leaves of T(K),
i.e.

d(K,T) = #L(T(K)). (3.3)

The tree-dependent local hp-error functionals eK(T) are defined recursively starting
from the leaves and proceeding upwards as follows:

• eK(T) := eK,1 provided K ∈ L(T),

• eK(T) := min{eK′(T) + eK′′(T), eK,d(K,T)} otherwise,

where K ′,K ′′ ∈ T are the children of K. This local functional carries the information
whether it is preferable to enrich the space (increase d) or refine the element (decrease
h) to reduce the current error in K. The subordinate hp-tree P is obtained from T by
eliminating the subtree T(K) of a node K ∈ T whenever

eK(T) = eK,d(K,T).

This procedure is depicted in Figure 3.2.
The hp-tree P gives rise to an hp-partition D, namely the collection of hp-elements

D = (K, d) with K a leaf of P and d = d(K,T). We have that #D = #K, and D

minimizes E
D̃

over all D̃ ∈ D with K(D̃) ≤ K and dD ≤ d(KD,T) for all D ∈ D̃, whence

#D̃ ≤ #K.
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Figure 1: Ghost h-tree T (left) with 10 leaves (#L(T) = 10). The label of each node K is d(K,T).
Subordinate hp-tree P (right) resulting from T upon trimming 3 subtrees and raising the values of d
of the interior nodes of T, now leaves of P, from 1 to 2, 3, and 2 respectively.

This describes the trimming of the h-tree T, but not how to increase the total cardi-
nality of T. To grow T, P. Binev uses a modified local hp-error functional and a greedy
algorithm that selects the leaf of T that would lead to the largest reduction of the hp-
error in P. We refer to [5] for the construction of the full algorithm for hp-adaptive
approximation.

Theorem 3.2 (instance optimality of hp-tree [4, 5]). Let the master tree K have one single
root. For all N ∈ N, the algorithm sketched above constructs an hp-tree PN subordinate
to a ghost h-tree TN such that the resulting hp-partition DN has cardinality #DN = N
and global hp-error functional

EDN
≤ 2N

N − n+ 1
σn ∀n ≤ N.

In addition, the cost of the algorithm for obtaining DN is bounded by O
(∑

K∈TN d(K,TN )
)
,

and varies from O(N logN) for well balanced trees to O(N2) for highly unbalanced trees.

Binev’s algorithm gives a routine hp-NEARBEST that satisfies the assumptions

made in Subsect. 2.2 for any B > 1 and b =
√

1
2 (1− 1

B ):

Corollary 3.1. Let B > 1. Given ε > 0, let D ∈ D be the first partition in the sequence

produced by Binev’s algorithm for which E
1
2

D ≤ ε. Then #D ≤ Bmin{#D̂ : D̂ ∈ D, E
1
2

D̂
≤√

1
2 (1− 1

B ) ε}.

Proof. Let D = DN , i.e., D is the Nth partition in the sequence, and #D = N . For N = 1

the statement is true, so let N > 1. Suppose there exists a D̂ ∈ D with E
1
2

D̂
≤
√

1
2 (1− 1

B ) ε

and N > B#D̂. Then, with n := #D̂, we have EDN−1
≤ 2(N−1)

N−1−n+1σn ≤
2(N−1)

N−1−n+1 E
D̂
≤

2(N−1)
N−1−n+1

1
2 (1− 1

B )ε2. From 2(N−1)
N−1−n+1

1
2 (1− 1

B ) ≤ 1, being a consequence of N ≥ Bn and

B ≥ 1, we get a contradiction with D being the first one with E
1
2

D ≤ ε.
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Remark 3.1. In order to deal with the case that the master tree K has R > 1 roots, the
following approach can be followed.

We unify the R roots pairwise creating new element domains, each one being the union
of two roots. When R > 2, this process has to be repeated until only one element domain
remains, which will the new, single root. Obviously, this applies only when R is a power
of 2. In the other case, we have to introduce at most dlog2Re− 1 (empty) virtual element
domains (and, formally, infinite binary trees of virtual element domains rooted at them).

We denote the extended, single rooted master tree by K̂.
Next, we extend the definition of eK,d as follows. At first we give a meaning to eK,0 for

each element domain K ∈ K. Typically, for d ∈ N, eK,d has the meaning of the squared
error in the approximation of a quantity from a space of dimension d. Then a natural
definition of eK,0 is that of the squared error in the zero approximation.

Considering now the elements in K̂ \ K, i.e., the newly created element domains, we
distinguish between virtual and non-virtual element domains. For each virtual element
domain, we set eK,d := 0 for any d ∈ N∪ {0}. Finally, for each newly created non-virtual
element domain K, being the union of K ′ and K ′′ (one of them possibly being a virtual
element domain), for d ∈ N ∪ {0} recursively we define

eK,d := min
{d′,d′′∈N∪{0} : d′+d′′≤d}

eK′,d′ + eK′′,d′′ .

Note that in the minimum at the right hand side d′ or d′′ can or has to be zero. In that
case, eK′,d′ + eK′′,d′′ has the interpretation of the squared error in an approximation on
K that is zero on K ′ or K ′′.

It is easily checked that the error functional eK,d for (K, d) ∈ K̂×N satisfies (2.2), and
Theorem 3.2 and Corollary 3.1 apply.

We close the discussion of the module hp-NEARBEST with the observation that
in dimensions n > 1, Binev’s algorithm produces hp-partitions that are generally non-
conforming. Since conformity is required by the module REDUCE, a post-processing
step which makes the output partition conforming is required. The implementation of
such a procedure in dimension 2, and the analysis of its complexity, will be discussed in
Sect. 5.1.

4 A self-adjoint elliptic problem in 1D

In this section we apply the abstract framework introduced in Sect. 2 to a one-dimensional
self-adjoint elliptic problem.

4.1 The continuous problem and its hp discretization

Let Ω := (0, 1). Given f1, f2 ∈ L2(Ω) and ν, σ ∈ L∞(Ω) satisfying

0 < ν∗ ≤ ν ≤ ν∗ <∞ and 0 ≤ σ ≤ σ∗ <∞ (4.1)

for some constants ν∗, ν
∗ and σ∗, we consider the following model elliptic problem

−(νu′)′ + σu = f1 + f ′2 in Ω ,

u(0) = u(1) = 0 ,
(4.2)

which can be written as in (2.1) setting λ = (ν, σ), f = f1 + f ′2 ∈ H−1(Ω) and

Aλu := −(νu′)′ + σu ∈ L(H1
0 (Ω), H−1(Ω)).

18



Equivalently, u ∈ H1
0 (Ω) =: V , equipped with the norm | · |H1(Ω), satisfies

aλ(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω), (4.3)

where the bilinear form aλ : H1
0 (Ω)×H1

0 (Ω)→ R and the linear form f : H1
0 (Ω)→ R are

defined as

aλ(u, v) :=

∫
Ω

(νu′v′ + σuv) dx , 〈f, v〉 =

∫
Ω

(f1v − f2v
′) dx .

In view of the approximation of the operator Aλ we introduce the metric space

Λ̄ := {λ̄ = (ν̄, σ̄) ∈ L∞(Ω)× L∞(Ω) : ν̄∗ ≤ ν̄ ≤ ν̄∗, − σ̄∗ ≤ σ̄ ≤ σ̄∗}

where ν̄∗, ν̄
∗, σ̄∗, σ̄

∗ are positive constants defined as follows. Suppose that the pair (ν̄, σ̄)
approximates (ν, σ) with error

‖ν − ν̄‖L∞(Ω) ≤
ν∗
2
, ‖σ − σ̄‖L∞(Ω) ≤

ν∗
2

; (4.4)

then it is easily seen that

ν̄∗ :=
ν∗
2
≤ ν̄ ≤ ν∗ +

ν∗
2

=: ν̄∗, −σ̄∗ := −ν∗
2
≤ σ̄ ≤ σ∗ +

ν∗
2

=: σ̄∗.

Furthermore, using the Poincaré inequality ‖v‖2L2(Ω) ≤
1
2 |v|

2
H1(Ω) we have

(ν̄∗ −
1

2
σ̄∗)|v|2H1(Ω) ≤ aλ̄(v, v) ≤ (ν̄∗ +

1

2
σ̄∗)|v|2H1(Ω)

for all v ∈ H1
0 (Ω), λ̄ ∈ Λ̄. We conclude that setting α∗ := ν̄∗ − 1

2 σ̄∗ = 1
4ν∗ and α∗ =

ν̄∗ + 1
2 σ̄
∗ = ν∗ + 1

2σ
∗ + 3

4ν∗ it holds
√
α∗|v|H1(Ω) ≤ |||v|||λ̄ ≤

√
α∗|v|H1(Ω) ∀v ∈ H1

0 (Ω), ∀λ̄ ∈ Λ̄ (4.5)

with |||v|||2
λ̄

:= aλ̄(v, v). The space Λ will be a subset of Λ̄ containing the coefficients λ of
the problem (2.1); it will be defined later on.

Concerning the definition of the space F containing the right-hand side, we write
f = (f1, f2) ∈ L2(Ω)× L2(Ω) =: F (note that different couples in F may give rise to the
same f ∈ H−1(Ω)).

We now discuss the hp-discretization of (4.2). To this end, we specify that the binary
master tree K is obtained from an initial partition, called the ‘root partition’, by applying
successive dyadic subdivisions to all its elements. Later, cf. Property 4.1, it will be needed
to assume that this initial partition is sufficiently fine. Furthermore, with reference to the
abstract notation of Section 2, given any (K, d) ∈ K×N we have p(d) = d. In consideration
of this simple relation, throughout this section we will use the notation (K, p) instead of
(K, d), i.e., the second parameter of the couple will identify a polynomial degree on the
element K. We set

VK,p = Pp(K), FK,p = Pp−1(K)× Pp(K),

ΛK,p = {λ̄ = (ν̄, σ̄) ∈ Pp+1(K)× Pp+1(K) : ν̄∗ ≤ ν̄ ≤ ν̄∗, − σ̄∗ ≤ σ̄ ≤ σ̄∗}.

Thus
V cD = {v ∈ H1

0 (Ω) : v|KD ∈ PpD (KD) ∀D ∈ D}
will be the discretization space associated with the hp-partition D. Furthermore, we have
FD ⊂ F and ΛD ⊂ Λ̄, with F and Λ̄ defined above. The difference in polynomial degrees
between the various components of the approximation spaces for data is motivated by
the need of balancing the different terms entering in the local error estimators, see (4.18)
below.

At this point, we have all the ingredients that determine a Galerkin approximation as
in (2.19).
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4.2 Computable a posteriori error estimator

Given data (fD, λD) ∈ FD × ΛD, let uD(fD, λD) ∈ V cD be the solution of the Galerkin
problem (2.19) with such data. To it, we associate the residual r = r(uD, fD, λD) ∈
H−1(Ω), defined by

〈r, v〉 = 〈fD, v〉 − aλD
(uD(fD, λD), v) ∀v ∈ H1

0 (Ω) , (4.6)

and satisfying 〈r, vD〉 = 0 for all vD ∈ V cD. The dual norm of the residual is a natural a
posteriori error estimator, since one has

1√
α∗
‖r‖H−1(Ω) ≤ |||u(fD, λD)− uD(fD, λD)|||λD

≤ 1
√
α∗
‖r‖H−1(Ω) ; (4.7)

in one dimension, such norm can be expressed in terms of independent contributions
coming from the elements KD of the partition D, which are easily and exactly computable
if, e.g., the residual is locally polynomial. To see this, let us introduce the subspace of
H1

0 (Ω) of the piecewise linear functions on D, i.e.,

V LD = {v ∈ H1
0 (Ω) | v|KD ∈ P1(KD) ∀D ∈ D} ⊆ V cD

and let us first notice that H1
0 (Ω) admits the orthogonal decomposition (with respect to

the inner product associated with the norm |·|H1(Ω))

H1
0 (Ω) = V LD ⊕

⊕
D∈D

H1
0 (KD) ,

where functions in H1
0 (KD) are assumed to be extended by 0 outside the interval KD;

indeed, for any v ∈ V , we have the orthogonal splitting

v = vL +
∑
D∈D

vKD ,

where vL ∈ V LD is the piecewise linear interpolant of v on D and vKD = (v − vL)|KD ∈
H1

0 (KD). Recalling that 〈r, vL〉 = 0 for all vL ∈ V LD , it is easily seen that the following
expression holds:

‖r‖2H−1(Ω) =
∑
D∈D

‖rKD‖2H−1(KD) , (4.8)

where rKD denotes the restriction of r to H1
0 (KD).

The computability of the terms on the right-hand side is assured by the following
representation: for any D ∈ D, one has

‖rKD‖2H−1(KD) = |zKD |2H1(KD),

where zKD ∈ H1
0 (KD) satisfies

(z′KD , v
′)L2(KD) = 〈rKD , v〉 ∀v ∈ H1

0 (KD). (4.9)

Writing uD = uD(fD, λD) and KD = (a, b), and noting that, since f2,D is a polynomial
in KD,

〈rKD , v〉 =

∫
KD

(
f1,D + f ′2,D + (νDu

′
D)′ − σDuD

)
v dx = (rKD , v)L2(KD), (4.10)

it is easily seen that the solution zKD has the following analytic expression

zKD (x) =

∫
KD

G(x, y)rKD (y)dy , (4.11)
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where G(x, y) :=

{
(a−x)(b−y)

b−a x < y
(a−y)(b−x)

b−a x > y
is the Green’s function of our local problem (4.9).

Thus, the squared norm ‖rKD‖2H−1(KD) of the local residual can be explicitly computed,
since rKD is a polynomial.

Summarizing, defining for any D ∈ D the local error estimator

η2
D,D(uD(fD, λD), fD, λD) := |zKD |2H1(KD) (4.12)

and defining the global error estimator as in (2.20), we have by (4.7)

1√
α∗

ED(uD(fD, λD), fD, λD) ≤ |||u(fD, λD)− uD(fD, λD)|||λD

≤ 1
√
α∗

ED(uD(fD, λD), fD, λD),
(4.13)

which in particular implies the reliability assumption (2.21).

4.3 The module REFINE

Hereafter, we present a realization of the module REFINE, that guarantees the discrete
efficiency property (2.22), hence the contraction property of REDUCE. For every D ∈
M ⊆ D the module raises the local polynomial degree to some higher value, whereas for
D ∈ D\M the local polynomial degree remains unchanged. No h-refinement is performed.

To be precise, consider an element D = (KD, pD) ∈ M. Suppose that the local
polynomial degree of the data is related to some p̂D, in the sense that

f1,D|KD ∈ Pp̂D−1(KD), f2,D|KD ∈ Pp̂D (KD), νD|KD , σD|KD ∈ Pp̂D+1(KD).

Recall that uD = uD(fD, λD) satisfies uD|KD ∈ PpD (KD). Then it is easily seen that
the residual r = r(uD, fD, λD) is such that its restriction rKD to KD is a polynomial of
degree p̂D + pD + 1, while the function zKD defined in (4.9) is a polynomial of degree

p̄D := p̂D + pD + 3 . (4.14)

Therefore, the module REFINE builds D̄ = D̄(M) ∈ Dc = D with D̄(M) ≥ D as follows:

D̄ = {D̄} with D̄ =

{
(KD, p̄D) for D ∈M

D for D ∈ D \M.

In order to prove (2.22), consider a marked element D ∈ M. Setting P0
p̄D (KD) :=

Pp̄D (KD) ∩H1
0 (KD) and recalling that zKD ∈ P0

p̄D (KD) we have

ηD,D(uD, fD, λD) = |zKD |H1(KD) = sup
w∈P0

p̄D
(KD)

(z′KD , w
′)L2(KD)

|w|H1(KD)
= sup
w∈P0

p̄D
(KD)

〈rKD , w〉
|w|H1(KD)

.

(4.15)
On the other hand, the Galerkin solution uD̄ = uD̄(fD, λD) is such that its resid-
ual r̄ = r(uD̄, fD, λD) satisfies 〈r̄KD , w〉 = 0 for all w ∈ P0

p̄D (KD). Thus, denoting
by aλD,KD (·, ·) the restriction of the form aλD

(·, ·) to H1(KD) × H1(KD), and setting
|||v|||2λD,KD

= aλD,KD (v, v), we get

ηD,D(uD, fD, λD) = sup
w∈P0

p̄D
(KD)

〈rKD − r̄KD , w〉
|w|H1(KD)

= sup
w∈P0

p̄D
(KD)

aλD,KD (uD − uD̄, w)

|w|H1(KD)
≤
√
α∗|||uD − uD̄|||λD,KD .
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Squaring and summing-up over all D ∈M, we obtain

E2
D(M, uD, fD, λD) ≤ α∗|||uD − uD̄|||2λD

, (4.16)

which immediately implies (2.22).

Remark 4.1. The choice of the error estimator and the refinement strategy indicated
above guarantees that the reliability assumption (2.21) and the efficiency assumption (2.22)
are fulfilled, hence the conclusions of Proposition 2.1 hold true. Actually, one can be more
precise, since using (4.13) and (4.16) and following the steps of the proof of Proposition
2.1, we get that the sequence of Galerkin approximations built by a call of REDUCE
satisfies the contraction property (2.25) with contraction factor κ =

√
1− α∗

α∗ θ.

4.4 Convergence and optimality properties of hp-AFEM

In this section we discuss the convergence and optimality properties of our adaptive al-
gorithm hp-AFEM in the present one-dimensional setting. To this end, we first specify
the abstract functional framework introduced in Sect. 2. We already set V := H1

0 (Ω) and
F := L2(Ω)× L2(Ω). Concerning the space Λ containing the coefficients of the operator,
we assume stronger regularity than just L∞(Ω) in order to guarantee that the piecewise
polynomial approximations of the coefficients still define a coercive variational problem.

To be precise, from now on we assume that λ = (ν, σ) belongs to the space

Λ := {λ = (ν, σ) ∈ H1(Ω)×H1(Ω) : ν∗ ≤ ν ≤ ν∗, 0 ≤ σ ≤ σ∗}. (4.17)

Here, in view of (2.2), we choose to work with a smoothness space of Sobolev type with
summability index 2, so that squared best approximation errors are non-increasing under
h-refinements. We notice that it would be sufficient to require the coefficients to be
piecewise H1 on the initial partition. We decide to work under stronger assumptions just
for the sake of simplicity.

We now define the projectors QK,p introduced in Sect. 2.1. To this end, let Π0
K,p ∈

L(L2(K),Pp(K)) be the L2-orthogonal projection and Π1
K,p ∈ L(H1(K),Pp(K)) be the

H1-type orthogonal projection defined as follows: if v ∈ H1(K) with K = [a, b] then

(
Π1
K,pv

)
(x) := c+

∫ x

a

(
Π0
K,p−1v

′) (t) dt

where the constant c is such that
∫
K

Π1
K,pv dx =

∫
K
v dx.

Then we define QK,p ∈ L(V ×F×Λ,Pp(K)×(Pp−1(K)×Pp(K))×(Pp+1(K)×Pp+1(K))
by setting

QK,p(v, f, λ) := (Π1
K,pv|K , Π0

K,p−1f1|K , Π0
K,pf2|K , Π1

K,p+1ν|K , Π1
K,p+1σ|K).

At last, we define the local error functionals eK,p. We set

eK,p(v, f, λ) := |(I−Π1
K,p)v|K |2H1(K) + δ−1osc2

K,p(f, λ) (4.18)

where δ > 0 is a positive penalization parameter to be chosen later and

osc2
K,p(f, λ) := ‖h

p
(I−Π0

K,p−1)f1|K‖2L2(K) + ‖(I−Π0
K,p)f2|K‖2L2(K)

+ |(I−Π1
K,p+1)ν|K |2H1(K) + |(I−Π1

K,p+1)σ|K |2H1(K)

(4.19)

where h = |K|. Note that the choice of polynomial degrees is such that for smooth data
the four addends above scale in the same way with respect to the parameters h and p.
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Furthermore, the data oscillation that appears in (4.18) is of higher order with respect to
the projection error for the function v.

It is straightforward to check the validity of (2.2). We recall that given a partition
D ∈ D, we denote by fD = (f1,D, f2,D) and λD = (νD, σD) the piecewise polynomial
function obtained by projecting f and λ, respectively, element by element as indicated
above. Note that while fD ∈ FD ⊂ F , λD need not belong to Λ̄. Given a partition D ∈ D,
we will set

osc2
D(f, λ) :=

∑
D∈D

osc2
D(f, λ),

where osc2
D(f, λ) = osc2

KD,pD
(f, λ).

The following result provides a uniform bound on the approximation error of the
coefficients of the operator, assuring that λD ∈ Λ̄.

Property 4.1. Let D̂ be the root partition with polynomial degree equal to one on each
element domain. Assume that K(D̂) is sufficiently fine for the given data λ ∈ Λ, in the

sense that for each K ∈ K(D̂) it holds

|(I−Π1
K,1)ν|K |H1(K) ≤

ν∗
2
, |(I−Π1

K,1)σ|K |H1(K) ≤
ν∗
2
.

Then for any D ∈ D we have (4.4), i.e.,

‖ν − νD‖L∞(Ω) ≤
ν∗
2
, ‖σ − σD‖L∞(Ω) ≤

ν∗
2
.

Consequently, λD ∈ ΛD ⊂ Λ̄.

Proof. For any D = (KD, pD), let K̂ ∈ K(D̂) the element of the root partition containing
KD. Then, we have

|(I−Π1
KD,pD+1)ν|KD |H1(KD) ≤ |(I−Π1

K̂,1
)ν|K̂ |H1(K̂) ≤

ν∗
2
.

On the other hand, set ψ = (I − Π1
KD,pD+1)ν|KD ; recalling that ψ has zero mean-value

in KD, it vanishes at some point x0 ∈ KD since it is a continuous function. Writing
ψ(x) = ψ(x0) +

∫ x
x0
ψ′(t)dt for any x ∈ KD yields

|ψ(x)| ≤ |x− x0|1/2‖ψ′‖L2(KD) ≤ |KD|1/2|ψ|H1(KD) ,

whence the result immediately follows after observing |KD| ≤ 1.

We now focus on the abstract assumptions (2.7)-(2.9).

Proposition 4.1. In the present setting, assumptions (2.8)-(2.9) hold true. Furthermore,
if δ is chosen sufficiently small, then (2.7) is fulfilled.

Proof. We start by verifying condition (2.9). For any v, w ∈ H1
0 (Ω) and for any D ∈ D

and any D ∈ D, it holds that

|(I−Π1
KD,pD )w|KD |H1(KD) = inf

ϕ∈PpD (KD)
|w|KD − ϕ|H1(KD)

≤ inf
ϕ∈PpD (KD)

|v|KD − ϕ|H1(KD) + |(v − w)|KD |H1(KD)

= |(I−Π1
KD,pD )v|KD |H1(KD) + |(v − w)|KD |H1(KD).
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Two applications of a triangle inequality show that∣∣∣ED(v, f, λ)
1
2 − ED(w, f, λ)

1
2

∣∣∣
≤

(∑
D∈D

((∣∣(I−Π1
D)v|KD

∣∣2
H1(KD)

+ δ−1osc2
D(f, λ)

) 1
2

−
(∣∣(I−Π1

D)v|KD
∣∣2
H1(KD)

+ δ−1osc2
D(f, λ)

) 1
2

)2
) 1

2

≤

(∑
D∈D

(∣∣(I−Π1
D)v|KD

∣∣
H1(KD)

−
∣∣(I−Π1

D)v|KD
∣∣
H1(KD)

)2
) 1

2

≤ ‖v − w‖V ,

i.e., (2.9) holds true with constant C2 = 1.

Let us now verify assumption (2.8). Note that u(fD, λD) is well defined since λD ∈ Λ.
Setting for simplicity u = u(f, λ) and ū = u(fD, λD), it is straightforward to check that
u− ū satisfies for any v ∈ V

aλ(u− ū, v) = 〈f − fD, v〉 −
∫

Ω

(ν − νD)ū′v′ dx−
∫

Ω

(σ − σD)ūv dx (4.20)

whence, using the Poincaré inequality ‖v‖L2(Ω) ≤ 2−
1
2 |v|H1

0 (Ω), and selecting v = u − ū,
we obtain

α∗|u− ū|H1(Ω) ≤ ‖f1 − f1,D‖H−1(Ω) + ‖f2 − f2,D‖L2(Ω)

+

(
‖ν − νD‖L∞(Ω) +

1

2
‖σ − σD‖L∞(Ω)

)
|ū|H1(Ω). (4.21)

We now bound the quantity on the right hand side of (4.21) in terms of osc2
D(f, λ). To

this end, starting with the first term, we have for any v ∈ H1
0 (Ω)

(f1 − f1,D, v)L2(Ω) =
∑
D∈D

((I−Π0
KD,pD−1)f1|KD , v)L2(KD)

=
∑
D∈D

((I−Π0
KD,pD−1)f1|KD , (I−Π0

KD,pD−1)v|KD )L2(KD)

≤
∑
D∈D

‖(I−Π0
KD,pD−1)f1|KD‖L2(KD)‖(I−Π0

KD,pD−1)v|KD )‖L2(KD)

(4.22)

By the classical hp-error estimate for the orthogonal L2-projection upon PpD (KD) (see,

e.g., [39, Corollary 3.12] ) we have ‖(I − Π0
KD,pD−1)v|KD )‖L2(KD) ≤ Ĉ hD

pD
|v|H1(KD) for

some constant Ĉ > 0. Thus, we get

‖f1 − f1,D‖H−1(Ω) ≤ Ĉ

(∑
D∈D

‖hD
pD

(I−Π0
KD,pD−1)f1|KD‖

2
L2(KD)

) 1
2

. (4.23)

Concerning the second term on the right hand side of (4.21), we simply write it as

‖f2 − f2,D‖L2(Ω) =

(∑
D∈D

‖(I−Π0
KD,pD )f2|KD‖

2
L2(KD)

) 1
2

. (4.24)
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Coming to the third and fourth terms, we first observe that

|ū|H1(Ω) ≤
1

α∗

(
2−

1
2 ‖f1,D‖L2(Ω) + ‖f2,D‖L2(Ω)

)
≤ 1

α∗

(
2−

1
2 ‖f1‖L2(Ω) + ‖f2‖L2(Ω)

)
=: C(f),

(4.25)

since fi,D, i = 1, 2 is locally an L2-projection of fi. On the other hand, using the same
argument as in the proof of Property 4.1 we get

‖ν − νD‖L∞(Ω) = max
D∈D

‖(I−Π1
KD,pD+1)ν|KD‖L∞(KD)

≤ max
D∈D

|KD|
1
2 |(I−Π1

KD,pD+1)ν|KD |H1(KD)

≤

(∑
D∈D

|(I−Π1
KD,pD+1)ν|KD |

2
H1(KD)

) 1
2

. (4.26)

A similar result holds for ‖σ − σD‖L∞(Ω). Substituting (4.23)-(4.26) into (4.21) and
recalling (4.19) we get

α∗|u− ū|H1(Ω) ≤
(

3

2
C(f) + Ĉ + 1

)(∑
D∈D

osc2
D(f, λ)

) 1
2

. (4.27)

Thus, setting C̄ := 1
α∗

(
3
2C(f) + Ĉ + 1

)
and recalling (4.18), we conclude that

|u(f, λ)− u(fD, λD)|H1(Ω) ≤ C̄δ
1
2

(∑
D∈D

eD(w, f, λ)

) 1
2

= C̄δ
1
2ED(w, f, λ)

1
2 (4.28)

for any w ∈ H1
0 (Ω). This proves that (2.8) is fulfilled with C1 = C̄δ

1
2 . Finally, choosing

any δ such that C1 < b we fulfill (2.7).

We conclude that choosing δ sufficiently small we may apply Theorem 2.1. This
leads to the conclusion that for solving (4.2), where f = (f1, f2) ∈ L2(Ω) × L2(Ω), and

λ = (ν, σ) ∈ Λ defined in (4.17), and with a root partition D̂ that is sufficiently fine such
that it satisfies Property 4.1, hp-AFEM is an instance optimal reducer, in the sense of
Theorem 2.1, of the error functional

ED(u(f, λ), f, λ) =
∑
D∈D

inf
ϕ∈PpD (KD)

|u(f, λ)|KD − ϕ|
2
H1(KD) + δ−1osc2

D(f, λ),

over all D ∈ D, where osc2
D(f, λ) is defined in (4.19).

Finally, we consider assumption (2.14). At first, we note that in one dimension all
partitions are trivially conforming, i.e., Dc = D. Next, we observe that the following
result holds.

Lemma 4.1. For any D ∈ D and any v ∈ H1
0 (Ω) there holds

inf
wD∈V cD

|v − wD|2H1(Ω) =
∑
D∈D

inf
ϕ∈PpD (KD)

|v − ϕ|2H1(KD). (4.29)
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Proof. For D ∈ D, let qD ∈ PpD (KD) be such that |v − qD|H1(KD) = infϕ∈PpD (KD) |v −
ϕ|H1(KD). Define g ∈ L2(Ω) by g|KD = q′D for all D ∈ D, and wD ∈ H1(Ω) by wD(x) =∫ x

0
g(s)ds. From

∫
KD

q′D =
∫
KD

v′, we infer that wD(0) = wD(1) = 0, and so wD ∈ V cD.

Moreover, |v − wD|2H1(Ω) =
∑
D∈D |v − qD|2H1(KD).

Observing that

inf
ϕ∈PpD (KD)

|v − ϕ|2H1(KD) = |(I−Π1
KD,pD )v|KD |

2
H1(KD) ≤ eD(v, f, λ)

for any f ∈ F , λ ∈ Λ, we obtain the following result.

Proposition 4.2. For all D ∈ D and all v ∈ H1
0 (Ω), one has

inf
wD∈V cD

|v − wD|H1(Ω) ≤ inf
(f,λ)∈F×Λ

ED(v, f, λ)
1
2 ,

i.e., for C := I assumption (2.14) is fulfilled with C3,D = 1.

As a consequence, (2.16) and (2.18) are fulfilled with C3 = C4 = 1. Since hp-AFEM
calls the routine REDUCE with the fixed value % = µ

1+(C1+1)ω , and by Proposition

2.1 the number of iterations in REDUCE is bounded by O(log %−1), we are guaranteed
that the number of iterations performed by REDUCE at any call from hp-AFEM is
uniformly bounded. On the other hand, recalling (4.14), for each iteration in REDUCE
the polynomial degree in each marked element is increased by a constant value depending
only on the local polynomial degree in the input partition. Thus, even in the worst-case
scenario that at each iteration all elements are marked for enrichment, we conclude that
the output partition of REDUCE has a cardinality which is bounded by a fixed multiple
of the one of the input partition, which is optimal as it is produced by hp-NEARBEST.

Another obvious, but relevant application of Lemma 4.1 is that hp-AFEM is an
instance optimal reducer over D ∈ D of the error functional written in the more common
form

inf
wD∈V cD

|u(f, λ)− wD|2H1(Ω) + δ−1osc2
D(f, λ).

5 The Poisson problem in two dimensions

On a polygonal domain Ω ⊂ R2, we consider the Poisson problem{
−4u= f in Ω,

u= 0 on ∂Ω,

in standard variational form. We consider right-hand sides f ∈ L2(Ω), and so take V =
H1

0 (Ω), F = L2(Ω), and Λ = ∅. We equip H1
0 (Ω) with | · |H1(Ω), and H−1(Ω) with the

corresponding dual norm.
Let K0 be an initial conforming triangulation of Ω̄, and let in each triangle in K0 one

of its vertices be selected as its newest vertex, in such a way that if an internal edge of
the triangulation is opposite to the newest vertex of the triangle on one side of the edge,
then it is also opposite to the newest vertex of the triangle on the other side. As shown
in [6, Lemma 2.1], such an assignment of the newest vertices can always be made.

Now let K be the collection of all triangulations that can be constructed from K0

by newest vertex bisection, i.e., a repetition of bisections of triangles by connecting their
newest vertex by the midpoint of the opposite edge. With each bisection, two new triangles
are generated, being ‘children’ of the triangle that was just bisected, with their newest
vertices being defined as the midpoint of the edge that has been cut. The set of all triangles
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that can be produced in this way is naturally organized as a binary master tree K, having
as roots the triangles from K0. The triangles from K are uniformly shape regular. The
collection K of triangulations of Ω is equal to the sets of leaves of all possible subtrees of
K.

For K ∈ K, we set VK = H1(K) and FK = L2(K), and for d ∈ N, we set

VK,d := Pp(d)(K), FK,d := Pp(d)−1(K), (5.1)

with, as in Sect. 2.1, p = p(d) being the largest value in N such that dimPp−1(K) =(
2+p−1
p−1

)
≤ d. For example, for d = 1, . . . , 10, we have p = 1, 1, 2, 2, 2, 3, 3, 3, 3, 4.

Remark 5.1. Alternatively, one can select sequences of strictly nested spaces (VK,d)d,
(FK,d)d with the condition that for the values of d of the form

(
2+p−1
p−1

)
for some p =:

p(d) ∈ N, definitions in (5.1) hold.

For D = (KD, dD) ∈ K × N, we write VD = VKD,dD , FD = FKD,dD and pD = p(dD).
Note that with the current definition of VD, this space is uniquely determined by specifying
KD and pD. For some constant δ > 0 that will be determined later, we set the local error
functional

eD(w, f) := eD(w) + δ−1 |K|
p2
D

inf
fD∈PpD−1(KD)

‖f − fD‖2L2(KD),

where
eD(w) := inf

{wD∈PpD (KD) :
∫
KD

wD=
∫
KD

w}
|w − wD|2H1(KD). (5.2)

We define
QD(w, f) := (wD, fD) (5.3)

as the pair of functions for which the infima are attained.
Having specified the master tree K, the local approximation spaces VD and FD, the

error functional eD(w, f), and the projection QD(w, f) = (wD, fD), we have determined,
according to Sect. 2.1, the collection of hp-partitions D, the approximation spaces VD and
FD for D ∈ D, the global error functional

ED(w, f) =
∑
D∈D

eD(w) + δ−1osc2
D(f), (5.4)

where

osc2
D(f) :=

∑
D∈D

|K|
p2
D

inf
fD∈PpD−1(KD)

‖f − fD‖2L2(KD),

as well as the projection fD :=
∏
D∈D fD.

We proceed with verifying assumptions (2.7), (2.8) and (2.9).

Proposition 5.1. There holds

sup
f∈F
|ED(w, f)

1
2 − ED(v, f)

1
2 | ≤ ‖w − v‖V ∀D ∈ D, ∀v, w ∈ V,

i.e., (2.9) is valid with C2 = 1.

Proof. For v, w ∈ V , it holds that eD(w)
1
2 ≤ eD(v)

1
2 + |v − w|H1(KD), which yields the

proof using the same arguments as in the proof of Proposition 4.1.
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Proposition 5.2. There holds

|u(f)− u(fD)|H1(Ω) .
√
δ inf
w∈H1

0 (Ω)
ED(w, f)

1
2 ∀D ∈ D, ∀f ∈ L2(Ω),

i.e., (2.8) is valid with C1 h
√
δ, and, when δ is chosen to be sufficiently small, so is (2.7).

Proof. Since f 7→ u(f) ∈ L(H−1(Ω), H1
0 (Ω)) is an isomorphism, it is enough to estimate

‖f − fD‖H−1(Ω). To this end, we note that for K being a triangle and p ∈ N, it holds that
[14]

sup
0 6=w∈H1(K)

inf
v∈Pp(K)

‖w − v‖L2(K)

|w|H1(K)
.

diam(K)

p+ 1
,

only dependent on a lower bound for the smallest angle in K. Consequently, we have that

‖f − fD‖H−1(Ω) = sup
w∈H1

0 (Ω)

infv∈FD
〈f − fD, w − v〉L2(Ω)

|w|H1(Ω)

. sup
w∈H1

0 (Ω)

∑
D∈D

|KD|
1
2

pD
‖f − fD‖L2(KD)|w|H1(KD)

|w|H1(Ω)
≤
√

osc2
D(f).

(5.5)

5.1 Conforming h-partitions, and conforming hp finite element
spaces

For the design of a routine REDUCE, in particular, for a posteriori error estimation, it
is preferable to work with h-partitions that are conforming. Let

Kc := {K ∈ K : K is conforming}.

As shown in [6, Lemma 2.5], for K ∈ K, its smallest refinement Kc ∈ Kc satisfies #Kc .
#K.

With the subclass
Dc := {D ∈ D : K(D) ∈ Kc},

we define C : D→ Dc by setting C(D) = D, where D is defined as the partition in Dc with
minimal #D for which D ≥ D. That is, K(D) = K(D)c, and pD = pD for D ∈ D, D ∈ D

with KD ⊆ KD.

Unfortunately, supD∈D
#C(D)

#D
= ∞, i.e., (2.18) is not valid. Indeed, as an example,

consider K0 to consist of two triangles K1 and K2. Let D ∈ D be such that K1 ∈ K(D),
with corresponding polynomial degree p(d), and that in K(D), K2 has been replaced by
2N triangles of generation N , each with polynomial degree 1. Then #D h d+ 2N . Since
K(C(D)) = K(D)c contains in any case h 2N/2 triangles inside K1, so with polynomial
degrees p(d), we conclude that #C(D) & 2N + 2N/2d. By taking say d h 2N , we conclude
the above claim.

The fact that (2.18) does not hold implies that, unlike for an h-method, we will not
have a proper control on the dimension of the finite element spaces that are created inside
REDUCE.

From (2.6), recall the definition V cD = VD ∩H1
0 (Ω) for D ∈ Dc, and from (5.2)-(5.3),

recall the definition of eD(w) and wD for D ∈ D and w ∈ H1(KD). The main task in this
section will be the proof of the following result.
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Theorem 5.1. Setting, for D ∈ D, ‖pD‖∞ := maxD∈D pD , for D ∈ Dc it holds that

inf
v∈V c

D

|w − v|2H1(Ω) . (1 + log ‖pD‖∞)3
∑
D∈D

eD(w) ∀w ∈ H1
0 (Ω).

Since, for D ∈ D, obviously
∑
D∈C(D) eD(w) ≤

∑
D∈D eD(w), Theorem 5.1 implies

(2.14) with

C3,D h (1 + log ‖pD‖∞)
3
2 .

For an underlying h-partition that is conforming, Theorem 5.1 says that the error in
H1-norm of the best conforming hp-approximation of a w ∈ H1

0 (Ω), is at most slightly
larger than the error in the broken H1-norm of the best nonconforming hp-approximation.

The proof of this remarkable result will be based on Veeser’s proof in [45] of the
corresponding result in the ‘h’-setting. In [45], the result is shown by taking v to be
the Scott-Zhang ([40]) quasi-interpolant of w. This Scott-Zhang quasi-interpolation is
constructed in terms of the nodal basis, and the proof relies on an inverse inequality
applied to these basis functions, which inequality involves a multiplicative factor that is
known to degrade seriously, i.e. not logarithmically, with increasing polynomial degree.

In our proof the role of the nodal basis on a triangle will be played by the union of
the three linear nodal basis functions associated to the vertices, the polynomials on each
edge that vanish at the endpoints, that will be boundedly extended to polynomials on
the interior of the triangle, and, finally, the polynomials on the triangle that vanish at its
boundary. We will construct a ΠD ∈ L(H1

0 (Ω), V cD) such that, with

pD,D := max
{D′∈D:KD′∩KD 6=∅}

pD′ ∀D ∈ D, (5.6)

it holds that

|(w −ΠDw)|KD |2H1(KD) ≤ (1 + log pD,D)3
∑

{D′∈D:KD′∩KD 6=∅}

eD′(w) ∀D ∈ D, (5.7)

which obviously implies the statement of the theorem. Since the right-hand side of (5.7)
vanishes for w ∈ V cD, because it even vanishes for w ∈ VD, the mapping ΠD is a projector.

Proof. (Theorem 5.1) Let D ∈ Dc. In order to show (5.7), it is sufficient to show

|(ΠDw)|KD−wD|2H1(KD) ≤ (1+log pD,D)3
∑

{D′∈D:KD′∩KD 6=∅}

eD′(w) ∀D ∈ D, w ∈ H1
0 (Ω).

(5.8)
Let N(D) and E(D) denote the collection of vertices (or nodes), and (closed) edges of

K(D). To construct ΠD, for e ∈ E(D) we set

pe,D := min{pD : D ∈ D, e ⊂ ∂KD}, p̄e,D := max{pD : D ∈ D, e ⊂ ∂KD}. (5.9)

With the mesh skeleton ∂K(D) := ∪D∈D∂KD, we set

V∂D := {v ∈ C(∂K(D)) : v|e ∈ Ppe,D(e) ∀e ∈ E(D)},
V̄∂D := {v ∈ C(∂K(D)) : v|e ∈ Pp̄e,D(e) ∀e ∈ E(D)}.

We construct Π∂D ∈ L(
∏
e∈E(D)H

1
2 (e), V∂D), and an auxiliary Π̄∂D ∈ L(

∏
e∈E(D)H

1
2 (e), V̄∂D),

such that

(Π∂Dv)|∂Ω = 0 for all v = (ve)e∈E(D) ∈
∏

e∈E(D)

H
1
2 (e) with ve = 0 for e ⊂ ∂Ω. (5.10)
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For any triangleK with edges e1, e2, e3, there exists an extension EK ∈ L(H
1
2 (∂K), H1(K))

that, for any p ∈ N, maps C(∂K)∩
∏3
i=1 Pp(ei) into Pp(K) (see e.g. [2, Sect.7]). Defining

ΠD by
(ΠDw)|KD := EKD ((Π∂Dw|∂K(D))|∂KD ) + wD − EKD (wD|∂KD ), (5.11)

in view of the definition of V∂D and (5.10), we have ΠD ∈ L(H1
0 (Ω), V cD).

To construct Π∂D, Π̄∂D, for each ν ∈ N(D) we select some

eν ∈ E(D) with ν ∈ eν and eν ⊂ ∂Ω when ν ∈ ∂Ω. (5.12)

For ν ∈ N(D), by φν we denote the nodal hat function, i.e., φν is continuous piecewise
linear w.r.t. K(D) and φν(v̂) = δv,v̂ ∀v, v̂ ∈ N(D). For e ∈ E(D), let

Q̄e : H
1
2 (e)→ H

1
2 (e) be the H

1
2 (e)-orthogonal projector onto Pp̄e,D(e),

Q0,e : H
1
2 (e)→ H

1
2 (e) be the H

1
2 (e)-orthogonal projector onto Ppe,D(e) ∩H1

0 (e),

Q̄0,e : H
1
2 (e)→ H

1
2 (e) be the H

1
2 (e)-orthogonal projector onto Pp̄e,D(e) ∩H1

0 (e).

Denoting the endpoints of an e ∈ E(D) by ν1,e, ν2,e, we now define Π∂D and Π̄∂D by

setting, for v = (ve)e∈E(D) ∈
∏
e∈E(D)H

1
2 (e),

(Π∂Dv)|e :=

2∑
i=1

(Q̄eνi,e veνi,e )(νi,e)φνi,e |e +Q0,e

(
ve −

2∑
i=1

(Q̄eνi,e veνi,e )(νi,e)φνi,e |e
)
,

(Π̄∂Dv)|e :=

2∑
i=1

(Q̄eνi,e veνi,e )(νi,e)φνi,e |e + Q̄0,e

(
ve −

2∑
i=1

(Q̄eνi,e veνi,e )(νi,e)φνi,e |e
)
,

for any e ∈ E(D). It is clear that Π∂D maps into V∂D, and, thanks to (5.12), that it
satisfies (5.10). Similarly, Π̄∂D maps into V̄∂D

These definitions show that, forD ∈ D, (ΠDw)|KD depends only on w|∪{KD′ :D′∈D, KD′∩KD 6=∅}.
Therefore, in order to prove (5.8), a homogeneity argument shows that we may assume
that KD is a uniformly shape regular triangle with

|KD| = 1.

Since the extension EKD ∈ L(H
1
2 (∂KD), H1(KD)) can be chosen to be uniformly bounded

over all such KD, in view of (5.11) in order to arrive at (5.8), and so at the statement of
the theorem, what remains to be proven is that

‖(Π∂Dw|∂K(D))|∂KD − wD|∂KD‖2
H

1
2 (∂KD)

. (1 + log pD,D)3
∑

{D′∈D:KD′∩KD 6=∅}

eD′(w) ∀D ∈ D, w ∈ H1(Ω).
(5.13)

In [2, Thms. 6.2 and 6.5], it was shown that on an interval I of length h 1, it holds
that

‖z‖L∞(I) . (1 + log p)
1
2 ‖z‖

H
1
2 (I)

∀z ∈ Pp(I), (5.14)

‖z‖
H

1
2
00(I)

. (1 + log p)‖z‖
H

1
2 (I)

∀z ∈ Pp(I) ∩H1
0 (I). (5.15)

These estimates will be used hereafter.

Lemma 5.1. For ν ∈ N(D) ∩ ∂KD, e, e′ ∈ E(D) with e ∩ e′ = ν, we have

|(Q̄ew|e − Q̄e′w|e′)(ν)|2 .
∑

{D′∈D : KD′3ν}

(1 + log pD′)eD′(w) ∀w ∈ H1(Ω).
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e0 = e

KDn

KDn−1

en−1

ν

en = e′

e1

KD1

Figure 2: Notations relative to the proof of Lemma 5.1

Proof. Consider the notations as in Figure 2. Using that for 1 ≤ i ≤ n, (Q̄eiwDi |ei)(ν) =
(Q̄ei−1wDi |ei−1)(ν), we have

(Q̄enw|en − Q̄e0w|e0)(ν) =(
Q̄en(w − wKDn )|en +

n−1∑
i=1

Q̄ei(wKDi+1
− w + w − wKDi )|ei + Q̄e0(wKD1

− w)|e0
)

(ν),

and so, using (5.14) and the trace inequality,

|(Q̄enw|en − Q̄e0w|e0)(ν)| .
n∑
i=1

[
(1 + log p̄ei−1)

1
2 + (1 + log p̄ei)

1
2

]
eDi(w)

1
2 .

We continue with the proof of Theorem 5.1. As a first application of this lemma,
we show that it suffices to prove (5.13) with Π∂D reading as Π̄∂D. To this end, for
e ∈ E(D) ∩ ∂KD, let D′ ∈ D such that e ⊂ ∂KD′ and pe,D = pD′ . Then

(Π∂Dw|∂K(D))|e − (Π̄∂Dw|∂K(D))|e = (Q0,e − Q̄0,e)
(
w|e −

2∑
i=1

(Q̄eνi,ew|eνi,e )(νi,e)φνi,e |e
)

= (Q0,e − Q̄0,e)
(
w|e − wD′ |e −

2∑
i=1

(Q̄eνi,ew|eνi,e − wD′ |e)(νi,e)φνi,e |e
)
.
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From (5.15), the trace theorem and the property ‖φνi,e‖H 1
2 (e)

. 1, we infer that

‖(Π∂Dw|∂K(D)|e−(Π̄∂Dw|∂K(D)|e‖
H

1
2
00(e)

. (1 + log p̄e,D)
(
eD′(w)

1
2 +

2∑
i=1

|(Q̄eνi,ew|eνi,e − wD′ |e)(νi,e)|
)
.

(5.16)

Writing
Q̄eνi,ew|eνi,e − wD′ |e = Q̄eνi,ew|eνi,e − Q̄ew|e + Q̄e(w|e − wD′ |e),

and applying (5.14) as well as the trace theorem, shows that

|(Q̄eνi,ew|eνi,e−wD′ |e)(νi,e)|

. |(Q̄eνi,ew|eνi,e − Q̄ew|e)(νi,e)|+ (1 + log(p̄e,D))
1
2 eD′(w)

1
2 .

(5.17)

By combining (5.16) and (5.17), and applying Lemma 5.1 to the first term on the right-
hand side of (5.17), we conclude that

‖
(
(Π∂D−Π̄∂D)w|∂K(D)

)
|∂KD‖2

H
1
2 (∂KD)

. (1 + log pD,D)3
∑

{D′∈D:KD′∩KD 6=∅}

eD′(w) ∀D ∈ D, w ∈ H1(Ω).
(5.18)

As a consequence, what remains to show is (5.13) with Π∂D reading as Π̄∂D, that is,
to show that

‖(Π̄∂Dw|∂K(D))|∂KD − wD|∂KD‖2
H

1
2 (∂KD)

. (1 + log pD,D)3
∑

{D′∈D:KD′∩KD 6=∅}

eD′(w) ∀D ∈ D, w ∈ H1(Ω).
(5.19)

Let us first consider the situation that eν ⊂ ∂KD for all ν ∈ N(D) ∩ ∂KD. Then
((I − Π̄∂D)wD|∂K(D))|∂KD = 0 (this is generally not true for Π∂D), and so

‖(Π̄∂Dw|∂K(D))|∂KD −wD|∂KD‖H 1
2 (∂KD)

= ‖(Π̄∂D(w−wD)|∂KD )|∂KD‖H 1
2 (∂KD)

. (5.20)

To bound the right-hand side, let us write v = (w−wD)|∂KD . For edges e1, e2 of ∂KD,
and ν := e1 ∩ e2, an application of (5.14) shows that

‖(Q̄eνveν )(ν)φν‖
H

1
2 (∂KD))

. (1 + log p̄eν ,D)
1
2 ‖veν‖H 1

2 (eν)
. (5.21)

For an edge e ⊂ ∂KD, applications of (5.15) and (5.14) show that

‖Q̄0,e

(
v|e −

2∑
i=1

(Q̄eνe,i v|eνe,i )(νe,i)φνe,i |e
)
‖
H

1
2
00(e)

. (1 + log p̄e,D)‖Q̄0,e

(
v|e −

2∑
i=1

(Q̄eνe,i v|eνe,i )(νe,i)φνe,i |e
)
‖
H

1
2 (e)

. (1 + log p̄e,D)
(
‖v|e‖

H
1
2 (e)

+ max
i=1,2

(1 + log p̄eνe,i ,D)
1
2 ‖v|eνe,i ‖H 1

2 (eνe,i )

)
.

(5.22)

Combination of (5.20), (5.21), and (5.22), together with an application of the trace theo-
rem, show that, in the situation of eν ⊂ ∂KD for all ν ∈ N(D) ∩ ∂KD,

‖(Π̄∂Dw|∂KD )|∂KD − wD|∂KD‖2
H

1
2 (∂KD)

. (1 + log pD,D)3eD(w) ∀w ∈ H1(KD),
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which implies (5.19).
Consider now the situation that for one (or similarly more) ν ∈ N(D) ∩ ∂KD, eν 6⊂

∂KD. We estimate the difference, in H
1
2 (∂KD)-norm, with the situation that eν is equal

to some edge ē ⊂ ∂KD. Applications of (5.15) and Lemma 5.1 show that

‖
∑

{e∈E(D)∩∂KD:e3ν}

(I − Q̄0,e)
(
(Q̄eνw|eν − Q̄ēw|ē)(ν)φν |e

)
‖
H

1
2 (∂KD)

.
(
1 +

∑
{e∈E(D)∩∂KD:e3ν}

(1 + log p̄e,D)
)
|(Q̄eνw|eν − Q̄ēw|ē)(ν)|

. (1 + log pD,D)
3
2

∑
{D′∈D:KD′∩KD 6=∅}

eD′(w)
1
2 ,

which completes the proof of (5.19), and thus of the theorem.

5.2 The routine REDUCE

For D ∈ Dc, with wD we will denote the best approximation to w from V cD = VD ∩H1
0 (Ω)

w.r.t. | · |H1(Ω). For w = u(f), being the solution of the Poisson problem with right-hand
side f , uD(f) turns out to be the Galerkin approximation to u(f) from V cD.

In this section, we will apply results from [35] on residual based a posteriori error
estimators in the hp context. These results were derived under the condition that the
polynomial degrees pD and p′D for D,D′ ∈ D ∈ Dc with KD ∩KD′ 6= ∅ differ not more

than an arbitrary, but constant factor. Fixing such a factor, let D̆c denote the subset
of those D ∈ Dc that satisfy this condition. Obviously, for each D ∈ Dc, there exists a
D̆ ∈ D̆c with K(D̆) = K(D) and D̆ ≥ D. Unfortunately, even for the smallest possible of

such D̆, let us write it as D̆(D), the ratio #D̆(D)/#D cannot be bounded uniformly in
D ∈ Dc.

In view of the replacement of Dc by D̆c, the mapping C : D → Dc constructed in the
previous subsection has to be replaced by C̆ := D→ D̆c : D 7→ D̆(C(D)). From now on, we

will denote D̆c as Dc, and C̆ as C. Since obviously D̆ can be constructed such that ‖p
D̆
‖∞ =

‖pD‖∞, with these new definitions (2.14) is still valid with C3,D h (1 + log(‖pD‖∞))
3
2 ,

and, as before, unfortunately supD∈D #C(D)/#D =∞.

We note that in the present application, for D ∈ Dc, fD ∈ FD, and a desired reduction
factor % ∈ (0, 1], REDUCE(%,D, fD) has to produce a D ≤ D̄ ∈ Dc such that |u(fD) −
uD̄(fD)|H1(Ω) ≤ %|u(fD) − uD(fD)|H1(Ω). As explained in Section 2.3, the i-th iteration
of hp-AFEM performs a call of REDUCE( µ

1+(C1+C3,Di
)ω ,C(Di), fDi

). The scalars µ

and ω are parameters as set in hp-AFEM. They depend on the constant b from hp-
NEARBEST, cf. Sect.2.2, the constant C2, here being equal to 1, cf. Proposition 5.1,
and the constant C1, here being h

√
δ, see Proposition 5.2. The scalar δ is a parameter

in the definition of the error functional E, see (5.4), that is chosen such that C1C2 < b,
cf. (2.7). The only possible dependence of the required reduction factor µ

1+(C1+C3,Di
)ω on

Di is via the value of C3,Di
. As we have seen, C3,Di

h (1 + log ‖p̄Di
‖∞)

3
2 , meaning that

when the maximum polynomial degree in Di tends to infinity, this reduction factor tends
to zero, but only very slowly.

The construction of REDUCE will follow the general template given in Sect. 2.4.
We will verify the assumptions (2.26), (2.27), and (2.28). For (w, f) ∈ H1

0 (Ω) × L2(Ω),
D ∈ Dc, and D ∈ D, we set the residual based (squared) a posteriori error indicator

η2
D,D(w, f) :=

|KD|
p2
D

‖f +4w‖2L2(KD) +
∑

{e∈E(D):e⊂∂KD∩Ω}

|e|
2pe,D

‖J∇w · neK‖2L2(e),
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where pe,D is from (5.9), and define

ED(w, fD) :=

(∑
D∈D

η2
D,D(w, fD)

)1/2

.

The following theorem stems from [35, Theorem 3.6]. Inspection of the proof given
therein shows that the local lower bound provided by the (squared) a posteriori error
indicator applies to any w ∈ V cD and so not only to the Galerkin solution.

Theorem 5.2 (‘reliability and efficiency’). There exists a constant R > 0 such that for
D ∈ Dc and fD ∈ FD,

|u(fD)− uD(fD)|2H1(Ω) ≤ RE2
D(uD(fD), fD). (5.23)

For any ε > 0, and all D ∈ Dc, there exists an rD,ε h ‖pD‖−2−2ε
∞ , such that for all

fD ∈ FD, and w ∈ V cD,

rD,ε E
2
D(w, fD) ≤ |u(fD)− w|2H1(Ω). (5.24)

Corollary 5.1 (‘stability’). With rD,ε as in Theorem 5.2, for all D ∈ Dc, fD ∈ FD, and
v, w ∈ V cD, it holds that

√
rD,ε

∣∣∣ED(v, fD)− ED(w, fD)
∣∣∣ ≤ |v − w|H1(Ω). (5.25)

Proof. A repeated application of the triangle inequality, first in `2 sequence spaces and
then in L2 function spaces, shows that

|ED(v, fD)− ED(w, fD)|

≤

∑
D∈D

|KD|
p2
D

‖4(v − w)‖2L2(KD) +
∑

{e∈E(D):e⊂∂KD∩Ω}

|e|
2pe,D

‖J∇(v − w) · neK‖2L2(e)

 1
2

≤ r−
1
2

D,ε|v − w|H1(Ω),

where the last inequality follows from an application of (5.24) with “fD” reading as 0,
and “w” reading as v − w.

What is left is to establish the ‘estimator reduction by refinement’, i.e. (2.28). Given
M ⊂ D ∈ Dc, we define D̄(M) ∈ Dc as follows: The h-partition K(D̄(M)) is the smallest
in Kc in which each KD for D ∈M has been replaced by its four grandchildren in K; and
for D ∈ D̄(M), it holds that pD = pD′ where D′ ∈ D is such that KD′ be either equal to
KD, or its ancestor in K(D).

Proposition 5.3 (‘estimator reduction by refinement’). For M ⊂ D ∈ Dc, and D̄(M) ∈
Dc defined above, it holds that #D̄(M) . #D. For any fD ∈ FD, the estimator reduction
property (2.28) is valid for γ = 1

2 .

Proof. This follows easily from the fact that each KD (D ∈ M) is subdivided into four
subtriangles that have equal area, that each e ∈ E(M) is cut into two equal parts, and
that the jump of the normal derivative of w ∈ V cD over a newly created edge, i.e., an edge
interior to a KD for D ∈ D, is zero.

Given D ∈ Dc and f ∈ FD, let D = D0 ≤ D1 ≤ · · · ⊂ Dc be the sequence of
hp-partitions produced by REDUCE(%,D, fD). We have established (5.23), (5.24), and
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(5.25), for any fixed ε > 0, as well as Proposition 5.3. Observing that ‖pD̄(M)‖∞ = ‖pD‖∞,
an application of Proposition 2.2 now shows that in each iteration the quantity

|u(fD)− uDi
(fD)|2H1(Ω) + (1−

√
γ̄)rD,ε EDi

(uDi
, fD),

where γ̄ = (1 − θ) + θ/2, is reduced by at least a factor 1 − (1−
√
γ̄)2

2
rD,ε
R , and that this

quantity is equivalent to |u(fD) − uDi
(fD)|2H1(Ω). In view of rD,ε h ‖pD‖−2−2ε

∞ , we

conclude that in order to reduce the initial error |u(fD)− uD(fD)|H1(Ω) by a factor % by
an application of REDUCE, the number of iterations that are required is

M h log(1/%)‖pD‖2+2ε
∞ .

Remark 5.2. This result is not satisfactory because the number of iterations grows more
than quadratically with the maximal polynomial degree. Yet, it improves upon the result
stated in [3], where the number of iterations scales with the fifth power of the maximal
polynomial degree.
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