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Abstract

Many mesh generation or optimization algorithms could produce a low quality

tetrahedral mesh, i.e. a mesh where the tetrahedra have very small solid or dihedral

angles. In this paper, we propose a series of operations to recover these degenerate

tetrahedra. In particular, we will focus on the standard shapes of these undesired

mesh elements (sliver, cap, wedge and spade) and, for each of these configura-

tions, we apply a suitable sequence of classical mesh modification procedures to

get a higher quality mesh. The reliability of the proposed mesh optimization al-

gorithm is numerically proved with some examples.

1 Introduction

Creating a “good quality” mesh is the main issue in mesh generation and optimization

algorithms. In fact, the accuracy or the speed of a numerical simulation could be ham-

pered by just a few “bad elements”. Understanding what “bad” and “good” elements

means and how to get a “good quality” mesh have become a central problem in this

area.

In [12], it is shown that the concept of “good element” is strictly related to the

application and the numerical methods employed. In a volume tetrahedral mesh, we

could say that, in general, elements with very small solid and dihedral angles should be

avoided, since they usually decrease the accuracy and the performance of a numerical

methods.
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We observe that if the mesh elements are aligned according to a precise criterion,

e.g., the gradient of a finite element solution, they could lead to a better result than a

mesh composed by equilateral elements, see, e.g., [5, 11, 8]. However, in this work we

focus in obtaining “nearly isotropic” tetrahedral meshes, i.e., meshes where we avoid

elements whose shape is too far from that of equilateral tetrahedron.

The literature is rich of optimization algorithms to improve the shape of the tetra-

hedral elements. In [6], Freitag and Knupp present a shape measure for tetrahedra

moving from the condition number of the linear transformation between a unit equilat-

eral tetrahedron and any tetrahedron. Thanks to this shape-measure, they formulate two

optimization objective functions that aim at improving the worst-quality element in the

mesh by a node-smoothing algorithm.

In [3] Edelsrunner and Guoy demonstrate that the so-called sliver exudation pro-

cedure is able to remove the majority of degenerate tetrahedra, but unfortunately some

bad shaped tetrahedra still remain in the final mesh.

In [7] Freitag and Ollivier-Gooch propose a node smoothing procedure combined

with a flipping algorithm to improve the shape of the tetrahedra of a mesh. In particular,

they numerically show that these two operations are crucial to achieve a better quality

mesh in a computationally efficient manner.

Even if the previous algorithms may produce excellent meshes composed by well

shaped tetrahedra, they do not exploit all the possible local tetrahedral mesh operations

and a few bad elements can remain. Indeed, a more aggressive set of operations should

be applied to get even better result. This is the basic idea behind the optimization strat-

egy proposed in [2, 1, 10]. In [2, 1] Acikgoz and Bottasso use a metric-driven mesh

adaptation procedure. More in detail, in [2] Bottasso uses a standard Gauss-Seidel re-

moval algorithm. Each element is visited and a series of attempt are made to remove

these undesired elements and locally increase the mesh quality. These operations in-

clude different type of vertex insertion, edge contraction, flips and vertex smoothing.

Unfortunately this approach produces clusters of bad elements. In [1] Acikgoz and Bot-

tasso give a solution to this “frozen” cluster of elements by leaving the “greedy policy”

of [2] and introducing a simulated annealing technique. The acceptance criterion of the

previous down-hill greedy policy is now modified such that new local triangulations

are accepted based on a probably function, which inserts randomness on the process.

In [10], Klinger and Shewchuk do not use the metric, but they identify the low-quality

tetrahedra and they apply a large variety of mesh operations to improve the mesh qual-

ity. Their results are really impressive, in fact they could get a final mesh with a very

large minimum dihedral angle: about 38◦. But, since they do not aim at optimizing the

computational effort, this procedure is rather computationally inefficient.

This work is inspired by this last optimization procedure. In particular, we propose

an optimization algorithm that applies a series of “ad-hoc” operations for each type of

degenerate tetrahedra. Another important aspect is the speed: we set up an optimization

procedure that is reasonably fast to be applied in practical situations.

The paper is organized as follow. In Section 2, we introduce the tetrahedral quality

index and a new procedure to detect the different shape of degenerate elements. Then,

in Section 3, we describe a vertex smoothing algorithm and the sequence of operations
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to recover each case of degeneration. Finally, in Section 4, we numerically show the re-

liability of both the degenerate element detection and the mesh improvement algorithm.

Conclusions and future works are discussed in Section 5.

2 Tetrahedra Quality

In a mesh generation framework, it is necessary to define some precise criteria to eval-

uate the reliability of the tetrahedral elements. In particular, this criterion should be a

single and easy-computed measure, in order to evaluate the “goodness” of an individual

element, i.e., to estimate how far is the tetrahedral shape from the equilateral one.

There is not a unique quantity to evaluate this measure, see, e.g. [12]. The most

general one is the so called aspect ratio.

Definition 1 Consider a tetrahedron T , the aspect ratio is defined as:

qas(T ) :=
lmax

hmin

, (1)

where lmax is the longest edge and hmin is the shortest height of the tetrahedron T . This

quantity varies in [
√
2/
√
3,+∞), and values close to

√
2/
√
3 implies a better shape,

i.e, the tetrahedron T is close to the equilateral one.

To have a quantity that varies in [0, 1], we use the following normalized measure

q(T ) :=

√
2√
3

1

qas(T )
. (2)

If the quantity q(T ) is close to 0, the tetrahedron T is not well shaped, i.e., it has very

small or too large dihedral and solid angles. If q(T ) is close to 1, it means that the shape

of the tetrahedron is close to the shape of the equilateral tetrahedron, i.e. a tetrahedron

that has all the edges of the same length and the same dihedral and solid angles.

Definition 2 Consider the finite set S = {T1, T2, . . . Tn}, where Ti is a tetrahedron

∀i = 1, 2, . . . n. We define the quality of S as

q(S) := min
Ti∈S

q(Ti) . (3)

2.1 Detection of Degenerate Tetrahedra

There are different types of degenerate tetrahedra, characterized by a different shape.

Unfortunately the quality indexes proposed in literature, [12], just detect that they have

a bad shape, but they do not distinguish the various cases reported in Figure 1.

The proposed mesh optimization procedure applies different strategies according

to these undesired configurations, in order to improve the quality of the whole mesh.

Consequently, we can not use only the quality index defined in Equation (2), but we

have to proceed with a deeper analysis on the shape of the tetrahedra. Before dealing

with this issue, we recall some useful definitions and results.
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sliver cap spadewedge

Figure 1: Different types of degenerate tetrahedra.

Definition 3 The barycentric coordinates of a point p related to a finite set of point

S = {v1, v2, . . . vn} are the coefficients µi ∈ R such that

p =
n
∑

i=1

µivi . (4)

Definition 4 Consider a triangle v1v2v3 whose vertexes are given with a specific order

and whose area is A. The signed area is defined as

|v1v2v3| :=
{

A if the vertexes follow a clockwise order

−A if the vertexes follow a counter clockwise order
. (5)

Proposition 2.1 Consider a triangle v1v2v3 and a point p that lies on the plane defined

by v1v2v3. The barycentric coordinates of p could be computed by the formula

µv1 =
|pv2v3|
|v1v2v3|

µv2 =
|v1pv3|
|v1v2v3|

µv3 =
|v1v2p|
|v1v2v3|

. (6)

Remark 1 Consider a triangle v1v2v3 and a point p on the plane identified by v1v2v3.

The barycentric coordinates of p are proportional to the ratio between the heights of

the triangles pbc, apc and abp respect to the height of v1v2v3.

Proof. We consider the triangle v1v2v3 and the barycentric coordinates of p related to

the vertex v1, µv1 . The triangles pv2v3 and v1v2v3 have a common edge, v2v3. We

consider the heights hp and hv1 related to the base v2v3 of the triangles pv2v3 and

v1v2v3, respectively. Without loss of generality, we could consider that both |pv2v3|
and |v1v2v3| is positive, then the following chain of equalities holds

µv1 =
|pv2v3|
|v1v2v3|

=
1

2
hplv2v3

1

2
hv1 lv2v3

=
hp

hv1

⇒ hp = µv1hv1 ,

where lv2v3 is the length of the base v2v3. We can repeat the same computation for each

barycentric coordinates and this complete the proof.

�

Remark 2 Consider the plane π identified by v1v2v3, it is possible to represent each

point of the plane π via the barycentric coordinates of p associated with the triangle

v1v2v3.
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Consider a tetrahedron T , whose vertexes are the points v1, v2, v3 and v4. If T has

a quality index lower than a threshold value, see Subsection 4.1, we analyze more in

detail its shape. More precisely, we consider the face associated with the greatest area,

let say v1v2v3, then we project point v4 on the plane π identified by v1v2v3. According

to the position of this projection, we are able to identify which type of “bad shape” we

are dealing with via the barycentric coordinates of this projection related to the triangle

v1v2v3. In fact, the plane π is partitioned in the following regions:

Ωsliver := {∃i ∈ I : µi < −δ} ,
Ωcap := {∀i ∈ I : δ < µi < 1} ,

Ωspade := {∃i ∈ I : 0 < µi < δ , ∀j 6= i, j ∈ I , µj > δ} ,
Ωwedge := {∃i ∈ I : δ < µi < 1 , ∀j 6= i, j ∈ I ,−δ < µj < δ} ,

where I := {1, 2, 3} , µv1 , µv2 and µv3 are the barycentric coordinates associated

with the triangle v1v2v3 and δ is a threshold value, see Subsection 4.1. Consequently,

if the projection of v4 on π, v′
4
, is inside of one of these regions, we have identified the

kind of “bad shape”. For instance, if v′
4
∈ Ωsliver, the corresponding tetrahedron is a

sliver.

Remark 3 The parameter δ used in the definition of the domains Ωsliver , Ωcap , Ωspade

and Ωwedge measures how far v′
4

is from an edge of the triangle v1v2v3.

Proof. This is a simple observation that cloud be easily proved via Remark 1.

�

3 Recover Degenerate Tetrahedron

In this section we describe more in detail the mesh operations applied to improve the

mesh quality. These operations could be divided into two main categories:

• global operations: we apply a node-smoothing on the mesh vertexes to globally

improve the quality of the mesh without changing its topology;

• local specific operations: we have implemented a series of local mesh opera-

tions such as vertex insertion and edge contraction, specific for each degenerate

tetrahedron.

3.1 Vertex Smoothing

Smoothing is one of the classical method to modify a mesh. For a given vertex v, the

smoothing operation consists in finding a new location for this vertex such that the local

mesh quality is improved without changing the mesh topology.

This new position could bring to invalid configuration such as inverted tetrahedra.

Indeed, once a vertex is moved, a check on the validity of the new mesh has to be

performed.
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In this paper we use a classical smoothing for tetrahedral mesh, [9]. Consider a

point v and the set of tetrahedra connected to this point, ωv. We move the point v in the

barycenter of the volume identified by ωv, i.e.,

v′ =
1

Vωv

∫

ωv

x dV , (7)

where Vωv denotes the volume of ωv and v′ is the barycenter of ωv.

Remark 4 Consider a point on the hull or on an interface of the volume, w. Since the

barycenter of ωw does not lie on the hull, if we move w in this new location, we could

not preserve the volume of the mesh. To avoid this issue, we do not move the points that

lie on the hull or the interface.

3.2 Composite Operations for Degenerate Tetrahedra

In this subsection we present the sequence of operations applied on the different types

of degenerate tetrahedra. This is the actual novelty of the proposed mesh optimization

procedure. In the following paragraph we consider a tetrahedron v1v2v3v4 that has a

quality index q < qmin, see Section 2, and we suppose that the face associated with the

maximum area is v1v2v3.

Sliver. Suppose that the tetrahedron v1v2v3v4 is a sliver. To improve the quality of

the mesh, we proceed as follow. We consider the two edges e1 = v1v2 and e2 = v3v4
associated with the maximum dihedral angles, see Figure 2 (a). We split both these

edges into their middle points, m1 and m2, see Figure 2 (b), then we contract the new

edge m1m2 onto its middle point, w, see Figure 2 (c). Then, we try to contract the edges

wvi onto vi for i = 1, 2, 3, 4. If more than one of these contractions do not produce any

inverted tetrahedra, we consider the configuration that produces a higher quality mesh.

More in detail, let S be the set of tetrahedra connected to v1v2v3v4 and let Si the set

of tetrahedra after the contraction of the edge ei, we contract the edge ei related to the

maximum value of q(Si), see Definition 2.

v
1

v2

v3

v4

w

(c)

v2

v3

v4

v
1

(d)

v
1

v2

v3

v4

v
1

v2

v3

v4

(b)

1

m2

(a)

m

Figure 2: Procedure in the case of sliver. In (d) the faces that could remain in the

tetrahedral mesh.
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Cap. Suppose that the tetrahedron v1v2v3v4 is a cap, Figure 3 (a). To remove this

degenerate element, we contract one of the edges e1 = v1v4, e2 = v2v4 or e3 = v3v4,

onto the vertex v1, v2 or v3, respectively, see Figure 3 (b).

If more than one of these collapses does not produce any inverted tetrahedron, we

remove the edge whose contraction is associated with the resulting highest quality of

the tetrahedra involved. More precisely, let S be the set of tetrahedra connected to

v1v2v3v4 and let Si the set of tetrahedra after the contraction of the edge ei, we contract

the edge ei related to the maximum value of q(Si), see Definition 2.

In the case that none of the contractions is possible we proceed with a classical 2-3

flip of the face v1v2v3. Even if the 2-3 flip is not allowed, we leave this degenerate

tetrahedron.

v
1

v2

v3v3

v
1

v2

v4

(b)(a)

Figure 3: Procedure in the case of cap. In (b) the faces that could remain in the tetrahe-

dral mesh.

Wedge. Suppose that the tetrahedron v1v2v3v4 is a wedge, see Figure 4 (a). We

consider its shortest edge e = v1v2, and we try to contract it in one of its endpoints or

onto its middle point, see Figure 4 (b). If more than one of these contractions does not

produce any inverted tetrahedron, we consider the set of tetrahedra S involved in the

contraction of e onto the node that maximize the quality of S, see Definition 2. In the

case that none of these operations is possible, we leave this degenerate tetrahedron.

v3

v2

v
1

v4

v3

v4

w

(a) (b)

Figure 4: Procedure in the case of wedge. In (b) the faces that could remain in the

tetrahedral mesh.

Spade. Suppose that the tetrahedron v1v2v3v4 is a spade. In this case, we look for the

edge e that is associated with the largest face angle, θ, at the vertex v4, see Figure 5 (a).

Then we contract the edge v1v4 or v2v4 onto v1 or v2, respectively, see Figure 5 (b). If

none of these contractions is possible, we split v1v2 in its middle point w, see Figure 5

(c), and then we contract the new edge v4w onto v4, see Figure 5 (d). In this case the
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splitting of the edge e is always possible, but the contraction of v4w could bring to

inverted tetrahedra. If it happens we do not contract the edge v4w.

v
1

v2

v3

(b)

v
1

v2

v3

v4

(a)

θ

v
1

v2

v3

v4

(c)

w

v4

v
1

v2

v3

(d)

Figure 5: Procedure in the case of spade. In (b) and (d) the faces that could remains in

the tetrahedral mesh after the contractions.

3.3 Scheduling of Operations

The inputs of the proposed mesh optimization technique are:

i) an initial tetrahedral mesh;

ii) a threshold value for the quality index, qmin;

iii) a threshold value to identify the degenerate tetrahedra, δ;

iv) a maximum number of iterations, N .

Until we reach the maximum number of iteration and we do not find any degenerate

tetrahedron, i.e., tetrahedron whose quality index, see Equation 2, is lower than δ, we

apply the following work-flow:

1. contraction of wedges, caps and spades;

2. a series of node-smoothing iterations on all the internal vertices of the mesh;

3. contraction of the slivers;

4. a final iteration of node-smoothing on all the internal vertices.

Like all the scheduling proposed in literature even this one is heuristic and it has been

developed through a trial and error approach. The result of this mesh improvement

procedure is a tetrahedral mesh where all the elements have a quality index greater than

the threshold value δ.

3.3.1 Random Operations

We have applied the previous mesh optimization procedure to all the examples pro-

posed in Section 4. We have notice that, after few iterations, the number of degenerate

elements drastically decreases. Then, when the optimization procedure tries to improve

the quality of the last elements, it could be happen that they disappear or that the num-

ber of degenerate tetrahedra remains constant. In fact, the proposed sequence of mesh
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modification procedure may create a loop of configurations. More precisely we could

have a finite sequence of tetrahedra, {T1, T2, . . . Tm} such that after the first contraction

T1 disappears, but the degenerate tetrahedron T2 appears. Then, when we remove T2,

the degenerate tetrahedron T3 is created and so on. Finally, at the removal of Tm, the

tetrahedron T1 appears once again. Consequently we will re-do the same sequence of

operations and we do not improve the quality of the mesh.

To avoid these loops, we randomize the operation on degenerate elements after K
iterations. More in detail, suppose that T is a degenerate tetrahedron. If we have to

operate in it during the first K iterations, we always choose among all the possible

operation, the one associated with the highest quality of the tetrahedra involved, see

Section 3. But, if we operate on T after the K th-iteration, we simply choose one of the

possible operations without taking care about the tetrahedra quality.

For instance, suppose that T is a cap. To improve the quality of the mesh, we have

to decide among three different edge contractions, v4v1, v4v2 and v4v3 see Figure 3.

Then, if we are dealing with T in one of the first K iterations, we always choose the

same edge to collapse, i.e., the edge whose contraction produces the highest quality.

But, if we consider T after the K th, we randomly choose one of the possible edges

to contract. In this way we break the loop, because we do not always do the same

operations.

4 Numerical Results

In this section, we show some numerical examples of our optimization procedure. First

of all, we try out the algorithm used to identify the different types of degenerate tetra-

hedra. Then, some applications are taking into account to prove the effectiveness of

the optimization procedure by comparing the number of degenerate tetrahedra and the

smallest dihedral angle before and after the process. We also assess the computational

time.

In all examples considered, we set:

qmin = 0.2 , δ = 0.1 , N = 30 and K = 10 .

The tests are given for a Intel Core 2 Duo CPU P8400 @ 2.26 GHz processor and 3GB

RAM.

4.1 Detection Test

In this first example, we test the detection algorithm. As explained in Subsection 2.1,

we subdivide the degenerate tetrahedra into four categories: slivers, caps, wedges and

spades. Let us consider a tetrahedron T with three fixed vertices, i.e.,

v1 =

(

1

2
, 0, 0

)

, v2 =

(

−1

2
, 0, 0

)

, v3 =

(

0,

√
3

2
, 0

)

,
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Figure 6: The different types detected.

while we let the fourth one varies over a fixed region. In particular, we consider the

family of tetrahedra

S = {v1v2v3v4 | v4,x ∈ Ax, v4,y ∈ Ay, v4,z ∈ Az} ,

here v4,x , v4,y , and v4,z are the x, y and z components of the vertex v4 and Ax :=
[−1.5, 1.5], Ay := [−1, 2] and Az := [−0.1, 0.1] . For each tetrahedron in S, we

evaluate the degenerate type. As result, we obtain the configuration reported in Figure 6,

where each color represents a degenerate tetrahedron type, recalling that the size of the

four regions depends on the parameter δ.

We point out that the detection procedure identifies all the possible tetrahedra in S
and a tetrahedron in S belongs only to a single class Ωi.

4.2 Examples

In what follow, the mesh improvement procedure is applied in different test cases. For

each example, we show the improved mesh and the initial mesh highlighting the de-

generate tetrahedra. Before and after the improvement process, we report the number

of tetrahedra, the number of degenerate tetrahedra and the histogram that represents the

distribution of the dihedral angle in the range between 0◦ and 20◦. In particular, we

indicate the minimum dihedral angle. Finally, we report the number of iterations used,

the time employed by the smoothing procedure, the time spent for the collapsing oper-

ations and the total time. Compared with Stellar [10], the proposed tetrahedral mesh

optimization procedure is able to get a final mesh in a lower computational time. In

general, we get a final mesh where the minimum dihedral angle is at least 11◦, but Stel-

lar could get an astonishing minimum dihedral angles of about 38◦. In Example 1 we

consider a parallelepiped divided into three pieces. In Examples 2-3-4-5 we consider

the tetrahedral mesh of very complicated mechanical parts. Finally, in Example 6, the

proposed optimization algorithm is tested on a real biomedical data. In particular the
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surface triangular mesh was reconstructed with a Magnetic Resonance Imaging (MRI)

technique as described in [4].

5 Conclusions and Future Work

In this paper we have presented a new method to improve the quality of a tetrahedral

mesh. In particular, the proposed algorithm applies a specific sequence of local mesh

modification procedures for each type of degenerate tetrahedron. Since all the quality

indexes proposed in literature detect a low quality tetrahedron, but they do not ana-

lyze more in detail its shape, we have developed a new method to identify the type of

degenerate tetrahedron.

The reliability and the robustness of this optimization strategy is numerically proved

by a large variety of examples. All the test cases show that we got a good quality mesh,

i.e. a mesh whose smallest dihedral angle is always more than 11◦. Better results could

be obtained by increasing the threshold value of the quality index, δ see Subsection 2.1,

but it should be necessary a deeper analysis.

There are a lot of aspects to improve in the proposed method. Firstly, since we desire

to preserve the hull and the interfaces of the volume, it could be interesting to make a

“ad-hoc” operation for the degenerate tetrahedra that has a face, an edge or a point on

the hull of the volume. Moreover, it could be interesting to develop a node-smoothing

procedure that involves even the points that lie on the hull and on the interfaces of the

domain, see Remark 4.

Finally, since this algorithm consists in local mesh operations, it could lead to a

parallel implementation in order to achieve the final high quality mesh in a lower com-

putational time.
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EXAMPLE 1

STATISTICS:

BEFORE AFTER

tets = 68762 tets = 67353

deg. tets = 2516 deg. tets = 0

θmin = 5.00714 θmin = 11.2843

0 5 10 15 20 0 5 10 15 20

ITERATIONS: 13 SMOOTH TIME: 134 sec.

TOTAL TIME: 170 sec. COLL TIME: 26 sec.
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EXAMPLE 2

STATISTICS:

BEFORE AFTER

tets = 164304 tets = 163329

deg. tets = 1867 deg. tets = 0

θmin = 7.96025 θmin = 12.1735

0 5 10 15 20 0 5 10 15 20

ITERATIONS: 3 SMOOTH TIME: 118 sec.

TOTAL TIME: 138 sec. COLL TIME: 13 sec.
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EXAMPLE 3

STATISTICS:

BEFORE AFTER

tets = 167926 tets = 166742

deg. tets = 2173 deg. tets = 0

θmin = 3.33573 θmin = 12.1167

0 5 10 15 20 0 5 10 15 20

ITERATIONS: 9 SMOOTH TIME: 275 sec.

TOTAL TIME: 334 sec. COLL TIME: 39 sec.
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EXAMPLE 4

STATISTICS:

BEFORE AFTER

tets = 368368 tets = 366053

deg. tets = 4529 deg. tets = 0

θmin = 0.633511 θmin = 12.1436

0 5 10 15 20 0 5 10 15 20

ITERATIONS: 5 SMOOTH TIME: 460 sec.

TOTAL TIME: 531 sec. COLL TIME: 48 sec.
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EXAMPLE 5

STATISTICS:

BEFORE AFTER

tets = 135398 tets = 134474

deg. tets = 1566 deg. tets = 0

θmin = 2.77258 θmin = 12.6567

0 5 10 15 20 0 5 10 15 20

ITERATIONS: 19 SMOOTH TIME: 318 sec.

TOTAL TIME: 397 sec. COLL TIME: 53 sec.
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EXAMPLE 6

STATISTICS:

BEFORE AFTER

tets = 1269663 tets = 1264619

deg. tets = 12431 deg. tets = 0

θmin = 6.98889 θmin = 12.4312

0 5 10 15 20 0 5 10 15 20

ITERATIONS: 5 SMOOTH TIME: 1030 sec.

TOTAL TIME: 1224 sec. COLL TIME: 126 sec.
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