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Abstract

We propose an efficient computational method to simulate two-phase
flow in fractured porous media. Instead of refining the grid to capture the
flow along the faults or fractures, we represent them as immersed interfaces
with reduced model for the flow and suitable coupling conditions. We
allow for non matching grids between the porous matrix and the fracture
to increase the flexibility of the method in realistic cases. We employ the
extended finite element method for the Darcy problem and a finite volume
method for the saturation equation, with a numerical flux that yields the
correct entropy solution in the case of discontinuous flux function at the
interface between the fracture and the porous matrix.

1 Introduction

It has been observed that fractures and faults can act as conduits or barriers
for the flow. The effect of fractures on the flow is important in many different
applications such as the study of fractured aquifers, geothermal fields, hydrocar-
bon reservoirs and unconventional sources. A relevant application that requires
an accurate characterization of the faults from the geo-mechanical and hydro-
dynamic point of view is CO2 storage, see [9]. At injection conditions, CO2 is
buoyant relative to the ambient groundwater, so it rises toward the top of the

1



formation and, in the presence of a pre-existing well or fracture, or the activation
of a fault, can leak into shallow formations. At basin scale the mesh refinement
needed to capture the effect of faults and fractures, whose typical width is of
the order of 1 meter, leads to an extremely high computational cost. One possi-
bility to address this problem is to use a reduced model to represent the flow in
fractures, represented as immersed interfaces coupled with the rest of the porous
medium. A reduced model was first introduced by Alboin et al. , [1], and later
extended by Martin et al. , [10] and Angot, [2]. In [5] this approach is further
extended to allow for non-matching grids between the porous medium and the
fracture thanks to the use of the extended finite element method (XFEM). Re-
moving the constraint of mesh conformity can be convenient in realistic cases
with numerous and complex fractures. An advantage of a non-matching method
is the possibility to run multiple simulations with different fractures configura-
tion, in the case of uncertainty on geophysical parameters or multiple scenario
analyses, without meshing the domain each time. In this paper we present an
original numerical approximation strategy for two-phase flow in fractured media.
We complement the Darcy problem, approximated as in [5], with a hyperbolic
equation for the saturation of one of the two phases. We adapt the reduced model
for two-phase flow presented in [8] to the case of negligible capillary effects and
propose a finite volume scheme that is able to account for the matrix-fracture
interaction and the cut elements in the non-conforming case. The faults and the
porous matrix are characterized by different absolute and relative permeabilities,
resulting in a flux function for the saturation equation which is discontinuous
in space. Numerical schemes that yield the correct entropy solution in this case
are required to obtain the physical solution. Some synthetic cases are presented
to test the behaviour of the method with different configurations, i.e. in the
presence of impermeable or open faults.

2 Mathematical model

We consider two distinct and immiscible fluid phases, denoted by the subscript
α ∈ {w, n} for the wetting and non-wetting phase respectively, flowing in a highly
heterogeneous porous medium crossed by fractures. The latter can be charac-
terized by data, e.g. permeabilities, that differs significantly from the porous
matrix. We neglect the effect of capillary pressure.
Let us consider a regular domain Ω ∈ Rn, n = 2 or 3, with boundary Γ =
ΓN ∪ ΓD, ΓN 6= ∅, and outward unit normal nΓ, cut by a thin region Ωf ⊂ Ω
of thickness d representing the fracture. Let us set, from now on, i ∈ {1, 2, f}
and j ∈ {1, 2}. Figure 1 represents the partition Ω =

⋃

iΩi into three disjoint
subsets of Ω. γj ∈ Rn−1 is the interface between Ωj and Ωf with unit normal
nj , pointing outwards with respect to Ωj . We introduce the interval of time
IT := (0, T ), divided into N subintervals Im

T :=
(

tm, tm+1
)

, with ∆tm = |Im
T |,

such that IT =
⋃

m Im
T for m ∈ {0, . . . , N}. The space-time domains are thus
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Figure 1: Sketch of Ω with the two
sub-domains Ω1 and Ω2 divided by Ωf .
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Figure 2: Sketch of Ω cut by the inter-
face γ that replaces Ωf .

defined as Qi := Ωi × IT . The two-phase system of equations in the fractional

flow formulation [4, 8], which describes the evolution of the total velocity u,
the global pressure p, the saturation of the non-wetting phase S ∈ [0, 1] and the
velocity of the non-wetting phase v, reads


























∇·ui = 0

ui = −λiKi (∇pi −Gi)

Φi
∂Si

∂t
+∇·vi = 0

vi = fiui + biKig

in Qi, with











uj · nj = uf · nj

pj = pf

vj · nj = vf · nj

on γj × IT , (1)

where the subscripts i and j denotes the restriction of the variables to Qi or γj ,
respectively. Furthermore

λi :=
kni
µn

+
kwi
µw

, Gi :=
kwi ρ

w/µw + kni ρ
n/µn

λi
g,

fi :=
kni
µnλi

, bi :=
kni k

w
i

µnµwλi
(ρn − ρw) .

Here Ki denotes the absolute permeability tensor which is symmetric and pos-
itive definite and Φi is the porosity. For each phase α, kα is the relative per-
meability, ρα the density and µα the dynamic viscosity. Finally g is the gravity
acceleration vector. The relative permeabilities are non-linear functions of the
saturation [3]. Using an IMPES type approach [4] to solve (1) we decouple the
first two equations, called pressure equations, from the last two, called satura-

tion equations, and we solve them in sequence at each time step Im
T . Hence the

pressure equations, with fixed saturation S at Im
T , are

{

∇ · ui = 0

ui = −λiKi (∇pi −Gi)
in Ωi × Im+1

T , (2)

with

{

uj · nj = uf · nj

pj = pf
on γj × Im+1

T .

We impose to (2) pi = pi on ΓN and ui ·nΓ = ui on ΓD as boundary conditions.
The saturation equations, with the computed total velocity ui at time Im+1

T ,
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read






Φi
∂Si

∂t
+∇·vi = 0

vi = fiui + biKig
in Ωi × Im+1

T , with vj · nj = vf · nj on γj × Im+1
T .

(3)

We impose to (3) Si = Si on ΓN and vi ·nΓ = vi on ΓD and Si = S0
i in Ωi×{0}

as the initial condition.

3 Reduced model for the two-phase flow

Following [8, 7], we present a reduced model for (2) and (3), replacing the region
Ωf with a n− 1 dimensional interface γ ≈ γj with unit normal n ≈ n1 ≈ −n2,
as shown in Figure 2. We report the main results for readers convenience. Given
a scalar or vector function a : Ω → Rq, q = 1 or n, let us define

JaKγ := a1 − a2 and {{a}}γ :=
a1 + a2

2
with aj (x) := lim

ǫ→0±
a (x− ǫn) .

We introduce the projection matrix N := n ⊗ n so that, given e : Ω → R and
c : Ω → Rn

∇τ e := ∇e−N∇e and ∇τ · c := ∇· c−N : ∇c.

We indicate with ·̂ the reduced variables defined on γ. The scalar unknowns
p̂ and Ŝ represent the averaged values across normal sections of Ωf while the
vector unknowns û and v̂ are the tangential fluxes integrated over the normal
sections of Ωf . The properties of the fracture are averaged over each cross
sections of Ωf or assumed to be invariant in the normal direction. We assume
that Kf = Kf,nN +Kf,τ (I −N), and defining η̂ := d/ (λfKf,τ ), equation (2)
can be written as
{

∇·uj = 0

uj = −λjKj (∇pj −Gj)
in Ωj × Im+1

T ,

{

∇τ · û = Ju · nKγ

η̂û+∇τ p̂ = Ĝ
in γ × Im+1

T ,

(4)

where Ĝ is the tangential component of G integrated over each normal section
of Ωf . Introducing a shape parameter ξ0 ∈ (0, 0.25] and ηγ := (dλfKf,n)

−1, the
coupling conditions can be written as







ξ0ηγJu · nKγ +
d

4
JG · nKγ = {{p}}γ − p̂

ηγ{{u · n}}γ = JpKγ + d{{G · n}}γ

on γ × Im+1
T .
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Similarly to (2) the reduced equations for (3) become






Φj
∂Sj

∂t
+∇·vj = 0

vj = fjuj + bjKjg
in Ωj × Im+1

T , (5)







dΦf
∂Ŝ

∂t
+∇τ · v̂ = Jv · nKγ

v̂ = ff û+ bfKf,τ ĝ

in γ × Im+1
T ,

where ĝ is the tangential component of g integrated over each normal section of
Ωf . The coupling condition becomes

vj(Sj) · nj = vf,j(Ŝ) · nj on γ, with vf,j(Ŝ) := ff (Ŝ)uj + bf (Ŝ)Kf,nNg.

4 Numerical approximation of the two-phase Darcy

problem

The Darcy problem (2) is solved in mixed form, with the lowest order Raviart-
Thomas finite elements enriched in the cut elements as proposed in [5, 6]. The
choice of mixed finite elements guarantees a locally conservative velocity field
for the subsequent solution of the saturation equation (3), which is carried out
with the finite volumes method in the porous medium and in the fracture.
Let Th be the triangulation of the domain Ω split into Th = Uh ∪ Ch with Uh the
set of uncut elements and Ch the set of cut elements, and let T̂h be the mesh of
the fracture. The approximate solution Sh, Ŝh for the saturation in the porous
medium and in the fracture is sought in the following spaces

Qh := Q1,h ×Q2,h with

Qj,h :=
{

qh ∈ L2 (Ωj) : qh|K∩Ωj
∈ P0 (K ∩ Ωj) , K ∈ Th

}

,

Q̂h :=
{

q̂h ∈ L2 (γ) : q̂h|K̂ ∈ P0

(

K̂
)

, K̂ ∈ T̂h
}

.

The finite volume approximation of (5) reads, in the case of uncut elements
∫

K

φ
Sm+1

h − Sm
h

∆tm
dx+

∫

∂K

ṽ · nK(Sm
h )ds = 0 for K ∈ Uh,

where ṽ · nK is a suitable numerical flux and nK is the outward unit normal to
∂K. In the cut elements the method has to be modified to account for the cut
edges and for the presence of the fracture, yielding, for all K ∈ Ch

∫

K∩Ωj

φ
Sm+1

h − Sm
h

∆tm
dx+

∫

∂K∩Ωj

ṽ · nK(Sm
h )ds

+

∫

γ∩K

(−1)j+1ṽ · n(Sm
h ,M(Ŝm

h )) = 0,
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where M(Ŝm
h ) is the interpolation of Ŝm

h on Th. The two meshes are indeed, in
general, genuinely non matching as shown in Figure 3. The discrete problem in
the fracture reads, for every K̂ ∈ T̂h

∫

K̂

dφf

Ŝm+1

h − Ŝm
h

∆tm
dx+

∫

∂K̂

˜̂v · n
K̂
(Ŝm

h )ds

−
∑

j=1,2

∫

γ∩K

(−1)j+1M∗(˜̂v · n(Sm
h ,M(Ŝm

h ))) = 0.

Here the operator M∗ performs the interpolation from Th to T̂h. To obtain a
conservative method we represent the operators M and M∗ with a matrix and
its transpose respectively.

Ω

Uh

Ch
γ

Th

Figure 3: Sketch of Th cut by γ. The mesh of γ is in general non-matching with
the edges of the cut elements.

The choice of the numerical flux is critical in problems characterized, like the one
of our interest, by a discontinuous flux function due to the presence of different
rock types (typically the matrix and the fracture). We adopt the exact Godunov
flux which, at the expense of a higher computational cost, satisfies the entropy
condition and gives the physically correct solution, see [11] for further details.

5 Test Cases

We present two examples to highlight the potentiality and advantages of the
proposed method. The first one deals with the effect of the fracture permeability
and tests mass conservation for a flow driven only by gravity, while the second
presents a coupled simulation with the IMPES splitting.

5.1 Flow driven by gravity

Let us consider a flow driven by gravity, i.e. uj ≡ û ≡ 0, in a square domain
Ω = (0, 1)2 cut by fracture γ = {(x, y) ∈ Ω : y = −2x+ 1.4}, where we set the
initial saturation S0 to 0.5 in the circle (x − 0.45)2 + (y − 0.15)2 < 0.016. The
properties of the fluid and the media are reported in Table 5. In Figure 6 we
compare three simulations characterized by different types of fracture. In the
first one the problem is solved without the fracture γ in the domain. We notice
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Figure 4: Plot of the conservation of mass over
time steps. Here m is the global mass plus the
outflow and with m0 the global mass at initial
time.

kni = 1− S2 kwi = S

ρw = 2 ρn = 1

g = (0,−1)⊤ µα = 1

Φi = 1 Kj = I

d = 0.01

Table 5: Data for the
problem.

that the non-wetting fluid moves upwards due to buoyancy. In the second one
we insert the fracture γ with the same absolute permeability of the medium.
In this case the fracture acts as if it did not exists, indeed the result is very
similar to the first simulation. Finally in the third one the fracture has the same
normal permeability as the bulk, but the tangential permeability is twenty times
higher. When the light fluid reaches γ the flow inside the fracture is faster and
the saturation is transported upwards more rapidly.

Figure 6: Snapshots of the solution at t ≃ 1 in three different cases: on the left
Sh without fractures, in the centre Sh and Ŝh with γ whose properties are equal
to the bulk medium and on the right with γ more conductive in the tangential
direction. Here Ŝh is warped for the sake of visualization.

We verified numerically that the method is conservative. The graph in Figure
4 compares, for the third simulation, the mass present in the domain and the
cumulative outflow with the initial mass m0. We see a perfect conservation of
mass until the outflow boundary is reached, i.e. after ∼ 4000 time steps. From
that time on there are only very small oscillations of about 10−5%.

5.2 Fully coupled two-phase flow

In this example we consider the complete two-phase flow model (4) and (5) in
an horizontal plane, i.e. without gravity. We set as the initial condition S0 = 1
in the circle (x− 0.45)2+(y− 0.15)2 < 0.016. The permeabilities in the fracture
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are Kf,τ = 1 and Kf,n = 10−3 while the rest of the data are the same as in the
previous test case, see Table 5.

Figure 7: Comparison of Sh and Ŝh for the two strategies: on the left with a
constant velocity and on the right the coupled problem. On the top the solution
at t ≃ 0.27 and on the bottom at t ≃ 1.1.

Figure 7 compares the evolution of saturation obtained with a constant velocity
field with the result of the fully coupled two-phase problem. We notice that
even if the solutions look similar in the beginning the real velocity field changes
in time and after some time the difference between the two solutions becomes
more noticeable.

6 Conclusions

Future works should focus on the extension of the method to cases with more
complex geometries (multiple and intersecting fractures) and realistic values of
the parameters, as well as on the inclusion of the capillary term. In both the ex-
amples we presented the CFL condition turned out to be a severe constraint the
presence of small sub-elements in the cut region of the mesh: suitable numerical
techniques to overcome this limitation will be the subject of future study.
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