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Abstract

We develop a Finite Element method (FEM) which can adopt very general
meshes with polygonal elements for the numerical approximation of elliptic obstacle
problems. This kind of methods are also known as mimetic discretization schemes,
which stem from the Mimetic Finite Di�erence (MFD) method. The �rst-order
convergence estimate in a suitable (mesh-dependent) energy norm is established.
Numerical experiments con�rming the theoretical results are also presented.
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1 Introduction

Elliptic obstacle problems refer to �nd the equilibrium position of an elastic membrane
whose boundary is held �xed, and which is constrained to lie above a given obstacle. It
can be considered as a model problem for variational inequalities (see, e.g, [20]), and it
has found applications in a number of di�erent �elds as elasticity and �uid dynamics.
For example, applications include �uid �ltration in porous media, optimal control, and
�nancial mathematics [23, 22].

In the present paper we develop, for the obstacle problem, a low order Finite Ele-
ment Method (FEM) which can adopt very general meshes. This kind of meshes are
made of (possibly non convex) polygons of variable number of edges, and do not have to
ful�ll matching conditions. This type of schemes, which stem from the Mimetic Finite
Di�erence (MFD) method, are nowadays known also as mimetic discretization methods.
The �rst papers introducing an interpretation of the Mimetic Finite Di�erence method

∗The �rst and the third authors were supported in part by the Italian research project PRIN 2008:
�Analysis and development of advanced numerical methods for PDEs�
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as a generalization of the Finite Element Method are very recent [11, 13]. Lately, this
generalization of FEM has been applied to a wide range of problems, a very short list
including [9, 12, 3, 14, 2, 26, 4, 1, 25].

The rest of the paper is organized as follows. In Section 2 we introduce the model
problem, and �x some notations. The Mimetic Finite Di�erence method is introduced in
Section 3, and the convergence analysis is provided in Section 4. Finally, in Section 5 we
discuss some implementation issues, and in Section 6 we show some numerical results.

2 The obstacle problem

Throughout the paper we will use standard notations for Sobolev spaces, norms and
seminorms. For a bounded domain D in Rd, d = 1, 2, we denote by Hs(D) the standard
Sobolev space of order s ≥ 0, and by ‖ · ‖Hs(D) and |·|Hs(D) the usual Sobolev norm

and seminorm, respectively. For s = 0, we write L2(D) in lieu of H0(D). H1
0 (D) is the

subspace of H1(D) of functions with zero trace on ∂D.
Let Ω be an open, bounded, convex set of R2, with either a polygonal or a C2-smooth

boundary Γ := ∂Ω. Let g := g̃|Γ , with g̃ ∈ H2(Ω) and we set

V g := {v ∈ H1(Ω) : v = g on Γ}.
Let us introduce the bilinear form a(u, v) : V g × V g −→ R de�ned by

a(u, v) :=
∫

Ω
∇u · ∇v dx,

and the linear functional F (v) : V g −→ R with

F (v) :=
∫

Ω
f v dx,

where we assume f ∈ L2(Ω). Let us introduce the function ψ ∈ H2(Ω) with ψ ≤ g on Γ
and the convex space

K := {v ∈ V g : v ≥ ψ a.e. in Ω}.
We are interested in solving the following variational inequality:{

Find u ∈ K such that

a(u, v − u) ≥ F (v − u) ∀v ∈ K. (2.1)

It is well known [8] that under the above data regularity assumption, the elliptic obstacle
problem (2.1) admits a unique solution u ∈ H2(Ω).

3 A mimetic discretization

In this section we present a mimetic discretization method for the obstacle problem (2.1).
This method is the direct extension of the scheme presented in [9] for the problem without
obstacle.
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3.1 Mesh notation and assumptions

Let Ωh ⊂ Ω be a polygonal approximation of Ω, in such a way that all vertexes of
Ωh which are on the boundary of Ωh are also on the boundary of Ω. The polygonal
domain Ωh represents the computational domain for the method. With a little abuse
of notation, we also denote by Ωh a partition of the above introduced computational
domain into polygons E. We assume that this partition is conformal, i.e., intersection of
two di�erent elements E1 and E2 is either a few mesh points, or a few mesh edges (two
adjacent elements may share more than one edge) or empty. We allow Ωh to contain
non-convex and degenerate elements. For each polygon E, kE denotes its number of
vertexes, |E| denotes its area, hE denotes its diameter and

h := max
E∈Ωh

hE .

We denote the set of mesh vertexes and edges by Nh and Eh, the set of internal vertexes
and edges by N 0

h and E0
h, the set of boundary vertexes and edges by N ∂

h and E∂
h . The set

of vertexes and edges of a particular element E are denoted by NE
h and EE

h , respectively.
Moreover, we denote a generic mesh vertex by v, a generic edge by e and its length both
by he and |e|. A �xed orientation is also set for the mesh Ωh, which is re�ected by a unit
normal vector ne, e ∈ Eh, �xed once for all. For every polygon E and edge e ∈ EE

h , we
de�ne a unit normal vector ne

E that points outside E.
The mesh is assumed to satisfy the following shape regularity properties, which have

already been used in [9]. There exist

- an integer number Ns independent of h;

- a real positive number ρ independent of h;

- a compatible sub-decomposition Th of every Ωh into shape-regular triangles,

such that

(H1) any polygon E ∈ Ωh admits a decomposition Th|E formed by less than Ns triangles;

(H2) any triangle T ∈ Th is shape-regular in the sense that the ratio between the radius
r of the inscribed ball and the diameter hT of T is bounded from below by ρ:

0 < ρ ≤ r

hT
.

From (H1), (H2) there can be easily derived the following useful properties that we list
below.

(M1) The number of vertexes and edges of every polygon E of Ωh are uniformly bounded
from above by two integer numbers Nv and Ne, which only depend on Ns.
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(M2) There exists a real positive number σs, which only depends on Ns and ρ, such that

he ≥ σshE and |E| ≥ σsh
2
E ,

for every polygon E of every decomposition Ωh, and for every edge e of E.

(M3) There exists a constant Ca, only dependent on ρ and Ns, such that for every
polygon E, for every edge e of E and for every function ψ ∈ H1(E) it holds the
trace inequality :

‖ψ‖2L2(e) ≤ Ca

(
h−1

E ‖ψ‖2L2(E) + hE |ψ|2H1(E)

)
. (3.1)

(M4) There exists a constant Capp, which is independent of h, such that the following
holds. For every E and for every function ψ ∈ Hm(E), m ∈ N, there exists a
polynomial ψk of degree k living on E such that

|ψ − ψ0|Hl(E) ≤ Capph
m−l
E |ψ|Hm(E)

for all integers 0 ≤ l ≤ m ≤ k + 1.

Note that (M4) follows, for instance, from the extended Bramble-Hilbert lemma on non
star-shaped domains of [17, 6].

3.2 Degrees of freedom and interpolation operators

The discretization of problem (2.1) requires to discretize a scalar �eld in H1(Ω). In order
to do so, we start introducing the degrees of freedom for the discrete approximation space.
The discrete space Vh is de�ned as follows: a vector vh ∈ Vh consists of a collection of
degrees of freedom

vh := {vv}v∈Nh
,

one per internal mesh vertex, e.g. to every vertex v ∈ Nh, we associate a real number
vv. The scalar vv represents the nodal value of the underlying discrete scalar �eld of dis-
placement. The number of unknowns is equal to the number of vertexes of the mesh. We
also de�ne the discrete space V g

h ⊂ Vh of functions which satisfy the Dirichlet boundary
conditions

V g
h := {vh ∈ Vh : vv

h = g(v) ∀v ∈ N ∂
h } .

Accordingly, V 0
h represents the space of discrete functions which vanish at the boundary

nodes.
We de�ne the following interpolation operator from the spaces of smooth enough

functions to the discrete space Vh. For every function v ∈ C0(Ω̄) ∩ H1(Ω), we de�ne
vI ∈ Vh by

vv
I

:= v(v) ∀v ∈ Nh.

Moreover, we analogously de�ne the local interpolation operator from C0(Ē) ∩ H1(E)
into Vh|E given by

vv
I

:= v(v) ∀v ∈ NE
h .
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3.3 Discrete norms and bilinear forms

We endow the space Vh with the following discrete seminorm

‖vh‖21,h :=
∑

E∈Ωh

‖vh‖21,h,E =
∑

E∈Ωh

|E|
∑
e∈EE

h

[
1
|e|(v

v2 − vv1)
]2

, (3.2)

where v1 and v2 are the two vertexes of e. The quantity ‖ · ‖1,h is a H1(Ω)-type discrete
seminorm, which becomes a norm on V 0

h . Indeed, the di�erences
1
|e|(v

v2 − vv1) represent
gradients on edges and the scalings with respect to hE and he are the correct ones to
mimic anH1(E) local seminorm. In the numerical tests we will also consider the following
L2(Ω)- and L∞(Ω)-type discrete norms

‖vh‖20,h :=
∑

E∈Ωh

|E|
∑

v∈NE
h

(vv)2

‖vh‖∞,h := max
v∈Nh

|vv|.
(3.3)

We denote by ah(·, ·) : Vh × Vh → R the discretization of the bilinear form a(·, ·),
de�ned as follows:

ah(vh, wh) :=
∑

E∈Ωh

aE
h (vh, wh) ∀vh, wh ∈ Vh, (3.4)

where aE
h (·, ·) is a symmetric bilinear form on each element E. The local forms mimick

aE
h (vh, wh) ∼

∫
E
∇ṽh · ∇w̃h dx,

where, roughly speaking, ṽh, w̃h denote regular functions living on E which �extend the
data� vh, wh inside the element.

We introduce two fundamental assumptions for the local bilinear form aE
h (·, ·). The

�rst one represents the coercivity (up to the kernel) and the correct scaling with respect
to the element size.

(S1) There exist two positive constants c1 and c2 independent of h such that, for every
uh, vh ∈ Vh and each E ∈ Ωh, we have

c1‖vh‖21,h,E ≤ aE
h (vh, vh), aE

h (uh, vh) ≤ c2‖uh‖1,h,E‖vh‖1,h,E .

In order to introduce the second assumption, we observe beforehand that, using an
integration by parts,∫

E
∇v · ∇p1 dx =−

∫
E

(∆p1)v dx+
∑
e∈EE

h

∫
e

(∇p1 · ne
E)v ds

=
∑
e∈EE

h

∇p1 · ne
E

∫
e
v ds

(3.5)
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for all E ∈ Ωh, for all v ∈ [H1(E)]2 and for all linear functions p1. By substituting
the integral in the last term of (3.5) with a trapezium integration rule gives our second
condition.

(S2) For every element E, every linear vector function p1 on E, and every vh ∈ Vh, it
holds

aE
h (vh, (p1)I) =

∑
e∈EE

h

(∇p1 · ne
E)
|e|
2
(
vv1
h + vv2

h

)
, (3.6)

where v1 and v2 are the two vertexes of e ∈ ne
E .

The meaning of the above consistency condition (S2) is therefore that the discrete bilinear
form respects integration by parts when tested with linear functions.

Remark 3.1. The scalar product and the bilinear form shown in this section can be
easily built element by element in a simple algebraic way. A brief description of such
construction can be found in Section 5.

3.4 The discrete method

Finally, we are able to de�ne the proposed mimetic discrete method for the obstacle
problem. Let the loading term

(f, vh)h :=
∑

E∈Ωh

f̄ |E
kE∑
i=1

vviωi
E , (3.7)

where v1, . . . , vkE
are the vertexes of E, f̄ |E := 1

|E|
∫
E f dx, and ω

1
E , . . . , ω

kE
E are positive

weights such that
∑kE

i=1 ω
i
E = |E|. The above loading term is an approximation of

(f, vh)h ∼
∫

Ω
fṽh dx,

which is exact for constant functions.
Let us introduce the convex space

Kh := {vh ∈ V g
h : vv

h ≥ ψ(v) ∀v ∈ Nh}.
Then, the mimetic discretization of problem (2.1) reads:{

Find uh ∈ Kh such that

ah(uh, vh − uh) ≥ (f, vh − uh)h ∀vh ∈ Kh.
(3.8)

Due to property (S1) it is immediate to check that the bilinear form ah(·, ·) is coercive
on Vh/R. As a consequence, recalling again that Kh ⊂ Vh is convex and closed, standard
results [15] give the existence and uniqueness of a solution for the discrete problem
(3.8). The uniform stability of the problem with respect to h will be left as an implicit
consequence of the analysis that follows.
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4 Convergence of the method

In this section we prove the linear convergence of the proposed discrete method. In the
following, we will use the symbols ', ., & to represent equivalences and bounds which
hold up to a constant independent of the mesh-size.

4.1 A lifting operator

In this section we show that, for all E ∈ Ωh, there exists a suitable lifting operator

RE
h : Vh|E −→ H1(E) ∩ C0(Ē),

which satis�es the following properties.

(L1) (RE
h vh)(v) = vv

h ∀v ∈ NE
h and ∀vh ∈ Vh|E ;

(L2) RE
h vh|e is a linear function ∀e ∈ EE

h and ∀vh ∈ Vh|E ;
(L3) RE

h (p1)I = p1 for all linear functions p1 on E;

(L4) |RE
h vh|2H1(E) . ‖vh‖21,h,E ∀vh ∈ Vh|E ;

(L5) ‖RE
h vI‖2L2(E) .

∑2
k=0 h

2k
E |v|2Hk(E)

∀v ∈ H2(E);

(L6) The following maximum principle holds: for all vh ∈ Vh|E , if vv
h ≥ 0 ∀v ∈ NE

h then
the lifting operator satis�es RE

h vh ≥ 0 in E.

Note that, due to properties (L1) and (L2), the global lifting operator

Rh : Vh −→ H1(Ωh) ∩ C0(Ω̄h) ,

Rh(vh)|E := RE
h (vh|E) ∀vh ∈ Vh, E ∈ Ωh,

is well de�ned.
The local lifting operator is built as in [5], which in turn is an improved version of

that presented in [9]. Note that we cannot directly use the lifting operator of [9] since it
does not preserve linear functions. Let E ∈ Ωh, for a given vh ∈ Vh|E , the function RE

h vh

is globally continuous and piecewise linear on the sub-triangulation Th and it is de�ned
in the following way. On the vertexes v ∈ NE

h we set RE
h vh(v) = vv

h. On the remaining
nodes of Th that lay on the boundary, RE

h vh is de�ned by linear interpolation of the
two vertex values of the edge. On the internal nodes of E, we do instead the following
construction. Given any internal node v of Th, we call Ξv the set of nodes which share an
edge with v and are di�erent from v. Then, it is easy to check that v, which lays in the
convex hull determined by the nodes {v̄}v̄∈Ξv , can be expressed (in a non unique way) as
a weighted sum

v =
∑
v̄∈Ξv

wv
v̄ v̄, (4.1)
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with wv
v̄ non-negative real numbers such that

∑
v̄∈Ξv

wv
v̄ = 1. For each internal node v,

we then enforce the condition

RE
h vh(v)−

∑
v̄∈Ξv

wv
v̄ R

E
h vh(v̄) = 0 . (4.2)

This set of conditions provides a square linear system which determines the value of RE
h vh

in the internal nodes. Indeed, it is immediate to verify that the associated matrix is an
M-matrix, which in particular implies the existence of a unique solution and a discrete
maximum principle. Therefore, assumption (L6) is satis�ed.

Properties (L1) and (L2) are clearly satis�ed by construction. Furthermore, following
the same argument as in [9], from the maximum principle it follows that the operator
RE

h satis�es also the stability condition (L4). We now check property (L3). Let p1 be a
linear function on E. Since the solution of the linear system introduced above is unique,
in order to show RE

h (p1)I = p1 it is su�cient to prove that p1 satis�es (4.2) for any v
internal node of E. Using (4.1) and recalling that p1 is linear, it holds

p1(v) = p1(
∑
v̄∈Ξv

wv
v̄ v̄) =

∑
v̄∈Ξv

wv
v̄ p1(v̄)

for all the internal nodes v of E, which is exactly (4.2) for the function p1.
We are left to show property (L5). We start observing that, due to the maximum

principle,
‖RE

h vI‖L∞(E) ≤ max
v∈NE

h

|vv
I | = max

v∈NE
h

|v(v)| ≤ ‖v‖L∞(E). (4.3)

Moreover, due to (H1) and (H2) it is easy to check that

hE . hT ≤ hE ∀T ∈ Th|E . (4.4)

Using (4.3), a scaling argument on each triangle of T ∈ Th|E , and �nally (4.4), we get

‖RE
h vI‖2L2(E) ≤ |E|‖v‖2L∞(E) = |E|max

T∈Th

‖v‖2L∞(T )

≤ |E|max
T∈Th

2∑
k=0

h2k−2
T |v|2Hk(T ) . |E|

2∑
k=0

h2k−2
E |v|2Hk(E) .

(4.5)

Property (L5) follows from the above bound and |E| ≤ h2
E . This completes the proof of

properties (L1)-(L6).
Finally, we make the following two observations. Given any E ∈ Ωh and v ∈ H2(E),

let v1 be its linear approximation introduced in (M4) setting k = 1. Then, using (L3),
(L5), and �nally the approximation property (M4) we get

‖v −RE
h vI‖2L2(E) . ‖v − v1‖2L2(E) + ‖RE

h (v1 − v)I‖2L2(E)

.
2∑

k=0

h2k
E |v − v1|2Hk(E) . h4

E |v|2H2(E)

(4.6)
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for all E ∈ Ωh. Furthermore, due to the maximum principle property (L6) and the
de�nition (3.2) of discrete H1-norm it follows

‖RE
h vh − vv

h‖L∞(E) ≤ max
v′∈NE

h

|vv′
h − vv

h| . ‖vh‖1,h ,

which also gives immediately

‖RE
h vh − vv

h‖L2(E) . hE‖vh‖1,h . (4.7)

4.2 A convergence result

In this section, we prove a convergence result for the mimetic discretization method
applied to the variational inequality (2.1). The proof takes the steps from [10].

Theorem 4.1. Let u ∈ K ∩H2(Ω) be the solution to the continuous problem (2.1), and
uh ∈ Kh be the corresponding mimetic approximation, obtained by solving the discrete
problem (3.8). Then, it holds

‖uh − uI‖1,h ≤ Ch,
where the constant C is independent of the mesh-size h.

Proof. We set eh := uh − uI and u1 := I1u, where I1 is the Lagrangian interpolation
operator onto the space of continuous piecewise linear functions de�ned on Ωh. We
observe that, due to (L2), it holds

|e|
2
(
ev1
h + ev2

h

)
=
∫

e
RE

h eh dx ∀E ∈ Ωh, e ∈ EE
h .

By using (S1)-(S2), the discrete problem (3.8), and the above observation we get

c1‖eh‖21,h ≤ah(eh, eh)

≤(f, eh)h − ah(uI, eh)

=(f, eh)h − ah(uI − (u1)I, eh)− ah((u1)I, eh)

≤(f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h −
∑

E∈Ωh

∑
e∈EE

h

∂u1

∂ne
E

∫
e
RE

h eh dx .

(4.8)

From (4.8), using twice an integration by parts and that Rheh vanishes on the boundary
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of Ωh, it follows

c1‖eh‖21,h ≤ (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h −
∑

E∈Ωh

∫
E
∇RE

h eh · ∇u1 dx

= (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h +
∑

E∈Ωh

∫
E
∇RE

h eh · ∇(u− u1) dx

−
∑

E∈Ωh

∫
E
∇RE

h eh · ∇udx

= (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h +
∑

E∈Ωh

∫
E
∇RE

h eh · ∇(u− u1) dx

+
∫

Ωh

∆u RE
h eh dx.

Let us preliminary estimate the term ‖uI − (u1)I‖1,h ≡ ‖(u − u1)I‖1,h. For simplicity,
we set v = u − u1. Using de�nition (3.2) of the norm ‖ · ‖1,h and the Cauchy-Schwarz
inequality, we get

‖vI‖21,h =
∑

E∈Ωh

|E|
∑
e∈EE

h

[
1
|e| (v

v2 − vv1)
]2

=
∑

E∈Ωh

|E|
∑
e∈EE

h

[
1
|e|
∫

e
v′ ds

]2

≤
∑

E∈Ωh

|E|
∑
e∈EE

h

[
1
|e|‖∇v‖

2
L2(e)

]
.

Applying the trace inequality (3.1) to ∇v and employing a standard interpolation error
estimate yield

‖(u− u1)I‖21,h .
∑

E∈Ωh

[
‖∇(u− u1)‖2L2(E) + h2

E |u|2H2(E)

]
. h2 |u|2H2(Ω) . (4.9)

From (4.2), by employing the Young inequality combined with (4.9) and introducing
w = ∆u+ f , we get

‖eh‖21,h .

{
(f, eh)h −

∫
Ωh

f Rheh dx

}
+ h2 |u|2H2(Ω) (4.10)

+
∑

E∈Ωh

∫
E
∇RE

h eh · ∇(u− u1)dx+
∫

Ωh

w RE
h eh dx. (4.11)

As shown in [7], there holds

w ≤ 0 and w(ψ − u) = 0 a.e. in Ωh. (4.12)

Simply adding and subtracting terms, we obtain∫
Ωh

wRE
h eh dx = −

∫
Ωh

w(RE
h uI − u)dx+

∫
Ωh

w(ψ − u) dx

+
∫

Ωh

w(RE
h uh −RE

h ψI) dx+
∫

Ωh

w(RE
h ψI − ψ) dx.

(4.13)
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The second term in the right hand side of (4.13) vanishes due to (4.12). Moreover, as for
every v ∈ Nh there holds uh(v) ≥ ψI(v), employing assumption (L6) yields

RE
h uh −RE

h ψI ≥ 0 in Ωh,

which recalling (4.12) gives
∫

Ωh
w(RE

h uh −RE
h ψI) dx ≤ 0. Hence, combining this last two

observations with (4.13), we get∫
Ωh

wRE
h eh dx ≤

∫
Ωh

w(u−RE
h uI) dx+

∫
Ωh

w(RE
h ψI − ψ) dx.

The above bound, using the Cauchy-Schwarz inequality, (4.6), and recalling that w =
∆u+ f , yields∫

Ωh

wRE
h eh dx . h2‖w‖L2(Ωh)

(
|ψ|H2(Ωh) + |u|H2(Ωh)

)
. h2. (4.14)

We now estimate the remaining pieces in (4.10). By using (4.7) and proceeding as in the
estimate of the First Piece in [9], it is easy to check that there holds∣∣(f, eh)h − (f,RE

h eh)
∣∣ . h‖f‖L2(Ω)‖eh‖1,h . h‖eh‖1,h. (4.15)

Using the Cauchy-Schwarz inequality, assumption (L4) and a standard interpolation error
estimate yields∑

E∈Ωh

∫
E
∇RE

h eh · ∇(u− u1)dx ≤ ‖∇RE
h eh‖L2(Ωh)‖∇(u− u1)‖L2(Ωh)

. h‖eh‖1,h |u|H2 . h‖eh‖1,h .

(4.16)

Combining (4.10) with (4.14), (4.15) and (4.16) �nally gives

‖eh‖21,h . h‖eh‖1,h + h2,

which immediately gives the result.

Remark 4.1. The convexity condition on Ω can be relaxed to include a more general
class of domains, provided that the solution u still belongs to H2(Ω), and Ωh can be
inscribed in Ω for every h ( e.g., non-convex polygonal domains). Indeed, repeating the
same argument, the convergence result still holds.

Remark 4.2. Whenever V g coincide with H1
0 (Ω), i.e., homogeneous boundary conditions

are imposed on the domain boundary, Theorem 4.1 can be proved in a much simpler way,
following the idea proposed in [19]. We refer to Appendix A. for the details.
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5 Implementation issues

In this section we show brie�y how the local scalar product appearing in (3.4) is built
in practice. Let E be a general element of Ωh, with kE ≥ 3 vertexes. Then, we need to
build an kE × kE symmetric matrix M which represents the local scalar product

aE
h (vh, wh) = vT

h M wh ∀ vh, wh ∈ RkE .

Let the functions ρ1 := 1, ρ2 := x − x̄, ρ3 := y − ȳ represent a basis for the space
of the linear polynomials on E, with x, y cartesian coordinates in the plane and (x̄, ȳ)
representing the position of the center of mass of E. Then, we introduce the kE × 3
matrix N given by

N(i, j) := ρj(vi) i = 1, . . . , kE , j = 1, 2, 3 ,

where v1 = (x1, y1), . . . , vkE
= (xkE

, ykE
) are the kE vertexes of the polygon E, i.e.,

N :=


1 x1 − x̄ y1 − ȳ
1 x2 − x̄ y2 − ȳ
1 x3 − x̄ y3 − ȳ
...

...
1 xkE

− x̄ ykE
− ȳ

 . (5.1)

Then, it is easy to check that the consistency condition (S2) can be expressed as

vT
h MN = vT

h R ∀vh ∈ RkE ,

where the kE × 3 matrix R with columns R|j , j = 1, 2, 3, is the unique matrix that
represents the right hand side of (S2)

vT
h R|j =

∑
e∈EE

h

(∇ρj · ne
E)
|e|
2
(
vv1
h + vv2

h

) ∀vh ∈ RkE .

More precisely, for i = 1, . . . , kE , let ei be the edge connecting the vertexes vi = (xi, yi)
and vi+1 = (xi+1, yi+1) (with the convention that vkE+1 ≡ v1), and let nei

E ∈ R1×2 be
the corresponding outward unit normal vector. Clearly, nei

E = (yi+1 − yi, xi − xi+1).
Therefore, the matrix R has the following form

R =


0 (n

ekE
E + ne1

E )/2
0 (ne1

E + ne2
E )/2

0 (ne2
E + ne3

E )/2
...

...

0 (n
ekE−1

E + n
ekE
E )/2

 =


0 (y2 − ykE

)/2 (xkE
− x2)/2

0 (y3 − y1)/2 (x1 − x3)/2
0 (y4 − y2)/2 (x2 − x4)/2
...

...
...

0 (y1 − ykE−1)/2 (xkE−1 − x1)/2

 , (5.2)

and the consistency condition can be written as

MN = R , (5.3)

12



where the matrices N,R are given in (5.1) and (5.2), respectively. Moreover, it is easy to
check that

(RT N)(i, j) = (NT MN)(i, j) =
∫

E
∇ρi · ∇ρj dx =: K(i, j) i, j = 1, 2, 3 , (5.4)

with K(i, j) clearly equal to |E| if i = j = 2 or i = j = 3 and zero otherwise, that is

RT N =

0 0 0
0 |E| 0
0 0 |E|

 . (5.5)

Equivalence (5.5) can be checked also taking into account the algebraic expressions of
N,R given in (5.1) and (5.2), respectively. Indeed, we have

RT N =

0 0 0
0 1

2

∑m
i=1(xiyi+1 − xi+1yi) 0

0 0 1
2

∑m
i=1(xiyi+1 − xi+1yi)

 ,

which is indeed (5.5), taking into account the Shoelace formula, according to which the
area of the polygon E (with sign) is given by

1
2

m∑
i=1

(xiyi+1 − xi+1yi).

Finally, the matrix M is built as follows. Let

P = I− N(NT N)−1NT ,

with I the m ×m identity matrix. The matrix P is the projection matrix on the space
orthogonal to the columns of N. Then, we set

M =
1
|E|RRT + s P , (5.6)

with s = trace( 1
|E|RRT ) > 0 a scaling factor. Recalling (5.4) and the de�nition of P,

it is easy to check that the above matrix M satis�es the consistency condition (5.3).
Moreover, also the stability property (S2) can be proved, see for instance [9, 2].

We remark that, whenever the mesh is made of triangles, the matrix M coincides with
the (elemental) �nite element sti�ness matrix, i.e., on triangular elements the MFD and
FEM methods are the same. Indeed, on the one hand, the projection matrix P turns out
to be the null matrix, and the matrix M becomes:

M =
1
|E|RRT =

1
4|E|

m11 m12 m13

m21 m22 m23

m31 m32 m33

 ,
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where

m11 = (x2 − x3)2 + (y2 − y3)2,

m12 = m21 = −(x1 − x3)(x2 − x3)− (y1 − y3)(y2 − y3),
m13 = m31 = (x1 − x2)(x2 − x3) + (y1 − y2)(y2 − y3),

m22 = (x1 − x3)2 + (y1 − y3)2,

m23 = r32 = −(x1 − x2)(x1 − x3)− (y1 − y2)(y1 − y3),

m33 = (x1 − x2)2 + (y1 − y2)2.

On the other hand, we recall that the Lagrangian �nite element shape functions ϕi(x, y),
i = 1, 2, 3, can be written as

ϕ1(x, y) =
1

2|E| [(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] ,

ϕ2(x, y) =
1

2|E| [(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] ,

ϕ3(x, y) =
1

2|E| [(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] ,

and therefore

∇ϕ1(x, y) =
1

2|E| (y2 − y3, x3 − x2) ,

∇ϕ2(x, y) =
1

2|E| (y3 − y1, x1 − x3) ,

∇ϕ3(x, y) =
1

2|E| (y1 − y2, x2 − x1) .

Therefore, a straightforward calculation shows that the sti�ness matrix V associated to
the Lagrangian �nite element shape functions has components

V(i, j) :=
∫

E
∇ϕj · ∇ϕi dx = |E|(∇ϕi)T · (∇ϕj) = M(i, j), i, j = 1, 2, 3.

6 Numerical results

This section is devoted to present some numerical computations to con�rm the theoretical
results of the previous sections.

We consider the domain Ω =] − 1, 1[2. For a parameter 0 < r < 1, we de�ne the
(continuous) load

f(x, y) :=

{
− 8(2x2 + 2y2 − r2) if

√
x2 + y2 > r,

− 8r2(1− x2 − y2 + r2) if
√
x2 + y2 ≤ r,

(6.1)
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and the Dirichlet boundary data g(x, y) := (x2 + y2 − r2)2. We consider a constant
obstacle ψ(x, y) := 0, so that the exact minimizer of model problem (2.1) is given by

u(x, y) := (max{x2 + y2 − r2, 0})2; (6.2)

cf. [27]. Figure 1 (left) depicts the minimizer u together with the obstacle ψ in the case r =
0.7. The obstacle problem has been solved numerically by the Projected Successive Over
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Figure 1: Left: exact minimizer u with the obstacle ψ (r = 0.7). Right: MFD minimizer
uh with the obstacle ψ (r = 0.7).

Relaxation (PSOR) method [16, 18, 21]. More precisely, we discretized the corresponding
unconstrained problem (that is, the Poisson equation) by means of MFD method which
reads in matrix form as Aũh = f. Then, A is decomposed as A = D+L+U for the projected
Gauss-Seidel successive over-relaxation iteration (with over-relaxation parameter ω), and
the minimizer uh is found by constrained iteration up to a user-de�ned tolerance TOL.
The initial guess is max{ũh, ψ} where ũh is the solution to the unconstrained problem
Aũh = f. We refer to [18, 21] for more details. Throughout the section, the over-relaxation
parameter ω has been chosen as ω = 1.75, and the tolerance TOL in the iterative scheme
is �xed equal to 10−9.

We tested four di�erent sequences of decompositions, that we denote by triangular,
quadrilateral, median-type 1 and median-type 2. An example of two consecutive levels of
all the considered decomposition is shown in Figure 2. An example of MFD minimizer
together with the obstacle ψ on a median-type 1 polygonal mesh is shown in Figure 1
(right).

In Table 1 we report the computed (relative) errors εr1,h(uI , uh) in the discrete energy
norm de�ned in (3.2), i.e.,

εr1,h(uI , uh) =
‖uI − uh‖1,h

‖uI‖1,h
,

for the sequence of triangular and quadrilateral decompositions. Here and in the fol-
lowing, nP denotes the number of polygons of the decomposition. In the last row of
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Figure 2: Two samples of the considered decompositions of Ω =] − 1, 1[2: one coarser
(top) and one �ner (bottom). From left to right: triangular mesh, quadrilateral mesh
and median-type 1, median-type 2 polygonal meshes.

Table 1 we also report the computed convergence rates obtained by the linear regression
algorithm. We can observe that on quadrilateral meshes the computed convergence rate
is linear as predicted by Theorem 4.1, whereas on triangular decomposition convergence
is achieved slightly better that expected; such a behaviour has been already observed in
[2]. The analogous results obtained on median-type 1 and median-type 2 decompositions

Table 1: Computed relative errors εr1,h(uI , uh) on the sequence of triangular and quadri-
lateral meshes.

triangular meshes quadrilateral meshes

nP εr1,h(uI , uh) nP εr1,h(uI , uh)

128 3.7452e-02 64 6.4114e-02

512 1.1865e-02 256 2.5172e-02

2048 3.4448e-03 1024 1.2802e-02

8192 9.5227e-04 4096 6.7499e-03

32768 2.7586e-04 16384 3.4652e-03

rate 1.7809 1.0318

are shown in Figure 3 (loglog scale), and are indeed in agreement with our theoretical
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estimates. Next, we also investigate the (relative) error behaviour in the discrete L2- and
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h
(u
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,u

h
)

√
nP

1

median-type 1 mesh
median-type 2 mesh

Figure 3: Computed relative errors εr1,h(uI , uh) versus the square root of the number of
cells (loglog scale): median-type 1 and median-type 2 meshes.

L∞-type norms de�ned in (3.3). To this aim, we set

εr0,h(uI , uh) :=
‖uI − uh‖0,h

‖uI‖0,h
, εr∞,h(uI , uh) :=

‖uI − uh‖∞,h

‖uI‖∞,h
.

The computed errors εr0,h(uI , uh) and εr∞,h(uI , uh) versus the square root of the number
of cells are reported in Figure 4 (loglog scale). Results reported in Figure 4(a) refer
to triangular and quadrilateral meshes, whereas results obtained on median-type 1 and
median-type 2 decompositions are shown in Figure 4(b). A quadratic convergence rate is
clearly observed.

Next, we compare the performance of MFD and FEM, and we investigate the e�ects
of employing the discrete norms (3.2) and (3.3) instead of their continuous counterparts
(that is, the H1(Ω) and L2(Ω) norms). First, we employ the FEM to approximate
the model problem under consideration on a sequence of triangular decompositions, and
computed the (relative) errors both in the H1(Ω) seminorm and in the L2(Ω) norm

εr1(uI , uh) :=

∣∣uI − uh

∣∣
H1(Ω)

|uI |H1(Ω)

, εr0(uI , uh) :=
‖uI − uh‖L2(Ω)

‖uI‖L2(Ω)
. (6.3)

To compute the right-hand side of the Finite Element variational formulation, we have
employed the barycenter quadrature formula, which is exact for linear polynomials, and
therefore it is consistent with the quadrature formula (3.7). In Table 2 we compare
the Finite Element relative errors computed as in (6.3) with their discrete counterpart,
namely εr1,h(uI , uh) and εr0,h(uI , uh). We clearly observe that, for both s = 0 and s = 1,
the relative error εrs,h(uI , uh) (which only employs nodal values) is systematically smaller
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(a) Triangular and quadrilateral meshes.
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(b) Median meshes.
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Figure 4: Computed relative errors εr0,h(uI , uh) (left) and εr∞,h(uI , uh) (right) versus the
square root of the number of cells (loglog scale).

than εrs(uI , uh). This phenomenon is probably related to an improved accuracy in the
nodal value approximation. Next, we compare results obtained by MFD and FEM. In
Figure 5 we plot the computed errors εrs,h(uI , uh), s = 0, 1, versus the square root of the
number of cells. We observe that both MFD and FEM achieve asymptotic convergence at
a rate slightly bigger than predicted by our theoretical estimates, and that MFD produces
a larger error. However, the total cost-accuracy should take into account that the FEM
is more expensive in terms of computational costs due to the numerical integration.
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Table 2: Finite Element approximation: comparison between discrete and continuous
norms, namely εrs,h(uI , uh) and εrs(uI , uh), s = 0, 1.

nP εr1(uI , uh) εr1,h(uI , uh) εr0(uI , uh) εr0,h(uI , uh)

128 2.4692e-01 1.7761e-02 2.0321e-01 1.1906e-02

512 1.2123e-01 7.8972e-03 4.8759e-02 4.6443e-03

2048 6.0299e-02 2.3997e-03 1.2071e-02 1.2427e-03

8192 3.0113e-02 7.3530e-04 3.0086e-03 3.1091e-04

32768 1.5052e-02 2.3510e-04 7.5225e-04 7.7263e-05

rate 1.0081 1.5903 2.0174 1.8436
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Figure 5: Comparison between FEM and MFD: computed relative errors εrs,h(uI , uh),
s = 0, 1, versus the square root of the number of cells (loglog scale).

Finally, we present some numerical computations to con�rm that the theoretical
results of the previous sections are valid also on non-convex domains (cf. Remark 4.1).
To this aim we choose the L-shaped domain Ω =]−1, 1[2\[0, 1]2, and we consider the same
test problem as before. Figure 6 (right) shows a plot of the MFD minimizer uh together
with the obstacle ψ (r = 0.7). We tested the MFD method on a sequence of quadrilateral
meshes: a sample is shown in Figure 6 (left). The computed relative errors εr1,h(uI , uh)
and εr0,h(uI , uh) are reported in Figure 7 (loglog scale): as predicted by Theorem 4.1, we
observe a linear convergence rate in the discrete energy norm. We also observe that the
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Figure 6: L-shaped domain: a sample of the quadrilateral decomposition (left), and the
corresponding MFD minimizer uh together with the obstacle ψ (right).

relative error in the discrete L2 norm tends to zero quadratically as the mesh is re�ned.
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Figure 7: L-shaped domain: computed relative errors εr1,h(uI , uh) and εr0,h(uI , uh) versus
the square root of the number of cells (loglog scale).
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Appendix A: convergence result in the case of homogeneous

boundary conditions

This section is devoted to show that, if we restrict ourselves to the case of homogeneous
boundary conditions, Theorem 4.1 can be proved in a much simpler way, following the
idea proposed in [19]. For the sake of completeness we restate Theorem 4.1, and report
the proof.

Theorem 6.1. Let u ∈ K ∩H2(Ω) be the solution to the continuous problem (2.1) with
homogeneous boundary conditions, i.e., g = 0, and let uh ∈ Kh be the corresponding
mimetic approximation, obtained by solving the discrete problem (3.8). Then, it holds

‖uh − uI‖1,h ≤ Ch,

where the constant C is independent of the mesh-size h.

Proof. We set eh := uh − uI and u1 := I1u, where I1 is the Lagrangian interpolation
operator onto the space of continuous piecewise linear functions de�ned on Ωh. By using
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(S1)-(S2), we get

c1‖eh‖21,h ≤ ah(eh, eh)

≤ (f, eh)h − ah(uI, eh)

≤ (f, eh)h − ah(uI − (u1)I, eh)− ah((u1)I, eh)

≤ (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h −
∑

E∈Ωh

∑
e∈EE

h

∂u1

∂n

∫
e
RE

h eh dx

≤ (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h −
∑

E∈Ωh

∫
E
∇RE

h eh · ∇u1 dx

≤ (f, eh)h + c2‖uI − (u1)I‖1,h‖eh‖1,h

+
∑

E∈Ωh

∫
E
∇RE

h (uh − uI) · ∇(u− u1) dx

−
∑

E∈Ωh

∫
E
∇RE

h (uh − uI) · ∇udx.

(6.4)

Let us preliminary estimate the term ‖(u−u1)I‖1,h. For simplicity, we set v = u−u1.
Using de�nition (3.2) of the norm ‖ · ‖1,h and the Cauchy-Schwarz inequality, we get

‖vI‖21,h =
∑

E∈Ωh

|E|
∑
e∈EE

h

[
1
|e| (v

v2 − vv1)
]2

=
∑

E∈Ωh

|E|
∑
e∈EE

h

[
1
|e|
∫

e
v′ds

]2

≤
∑

E∈Ωh

|E|
∑
e∈EE

h

[
1
|e|‖∇v‖

2
L2(e)

]
.

Applying the trace inequality (3.1) to ∇v and employing a standard interpolation
error estimate yield

‖(u− u1)I‖21,h .
∑

E∈Ωh

[
‖∇(u− u1)‖2L2(E) + h2

E |u|2H2(E)

]
. h2 |u|2H2(Ω) . (6.5)

From (6.4), by the employing Young inequality combined with (6.5), we get

‖eh‖21,h . (f, eh)h + h2 |u|2H2(Ω) +
∑

E∈Ωh

∫
E
∇RE

h (uh − uI) · ∇(u− u1)dx

−
∑

E∈Ωh

∫
E
∇RE

h (uh − uI) · ∇udx.

Moreover, for an arbitrary element v of the space K, integration by parts and the
Cauchy-Schwarz inequality yield
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‖eh‖21,h . (f, eh)h + h2 |u|2H2(Ω) + ‖∇RE
h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω)

−
∑

E∈Ωh

∫
E
∇(u−RE

h uI) · ∇u dx+
∑

E∈Ωh

∫
E
∇(u−RE

h uh) · ∇udx

. (f, eh)h + h2 |u|2H2(Ω) + ‖∇RE
h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω)

+ ‖∆u‖L2(Ω)‖u−RE
h uI‖L2(Ω) −

∑
E∈Ωh

∫
E
∇(v − u) · ∇udx

+
∑

E∈Ωh

∫
E
∇(v −RE

h uh) · ∇u dx

. (f, eh)h + h2 |u|2H2(Ω) + ‖∇RE
h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω)

+ ‖∆u‖L2(Ω)‖u−RE
h uI‖L2(Ω) −

∫
Ω
f(v − u) dx

+ ‖v −RE
h uh‖L2(Ω)‖∆u‖L2(Ω),

where in the last inequality we have employed (2.1). Finally, a simple manipulation
of the terms appearing in the above inequality gives the following

‖eh‖21,h .
{

(f, eh)h − (f,RE
h eh)

}
+
{

(f,RE
h eh)− (f, v − u)

}
+ h2 |u|2H2(Ω) + ‖∇RE

h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω)

+ ‖∆u‖L2(Ω)

(
‖u−RE

h uI‖L2(Ω) + ‖v −RE
h uh‖L2(Ω)

)
.
{

(f, eh)h − (f,RE
h eh)

}
+
{

(f,RE
h uh − v) + (f, u−RE

h uI)
}

+ h2|u|2H2(Ω) + ‖∇RE
h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω)

+ ‖∆u‖L2(Ω)

(
‖u−RE

h uI‖L2(Ω) + ‖v −RE
h uh‖L2(Ω)

)
.
{

(f, eh)h − (f,RE
h eh)

}
+
(
‖f‖L2(Ω) + ‖∆u‖L2(Ω)

)(
‖v −RE

h uh‖L2(Ω) + ‖u−RE
h uI‖L2(Ω)

)
+ h2 |u|2H2(Ω) + ‖∇RE

h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω)

.
{

(f, eh)h − (f,RE
h eh)

}
+ ‖v −RE

h uh‖L2(Ω) + ‖u−RE
h uI‖L2(Ω)

+ h2 |u|2H2(Ω) + ‖∇RE
h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω),

(6.6)

where in the last inequality we used that f,∆u ∈ L2(Ω).
By using (4.7) and proceeding as in the estimate of the First Piece in [9], it is easy

to check that there holds∣∣(f, eh)h − (f,RE
h eh)

∣∣ . h‖f‖L2(Ω)‖eh‖1,h. (6.7)
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From (6.6), by employing the Young inequality combined with (6.7), we get

‖eh‖21,h . h2 + ‖v −RE
h uh‖L2(Ω) + ‖u−RE

h uI‖L2(Ω)

+ ‖∇RE
h (uh − uI)‖L2(Ω)‖∇(u− u1)‖L2(Ω).

Using assumption (L4) and a standard interpolation error estimate together with Young
inequality yields

‖eh‖21,h . h2 + inf
v∈K
‖v −RE

h uh‖L2(Ω) + ‖u−RE
h uI‖L2(Ω). (6.8)

Moreover, by applying inequality (4.6) we get

‖eh‖21,h . h2 + inf
v∈K
‖v −RE

h uh‖L2(Ω). (6.9)

In order to estimate the term infv∈K ‖RE
h uh − v‖L2(Ω), we mimick the proof in [19] and

we introduce the function u∗ with

u∗|E = max{RE
h uh, ψ|E}

for every E ∈ Ωh, so that the inequality u∗ ≥ ψ holds in Ω. It is possible to prove that
RE

h uh, ψ ∈ H1(Ω) implies u∗ ∈ H1(Ω) (see e.g. [24]). Finally, the condition ψ ≤ 0 on Γ
yields that u∗ ∈ H1

0 (Ω). Thus the function u∗ is an element of the set K. Let

Λh = {x ∈ Ω : RE
h uh < ψ},

so that

‖RE
h uh − u∗‖L2(Ω) =

∫
Λh

|RE
h uh − ψ|2 dx,

since RE
h uh − u∗ = 0 on Ω \ Λh. As for every v ∈ Nh there holds uh(v) ≥ ψI(v),

employing assumption (L6) yields

RE
h uh −RE

h ψI ≥ 0 in Ω.

Consequently, for every x ∈ Λh there holds

0 < |(ψ −RE
h uh)(x)| = (ψ −RE

h uh)(x) ≤ (ψ −RE
h ψI)(x) = |(ψ −RE

h ψI)(x)|,
and thus,

‖RE
h uh − u∗‖2L2(Ω) =

∫
Λh

|RE
h uh − ψ|2 dx ≤

∫
Λh

|ψ −RE
h ψI|2 dx ≤ ‖ψ −RE

h ψI‖2L2(Ω).

Therefore, by using (4.6) and ψ ∈ H2(Ω), we obtain

‖RE
h uh − u∗‖L2(Ω) . ‖ψ −RE

h ψI‖L2(Ω) . h2 |ψ|H2(Ω) . (6.10)

Combining (6.10) and (6.9) yields the thesis.
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