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Abstract

We propose a finite element scheme for the approximation of multido-
main heterogeneous problems arising in the general framework of linear
incompressible flows (e.g. Stokes’ and Darcy’s equations). We exploit stabi-
lized mixed finite elements together with Nitsche type matching conditions
that automatically adapt to the coupling of different subproblem combina-
tions. Optimal error estimates are derived for the coupled problem. Finally,
we propose and analyze an iterative splitting strategy for the approxima-
tion of the multidomain solution by means of a sequence of independent
and local subproblems. Thanks to the introduction of a suitable relaxation
strategy, the iterative method turns out to be convergent for any possible
coupling between subproblems.

1 Introduction

We consider an incompressible flow problem, which consists on finding for a.e.
x in a regular domain Ω ⊂ Rd, d = 2, 3, a velocity vector field u(x) and a scalar

∗This work has been supported by the Italian Institute of Technology with the project
”Nanobiotechnology - Models and methods for local drug delivery from nano/micro structured
materials.”
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pressure field p(x) such that,{
ηu +∇ ·

(
Ip− ν(∇u +∇uT )

)
= f ,

∇ · u = 0,
(1)

being ν and η nonnegative coefficients satisfying ν + η ≥ µ > 0 a.e on Ω, f a
vector valued forcing term and I the identity matrix.

The motivation of the present study arises from the following observation.
Several studies have addressed the stability of the linear models for incompress-
ible flows when the viscosity is vanishing. In particular, Payne and Straughan
[22] have proved that the solution of the generalized Stokes’ equations (uS),
also known as Brinkman’s equations, converges to the solution of the Darcy’s
equation (uD) in the L2 norm when the viscosity parameter ν tends to zero,
i.e., ‖uS − uD‖L2(Ω) ≤ C

√
ν. This fact highlights the smooth dependence of

the physical problem on the viscosity parameter, which so far does not corre-
spond to a general unified scheme at the level of numerical approximation for
incompressible flow problems with heterogeneous (possibly vanishing) viscosity
coefficients.

A difficulty in the development of a unified discretization framework for the
coupling of viscous and inviscid subproblems is due to the treatment of interface
conditions. In general, matching conditions can be split into natural conditions,
which typically represent the equilibrium of forces at the interface and essential
conditions, which account for the continuity of velocities or fluxes. The treat-
ment of natural conditions is straightforward in the framework of variational
formulations and very often these conditions apply to the coupling of both ho-
mogeneous and heterogeneous problems. Conversely, for essential conditions
there is no smooth transition from the homogeneous to the heterogeneous cases.
For example, to match Stokes’ flows we require u to be continuous across the
interface, while in the heterogeneous coupling of Darcy’s and Stokes’ models we
only need the continuity of the normal velocity, namely u·n. At the discrete level,
this behavior can be easily reproduced by means of the application of penalty
techniques to interface conditions of essential type. In particular, our coupling
is based on matching conditions due to Nitsche (see [21]), originally introduced
as a means to weakly impose boundary conditions and recently extended to a
domain decomposition framework in [1, 26, 11]. By means of this approach we
develop a finite element scheme that automatically adapts to the coupling of vis-
cous and inviscid models (such as Stokes’, Brinkman’s and Darcy’s equations)
by simply defining on each subregion the physical parameters corresponding to
each problem. This scheme is also particularly effective for the treatment of
tangential velocities. According to [17], this is an indicator of the robustness of
the method. For instance, interface conditions of practical interest, as the ones
proposed by Beavers, Joseph and Saffman (see [24]) for the coupling of free flows
with porous media can naturally be embedded into the scheme.

In the perspective to address practical applications, we also propose and
analyze an iterative splitting method to approximate the global solution of the
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multidomain problem by means of a sequence of independent and local subprob-
lems. Thanks to the introduction of a suitable relaxation strategy, the iterative
method results to be convergent for any possible coupling between subproblems.
The multidomain problem can be thus approximated exploiting a multiproces-
sor architecture, with straightforward advantages on computational time and
memory storage. This technique clearly facilitates the treatment of problems
with several domains and different couplings, which typically arise in realistic
applications involving the flow through heterogeneous media.

From the point of view of numerical approximation, the design of finite el-
ements that are robust and optimally converging for both viscous and inviscid
problems is a nontrivial task. For instance, the discretization of viscous problems
requires the satisfaction of the inf-sup condition for the velocity and pressure
spaces, while for inviscid problems some control of the divergence of velocities
is also necessary. This difficulty has been recently addressed in [20], where a
new non conforming element with 9 degrees of freedom is proposed. A more
practical way for the numerical discretization is to use specific scheme for the
viscous case and another one for the inviscid case (see i.e. [19, 23, 3]). This
allows the use of standard packages for each subproblem and efficient solving us-
ing domain decomposition algorithms. However, from an implementation point
of view this may be impractical, because functions from different finite element
spaces have to be coupled over the interface and different linear algebra solvers
may be needed for the different subproblems. For these reasons, we opt for the
construction of a unified family of finite elements for viscous and inviscid prob-
lems that is simpler than the one of [20]. To achieve this task, we privilege the
satisfaction of the Hdiv stability with respect to the inf-sup condition. We con-
sider H1-conformal finite elements of order r > 0 for the velocity approximation
and totally discontinuous elements of order r− 1 for the pressure, such that the
pressure space contains the divergence of the discrete velocities. This scheme
does not satisfy the inf-sup condition and a suitable stabilization term acting
on the pressure must be introduced. To this purpose, we apply the edge stabi-
lization technique proposed in [10] with the extension to arbitrary polynomial
order studied in [8]. Furthermore, the inf-sup stability for a general multido-
main decomposition is achieved exploiting the fundamental properties of the so
called connectivity matrix, analyzed in [2]. Merging the aforementioned results,
we prove that our numerical scheme leads to optimal a priori error estimates for
both viscous and inviscid problems in the natural energy norms. This allows us
to cover a large range of parameter values using the same numerical method.

2 A multidomain formulation

To set up our multidomain problem, we consider a partition of Ω in N nonover-
lapping subregions such that Ω̄ =

⋃N
i=1 Ω̄i and we denote by ni the outer unit

normal of Ωi. Let Ni be the set of indexes such that Ni = {j = 1, . . . , N : j 6=
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i, ∂Ωi ∩ ∂Ωj 6= ∅}. Then, we define Γij = ∂Ωi ∩ ∂Ωj for all i = 1, . . . , N and
j ∈ Ni. We assign to each interface Γij ≡ Γji a unit normal vector nΓ that may
point from Ωi to Ωj or vice versa. For instance, we assume nΓ = ni on Γij if
i < j and nΓ = nj in the opposite case. Nonetheless, the arbitrariness of nΓ will
not influence the set up of the method. On the boundary of Ω, we consider the
outward unit normal vector n. To each subregion we associate suitable spaces Vi

and Qi where we look for a (weak) local solution (ui, pi) on Ωi. Assuming that
vi, qi can be regarded as functions on the whole Ω by means of extension to zero,
we introduce the following global spaces on Ω, V :=

⊕N
i=1 Vi, Q :=

⊕N
i=1 Qi and

W := V × Q. The additional constraint Q ⊂ L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω q = 0}

may be necessary depending on the boundary conditions. Let us maintain Vi

and Qi temporarily unspecified and proceed formally. Their precise definition
will be given at the beginning of section 4.

Given v ∈ V, we define the neighboring values of v with respect to Γij as
follows,

v∓(x) = lim
δ→0+

v(x∓ δnΓ), a.e. on Γij .

The jump, J·K, and the average, {·}, of v across Γij are obtained combining these
values. More precisely, JvK := v− − v+ and owing to our definition of nΓ we
obtain JvK := vi − vj , a.e. on Γij if i < j and JvK := vj − vi if j > i, while for
the averages we set,

{v}w := wivi + wjvj , {v}w := wjvi + wivj , with wi + wj = 1 a.e. on Γij .

We say that the averages {·}w and {·}w are conjugate, because they satisfy the
following identity, JabK = {a}wJbK + JaK{b}w for any double valued quantities
a = (a−, a+), b = (b−, b+). We also apply similar definitions for any other
quantity depending on (v, q).

Owing to the identity ∇ ·
(
∇uT

)
= ∇

(
∇ · u

)
= 0, we consider for simplicity

an alternative formulation of (1), where the first equation is replaced by ηu +
∇ · σ(u, p) = f given σ(u, p) := Ip − νε(u) and ε(u) := ∇u. Then, denoting
with νi, ηi ∈ L∞(Ωi) the viscosity and the permeability in Ωi respectively, our
multidomain problem reads as follows: given f , F, U sufficiently regular data,
find (u, p) ∈ V ×Q such that,

ηiui +∇ · σi(u, p) = f , ∇ · ui = 0, in Ωi, for i = 1, . . . , N,

together with the following boundary and interface conditions on ∂Ωi, which
assume different forms in the two cases νi > 0 or νi = 0, being νj > 0. Precisely,
the essential conditions are,

case νi > 0, case νi = 0
(ui −U) = 0, (ui −U) · n = 0, on ∂Ω,
JuK = 0, JuK · nΓ = 0, on Γij ,
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while possible natural conditions read as follows,

case νi > 0, case νi = 0
σi(u, p)n + F = 0, nT σi(u, p)n + F · n = 0, tT σi(u, p)n = 0, on ∂Ω,
Jσ(u, p)KnΓ = 0, nT

ΓJσ(u, p)KnΓ = 0, κΓuj · tΓ = tT
ΓJσ(u, p)KnΓ, on Γij ,

where the second column of the case νi = 0 should be dropped if also νj = 0. We
will take into account of that in the following generalized coupling conditions. In
the case of heterogeneous problems, νi = 0 and νj > 0, the natural conditions in
the normal direction to the interface Γij correspond to the continuity of normal
stresses, while for the tangential direction we have adopted the so called Beavers-
Joseph-Saffman law, being κΓ > 0 a given friction coefficient. In order to develop
a unified treatment of such couplings, we introduce a generalized set of conditions
that represent either the viscous or the viscous/inviscid couplings, depending on
the value of the coefficients νi and νj solely. To this purpose, we propose the
following,

essential χ∂Ω(νi)(ui −U) = 0, (ui −U) · n = 0, on ∂Ω,
χΓ(νi, νj)JuK = 0, JuK · nΓ = 0, on Γij ,

natural σi(u, p)n + F = 0, on ∂Ω,
Jσ(u, p)KnΓ = κΓϕΓ(νi, νj)tΓ{u · tΓ}w, on Γij .

In case νi vanishes in a subdomain, the averaging weights wi, wj and the scaling
functions χ∂Ω(νi), χΓ(νi, νj), ϕΓ(νi, νj) must be chosen so as to guarantee that
the matching conditions recover the physically correct behavior, characterized
by the following requirements,

χ∂Ω(νi) > 0 if νi > 0, χ∂Ω(νi) = 0 if νi = 0,
χΓ(νi, νj) > 0 if νi · νj > 0, χΓ(νi, νj) = 0 if νi · νj = 0,
ϕΓ(νi, νj) = 0 if νi = νj , ϕΓ(νi, νj) = 1 if νi · νj = 0.

Following [11, 27], where a similar case is studied for advection-diffusion equa-
tions, the weights and scaling functions are defined as follows,

χ∂Ω(νi) := νi, on ∂Ω,

wi :=
νj

νi + νj
, χΓ(νi, νj) := {ν}w, ϕΓ(νi, νj) :=

|JνK|
2{ν}

, on Γij ,

with wi = 1/2, χΓ(νi, νj) = 0 and ϕΓ(νi, νj) = 0 in the homogeneous vanishing
viscosity case νi, νj → 0. Finally, we notice that, to our knowledge, a precise
characterization of what interface condition is convenient to couple Brinkman’s
equations for heterogeneous materials is missing. From the mathematical view-
point, continuity of velocities and normal stresses is admissible. However, this
choice doesn’t seem to be realistic when νi/νj � 1 or vice versa. In this case, the
condition arising from the application of the Beavers-Joseph-Saffman law seems
to be more effective, and we will apply it to our method.

5



3 A finite element method

Let us now set up the discrete variational formulation of problem (1). Although
the computational method can be applied for d = 1, 2, 3 space dimensions, with-
out loss of generality we restrict to the case d = 2 for the notation and some
technical aspects of the analysis. We assume that Ω and Ωi are convex polygonal
domains and we consider a partitioning of each subdomain Ωi into a conforming
triangulation Th,i of affine simplices K, but the local triangulations do not need
to be conforming on Ω. Let Th,i be shape regular and quasi-uniform, and hi

be the local mesh characteristic parameter, while h := maxi=1,N hi, with the
assumption h � 1. More precisely, being hK = diam(K) and hE = diam(E)
with E ⊂ ∂K for any simplex K and any edge E of K in Th,i, there exists
0 < σ1 < ∞ such that hE ≤ hK ≤ σ1hE and there exist σ2 > 0 such that
hi ≤ h ≤ σ2hi. We denote with Gh,i and with Bh,i the trace meshes at the
interface and at the boundary of the subdomains. We also denote with Fh,i the
set of all interior edges of Th,i and define the intersection of the trace meshes on
Γij that is denoted with Gh,ij . Precisely, we have,

Bh,i := {E 6= ∅ : E = ∂K ∩ ∂Ω, ∀K ∈ Th,i}, Bh := ∪N
i=1Bh,i,

Fh,i := {E 6= ∅ : E = ∂K \ ∂Ωi, ∀K ∈ Th,i}, Fh := ∪N
i=1Fh,i,

Gh,ij := {E 6= ∅ : E = ∂Ki ∩ ∂Kj , ∀Ki ∈ Th,i, ∀Kj ∈ Th,j}.

We assume that Gh,ij is nondegenerate, namely there exists 0 < σ3 < ∞ such that
for all E ∈ Gh,ij we have

(
diam(Ki) + diam(Kj)

)
≤ σ3diam(E) being Ki ∈ Th,i

and Kj ∈ Th,j such that ∂Ki∩∂Kj = E. For any E ∈ Fh,i with E = ∂Kr ∩∂Ks

with Kr 6= Ks ∈ Th,i we define nE as the outer unit normal vector of Kr if r < s
and of Ks otherwise. Then, the definition of jumps and averages on E ∈ Fh,i is
extended straightforwardly. Finally, to simplify the presentation of the results,
we apply the following abridged notation,∫

Γ
v · nΓ :=

1
2

N∑
i=1

∑
j∈Ni

∫
Γij

v · nΓ,∫
Bh,i

vh · n :=
∑

E∈Bh,i

∫
E

vh · n,

∫
Fh,i

vh · nE :=
∑

E∈Fh,i

∫
E

vh · nE ,

∫
Gh,ij

vh · nΓ :=
∑

E∈Gh,ij

∫
E

vh · nΓ,

∫
Gh

vh · nΓ :=
1
2

N∑
i=1

∑
j∈Ni

∫
Gh,ij

vh · nΓ.

Extending the work of Burman and Hansbo, see [10], we define the approxi-
mation space for the velocity on Ωi as follows,

Vh,i := {vh ∈ H1(Ωi) : vh|K ∈ Pri(K), ∀K ∈ Th,i}, Vh,i = [Vh,i]d,

Qh,i := {qh ∈ L2(Ωi) : qh|K ∈ Pri−1(K), ∀K ∈ Th,i}, with ri > 0.
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On each subdomain we may consider a different polynomial order, ri for the
finite element approximation, and we denote r := mini=1,N ri. We point out
that different finite elements can be combined with different mesh sizes on each
subdomain. In practice, it is interesting to increase hi when the local polynomial
order is increased. We will discuss later on how this flexibility may be effectively
exploited for the approximation of heterogeneous problems (see Remark 3.1).
Since the pressure space consists of discontinuous functions we have ∇ ·Vh,i ⊂
Qh,i, a property which guarantees L2-stability of the divergence of the velocities
in the Darcy case. We also introduce Vh :=

⊕N
i=1 Vh,i and Qh :=

⊕N
i=1 Qh,i ∩Q.

In order to properly account for different polynomial orders in our finite element
method, we introduce the quantity rE for any edge E ∈ Th,i, i = 1, . . . , N .
Precisely, we set rE := max[ri, rj ] if E ∈ Gh,ij and rE := ri if E ∈ Fh,i or
E ∈ Bh,i. We also denote rK := ri for any K ∈ Th,i.

In order to reduce the technical aspects in the analysis of the method, we
consider homogeneous Dirichlet data on the entire boundary. Then, for any
uh,vh ∈ Vh and ph, qh ∈ Qh we define the following bilinear forms,

a(uh,vh) :=
∫

Ω

(
νε(uh) : ε(vh) + ηuh · vh

)
−

∫
∂Ω

(
νε(uh)n · vh + ςνε(vh)n · uh

)
+

∫
Bh

γuν
(

hE

r2
E

)−1
uh · vh, (2)

b(ph,vh) := −
∫

Ω
ph∇ · vh +

∫
∂Ω

phvh · n, (3)

c(uh,vh) :=
∫
Gh

γu{ν}w

(
hE

r2
E

)−1
JuhK · JvhK +

∫
Γ

κΓ
|JνK|
2{ν}{uh · tΓ}w{vh · tΓ}w

(4)

−
∫

Γ

(
{νε(uh)nΓ}w · JvhK + ς{νε(vh)nΓ}w · JuhK

)
,

d(ph,vh) :=
∫

Γ
{ph}wJvh · nΓK, (5)

ju(uh,vh) :=
∫
Gh

γu

(
hE

r2
E

)−1
Juh · nΓKJvh · nΓK +

∫
Bh

γu

(
hE

r2
E

)−1
(uh · n)(vh · n),

(6)

jp(ph, qh) :=
∫
Fh

γp

(
hE

r2
E

)
JphKJqhK, (7)

where γu and γp are constant parameters that should be suitably set to ensure the
stability of the method. We notice that the definition of γu and γp is independent
of ν, hE and rE . However, for the ease of notation we introduce γu,i := γur2

E

and γp,i := γpr
−2
E

Furthermore, the parameter ς = ±1 is a flag that allows us to switch between
the symmetric (ς = 1) and the skew-symmetric (ς = −1) formulations. From
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this point forward, we will focus on the symmetric case. Then, we define,

A(uh,vh) := a(uh,vh) + c(uh,vh), and B(ph,vh) := b(ph,vh) + d(ph,vh).

and we denote the right hand side by F(vh) :=
∫
Ω f · vh. Then, the mixed

formulation of the discrete problem reads as follows: given a sufficiently regular
F(·), find (uh, ph) ∈ Vh ×Qh such that,{

A(uh,vh) + ju(uh,vh) + B(ph,vh) = F(vh), ∀vh ∈ Vh,
B(qh,uh)− ς jp(ph, qh) = 0, ∀qh ∈ Qh.

(8)

Introducing the product space Wh := Vh×Qh, the right hand side G(vh, qh) =
(F(vh), 0) and the bilinear form

C((uh, ph), (vh, qh)) = A(uh,vh)+ju(uh,vh)+B(ph,vh)−B(qh,uh)+jp(ph, qh),

problem (8) is equivalent to the following: given a sufficiently regular G(·), find
(uh, ph) ∈ Wh such that,

C((uh, ph), (vh, qh)) = G(vh, qh), ∀(vh, qh) ∈ Wh. (9)

Remark 3.1 The simplest case we may consider is r = 1 corresponding to
P1 − P0 elements for velocities and pressures respectively, which has already
been proposed in [10] for Stokes’ and Darcy’s equations. Such approximation
may be effective for free flows in presence of complex geometries or obstacles,
because the low polynomial order allows to reduce the mesh size. However, this
stabilized finite element turns out to be inaccurate for the approximation of flow
in porous media with high hydraulic resistance. Indeed, the high pressure gradi-
ents generated when η � 1 have to be approximated by sufficiently large jumps
on the element’s edges, but this is in contrast with the presence of the stabi-
lization term, which penalizes them. As confirmed by numerical experiments,
P1 − P0 elements are not able to respond to these contradictory requirements.
This behavior is easily corrected switching to r = 2 for Darcy’s equations. In
this perspective, the possibility to couple different polynomial orders on different
subregions turns out to be particularly effective.

Remark 3.2 Our method can be easily generalized to the case of Oseen’s equa-
tions, exploiting the continuous interior penalty stabilization, proposed in [9],
to cure the instability due to high local Reynolds numbers. This is achieved
introducing into the bilinear form a(uh,vh) a new term that penalizes the jump
of velocity gradients over element faces. Although this generalization would not
require to modify the present setting of the work, we omit it to limit the technical
aspects of the analysis.
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4 Analysis of the method

In this section we aim to analyze the stability and the convergence of method
(8). First of all, for any vh ∈ Y k

h (Ω) = {vh ∈ L2(Ω) : v|K ∈ Pk(K), k ≥ 0, ∀K ∈
Th,i, i = 1, . . . , N} we introduce the following norms,

‖vh‖2
± 1

2
,h,Γ

:=
∑

E∈Gh

h∓1
E ‖vh‖2

0,E , ‖vh‖2
± 1

2
,h,Ω

:=
∑

E∈Fh

h∓1
E ‖vh‖2

0,E ,

where ‖ · ‖0,Σ and ‖ · ‖1,Σ denote the standard norms in L2(Σ) and H1(Σ).
These definitions can be straightforwardly extended to Bh,i and to vector valued
functions. Then, we introduce suitable norms in Vh and Wh respectively,

|||vh|||2 :=‖η
1
2 vh‖2

0,Ω + ‖ν
1
2∇vh‖2

0,Ω + ‖ν
1
2 vh‖2

+ 1
2
,h,∂Ω

+ ‖vh · n‖2
+ 1

2
,h,∂Ω

+‖
(
κΓ

|JνK|
2{ν}

) 1
2 {vh}w · tΓ‖2

0,Γ + ‖{ν}
1
2
wJvhK‖2

+ 1
2
,h,Γ

+ ‖JvhK · nΓ‖2
+ 1

2
,h,Γ

,

|||(vh, qh)|||2 :=|||vh|||2 + ‖∇ · vh‖2
0,Ω + ‖qh‖2

0,Ω + ‖JqhK‖2
− 1

2
,h,Ω

.

Owing to the assumption νi + ηi ≥ µ > 0 and exploiting Poincaré–Friedrichs
inequalities (see [6]), we obtain that |||vh|||2 ≥ C‖vh‖2

0,Ω, where the constant C is
bounded for any admissible value of νi, ηi. We will also make use of the following
inverse inequalities (see [25]) that hold true for all K ∈ Th,i, i = 1, . . . , N and
for all vh ∈ Y k

h := {vh ∈ L2(Ω) : vh|K ∈ Pk(K), ∀K ∈ Th}, provided that the
mesh is shape regular,(

hE
k

) 1
2 ‖vh‖0,E . ‖vh‖0,K ,

(
hK
k

)
‖∇vh‖0,K . ‖vh‖0,K with k > 0. (10)

These inverse inequalities justify the scaling with respect to hE and rE we have
applied into (2)-(7). Here and in the sequel, the symbol . denotes an inequality
involving a positive constant C independent of the size of the mesh, h, and
of the viscosity, ν. From now on, we incorporate into the constant C also the
dependence on rE and rK . This notation will substantially simplify the technical
aspects of the proofs, but some interesting details as the dependence of the
estimates on the polynomial order, the number and the shape of the subregions
will be inevitably lost.

Before proceeding, we provide suitable definitions for Vi and Qi. Starting
from Darcy’s equations, namely the inviscid case, the natural solution space is
Vi := Hdiv(Ωi), Qi := H1(Ωi). Setting νi = 0, the bilinear forms (2)-(7) are
well defined for any couple (vi, qi) ∈ Vi×Qi. Unfortunately, this is not the case
for Stokes’ problem with minimal regularity assumptions, for which we expect
ui ∈ [H1(Ωi)]2, pi ∈ L2(Ωi). This situation may be improved increasing the
regularity of the domain (a convex polygon) and of the forcing terms. In order
to ensure that the bilinear forms (2)-(7) make sense for the exact solution of
the viscous problems, we require Vi := [H

3
2
+ε(Ωi)]2, Qi := H

1
2
+ε(Ωi), for any
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ε > 0. However, we observe that these additional regularity requirements may
not be satisfied for heterogeneous problems in presence of non planar or multiple
interfaces. For elliptic problems this drawback may be overcome by means of
the approach proposed in [16], but the extension of this technique to the case of
Stokes equations goes beyond the scope of this work.

The first step to analyze the method proposed here consists in observing
that it is strongly consistent by construction and that the bilinear form C(·, ·)
is bounded and positive. These properties are made precise in the following
lemmas.

Lemma 1 (Consistency) Let (u, p) ∈ W be the weak solution of (1), and let
(uh, ph) ∈ Wh be the solution of (9). Then, we have,

C((u− uh, p− ph), (vh, qh)) = 0, ∀(vh, qh) ∈ Wh. (11)

Proof. First of all, we observe that (11) is equivalent to

C((u, p), (vh, qh)) = G(vh, qh), ∀(vh, qh) ∈ Wh. (12)

By virtue of the regularity of (u, p), we observe that jp(p, qh) = 0 and since it is
the solution in the weak sense of (1) we have ju(u,vh) = 0 and b(u, qh) = 0. As
a result of that we obtain,

C((u, p), (vh, qh)) = a(u,vh) + b(p,vh)

+
∫

∂Ω
σ(u, p)n · vh +

∫
Γ
{σ(u, p)nΓ}w · JvhK +

∫
Γ

κΓ
|JνK|
2{ν}{u · tΓ}w{vh · tΓ}w.

(13)

Furthermore, by means of Green’s formula we obtain,

a(u,vh) + b(p,vh) +
∫

∂Ω
σ(u, p)n · vh

=
∫

Ω

[
νε(u) : ε(vh) + ηu · vh − p∇ · vh

]
+

∫
∂Ω

σ(u, p)n · vh

=
∫

Ω
f · vh −

∫
Γ
Jσ(u, p)nΓ · vhK. (14)

Thanks to the algebraic identity JabK = {a}wJbK + JaK{b}w and to the interface
condition Jσ(u, p)nΓK = κΓ

|JνK|
2{ν}tΓ{u · tΓ}w the last term of (14) is equivalent to,∫

Γ
Jσ(u, p)nΓ ·vhK =

∫
Γ
{σ(u, p)nΓ}w · JvhK+

∫
Γ

κΓ
|JνK|
2{ν}{u · tΓ}w{vh · tΓ}w. (15)

Finally, we substitute (14) and (15) into (13) and we obtain (12). 2

Lemma 2 (Boundedness) The bilinear form C(·, ·) satisfies,

C((uh, ph), (vh, qh)) . |||uh, ph||| |||vh, qh|||, ∀ (uh, ph), (vh, qh) ∈ Wh. (16)
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Proof. Concerning the bilinear forms a(uh,vh) and c(uh,vh) we have the fol-
lowing estimates,∫

Ω
νε(uh) : ε(vh)+ηuh·vh+

∫
Γ

κΓ
|JνK|
2{ν}{uh·tΓ}w{vh·tΓ}w+

∫
Gh

γu,i{ν}wh−1
E JuhK·JvhK

+
∫
Gh

γu,ih
−1
E Juh·nΓKJvh·nΓK+

∫
Bh

γu,ih
−1
E (uh·n)(vh·n)+

∫
Bh

γu,ih
−1
E (uh·n)(vh·n)

≤ |||uh||||||vh|||.

By virtue of Cauchy-Schwarz inequality and (10) we obtain,∫
Γ
{νε(uh)nΓ}w · JvhK . ‖ν

1
2∇uh‖0,Ω‖{ν}

1
2
wJvhK‖+ 1

2
,h,Γ.

The corresponding symmetric boundary terms can be treated analogously. The
bilinear forms b(ph,vh) and d(ph,vh) are treated similarly,

b(ph,vh) . ‖ph‖0,Ω

(
‖∇ · vh‖0,Ω + ‖vh · n‖+ 1

2
,h,∂Ω

)
d(ph,vh) . ‖ph‖0,Ω‖Jvh · nΓK‖+ 1

2
,h,Γ.

We obtain (16) by means of a suitable combination of the previous estimates. 2

Lemma 3 (Positivity) For γu large enough, there exists a positive constant
Cpos such that,

C((vh, qh), (vh, qh)) ≥ Cpos|||vh|||2, ∀(vh, qh) ∈ Wh. (17)

Proof. We observe that,

C((vh, qh), (vh, qh)) = a(vh,vh) + c(vh,vh) + ju(vh,vh) + jp(qh, qh). (18)

We have to treat the interface and boundary terms, which appear in the defi-
nition of a(vh,vh) and c(vh,vh). We focus on the interface terms of c(vh,vh),
the boundary terms in a(vh,vh) will be treated analogously. Precisely, we have,∫

Γ
{νε(vh)nΓ}w · JvhK =

∫
Γ
{ν}w{ε(vh)nΓ} · JvhK

. ε‖{ν}
1
2
w{ε(vh)nΓ}‖2

− 1
2
,h,Γ

+
1
ε
‖{ν}

1
2
wJvhK‖2

+ 1
2
,h,Γ

Owing to (10) we observe that, ‖{ν}
1
2
w{ε(vh)nΓ}‖2

− 1
2
,h,Γ

. ‖ν
1
2∇vh‖2

0,Ω. By
virtue of the previous inequalities we obtain,

a(vh,vh) + c(vh,vh) & ‖η
1
2 vh‖2

0,Ω + (1− Cε)‖ν
1
2∇vh‖2

0,Ω

+ ‖(κΓ
|JνK|
2{ν})

1
2 {vh}w · tΓ‖2

0,Γ +
(
γu −

C

ε

)[
‖ν

1
2 vh‖2

+ 1
2
,h,∂Ω

+ ‖{ν}
1
2
wvh‖2

+ 1
2
,h,Γ

]
.

(19)

The result follows replacing (19) in (18) and choosing suitably small ε and suit-
ably large γu. 2
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To analyze the stability of our numerical method we follow the approach of
Boland and Nicolaides (see [4] and also [15], Chapter II, Section 1.4) in order
to split the verification of the inf-sup condition into a local condition on each
subdomain and a global condition on a suitable subspace of Wh. To this aim, we
introduce Q̃h,i = Qh,i∩L2

0(Ωi) and by consequence Qh,i = Q̃h,i⊕R where ph,i =
p̃h,i + p̄h,i is the corresponding splitting of the pressure. Finally, let be Q̄h the
space of constant functions on each subdomain Ωi that satisfy

∑N
i=1

∫
Ωi

q̄i = 0.
We aim to prove a local inf-sup condition on Vh,i×Q̃h,i, and a global one, relative
to the subspace Vh × Q̄h. To this aim, we introduce the following lemmas.

Lemma 4 (Stabilized local inf-sup condition) For all p̃h,i ∈ Q̃h,i there ex-
ists ṽp,h,i ∈ Vh,i ∩ [H1

0 (Ωi)]d such that,

bi(p̃h,i, ṽp,h,i) + di(p̃h,i, ṽp,h,i) & ‖p̃h,i‖2
0,Ωi

− C‖Jp̃h,iK‖2
− 1

2
,h,Ωi

, (20)

‖ṽp,h,i‖1,Ωi . ‖p̃h,i‖0,Ωi . (21)

Lemma 4 We observe that, by means of the surjectivity of the divergence op-
erator from [H1

0 (Ωi)]d to Q̃h,i for each subdomain Ωi and for any p̃h,i ∈ Q̃h,i

there exists ṽp,i ∈ [H1
0 (Ωi)]d such that,

∇ · ṽp,i = −p̃h,i, ‖ṽp,i‖1,Ωi . ‖p̃h,i‖0,Ωi . (22)

Then, we define π
H1

0
h,i : [H1

0 (Ωi)]d → Vh,i ∩ [H1
0 (Ωi)]d as the H1

0 -conformal L2-
projector. Thanks to the H1-stability of L2-projection on finite element spaces
(see [5]) we have,

‖πH1
0

h,i v‖1,Ωi . ‖v‖1,Ωi , ∀v ∈ [H1
0 (Ωi)]d, (23)

and by means of a classical duality argument we obtain,

‖πH1
0

h,i v − v‖0,K . hK |v|1,K ∀K ∈ Th, i = 1, . . . , N, ∀v ∈ [H1
0 (Ωi)]d. (24)

Then, we set ṽp,h,i = π
H1

0
h,i ṽp,i. Since ṽp,h,i ∈ [H1

0 (Ωi)]d we have di(p̃h,i, ṽp,h,i) =
0.
Case 1, r = 1: we proceed as in [10], Theorem 2. By means of (10), (22), (24),
applying integration by parts and observing that ∇p̃h,i|K = 0 we obtain,

bi(p̃h,i, ṽp,h,i) = ‖p̃h,i‖2
0,Ωi

−
∫
Fh,i

Jp̃h,iK{ṽp,h,i · nE − ṽp,i · nE} (25)

& ‖p̃h,i‖2
0,Ωi

− 1
ε
‖Jp̃h,iK‖2

− 1
2
,h,Ωi

− ε

∫
Fh,i

h−1
E {ṽp,h,i · nE − ṽp,i · nE}2

& (1− ε)‖p̃h,i‖2
0,Ωi

− 1
ε
‖Jp̃h,iK‖2

− 1
2
,h,Ωi

.
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Equation (20) follows by choosing sufficiently small ε. Moreover, (21) follows
from the combination of (22) and the H1 stability of the L2 projection (23).
Case 2, r > 1: in this case we follow [8]. Note that for r > 1 the space
Vh,i×(Qh,i∩H1(Ωi)) satisfies the inf-sup condition (20) without any stabilization
term (see [7] and references therein). If we let πH1

h,i p̃h,i denote the H1-conformal
L2-projection of p̃h,i onto Qh,i it follows that

‖p̃h,i‖2
0,Ωi

= ‖πH1

h,i p̃h,i‖2
0,Ωi

+ ‖(I − πH1

h,i )p̃h,i‖2
0,Ωi

.

Since the continuous space is inf-sup stable, there is a ṽp,h,i ∈ Vh,i such that,

‖p̃h,i‖2
0,Ωi

≤ bi(πH1

h,i p̃h,i, ṽp,h,i) + ‖(I − πH1

h,i )p̃h,i‖2
0,Ωi

.

We proceed by adding and subtracting p̃h,i in the form bi(·, ·) and by applying
Cauchy-Schwarz inequality to obtain,

‖p̃h,i‖2
0,Ωi

≤ bi(p̃h,i, ṽp,h,i) + ‖(I − πH1

h,i )p̃h,i‖0,Ωi‖ṽp,h,i‖1,Ωi + ‖(I − πH1

h,i )p̃h,i‖2
0,Ωi

.

We conclude using ‖ṽp,h,i‖1,Ωi ≤ ‖πH1

h,i p̃h,i‖0,Ωi ≤ ‖p̃h,i‖0,Ωi , the arithmetic/geometric
inequality and the following discrete interpolation result, which is proved exploit-
ing the so called Oswald interpolation operator (see for instance [14]),

‖(I − πH1

h,i )p̃h,i‖2
0,Ωi

= inf
qh∈Qh,i∩H1(Ωi)

‖p̃h,i − qh‖2
0,Ωi

. ‖Jp̃hK‖2
− 1

2
,h,Ωi

.

2

Lemma 5 (Auxiliary functions) For all i = 1, . . . , N , j ∈ Ni there exist
functions w

(i)
Γij

∈ Vh,i ∩ H1
0 (Ω), w

(j)
Γij

∈ Vh,j ∩ H1
0 (Ω) and wΓij = w

(i)
Γij

+ w
(j)
Γij

∈(
Vh,i ⊕ Vh,j

)
∩H1

0 (Ω) such that,∫
Γij

w
(k)
Γij

= 1, ‖w(k)
Γij
‖1,Ωk

. 1, k = i, j, ‖JwΓij K‖ 1
2
,h,Γij

. 1. (26)

Lemma 5. For the sake of simplicity, we assume that each interface Γij is planar
with outward unit normal vector nΓ. Since Ω ⊂ R2 we conclude that Γij is an
open set in R. Let us denote with Gh,i the trace mesh of Th,i on Γij . Let xM

i be
the node of Gh,i closest to the midpoint of the interface Γij and let be xL

i and
xR

i respectively the leftmost and the rightmost nodes of Gh,i with respect to xM
i .

Let us denote with hE,i = maxE∈Gh,i
hE , then for any admissible combination

of i and j we have |x∗i − x∗j | ≤ max[hE,i, hE,j ] for ∗ = L,M,R. Let us denote

w
(i)
Γij
|∂Ωi

the continuous function which is affine on the intervals [xL
i , xM

i ] and
[xM

i , xR
i ] and is zero for x ≤ xL

i , x ≥ xR
i and x ∈ ∂Ωi \Γij . Moreover, we assume∫

Γij
w

(i)
Γij

dx = 1, consequently (26)a is identically satisfied. Let us now extend

w
(i)
Γij
|∂Ωi

on the whole Ωi by means of the finite element (harmonic) lifting Rh,i.
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More precisely, we define w
(i)
Γij

= Rh,i(w
(i)
Γij
|∂Ωi

). By the stability of the operator

Rh,i we obtain (26)b, namely ‖w(i)
Γij
‖1,Ωi . 1. We proceed analogously for w

(j)
Γij

.
Finally, (26)c holds by virtue of the assumption that Gh,ij is non-degenerate, and
of the bound |x∗i − x∗j | ≤ max[hE,i, hE,j ] for ∗ = L,M,R. 2

Lemma 6 (Global inf-sup condition on subspaces) For all p̄h ∈ Q̄h ⊂ Qh

there exists v̄p,h ∈ Vh such that,

B(p̄h, v̄p,h) & ‖p̄h‖2
0,Ω, ‖v̄p,h‖1,Ω . ‖p̄h‖0,Ω, (27)∫

Γ
Jv̄p,h · nΓK = 0, ‖Jv̄p,h · nΓK‖ 1

2
,h,Γ . ‖p̄h‖0,Ω. (28)

Lemma 6. Let us define v̄p,h,ij := −p̄h,i|Ωi|wΓijni and v̄p,h :=
∑N

i=1

∑
j∈Ni

v̄p,h,ij .
Owing to (26)a we have,∫

Γij

Jv̄p,h,ij · niK = −p̄h,i|Ωi|
( ∫

Γij

w
(i)
Γij
−

∫
Γij

w
(j)
Γij

)
= 0.

One immediately verifies that
∫
ΓJv̄p,h · nΓK = 0. Then, we address equation

(27)a,

B(p̄h, v̄p,h,ij) =−
∫

Ω
p̄h∇ · v̄p,h,ij +

∫
Γ
{p̄h}wJv̄p,h,ij · nΓK

=− p̄h,i

∫
Γij

v̄p,h,ij · nΓ − p̄h,j

∫
Γij

v̄p,h,ij · nΓ

=p̄2
h,i|Ωi| − p̄h,ip̄h,j |Ωi| = p̄h,i|Ωi|(p̄h,i − p̄h,j).

Then, we can write,

B(p̄h, v̄p,h) =
N∑

i=1

∑
j∈Ni

B(p̄h, v̄p,h,ij) =
N∑

i=1

∑
j∈Ni

p̄h,i|Ωi|(p̄h,i − p̄h,j)

that can be reinterpreted at the algebraic level as b(p̄h, v̄p,h) = p̄T
h Bp̄h where

p̄h := [p̄h,i]1≤i≤N and the matrix B = [bij ]1≤i,j≤N is defined as follows,

bij := |Ωi|card(Ni), if j = i; bij := −|Ωi|, if j ∈ Ni; bij := 0, otherwise.

We also introduce the matrix D = diag(|Ω1|, . . . , |ΩN |) and we observe that
p̄T

h Dp̄h = ‖p̄h‖2
0,Ω. Then, the argument proposed in [2] (see Theorem 4.3),

shows that the quantity γ := minp̄h∈Q̄h
(p̄T

h Bp̄h)(p̄T
h Dp̄h)−1 is positive and it

does not depend on h: this proves (27)a. Inequality (27)b, can be derived as
follows,

‖v̄p,h‖2
1,Ω .

N∑
i=1

∑
j∈Ni

‖v̄p,h,ij‖2
1,Ω .

N∑
i=1

p̄2
h,i|Ωi| . ‖p̄h‖2

0,Ω.
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We finally prove (27)b. For i = 1, . . . , N and j ∈ Ni we have that,

‖Jv̄p,h · nΓK‖2
1
2
,h,Γ

.
N∑

i=1

∑
j∈Ni

‖Jv̄p,h,ij · nΓK‖2
1
2
,h,Γij

=
N∑

i=1

∑
j∈Ni

p̄2
h,i|Ωi| . ‖p̄h‖2

0,Ω.

2

Then, we introduce the global inf-sup condition for the bilinear form B(ph,vh).

Lemma 7 (Stabilized global inf-sup condition) For all ph ∈ Qh there ex-
ist vp,h ∈ Vh such that,

B(ph,vp,h) & ‖ph‖2
0,Ω − C‖JphK‖2

− 1
2
,h,Ω

, (29)

‖vp,h‖1,Ω . ‖ph‖0,Ω, |||vp,h||| . ‖ph‖0,Ω. (30)

We notice that the constants in (30)b may depend on ν, but does not blow
up in the limit case ν → 0.

Lemma 7. Let be ṽp,h =
∑N

i=1 ṽp,h,i and p̃h =
∑N

i=1 p̃h,i. The proof consists
in choosing vp,h = ṽp,h + δv̄p,h, being ṽp,h, v̄p,h as in Lemmas 4 and 6 respec-
tively, and following the argument of Boland and Nicolaides (see [15], Chapter
II, Section 1.4). We observe that

B(ph,vp,h) = B(p̃h, ṽp,h) + δB(p̄h, v̄p,h) + B(p̄h, ṽp,h) + δB(p̃h, v̄p,h). (31)

Since ṽp,h,i ∈ [H1
0 (Ωi)]d and by virtue of Lemma 6 we obtain that B(p̄h, ṽp,h)

vanishes because∫
Ωi

p̄h,i∇·ṽp,h,i = p̄h,i

∫
∂Ωi

ṽp,h,i·ni = 0,

∫
Γij

{p̄h}wJṽp,h·niK = {p̄h}w

∫
Γij

Jṽp,h·niK = 0,

while B(p̃h, v̄p,h) can be estimated as follows,

B(p̃h, v̄p,h) =
∫

Ω
p̃h∇ · v̄p,h +

∫
Γ
{p̃h}wJv̄p,h · nΓK

.‖p̃h‖2
0,Ω + ‖v̄p,h‖2

1,Ω +
[
ε‖Jv̄p,h · nΓK‖2

1
2
,h,Γ

+
1
ε
‖{p̃h}w‖2

− 1
2
,h,Γ

]
.

(
1 +

C

ε

)
‖p̃h‖2

0,Ω +
(
1 + Cε

)
‖p̄h‖2

0,Ω. (32)

By replacing (32), (27) and (20) into (31), and suitably choosing δ and ε we
obtain (29). Equation (30) follows from the combination of (21) and (27)b. 2

The well-posedness of problem (9) is a consequence of the following result.
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Theorem 4.1 (Stability) For all (uh, ph) ∈ Wh, there exists a suitable con-
stant Cstab > 0 independent of h and ν such that,

sup
(vh,qh)∈Wh\{0}

C((uh, ph), (vh, qh))
|||vh, qh|||

≥ Cstab|||uh, ph|||. (33)

Proof. Owing to the property ∇ · Vh,i ⊂ Qh,i, we choose (vh, qh) = (uh +
δ1vp,h, ph + δ2∇ · uh) with δ1, δ2 > 0, being vp,h as in Lemma 7. We exploit the
bilinearity of C(·, ·) to obtain,

C((uh, ph), (vh, qh)) = C((uh, ph), (uh, ph))
+ δ1C((uh, ph), (vp,h, 0)) + δ2C((uh, ph), (0,∇ · uh)). (34)

We recall that the first term on the right hand side of (34) can be estimated as,

C((uh, ph), (uh, ph)) ≥ Cpos|||uh|||2 + ju(uh,uh) + jp(ph, ph), (35)

while the second term of (34) can be rewritten as,

C((uh, ph), (vp,h, 0)) = A(uh,vp,h) + ju(uh,vp,h) + B(ph,vp,h). (36)

Exploiting Lemma 2, inequality (30)b and the arithmetic/geometric inequality
we obtain,

A(uh,vp,h) + ju(uh,vp,h) . ε1‖ph‖2
0,Ω +

1
ε1
|||uh|||2. (37)

We finally observe that the third term on the right hand side of (34) is equivalent
to,

C((uh, ph), (0,∇ · uh))

= ‖∇ · uh‖2
0,Ω +

∫
Fh

JphKJ∇ · uhK−
∫

Γ
{∇ · uh}wJuh · nΓK−

∫
∂Ω

(∇ · uh)uh · n.

& (1− C2ε2)‖∇ · uh‖2
0,Ω −

1
ε2

[
‖JphK‖2

− 1
2
,h,Ω

+ ‖Juh · nΓK‖2
1
2
,h,Γ

+ ‖uh · n‖2
1
2
,h,∂Ω

]
.

(38)

Then, combining (34), (36), (37), (38) and (29) we obtain (33) as follows,

C((uh, ph), (vh, qh)) &
(
1− C1

δ1

ε1

)
|||uh|||2 + δ2

(
1− C2ε2

)
‖∇ · uh‖2

0,Ω

+
(
γu − C2

δ2

ε2

)(
‖uh · n‖ 1

2
,h,∂Ω + ‖Juh · nΓK‖ 1

2
,h,Γ

)
+ δ1

(
1− C1ε1

)
‖ph‖2

0,Ω +
(
γp − δ1C1 − γ2

pC2
δ2

ε2

)
‖JphK‖2

− 1
2
,h,Ω

& |||uh, ph|||, (39)

which is satisfied by choosing sufficiently small δ1,2, ε1,2 and γp, γu large enough.
2
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Remark 4.2 The previous analysis shows that it is possible to generalize the
numerical scheme to different families of finite elements, in particular for the
approximation of the pressure. Indeed, Theorem 4.1 depends on the space Qh,i

only through the local stabilized inf-sup condition, i.e. Lemma 4, and through
estimate (38) that leads to the control of ‖∇ · uh‖0,Ω. As a result of that, with
suitable modifications to Lemma 4, our coupling method can be also applied
to H1-conformal (possibly stabilized) elements for the pressure, but this would
compromise the Hdiv stability.

Now, we aim to study the convergence of the (uh, ph) to (u, p) when h → 0.
First of all, we introduce the broken Sobolev space Hs(Ω) :=

⊕N
i=1 Hsi(Ωi)

equipped with the broken norm ‖v‖2
∪Ωi,s

:=
∑N

i=1 ‖vi‖2
si,Ωi

and the seminorm
|v|2∪Ωi,s

:=
∑N

i=1 |vi|2si,Ωi
.

Then, we recall the H1-conformal L2-projector πH1

h,i : [H1(Ωi)]2 → Vh,i

and the nonconformal L2-projector πL2

h,i : H1(Ωi) → Qh,i. Reminding that Th,i

i = 1, . . . , N are a family of shape-regular and quasi-uniform triangulations and
assuming (v, q) ∈ [Hri+1(Ωi)]2 × Hri(Ωi), we have the following estimates for
πH1

h,i and πL2

h,i (see [14]),

‖v − πH1

h,i v‖m,Ωi . hri+1−m
i |v|ri+1,Ωi , m = 0, 1, ‖q − πL2

h,iq‖0,Ωi . hri
i |q|ri,Ωi ,

(40)

‖JπH1

h,i vK‖ 1
2
,h,Γij

.
∑
k=i,j

hrk
k |v|rk+1,Ωk

, ‖JπL2

h,iqK‖− 1
2
,h,Ωi

. hri
i |q|ri,Ωi , (41)

where we remind that the local finite element polynomial order for velocities is
ri > 0 while for pressures is ri − 1.

Lemma 8 (Approximability) For any v, q ∈ [Hr+1(Ω)]2 ×Hr(Ω) we have,

|||(v − πH1

h,i v, q − πL2

h,iq)||| .
N∑

i=1

hri
i

(
|v|ri+1,Ωi+|q|ri,Ωi

)
. hr(|v|∪Ω,r+1+|q|∪Ω,r).

Proof. The result follows exploiting (40)-(41) to provide estimates for each term
that appears in the definition of |||v, q|||. 2

We are now in position to study the convergence property of the scheme (8),
which is summarized in the following theorem.

Theorem 4.3 (Convergence) Let (u, p) ∈ W be the weak solution of (1),
and let (uh, ph) ∈ Wh be the solution of (8). Then, the following a-priori error
estimate holds true,

|||(u− uh, p− ph)||| . inf
(zh,rh)∈Wh

|||(u− zh, p− rh)|||. (42)
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Under the additional regularity assumption (u, p) ∈ [Hr+1(Ω)]2×Hr(Ω) we have,

|||(u− uh, p− ph)||| .
N∑

i=1

hri
i

(
|u|ri+1,Ωi + |p|ri,Ωi

)
. hr(|u|∪Ω,r+1 + |p|∪Ω,r).

(43)

Proof. The proof of (42) is a straightforward consequence of the stability of
method (8). Let us decompose the error (u− uh, p− ph) in two parts

u−uh := eπ+eh := (u−zh)+(zh−uh), p−ph := yπ+yh := (p−rh)+(rh−ph).

Then, it follows that

|||(u− uh, p− ph)||| ≤ |||(eπ, yπ)||| + |||(eh, yh)|||. (44)

Using stability, consistency and boundedness, i.e. Theorem 4.1, Lemma 1 and
2, we get

|||eh, yh||| . sup
(vh,qh)∈Wh\{0}

C((eh, yh), (vh, qh))
|||vh, qh|||

= sup
(vh,qh)∈Wh\{0}

C((eπ, yπ), (vh, qh))
|||vh, qh|||

. |||eπ, yπ)|||. (45)

Then, combining (44), (45) and we obtain (42). Estimate (43) is recovered
choosing zh,i := πH1

h,i u and rh,i := πL2

h,ip and exploiting Lemma 8. 2

5 An iterative splitting method

In this section we set up an iterative splitting method aiming to separate the
solution of the global discrete problem into subproblems on each subdomain
Ωi. Clearly, to recover the global solution we need to solve the local problems
on Ωi repeatedly, by means of a suitable iterative method. To this purpose,
we extend the method proposed in [11] by Burman and Zunino for advection-
diffusion-reaction equations. Alternative approaches based on Steklov-Poincaré
or Robin-Robin decomposition operators are addressed in [12, 13].

To start with, we introduce the following bilinear forms (for the symmetric
case ς = 1), which represent the local counterparts of (4), (5) and (6) for the
iterative splitting method,

c̃c
i ((uh,i;uh,j),vh,i) :=

∑
j∈Ni

∫
Γij

[
− (wiνiε(uh,i)ni + wjνjε(uh,j)ni) · vh,i (46)

− wiνiε(vh,i)ni · (uh,i − uh,j)
]
,

c̃p
i ((uh,i;uh,j),vh,i) :=

∑
j∈Ni

∫
Gh,ij

γu,i{ν}wh−1
E (uh,i − uh,j) · vh,i, (47)

c̃t
i((uh,i;uh,j),vh,i) :=

∑
j∈Ni

∫
Γij

κΓ
|JνK|
2{ν}

(
wjuh,i + wiuh,j

)
· tΓ

(
wjvh,i · tΓ

)
, (48)
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j̃u,i((uh,i;uh,j),vh,i) :=
∑
j∈Ni

∫
Gh,ij

γu,ih
−1
E (uh,i − uh,j) · nivh,i · ni (49)

+
∫
Bh

γu,ih
−1
E uh,i · nivh,i · ni,

d̃p
i ((ph,i; ph,j),vh,i) :=

∑
j∈Ni

∫
Γij

(wiph,i + wjph,j)vh,i · ni, (50)

d̃u
i ((uh,i;uh,j), qh,i) :=

∑
j∈Ni

∫
Γij

wiqh,i (uh,i − uh,j) · ni, (51)

where the normal vectors and the jumps refer to each subregion Ωi, and j is a
multi index such that j := {j ∈ Ni}. Furthermore we set,

c̃i((uh,i;uh,j),vh,i) := c̃c
i ((uh,i;uh,j),vh,i)+c̃p

i ((uh,i;uh,j),vh,i)+c̃t
i((uh,i;uh,j),vh,i).

We propose the following iterative method: for i = 1, . . . , N , given
[
u(k−1)

h,i , p
(k−1)
h,i

]
,[

u(k−1)
h,j , p

(k−1)
h,j

]
, find

[
u(k)

h,i , p
(k)
h,i

]
∈ Vh,i ×Qh,i such that,

ai(u
(k)
h,i ,vh,i) + c̃i((u

(k)
h,i ;u

(k−1)
h,j ),vh,i) + j̃u,i((u

(k)
h,i ;u

(k−1)
h,j ),vh,i) (52)

+ bi(p
(k)
h,i ,vh,i) + d̃p

i ((p
(k)
h,i ; p

(k−1)
h,j ),vh,i) + sσu,i((u

(k)
h,i ;u

(k−1)
h,i ),vh,i)

= F(vh,i), ∀vh,i ∈ Vh,i,

bi(qh,i,u
(k)
h,i ) + d̃u

i ((u(k)
h,i ;u

(k−1)
h,j ), qh,i)− jp,i(p

(k)
h,i , qh,i) (53)

− sσp,i((p
(k)
h,i ; p

(k−1)
h,i ), qh,i) = 0, ∀qh,i ∈ Qh,i.

We notice that in (52)-(53) we have introduced the new terms,

sσu,i((u
(k)
h,i ;u

(k−1)
h,i ),vh,i) :=

∑
j∈Ni

∫
Gh,ij

σu,ih
−1
E

[
(u(k)

h,i − u(k−1)
h,i ) · ni(vh,i · ni)

+ {ν}w(u(k)
h,i − u(k−1)

h,i ) · vh,i

]
sσp,i((p

(k)
h,i ; p

(k−1)
h,i ), qh,i) :=

∑
j∈Ni

∫
Gh,ij

σp,ih
−1
E (p(k)

h,i − p
(k−1)
h,i )qh,i,

with σu,i := σur2
i and σp,i := σpr

2
i given σu, σp > 0, responsible to provide a

suitable amount of relaxation in order to ensure the convergence of the method.
Each of the subproblems of (52)-(53) is substantially equivalent to the multido-
main problem (8) with N = 1 subdomains. Proceeding as in Theorem 4.1 it
can be proven that such problems are well-posed. In particular, we observe that
in each subproblem we look for a pressure p

(k)
h,i ∈ Qh,i without any constraint

on its mean value, because the interface conditions and relaxation terms on Γij

remove the indetermination of the pressure with respect to constants and the
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mean value of the pressure depends on the initial guess p
(0)
h . Anyway, it is pos-

sible to satisfy the constraint
∫
Ω ph = 0 by scaling the pressure either at the end

of each iteration or at the end of the whole iterative process. Finally, problem
(52)-(53) can be also rewritten as follows: find (u(k)

h , p
(k)
h ) ∈ Wh = Vh × Qh

such that

C̃((u(k)
h , p

(k)
h ), (vh, qh)) + Sσu((u(k)

h ;u(k−1)
h ),vh) + Sσp((p

(k)
h ; p(k−1)

h ), qh)

= G(vh, qh)−R((u(k−1)
h , p

(k−1)
h ), (vh, qh)), ∀(vh, qh) ∈ Wh, (54)

where

Sσu((u(k)
h ;u(k−1)

h ),vh) :=
N∑

i=1

sσu,i((u
(k)
h,i ;u

(k−1)
h,i ),vh,i),

Sσp((p
(k)
h ; p(k−1)

h ), qh) :=
N∑

i=1

sσp,i((p
(k)
h,i ; p

(k−1)
h,i ), qh,i),

C̃((uh, ph), (vh, qh)) :=
N∑

i=1

[
ai(uh,i,vh,i)+ c̃i((uh,i; 0),vh,i)+ j̃u,i((uh,i; 0),vh,i)

+bi(ph,i,vh,i)+d̃p
i ((ph,i; 0),vh,i)−bi(uh,i, qh,i)−d̃u

i ((uh,i; 0), qh,i)+jp,i(ph,i, qh,i)
]
,

denote the relaxation and the local discrete operators respectively, and

R((uh, ph), (vh, qh)) :=
N∑

i=1

[
c̃i((0;uh,j),vh,i) + j̃u,i((0;uh,j),vh,i)

+ d̃p
i ((0; ph,j),vh,i)− d̃u

i ((0;uh,j), qh,i)
]
,

can be regarded as the iteration residual. From equation (54), it is straight-
forward to verify that the iterative method is consistent with (8), namely the
following identity is satisfied,

C((uh, ph), (vh, qh)) = C̃((uh, ph), (vh, qh))+R((uh, ph), (vh, qh)), ∀(vh, qh) ∈ Wh.

6 Convergence analysis of the iterative splitting method

In order to analyze the convergence of the iterative method, we reformulate
problem (54) as a problem for the splitting error, that is given by w(k)

h :=
uh − u(k)

h , ρ
(k)
h := ph − p

(k)
h , where [uh, ph] satisfies (9) and [u(k)

h , p
(k)
h ] is the

solution of (54) at the iteration k. Subtracting equation (54) from (9) we obtain,

C((w(k)
h , ρ

(k)
h ), (vh, qh)) + Sσu((w(k)

h ;w(k−1)
h ),vh) + Sσp((ρ

(k)
h ; ρ(k−1)

h ), qh)

= R((w(k)
h −w(k−1)

h , ρ
(k)
h − ρ

(k−1)
h ), (vh, qh)), ∀(vh, qh) ∈ Wh. (55)
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Before proceeding, let us introduce T (w(k)
h , ρ

(k)
h ;w(k−1)

h , ρ
(k−1)
h ) a generic term

that is telescopic with respect to the summation over k. More precisely, we
require that

M∑
k=1

T (w(k)
h , ρ

(k)
h ;w(k−1)

h , ρ
(k−1)
h ) = T (wM

h , ρM
h ;w0

h, ρ0
h).

Our strategy to prove the convergence of the iterative splitting method con-
sists to choose (vh, qh) = (w(k)

h , ρ
(k)
h ) in (55) and to prove an upper bound for

R((w(k)
h −w(k−1)

h , ρ
(k)
h − ρ

(k−1)
h ), (w(k)

h , ρ
(k)
h )) with respect to terms that are ei-

ther telescopic, and thus collected into T (w(k)
h , ρ

(k)
h ;w(k−1)

h , ρ
(k−1)
h ), or can be

controlled by means of either C((w(k)
h , ρ

(k)
h ), (w(k)

h , ρ
(k)
h )), or the relaxation terms

Sσu((w(k)
h ;w(k−1)

h ),w(k)
h ), Sσp((ρ

(k)
h ; ρ(k−1)

h ), ρ(k)
h ). Then, we aim to show that

∞∑
k=1

|||w(k)
h , ρ

(k)
h ||| ≤ C|||w(0)

h , ρh
(0)|||,

which ensures that |||w(k)
h , ρ

(k)
h ||| → 0 with a geometric rate of convergence. To

this aim, we proceed by steps, corresponding to the following lemmas.

Lemma 9 There exists a constant CR, which satisfies 0 < 2CR < Cpos, and
two constants Cu

S , Cp
S > 0 such that

R((w(k)
h −w(k−1)

h , ρ
(k)
h − ρ

(k−1)
h ), (w(k)

h , ρ
(k)
h ))

≤ CR

[
|||w(k)

h |||2 + |||w(k−1)
h |||2

]
+ Cp

S‖ρ
(k)
h − ρ

(k−1)
h ‖2

1
2
,h,Γ

+ Cu
S

[
‖(w(k)

h −w(k−1)
h ) · nΓ‖2

1
2
,h,Γ

+ ‖{ν}
1
2
w(w(k)

h −w(k−1)
h )‖2

1
2
,h,Γ

]
+ T (w(k)

h , ρ
(k)
h ;w(k−1)

h , ρ
(k−1)
h )− Sγu((w(k)

h ;w(k−1)
h ),w(k)

h ). (56)

Proof. First of all, we consider the contribution of (46). Summing and sub-
tracting
{ν}wε(w(k−1)

h,i )ni · w(k−1)
h,j , the expression of c̃c

i ((0;w(k)
h,j − w(k−1)

h,j ),w(k)
h,i ) can be
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rearranged and estimated as follows,

N∑
i=1

c̃c
i ((0;w(k)

h,j −w(k−1)
h,j ),w(k)

h,i )

=
N∑

i=1

∑
j∈Ni

∫
Γij

1
2

[
− {ν}wε(w(k)

h,j −w(k−1)
h,j )ni ·

(
w(k)

h,i −w(k−1)
h,i

)
+ {ν}wε(w(k−1)

h,j )ni ·w(k−1)
h,i − {ν}wε(w(k)

h,j)ni ·w(k)
h,i

+ {ν}wε(w(k)
h,j)nj ·w(k−1)

h,i − {ν}wε(w(k)
h,i )ni ·w(k−1)

h,j

]
.

N∑
i=1

∑
j∈Ni

∫
Γij

1
2

[
{ν}wε(w(k−1)

h,j )ni ·w(k−1)
h,i − {ν}wε(w(k)

h,j)ni ·w(k)
h,i

]
+ ε

(
‖ν

1
2∇w(k)

h ‖2
0,Ω + ‖ν

1
2∇w(k−1)

h ‖2
0,Ω

)
+

1
ε
‖{ν}w

(
w(k)

h −w(k−1)
h

)
‖2

1
2
,h,Γ

,

(57)

where the first term of the second row of (57) cancels out during the summation
over k and thus it is cast into T (w(k)

h , ρ
(k)
h ;w(k−1)

h , ρ
(k−1)
h ).

Let us now consider the contribution of the penalty terms (47) and (49). We
proceed as follows,

N∑
i=1

c̃p
i ((0;w(k)

h,j −w(k−1)
h,j ),w(k)

h,i ) + j̃u,i((0;w(k)
h,j −w(k−1)

h,j ),w(k)
h,i )

=−
N∑

i=1

∑
j∈Ni

[ ∫
Gh,ij

γu,j{ν}wh−1
E

((
w(k)

h,j −w(k−1)
h,j

)
·
(
w(k)

h,i −w(k)
h,j

)
+

(
w(k)

h,j −w(k−1)
h,j

)
·w(k)

h,j

)
+

∫
Gh,ij

γu,jh
−1
E

((
w(k)

h,j −w(k−1)
h,j

)
· ni

(
w(k)

h,i −w(k)
h,j

)
· ni +

(
w(k)

h,j −w(k−1)
h,j

)
· ni

(
w(k)

h,j · ni

))]
.

γu

ε
‖{ν}

1
2
w

(
w(k)

h −w(k−1)
h

)
‖2

1
2
,h,Γ

+
γu

ε
‖
(
w(k)

h −w(k−1)
h

)
· nΓ‖2

1
2
,h,Γ

+ εγu‖Jw(k)
h K · nΓ‖2

1
2
,h,Γ

+ εγu‖{ν}
1
2
wJw(k)

h K‖2
1
2
,h,Γ

− Sγu((w(k)
h ;w(k−1)

h ),w(k)
h ).

(58)

For the coupling terms corresponding to the Beavers-Joseph-Saffman condi-
tion in the general case νi 6= νj with νi, νj > 0 we proceed as follows,

N∑
i=1

c̃t
i((0;w(k)

h,j −w(k−1)
h,j ),w(k)

h,i ) =
N∑

i=1

∑
j∈Ni

∫
Γij

κΓ
|JνK|
8{ν}2 {ν}w

(
w(k)

h,j −w(k−1)
h,j

)
· tΓw

(k)
h,i · tΓ

.ε|||w(k)
h |||2 +

1
ε
‖{ν}

1
2
w

(
w(k)

h −w(k−1)
h

)
‖2

1
2
,h,Γ

. (59)
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Finally, we consider the terms of the iteration residual that depend on the
splitting error of the pressure, namely (50) and (51), which can be rearranged
as follows,

N∑
i=1

[
d̃p

i ((0; ρ(k)
h,j − ρ

(k−1)
h,j ),w(k)

h,i )− d̃u
i ((0;w(k)

h,j −w(k−1)
h,j ), ρ(k)

h,i )
]

=
N∑

i=1

∑
j∈Ni

∫
Γij

[
wj

(
ρ
(k)
h,j − ρ

(k−1)
h,j

)
w(k)

h,i · ni + wiρ
(k)
h,i

(
w(k)

h,j −w(k−1)
h,j

)
· ni

]

=
N∑

i=1

∑
j∈Ni

∫
Γij

[
wiρ

(k)
h,iw

(k−1)
h,j · nj − wiρ

(k−1)
h,i w(k)

h,j · nj

]

=
N∑

i=1

∑
j∈Ni

∫
Γij

[
wi

(
ρ
(k)
h,i − ρ

(k−1)
h,i

)(
w(k)

h,j + w(k−1)
h,j

)
· nj

+
(
wiρ

(k−1)
h,i w(k−1)

h,j · nj − wiρ
(k)
h,iw

(k)
h,j · nj

)]
, (60)

where for the last row we have exploited the algebraic identity

a(k)b(k−1) − a(k−1)b(k) =
(
a(k) − a(k−1)

)(
b(k) + b(k−1)

)
+ a(k−1)b(k−1) − a(k)b(k).

The first term of the last row can be estimated as follows,

N∑
i=1

∑
j∈Ni

∫
Γij

wi

(
ρ
(k)
h,i − ρ

(k−1)
h,i

)(
w(k)

h,j + w(k−1)
h,j

)
· nj

.ε
(
‖w(k)

h · nΓ‖2
− 1

2
,h,Γ

+ ‖w(k−1)
h · nΓ‖2

− 1
2
,h,Γ

)
+

1
ε
‖ρ(k)

h − ρ
(k−1)
h ‖2

1
2
,h,Γ

.ε
(
|||w(k)

h |||2 + |||w(k−1)
h |||2

)
+

1
ε
‖ρ(k)

h − ρ
(k−1)
h ‖2

1
2
,h,Γ

, (61)

while the second term of the last row in (60) is telescopic and contributes to
T (·).

Equation (56), with constants Cu
S and Cp

S large enough, depending on ε and
γu in the previous inequalities, directly follows from the combination of (57),
(58), (59) and (60)-(61) together with the following expression for the telescopic
terms,

T (w(k)
h , ρ

(k)
h ;w(k−1)

h , ρ
(k−1)
h ) :=

N∑
i=1

∑
j∈Ni

[ ∫
Γij

(
wiρ

(k−1)
h,i w(k−1)

h,j ·nj−wiρ
(k)
h,iw

(k)
h,j ·nj

)
+

∫
Γij

(
1
2{ν}wε(w(k−1)

h,j )ni ·w(k−1)
h,i − 1

2{ν}wε(w(k)
h,j)ni ·w(k)

h,i

)]
. (62)

2
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Lemma 10 There exist two constants 0 < CT1 and 0 < CT2 <
(
Cpos − 2CR

)
such that,

M∑
k=1

T (w(k)
h , ρ

(k)
h ;w(k−1)

h , ρ
(k−1)
h ) = T (w(M)

h , ρh
(M);w(0)

h , ρh
(0))

≤ CT1

[
‖w0

h · nΓ‖2
1
2
,h,Γ

+ ‖{ν}
1
2
ww0

h‖2
1
2
,h,Γ

+ ‖ρh
(0)‖2

1
2
,h,Γ

]
+ CT2 |||w

(0)
h |||2

+ CT1

[
‖wM

h · nΓ‖2
1
2
,h,Γ

+ ‖{ν}
1
2
wwM

h ‖2
1
2
,h,Γ

+ ‖ρh
(M)‖2

1
2
,h,Γ

]
+ CT2 |||w

(M)
h |||2.

(63)

Proof. The result directly follows from the estimates,∫
Γij

{ν}wε(wh,j)ni ·wh,i . ε‖ν
1
2
j ∇wh,j‖2

0,Ωi
+

1
ε
‖{ν}

1
2
wwh,i‖2

1
2
,h,Γij

,∫
Γij

wiρh,iwh,j · nj . ε‖wh,j · nΓ‖2
1
2
,h,Γij

+
1
ε
‖ρh,i‖2

1
2
,h,Γij

.

2

Theorem 6.1 Provided that the relaxation parameters σu and σp are large enough,
the iterative method (54) is convergent. More precisely,

∞∑
k=1

[
|||w(k)

h |||2 + ‖(w(k)
h −w(k−1)

h ) · nΓ‖2
1
2
,h,Γ

+ ‖{ν}
1
2
w(w(k)

h −w(k−1)
h )‖2

1
2
,h,Γ

+ ‖Jρ(k)
h K‖2

− 1
2
,h,Ω

+ ‖ρ(k)
h − ρ

(k−1)
h ‖2

1
2
,h,Γ

]
. |||(w(0)

h , ρ
(0)
h )|||2. (64)

Proof. First, we observe that

Sσu((w(k)
h ;w(k−1)

h ),w(k)
h ) = σu

2

[
‖(w(k)

h −w(k−1)
h ) · nΓ‖2

1
2
,h,Γ
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1
2
w(w(k)

h −w(k−1)
h )‖2

1
2
,h,Γ

+ ‖w(k)
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1
2
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− ‖w(k−1)
h · nΓ‖2

1
2
,h,Γ
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1
2
ww(k)

h ‖2
1
2
,h,Γ

− ‖{ν}
1
2
ww(k−1)

h ‖2
1
2
,h,Γ

]
,

Sσp((ρ
(k)
h ; ρ(k−1)

h ), ρ(k)
h ) = σp

2

[
‖ρ(k)

h − ρ
(k−1)
h ‖2

1
2
,h,Γ

+ ‖ρ(k)
h ‖2

1
2
,h,Γ

− ‖ρ(k−1)
h ‖2

1
2
,h,Γ

]
.

that is a straightforward consequence of (a(k)−a(k−1))a(k) = 1
2

[
(a(k)−a(k−1))2 +

(a(k))2− (a(k−1))2
]
. Then, we consider equation (55) and observe that by means

of the positivity of the bilinear form C((·, ·), (·, ·)) (see Lemma 3) combined with
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(56) and (55) we obtain,

(Cpos − 2CR)|||w(k)
h ||| + γp‖Jρ(k)

h K‖2
− 1

2
,h,Ω

+
(σp

2 − Cp
S
)
‖ρ(k)

h − ρ
(k−1)
h ‖2

1
2
,h,Γ

+
(

σu
2 + γu

2 − Cu
S
)[
‖(w(k)

h −w(k−1)
h ) · nΓ‖2

1
2
,h,Γ

+ ‖{ν}
1
2
w(w(k)

h −w(k−1)
h )‖2

1
2
,h,Γ

]
≤ CR

[
|||w(k−1)

h |||2 − |||w(k)
h |||2

]
+ T (w(k)

h , ρ
(k)
h ;w(k−1)

h , ρ
(k−1)
h )

+ 1
2

(
σu + γu

)[
‖w(k−1)

h · nΓ‖2
1
2
,h,Γ

+ ‖{ν}
1
2
ww(k−1)

h ‖2
1
2
,h,Γ

]
+ σp

2 ‖ρ
(k−1)
h ‖2

1
2
,h,Γ

− 1
2

(
σu + γu

)[
‖w(k)

h · nΓ‖2
1
2
,h,Γ

+ ‖{ν}
1
2
ww(k)

h ‖2
1
2
,h,Γ

]
− σp

2 ‖ρ
(k)
h ‖2

1
2
,h,Γ

.

Then, summing up on k and applying Lemma 10 we conclude that,

(
Cpos − 2CR − CT2

) M∑
k=0

[
|||w(k)

h |||2 + γp‖Jρ(k)
h K‖2

− 1
2
,h,Ω

+
(σp

2 − Cp
S
)
‖ρ(k)

h − ρ
(k−1)
h ‖2

1
2
,h,Γ

+
(

σu
2 + γu

2 − Cu
S
)(
‖(w(k)

h −w(k−1)
h ) · nΓ‖2

1
2
,h,Γ

+ ‖{ν}
1
2
w(w(k)

h −w(k−1)
h )‖2

1
2
,h,Γ

)]
+

(
σu
2 + γu

2 − CT1

)[
‖wM

h · nΓ‖2
1
2
,h,Γ

+ ‖{ν}
1
2
wwM

h ‖2
1
2
,h,Γ

]
+

(σp

2 − CT1

)
‖ρh

M‖2
1
2
,h,Γ

≤
(
CR + CT2

)
|||w0

h|||2 +
(σp

2 + CT1

)
‖ρh

0‖2
1
2
,h,Γ

+
(

σu
2 + γu

2 + CT1

)[
‖w0

h · nΓ‖2
1
2
,h,Γ

+ ‖{ν}
1
2
ww0

h‖2
1
2
,h,Γ

]
,

which directly implies (64) by choosing σu and σp large enough and taking the
limit for M →∞. 2

Theorem 6.1 is only partially satisfactory since it proves that the iterative
method generates a sequence of velocity approximations that converges to the
solution of the global problem (8). In order to recover the convergence of the
pressure, we exploit the inf-sup stability of the discrete problem, as stated by
the following result and in the corresponding proof.

Theorem 6.2 Under the assumptions of Theorem 6.1 we have,

∞∑
k=1

‖ρ(k)
h ‖2

0,Ω . |||(w(0)
h , ρ

(0)
h )|||2. (65)

Proof. Let z(k)
p,h ∈ Wh be the function corresponding to ρ

(k)
h ∈ Qh with respect

to Lemma 7. Let us choose (vh, qh) = (z(k)
p,h, 0) into equation (55),

C((w(k)
h , ρ

(k)
h ), (z(k)

p,h, 0)) + Sσu((w(k)
h ;w(k−1)

h ), z(k)
p,h)

= R((w(k)
h −w(k−1)

h , ρ
(k)
h − ρ

(k−1)
h ), (z(k)

p,h, 0)) (66)
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We proceed similarly to the proof of Theorem 4.1 and we observe that,

C((w(k)
h , ρ

(k)
h ), (z(k)

p,h, 0)) = A((w(k)
h , ρ

(k)
h ), (z(k)

p,h, 0)) + ju(w(k)
h , z(k)

p,h) + B(ρ(k)
h , z(k)

p,h),

where owing to Lemma 2 and Lemma 7 we get,

A((w(k)
h , ρ

(k)
h ), (z(k)

p,h, 0)) .
1
ε
|||w(k)

h |||2 + ε‖ρ(k)
h ‖2

0,Ω, (67)

B(ρ(k)
h , z(k)

p,h) & ‖ρ(k)
h ‖2

0,Ω − C‖Jρ(k)
h K‖2

− 1
2
,h,Ω

. (68)

Furthermore, by virtue of (30), we obtain the following estimates,

N∑
i=1

∑
j∈Ni

∫
Γij

{ν}w

(
z(k)

p,h,i

)2
. ‖z(k)

p,h‖
2
1,Ω . ‖ρ(k)

h ‖2
0,Ω,

N∑
i=1

∑
j∈Ni

∫
Γij

(
z(k)

p,h,i · ni

)2
. ‖z(k)

p,h‖
2
1,Ω . ‖ρ(k)

h ‖2
0,Ω,

where the constants of the previous inequalities may depend on ν, but remain
bounded in the limit case ν → 0. Then, the relaxation term can be estimated
as follows,

Sσu((w(k)
h ;w(k−1)

h ), z(k)
p,h) (69)

=
N∑

i=1

∑
j∈Ni

h−1
E σu

[
(w(k)

h,i −w(k−1)
h,i ) · ni(z

(k)
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]
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2
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]
,

where we have put into evidence the global mesh size, h, because the mesh is
assumed to be quasi-uniform. The right hand side of (66) is given by,

R((w(k)
h −w(k−1)

h , ρ
(k)
h − ρ

(k−1)
h ), (z(k)

p,h, 0))

=
N∑
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[
c̃c
i ((0;w(k)
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p,h)

+ c̃p
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]
.

To estimate the terms on the right hand side we proceed as follows,

N∑
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∑
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.
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Proceeding as in (59), we obtain,
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j∈Ni
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,

while for the penalty terms we have,
N∑
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Finally, the last term of R((w(k)
h −w(k−1)

h , ρ
(k)
h − ρ

(k−1)
h ), (z(k)

p,h, 0)) is treated as
follows,
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Combining the previous inequalities with (30)b, we obtain the following upper
bound,
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Then, replacing (67)-(70) into (66) and exploiting (56) we obtain,(
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Summing up over k we easily obtain,
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(71)

Taking the limit M → ∞ and applying (64) the result follows immediately,
provided that ε is small enough. We notice that (65) would not hold true without
the control on the pressure terms given by (64). 2
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To prove that the iterative splitting method converges in the norm |||(vh, qh)|||,
we finally address the divergence of the velocity.

Theorem 6.3 Under the assumptions of Theorem 6.1 we have,
∞∑

k=1

‖∇ ·w(k)
h ‖2

0,Ω . |||(w(0)
h , ρ

(0)
h )|||2. (72)

Proof. Let us choose (vh, qh) = (0,∇ ·w(k)
h ) into equation (55),
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h ), (0,∇ ·w(k)
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We proceed providing suitable estimates for each term of the previous equality.
First, mimicking (38) we obtain,
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]
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Concerning the second term on the left hand side we obtain,
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Finally, for the right hand side we have,
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Combining (73)-(76), we easily obtain,(
1− Cε(2 + h−2)
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.

To conclude, we sum up from k = 1, . . . ,M and take the limit for M → ∞.
Choosing ε small enough, the result easily follows owing to (64). 2
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Finally, combining Theorems 6.1, 6.2 and 6.3, it is straightforward to prove
the following result.

Lemma 1 Under the assumptions of Theorem 6.1 we have,

∞∑
k=1

|||(w(k)
h , ρ

(k)
h )|||2 . |||(w(0)

h , ρ
(0)
h )|||2.

7 Numerical results

We present convergence tests for the approximate solutions computed through
the iterative splitting method introduced in section 6. To validate the method
for different couplings, we consider three cases (see [8]): a Stokes-Stokes problem
(PSS) a Darcy-Darcy problem (PDD) and a Darcy-Stokes problem (PDS). They
all are bi-domain problems in R2, such that an exact solution (u, p) is known,
as summarized below:

(PSS) Ω1 = [0, 2
3 ]× [0, 1], Ω2 = [23 , 1]× [0, 1], ν1 = 1, ν2 = 1, η1 = 0, η2 = 0,

u = (20xy3, 5x4 − 5y4), p = 60x2y − 20y3 − 5.

(PDD) Ω1 = [0, 2
3 ]× [0, 1], Ω2 = [23 , 1]× [0, 1], ν1 = 0, ν2 = 0, η1 = 1, η2 = 1,

u = −2π(cos 2πx sin 2πy, sin 2πx cos 2πy), p = sin 2πx sin 2πy.

(PDS) Ω1 = [0, 1]× [0, 1], Ω2 = [2, 3]× [0, 1], ν1 = 0, ν2 = 1, η1 = 1, η2 = 0,

u =

{
(1− 2x + x2 + y − y2, x + 2y − 2xy − 2) on Ω1,

(y − y2, 0) on Ω2,

p =

{
1
3(y − y2 − xy + xy2 − x + x2 − 1

3x3) + 29
18 on Ω1,

−2x + 59
18 on Ω2.

For each test case, non-homogeneous boundary data for the velocity are
provided by the their known analytical expressions and the Beavers-Joseph-
Saffman term is set to zero. We also point out that the solution of PDD is
not divergence-free. Accordingly, we include a source term equal to ∇ · u in
the divergence equation. We apply our method for different meshes and for
r = 1, 2. As regards the user-defined parameters, numerical experiments show
that small values of σu and σp are sufficient to ensure the convergence of the
iterative splitting algorithm, while γu and γp are chosen of the order of unity,
see [10, 8, 9, 11, 26]. In particular, we set γu = 2, σu = σp = 2 × 10−3 and
γp = 2 × 10−1 for PSS and PDS while γp = 2 for PDD. According to Corollary
1, the iterative splitting algorithm is complemented with the following stopping
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test Ik
h := |||(u(k) − u(k−1), p(k) − p(k−1)||| ≤ tol, the tolerance being tol = 10−8

in all cases.
First, we study the error Eh := |||(u− uh, p− ph)||| of the approximate

solution with respect to the exact one. As reported in Table 1, in all cases the
error Eh shows a convergence rate which is very close to the expected value,
according to Theorem 4.3. In agreement with the analysis pursued in [11],
these data also confirm that the asymptotic rate of convergence of the iterative
splitting method decreases with respect to h. Since the convergence rate is not
constant during the first phase of the iterative process, the asymptotic rate is
quantified by the number of iterations necessary to reduce the error from 10−7

to 10−8.

Table 1: Approximation error and convergence rate of the iterative method.
PSS r = 1 r = 2

h Eh It. → 10−8 It. 10−7 → 10−8 Eh It. → 10−8 It. 10−7 → 10−8

1/8 7.24136 163 19 0.234778 167 19

1/16 2.82873 109 13 0.051305 181 23

1/32 1.29432 111 14 0.012628 353 308

Rate 1.18 2.15

PDD r = 1 r = 2

h Eh It. → 10−8 It. 10−7 → 10−8 Eh It. → 10−8 It. 10−7 → 10−8

1/8 11.3186 367 62 1.83164 1393 294

1/16 5.60897 482 81 0.419515 4091 1194

1/32 2.77365 1209 229 0.101841 10615 4218

Rate 1.01 2.12

PDS r = 1 r = 2

h Eh It. → 10−8 It. 10−7 → 10−8 Eh It. → 10−8 It. 10−7 → 10−8

1/8 0.281895 100 19 0.0012469 155 25

1/16 0.130674 95 14 0.0003184 283 45

1/32 0.063188 169 25 0.0000805 519 85

Rate 1.10 1.95

Second, we aim to test the method on a more realistic case than problems
(PSS), (PDD), (PDS). To this purpose we simulate the fluid flow through a
heterogeneous material. We consider a 10 m square as in Fig. 1, featuring both
open channels (Stokes’ flow) and porous blocks (Darcy’s and Brinkman’s flows).
In particular, the block associated to Brinkman’s flow is more permeable than
the Darcy’s one. As boundary conditions we consider Dirichlet velocity data,
with a nonzero parabolic inflow/outflow in the Stokes flow channels only. The
data used for the simulation are reported in the caption of Fig. 1. In particular,
the fluid viscosity is close to that of water, and the values for η correspond to
soil hydraulic conductivities in the range of 0.02− 0.002 ms−1, characteristic of
gravel/sand. The solution was computed using N = 9 (square) subdomains Ωi,
i = 1, .., N , a mesh size h = 0.4 m (that is about 24 times smaller than the size
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Figure 1: Flow in a heterogeneous material. On the left: different zones of the
heterogeneous material have different values of ν and η (Stokes: ν = 10−5 m2s−1,
η = 0 s−1; Brinkman: ν = 10−5 m2s−1, η = 50 s−1; Darcy: ν = 10−5 m2s−1,
η = 500 s−1). The Beavers-Joseph-Saffman friction coefficient is κΓ = 1 Pa /
(ms−1). The length of the square is 10 m, inflow and outflow boundaries are
highlighted in red and the peak of the parabolic velocity profile is is 5 cm s−1.
On the right: a superposition of the pressure and the pathlines of the flow.

of the domain Ω), and r = 2 (P2 finite elements for the velocity). As shown
by Fig. 1, most of the injected fluid passes through the more permeable block
to reach the outlet. We also notice that the pressure contours follow the block
structure of the different materials. According to [18] this confirms the correct
behavior of the method.

8 Concluding remarks

Exploiting weighted interior penalty terms, we have proposed a unified mixed
stabilized method for incompressible, possibly heterogeneous flow problems. We
have proved stability and optimal order error estimates for smooth solutions.
Finally, we have shown that the multidomain discrete solution can be computed
by means of a Jacobi-type parallel iterative procedure that is convergent for any
possible coupling between subdomains. The theoretical predictions have been
verified on a series of numerical examples.
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