
MOX-Report No. 13/2026

Neural Preconditioning via Krylov Subspace Geometry

Dimola, N.; Coclite, A.; Zunino, P.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

Neural Preconditioning via Krylov Subspace Geometry

Nunzio Dimola1, Alessandro Coclite2*, Paolo Zunino1

1MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza
Leonardo da Vinci 32, Milano, 20133, Italy.

2Dipartimento di Ingegneria Elettrica e dell’Informazione (DEI),
Politecnico di Bari, Via Re David 200, Bari, 70125, Italy.

*Corresponding author(s). E-mail(s): alessandro.coclite@poliba.it;
Contributing authors: nunzio.dimola@polimi.it; paolo.zunino@polimi.it;

We propose a geometry-aware strategy for training neural preconditioners tailored to
parametrized linear systems arising from the discretization of mixed-dimensional par-
tial differential equations (PDEs). Such systems are typically ill-conditioned due to
embedded lower-dimensional structures and are solved using Krylov subspace meth-
ods. Our approach yields an approximation of the inverse operator employing a
learning algorithm consisting of a two-stage training framework: an initial static pre-
training phase, based on residual minimization, followed by a dynamic fine-tuning
phase that incorporates solver convergence dynamics into the training process via a
novel loss functional. This dynamic loss is defined by the principal angles between
the residuals and the Krylov subspaces. It is evaluated using a differentiable imple-
mentation of the Flexible GMRES algorithm, which enables backpropagation through
both the Arnoldi process and Givens rotations. The resulting neural preconditioner is
explicitly optimized to enhance early-stage convergence and reduce iteration counts
across a family of 3D–1D mixed-dimensional problems exhibiting geometric variabil-
ity in the 1D domain. Numerical experiments show that our solver-aligned approach
significantly improves convergence rate, robustness, and generalization.

Keywords: Mixed-Dimensional PDEs; Krylov Subspace Methods; Neural Precon-
ditioning; Differentiable Linear Algebra; Geometry-Aware Optimization.

MSC 2020: 65F08, 65F10, 68T07, 65Y20.

1

1 Introduction

The efficient numerical solution of parameter-dependent linear systems arising from
discretized partial differential equations (PDEs) is a critical computational challenge
in scientific computing. This task becomes particularly demanding in multi-query
applications, such as uncertainty quantification or control problems, where the under-
lying PDE must be solved repeatedly for different parameter values. In this context,
mixed-dimensional PDEs [1–4] (to cite only a few examples), which describe coupled
operators defined on domains of varying dimensions, present additional challenges
due to their inherent ill-conditioning, complex geometries, and heterogeneous mate-
rial properties. To address these large, sparse linear systems, iterative solvers, notably
Krylov subspace methods such as the Conjugate Gradient (CG) and Generalized Min-
imal Residual (GMRES) algorithm, are widely employed [5]. However, the efficiency
of these methods strongly depends on the spectral properties and condition number of
the system matrices, which often deteriorate with increasing problem size or parameter
variations. This fundamental limitation necessitates the extensive use of precondition-
ing techniques [6], which transform the original system into an equivalent one more
amenable to rapid convergence.

In this work, we focus on a family of linear systems arising from the discretizations
of parameter-dependent mixed-dimensional PDEs

Aµuµ = bµ, µ ∈ P,

where P denotes the parameter space encoding geometric variations of embedded
lower-dimensional structures within a three-dimensional domain. The central challenge
addressed here is the design of effective, parameter-dependent preconditioners that
can handle significant geometric variability while ensuring robust solver convergence.
Traditional preconditioning strategies, including stationary methods (e.g., Jacobi,
Gauss-Seidel), incomplete factorizations, sparse approximate inverses (SPAI) [7],
multigrid (MG) [8], and domain decomposition (DD) methods [9], have been devel-
oped to improve convergence. For mixed-dimensional problems, physics-based block
and algebraic multigrid methods tailored for metric-perturbed coupled problems have
proven instrumental for efficient resolution [10–12]. More recently, neural network-
based strategies have gained significant attention for their ability to learn effective
preconditioners directly from data [13, 14]. These approaches often leverage opera-
tor learning frameworks, such as DeepONet [15], to approximate inverse operators or
to construct transfer operators, or utilize the spectral bias of neural networks [16] to
efficiently address low-frequency error components.

Our prior work [17] introduced a novel neural preconditioner specifically for a class
of 3D-1D mixed-dimensional PDEs in which we propose to minimize a residual-based
loss functional of the form:

Lstatic(θ) =
1

|B|
∑
bµ∈B

∥bµ − AµNθ(b
µ, µ)∥

2
,

2

where B is a suitable collection of vectors, andNθ is a nonlinear operator parameterized
by the neural network weights θ. This method showcased the potential of unsupervised
operator learning via convolutional neural networks (U-Nets [18]) to create precon-
ditioners that can adapt to different shapes of a 1D manifold without the need for
retraining and can effectively scale to various mesh resolutions. However, despite its
simplicity, this formulation has several limitations, including a lack of interpretability
in terms of solver dynamics and poor alignment with performance metrics relevant
to iterative methods. To overcome these limitations, we propose an enhanced learn-
ing strategy—herein referred to as the dynamic strategy—that explicitly incorporates
solver convergence dynamics into the training process. The dynamic residual-based
loss directly reflects the geometric and convergence properties intrinsic to Krylov sub-
space methods by employing a differentiable implementation (in the sense of automatic
differentiation [19]) of the Flexible GMRES (FGMRES) algorithm [20]. Within this
framework, the neural preconditioner is influenced by the residual at each iteration.
Specifically, we define a novel dynamic loss functional as

L(M)
dynamic(θ) =

1

|B|
∑
bµ∈B

M∑
i=1

|si(θ, bµ)| ,

where quantities si(θ, b
µ), which are closely linked to the algorithm convergence behav-

ior, offer a geometric characterization of the Krylov subspace generated by the problem
(Aµ, bµ) and preconditioned by the operator Nθ. The integer M defines the optimiza-
tion window, focusing the training on the initial iterations of the solver. Given this
construction, we have a structured and solver-aligned loss functional. In this context,
our approach bridges numerical linear algebra with deep learning by leveraging modern
automatic differentiation tools (e.g., PyTorch). This framework enables the efficient
gradient-based optimization of neural preconditioners through backpropagation across
the solver’s iterative computations. The combined static-dynamic training strategy
enables the neural preconditioner to adapt effectively to complex geometry variations
characteristic of mixed-dimensional PDEs, resulting in significantly improved solver
performance across diverse problem instances.

The remainder of the paper is organized as follows. Section 2 introduces the mixed-
dimensional PDE model and its finite element discretization. Section 3 describes the
static pretraining strategy. Section 4 presents foundational concepts and geometric
results from Krylov subspace theory that support our dynamic optimization. Sections 5
and 6 develop the dynamic loss formulation and detail the training algorithms using
differentiable linear algebra. Sections 7 and 8 report numerical results and conclude
with final remarks and future directions.

2 Problem Setting

Throughout the manuscript, we adopt a consistent notation scheme to distinguish
between different mathematical objects. Calligraphic letters such as P and H are used
to denote spaces or sets. The notation |P| refers to the cardinality of the set P. In this
context, an exception to this rule is the neural preconditioner Nθ. Finite-dimensional

3

vectors are represented as v or w, and the same convention applies to matrices, such
as A and B. Given a matrix A, its entry located at row i and column j is written as
[A]ij . The inner product between two elements is denoted by ⟨·, ·⟩. We denote vector
norms using the Euclidean norm ∥·∥.

We consider the numerical solution of a family of parametrized mixed-dimensional
elliptic problems representative of a broader class of PDEs defined over coupled
domains of different dimensions. Specifically, we study a 3D-1D coupled problem set
in a three-dimensional domain Ω ⊂ R3 and a one-dimensional manifold Λ ⊂ Ω, thor-
oughly analyzed in [21] and typically modeling slender structures. The continuous
mixed-dimensional formulation reads

−∇ · (kΩ∇uΩ) + σΩuΩ + 2πϵ (TΛuΩ − uΛ) δΛ = 0, in Ω,

−∂s(kΛ ∂suΛ) + 2πϵ (uΛ − TΛuΩ) = 0, on Λ,
(1)

subject to appropriate boundary conditions. Here, uΩ and uΛ are the unknown fields
defined in Ω and Λ, respectively; kΩ, σΩ, and kΛ are physical coefficients; and ϵ > 0
controls the strength of the coupling between the domains. The operator TΛ denotes
the coupling of Ω to Λ, typically implemented as a cross-sectional average in tubular
neighborhoods of Λ. The term δΛ indicates that the coupling acts on Ω as a singular
source supported on Λ.

We discretize (1) using the Galerkin projection on a (broken) finite element space
Vh = V Ω

h × V Λ
h of dimension Nh = NΩ

h + NΛ
h , being NΩ

h = dim(V Ω
h) and NΛ

h =
dim(V Λ

h), which are chosen depending on the characteristics of the problem at hand.
Such a discretization leads to a family of linear systems of the form

Aµuµ = bµ, µ ∈ P,

where µ indexes the parameter space P encoding geometric variations of the embedded
structure Λ. The discrete solution vector uµ and right-hand side bµ are partitioned
into 3D and 1D components

uµ =

(
uµ,0
uµ,1

)
, bµ =

(
0
fµ,1

)
.

The system matrix Aµ has the following block structure

Aµ =

(
Kh,00 + 2πϵMµ

h,00 2πϵMµ
h,01

2πϵMµ
h,10 Kµ

h,11 + 2πϵMµ
h,11

)
,

where the blocks Kh,ij correspond to discretizations of the elliptic operators, and Mµ
h,ij

represent parameter-dependent coupling terms.
The principal computational difficulty lies in solving this system efficiently across

multiple instances µ ∈ P. In particular, the dominant cost is associated with solving
the 3D subproblem

Aµ
h,00uµ,0 = bµh,0,

4

where
Aµ
h,00 := Kh,00 + 2πϵMµ

h,00, bµh,0 := −2πϵM
µ
h,01uµ,1.

Note that the relevant right-hand sides for this reduced system belong to

B :=
{
−2πϵMµ

h,01x
∣∣∣ µ ∈ P, x ∈ RNΛ,h such that (Kµ

h,11 + 2πϵMµ
h,11)x = fµ,1

}
.

This set B characterizes the structure of the right-hand sides that arise during the
elimination of the 1D variables from the coupled system and plays a key role in training
neural preconditioners.

3 Static Pretraining for Neural Preconditioning

In this section, we introduce the static pretraining phase for neural preconditioners,
which serves as the initial step in a two-stage learning process for solving families
of parametrized linear systems arising from mixed-dimensional PDEs. The primary
goal of this phase is to obtain a good initialization for the neural network parameters
θ using an unsupervised learning approach, without requiring knowledge of the true
solution vectors. The methodology described here has already been proposed in [17].

From now on, we consider a family of parameter-dependent linear systems of the
form

Aµ
h,00uµ,0 = bµh,0, µ ∈ P ;

Given the absence of ambiguity, we drop all subscripts to simplify notation:

Aµuµ = bµ, µ ∈ P ; (2)

where P denotes a compact parameter space encoding geometrical or physical vari-
ations of the problem. For each µ ∈ P, Aµ ∈ RN×N is a symmetric positive-definite
(SPD) matrix resulting from the discretization of the mixed-dimensional PDEs, and
bµ ∈ RN is the corresponding right-hand side. Notably, although the problem at hand
involves an SPD matrix, we do not exploit this property in the solver for two main
reasons: i) Eq. (2) represents a specific instance of a broader class of operators that
may lack symmetry, such as those arising in transport-dominated regimes; ii) learned
methods like our neural preconditioner generally break symmetry unless such struc-
ture is explicitly enforced in the architecture (however, this is a capability for which
no efficient implementation is currently available).

The neural preconditioner is defined as a nonlinear operator Nθ : RN × P → RN ,
represented by a neural network with parameters θ. The aim is to train Nθ so that
it approximately inverts the operator Aµ over a subset of right-hand sides relevant to
the problem. To this end, we minimize the following residual-based, unsupervised loss
functional

Lstatic(θ) =
1

|P|

|P|∑
j=1

1

|Kµj |
∑

v∈Kµj

∥v − AµjNθ(v, µj)∥2 ,

5

where {µj}|P|
j=1 ⊂ P are sampled parameters, and Kµj ⊂ RN is a training set of nor-

malized right-hand sides associated with parameter µj . Each training set Kµj includes
both physics-informed and spectrally enriched right-hand sides, and is defined as

Kµj =

{
bµj

∥bµj∥

}
∪ Dµj ,

where bµj is a canonical forcing term associated with µj , and Dµj is a data augmen-
tation set constructed to enrich the spectral content of the training data.
To construct the set Dµj , we sample unrelated random unit vectors r

µj

k,h ∈ SNh−1 ⊂
RNh uniformly from the unit hypersphere. This is achieved in practice by drawing a
Gaussian random vector v ∼ N (0, INh

) and projecting it onto the sphere

r
µj

k,h =
v

∥v∥
.

This procedure generates samples that are uniformly distributed on SNh−1 due to
the rotational invariance of the standard multivariate normal distribution; since the
distribution of v is isotropic, the normalization v/∥v∥ yields a uniform distribution
over the unit sphere. As such, the resulting augmented set is given by

Dµj =
{
r
µj

0,h, r
µj

1,h, . . .
}
.

This spectral enrichment ensures that the neural preconditioner learns to handle
both low- and high-frequency components of the operator spectrum, which are essen-
tial for effective preconditioning in mixed-dimensional settings. The minimization of
the empirical risk Lstatic is performed using standard gradient-based optimization
methods such as Adam. Importantly, this static pretraining phase is fully unsuper-
vised—it does not rely on access to exact solutions uµ, thereby significantly reducing
the computational cost associated with the offline training. The resulting neural pre-
conditioner Nθ provides a robust initial approximation of the inverse action of Aµ on
representative right-hand sides. This initialization is then refined during a subsequent
solver-integrated fine-tuning stage, where the learned operator is further adapted to
enhance the convergence of Krylov subspace methods such as GMRES.

4 Geometric Aspects of Krylov Subspace Methods

This section outlines the geometric foundations of Krylov subspace methods, following
the rigorous treatment in [22], with emphasis on the convergence-related quantities
that motivate our dynamic loss formulation for neural preconditioning.

We consider the linear system:

Au = f, A ∈ Rn×n, f ∈ Rn ,

6

with an initial guess u0 and residual r0 = f − Au0. Krylov subspace methods generate
iterates uj ∈ u0+Cj , where the correction subspace is defined by,

Cj = Kj(A, r0) := span{r0,Ar0, . . . ,Aj−1r0}.

Letting Wj := {x | x = Ay, y ∈ Cj} denote the image subspace of the correction sub-
space, with respect to matrix A, we get that in minimal residual Krylov subspace
methods, the residual at iteration j is enforced to be orthogonal to Wj , i.e.,

rj = f − Auj ⊥ Wj .

The iterate uj = Cjν
∗
j is thus obtained by solving the minimization problem:

ν∗j = argmin
ν∈Rj
∥r0 − ACjν∥ ,

where Cj ∈ Rn×j is a column basis matrix for correction space Cj .
As expected, the convergence of Krylov methods is intimately connected to the

geometry of residual vectors relative to Krylov subspaces. Indeed, given a nonzero
vector x and a subspace Y, define the principal angle between them by

∠(x,Y) := arcsin

(
∥(I − PY)x∥
∥x∥

)
,

where PY denotes the orthogonal projector onto Y; then sj := sin(∠(rj−1,Wj)) denote
the sine of the angle between rj−1 and Wj . Given that, by construction, the subspace
sequence {Wj} is nested:

{0} ≡ W0 ⊂ W1 ⊂ . . . ⊂ Wj−1 ⊂ Wj .

It can be proved that the residual norm satisfies the following recurrence:

∥rj∥ = sj∥rj−1∥ = sjsj−1 · · · s1∥r0∥ , (3)

so that, fast convergence corresponds to small angle sines |sj | ≪ 1 at early iterations.
The key computational tool in Krylov methods is the Arnoldi process, which

constructs an orthonormal basis Vj of Kj(A, r0) that satisfies the matrix relation

AVj = Vj+1H̃j ,

with H̃j ∈ R(j+1)×j an upper Hessenberg matrix. Geometric information is hidden in
the Hessenberg matrix, so that, given an orthogonal matrix Qj ∈ Rj+1,j+1 such that

QjH̃j =

[
Rj

0

]
.

7

We have that

sm =

∣∣∣∣∣ [Qj]j+1,1

[Qj−1]j,1

∣∣∣∣∣ .
If one constructs the orthogonal transformation as a sequence of Givens rotations
Qj = GjGj−1 · · ·G1, where each Gk annihilates subdiagonal elements of H̃j, we can
recover sj in Gj skew-symmetric part.

Given all stated above, consider a θ-parametrized, possibly non-linear, precon-
ditioner Nθ : Rn → Rn and the associated flexible variant GMRES, so that the
associated Krylov subspace generated in the iterative process results

KFGMRES
j = span{r0,A ◦ Nθ(r0), . . . , (A ◦ Nθ)

j−1(r0)} ,

and the Arnoldi relation generalizes to

AZj = Vj+1H̃j ,

where Zj = [Nθ(v0), . . . ,Nθ(vj−1)], with {vl}jl=1 the orthonormal basis vectors gen-
erated during the iterations. As in the classical case, the sine angles sj can still be

computed from H̃j via Givens rotations, but, given the introduction of Nθ in the nested
subspace construction process, they become differentiable functions of the operator
parameters θ, thus we write sj,θ.

These geometric insights serve as the foundation for the dynamic loss functional
at the heart of our neural preconditioning framework. The idea is to search for a set
of optimal parameters θ⋆ that discourages excessively large values of |sj,θ|. In doing
so, the dynamic loss effectively acts to reduce the degree of misalignment between the
residual vectors and the Krylov search directions. This alignment is crucial, as it allows
the optimization process to become aware of —and adapt to— the solver’s behavior,
ultimately promoting convergence patterns that are consistent with those observed in
FGMRES.

5 Dynamic Loss Functional Formulation

We now formalize the geometric intuition developed in the previous section into a
differentiable optimization framework suitable for training µ-parametrized nonlinear
preconditioners via gradient-based methods. Our approach is centered on the con-
struction of a loss functional that quantifies and penalizes the misalignment between
the residual vector and the Krylov subspace generated during the solution process,
to accelerate convergence. Such a misalignment is measured using the sine of the
angle between the residual and the Krylov subspace at each iteration. This metric is
embedded directly into the training procedure and is evaluated dynamically during the
execution of the Flexible GMRES (FGMRES) algorithm, wherein each Krylov basis
vector is modified by a nonlinear, parameterized preconditioner Nθ : RN × P → RN .
For the parameter instance, µ, consider M step of the generalised Arnoldi procedure,

AµZµ
M = Vµ

M+1H̃
µ
M ,

8

with
Zµ
M = [Nθ(v0, µ), . . . , Nθ(vj, µ), . . . , Nθ(vM−1, µ)].

Each preconditioned vector AµNθ(vj , µ) undergoes a Gram–Schmidt orthogonalization
process, preserving the nested structure of the Krylov subspaces.

At iteration M , we define {sµ1 , . . . , s
µ
M} the sequence of sines of the angles between

residuals and Krylov subspaces generated up to that point. This sequence is a
by-product of the sequence of M Givens rotations, GMGM−1 . . .G2G1 that orthogo-

nalize H̃µ
M. We encapsulate this process of sine extraction from the Givens rotations

orthogonalizing sequence with the shorthand notation AGM .
Since the basis vectors depend on θ via the action of Nθ, the entire sequence

{sµj }Mj=1 ≡ {s
µ
j,θ}Mj=1 becomes differentiable with respect to the model parameters. The

goal is to find a parameter vector θ⋆ such that

M∏
j=1

|sµj,θ⋆ | ≪ 1 ,

for all µ ∈ P, indicating rapid convergence of the residual norm over the first M
iterations for the whole problem family.

The recursive nature of the Arnoldi-Givens process induces a computational graph
where each variable depends on the previous ones. This structure forms a Directed
Acyclic Graph (DAG), in which nodes represent intermediate quantities (e.g., inner
products, basis vectors, rotation angles), and edges encode standard algebraic oper-
ations, such as those involved in performing orthogonalization or applying Givens
rotations. The parameter dependence enters the graph via the preconditioner Nθ,
which affects every step of the AGM iterative procedure. In Fig. 1, we visualize
this computational structure, emphasizing the role of θ in shaping the algorithm’s
trajectory.

This computational structure enables seamless application of reverse-mode auto-
matic differentiation. In particular, frameworks such as PyTorch automatically
construct and traverse the computational graph, allowing efficient evaluation of the
gradient [23]

δθ 7→
{
∂sµj,θ/∂θ

}M

j=1
,

which can be used to train the neural preconditioner by minimizing a suitably defined
loss functional. The complete learning procedure is outlined in Algorithm 1. The aver-
age ⟨·⟩µ denotes the empirical mean over a batch of parameterized linear systems
(Aµ, bµ)µ ∈ Ptrain ⊂ P or µ ∈ Ptest ⊂ P, depending on the context,

⟨xµ⟩µ :=
1

|P|
∑
µ∈P

xµ .

This formulation allows the learned preconditioner to generalize across the entire
problem class. The dynamic loss functional is thus defined as

9

Fig. 1 Computational graph corresponding to the M -th iteration of the Arnoldi-Givens process
(AGM). Dependencies on the learnable parameters θ are introduced through the nonlinear precon-
ditioner Nθ. For brevity, we suppress the dependence on parameters µ and θ when superfluous.

Algorithm 1 Training a Neural Preconditioner via Krylov Subspace Alignment

1: Select linear systems (Aµ, bµ), for µ ∈ Ptrain
2: Initialize the neural operator Nθ and the optimizer
3: for each training epoch do
4: Compute the initial residual rµ0
5: for j = 1 to M do
6: Construct AµZµ

j = Vµ
j+1H̃

µ
j

 AGM (Aµ, rµ0 ,Nθ).

7: Orthogonalize H̃µ
j via Givens rotations; compute sµj,θ

8: end for
9: Evaluate the loss L(θ) =

∑M
j=1

〈
|sµj,θ|

〉
µ

10: Compute ∇θL using backpropagation
11: Update θ ← θ − η∇θL
12: end for

Ldynamic(M)(θ) :=
1

M

M∑
j=1

〈
|sµj,θ|

〉
µ∈Ptrain

,

where the sine series {sµj,θ} is evaluated dynamically in the training process, i.e.
whenever parameter is updated, θ ← (θ − η∇θL) (line 11 in Algorithm 5), the
Arnoldi-Givens algorithm is called to obtain the new series

AGM : (Aµ, rµ0 ,N(θ−η∇θL)) 7−→ {sµj,(θ−η∇θL)}
M
j=1.

10

As Ldynamic(M) ≈ O(M), it provides a robust surrogate for minimizing residual
misalignment over the first M iterations. Moreover, the inequality,

M∏
j=1

⟨|sµj |⟩µ ≤
(
Ldynamic(M)(θ)

)M
,

relates the geometric mean of the sine values to the average loss, offering a theoretical
guarantee that minimizing Ldynamic(M) leads to improved convergence behavior.

The parameter M plays a central role in balancing optimization depth and com-
putational efficiency. While larger values of M provide a more accurate reflection
of long-term solver dynamics, they also result in deeper computational graphs and
increased memory usage. In practice, moderate values of M (e.g., 5 ≤ M ≤ 10) are
sufficient to achieve meaningful learning without incurring prohibitive computational
costs. It is important to note that, unlike matrix inversion, preconditioning does not
require a unique operator. The space of valid preconditioners is large and diverse,
allowing the learning process to exploit non-uniqueness to improve convergence. In
the limiting case M = 1, the loss effectively trains Nθ to approximate the inverse of
Aµ, which is typically insufficient for practical tolerances. Larger values of M enable
iterative refinement and allow the network to learn effective strategies for accelerating
convergence across a wide range of systems.

6 Training Strategy for the Neural Preconditioner

The training of the nonlinear preconditioner Nθ follows a two-phase procedure
designed to balance computational efficiency with solver-aware optimization. First,
we perform an unsupervised pretraining stage based on a static loss functional that
avoids unrolling the Krylov solver. Then, the network undergoes fine-tuning using
a dynamic loss that incorporates geometric information derived from the iterative
process. This two-phase strategy reflects a trade-off between generalization and special-
ization. The static phase enables the network to learn a coarse but broadly applicable
approximation of the inverse operator, leveraging only residual information without
requiring ground-truth solutions. Data augmentation-based randomized perturbations
enrich the spectral content of the training set, promoting robustness across parameter
variations. On the other hand, the subsequent dynamic phase injects solver-specific
information into the training loop by minimizing the absolute value of sine angles sj,θ
between residuals and Krylov subspaces. These angles govern convergence behavior
in GMRES and its flexible variant, and their minimization aligns the learned precon-
ditioner with the subspace geometry of the iterative process. This fine-tuning step
optimizes the early-stage convergence rate and reduces iteration counts in practice. By
decoupling representation learning from solver dynamics, this hybrid approach ensures
both structural adaptability and performance-driven refinement. The static loss cap-
tures coarse inverse structure, while the dynamic loss promotes alignment with Krylov
geometry, resulting in a preconditioner that is both generalizable and solver-aware.

11

6.1 Neural Architecture: A Multi-Level U-Net Design

We briefly recall here the definition of the architecture chosen for Nθ, previously
discussed in [17]. To define the hypothesis space H, we adopt a neural operator Nθ

instantiated via a U-Net architecture of depth L, denoted by UL. This architecture is
well-suited for mixed-dimensional PDEs due to its ability to capture multiscale spatial
features. Then, we set H = {UL(· ; θ)}θ∈Rt;L∈N+ , so that the neural preconditioner is
defined as Nθ ≡ UL(· ; θ).

The U-Net architecture comprises an encoder,

Φ = Φ0 ◦ Φ1 ◦ · · · ◦ ΦL−1 : Rcin×n → Rcb×m ,

and a decoder,
Ψ = ΨL−1 ◦ · · · ◦Ψ0 : Rcb×m → Rcout×n.

Given an input tensor X = [X1 | . . . | Xcin] with Xi ∈ Rn1×···×nd , the recursive
structure of the U-Net is defined as

U0(X) := Ψ0 ◦ Φ0(X),

Uj(X) := Ψj ([Uj−1 ◦ Φj(X) | Φj(X)]) , j > 0 ,

where [· | ·] denotes channel-wise concatenation (skip connection), enhancing both
gradient propagation and spatial information retention.

Each convolutional block Φj and Ψj applies cout filters ki,j to the cin input
channels,

Yi =

cin∑
j=1

ki,j ∗Xj , i = 1, . . . , cout ,

with a discrete convolution defined by

(ki,j ∗Xj)(p) =
∑
q∈Zd

ki,j(q)Xj(p− q).

To comply with convolutional formats, the raw inputs {xi}cini=1 ⊂ RNh are reshaped
into a tensor

x1, . . . ,xcin 7→ X ∈ Rcin×n1×···×nd , Nh = n1 · · · · · nd.

This choice limits the architecture to structured tensor-product meshes; generalization
to unstructured domains may require mesh-aware models [24].

The specific architecture used in our experiments is detailed in Table 1. It includes
downsampling (via max pooling) and upsampling (via transposed convolution) layers.

12

Layer (type) Input size Output size Input channels Output channels # Parameters

Conv. 213 213 2 32 13,840
Conv. + Max Pooling 213 103 32 64 55,296
Conv. + Max Pooling 103 53 64 128 221,184
Conv. 53 53 128 128 442,368
Transposed Conv. 53 103 128 64 286,784
Transposed Conv. 103 213 64 32 71,912

Table 1 Architecture of the three-level U-Net U3. The total number of trainable parameters is
approximately 106.

6.2 Phase 1: Static Pretraining via Residual Loss

In the static pretraining phase, we minimize a residual-based loss functional that does
not require unrolling the Krylov solver

Lstatic(θ) =
1

|Ptrain|

|Ptrain|∑
j=1

1

|Kµj |
∑

v∈Kµj

∥∥v − α−1AµjNθ(v, µj)
∥∥2 ,

Here, α is a normalization factor based on the average RMS of the matrix diagonals

α :=

 1

|Ptrain|

|Ptrain|∑
j=1

1√
Nh

∥diag(Aµj)∥2

−1

.

Inputs consist of the right-hand side vector and the discrete parameter field dµj ,
reshaped to match the U-Net structure. The training configuration is summarized in
Table 2. We will refer to the neural preconditioner resulting from minimization of
Lstatic as N st

θ .

Training 1D Graphs Samples Validation 1D Graphs Samples

Size 480 2400 Size 120 600

Mini-Batch Size 5 Epochs 250

Learning Rate 10−3 Scheduler Decaying

Table 2 Pretraining dataset and parameters. Data augmentation increases the
number of samples by a factor of five.

6.3 Phase 2: Dynamic Fine-Tuning via Krylov Geometry

To integrate solver-specific information, we fine-tune the pre-trained model using the
dynamic loss functional aligned with the geometry of Krylov subspaces

Ldynamic(M)(θ) =
1

M

M∑
j=1

〈
|sµj,θ|

〉
µ∈Ptrain

, (4)

where the sequence {sµj,θ} of the angles sine between residuals and Krylov subspaces
comes from the on-the-fly application of AGM algorithm and the average ⟨·⟩µ is

13

computed over mini-batches of systems (Aµ, bµ). We use M = 10 to prioritize early-
stage convergence. The fine-tuning configuration is reported in Table 3. We will refer
to the neural preconditioner resulting from minimization of Ldynamic as N dy

θ .

Training Validation

1D Graphs 100 1D Graphs 20

Mini-Batch Size 20 Epochs 150

Learning Rate 10−3 M (AG iterations) 10

Table 3 Fine-tuning dataset and parameters. No data augmentation is used in
this phase.

7 Results and Discussion

We present a comprehensive analysis of the proposed neural preconditioning strat-
egy. We begin by evaluating the impact of the static pretraining phase on residual
reduction. Then, we assess the fine-tuning stage and demonstrate how the Krylov-
geometry-aware loss improves early-stage convergence. Finally, we compare the
FGMRES iteration counts with and without preconditioning across a variety of test
parameter instances.

7.1 Pre-Training Step: Static Loss

We first examine the performance of the neural preconditioner trained with the static
loss functional Lstatic, as introduced in [17]. The static-training stage was conducted
over 100 epochs on a dataset enriched with high-frequency perturbations to promote
spectral diversity by adopting an AMD Instinct MI210 GPU with 64 GB of VRAM.
The registered average time per epoch was 7.2 s/epoch, resulting in a total training
time of ∼ 12 min.

As illustrated in Figure 2 (Left column), both training and validation losses con-
sistently decrease up to approximately 60 epochs, after which a mild overfitting trend
emerges. The validation loss stabilizes around a value of 0.4, which is sufficient to pro-
duce an effective preconditioner for the considered 3D–1D problem. Further analysis
highlights the improvement in problem conditioning induced by the learned precondi-
tioner. Before training, the relative residual exhibits slow decay, with sine values close
to 0.9, indicating near-orthogonality of the residual and Krylov image subspaces—an
unfavorable condition for convergence (Figure 2, Middle column). After 100 opti-
mization steps, the average sine value is reduced to approximately 0.6, resulting in a
significantly enhanced convergence profile (Figure 2, Right column). As a result, the
solver reaches the target tolerance of 10−6 in roughly 26 iterations, compared to 147
iterations in the unpreconditioned case.

14

Fig. 2 Left column: Training (top) and validation (bottom) errors obtained during training of N st
θ

preconditioner with residual-based static loss. Training is stopped at the onset of data overfitting.
Middle columns: Relative residual ||rj||/||r0|| and averaged absolute subspaces angles sine ⟨|sµj,θ|⟩µ
for iteration j ∈ [1, 20] at the onset of training (epoch 0). Right column: Relative residual ||rj||/||r0||
and averaged absolute subspace angles sine ⟨|sµj,θ|⟩µ for iteration j ∈ [1, 20] at the end of training

step 1 (epoch 100).

7.2 Fine-tuning via Krylov Geometry

The second phase involves fine-tuning the network using the dynamic loss Ldynamic,
which incorporates geometric information extracted from the Krylov solver. As shown
in Figure 3, both training and validation losses decrease and stabilize around a value of
approximately 0.3, indicating consistent learning behavior across the parameter space
and successful integration of subspace alignment objectives.

Fig. 3 Training and validation loss Ldynamic = 1
M

∑M
j=1⟨|s

µ
j,θ|⟩µ during fine-tuning stage for, respec-

tively, µ ∈ Ptrain and µ ∈ Pvalidation.

15

The dynamic training stage comprises 160 epochs, with an average runtime of
2.5min/epoch, producing a total training time of approximately 400min. The observed
computational cost is primarily due to the unrolling of the AG algorithm required for
the dynamic loss evaluation. This constitutes the key distinction from the static train-
ing step, where reliance solely on residual evaluations results in a lower computational
burden but limited control over the convergence rate.

7.2.1 Evolution of Principal Angles

To gain further insight, we monitor the evolution of the principal angles between the
residual vector and the generated Krylov subspace basis vectors, as encoded by the
sine quantities {|sµj,θ|}. In the ideal case of rapid convergence, these angles should
decrease rapidly toward zero, indicating that new Krylov directions contribute sub-
stantial progress toward the solution subspace. Under the first-stage training, based on
the static residual loss Lstatic, the learned preconditioner produces a global improve-
ment of the system conditioning, reflected in a near-uniform reduction of the angles
{|sµj,θ|}. This behavior suggests that the static training implicitly regularizes the spec-
trum, albeit without explicit control over the subspace geometry. In contrast, the
second-stage fine-tuning, based on the dynamic loss Ldynamic, directly penalizes large
angles within the first M = 10 Arnoldi iterations.

Empirically, during dynamic loss minimization, the averaged principal angles
⟨|sµj,θ|⟩µ over the firstM iterations follow an approximately linear trend in the iteration
index j, 〈

|sµj,θ|
〉
µ
≈ aj + b, for j = 1, . . . ,M .

While the slope a remains nearly constant across training epochs (on the order of
10−3), the intercept b decreases progressively during optimization, from an initial value
of approximately b ≈ 0.48 down to b ≈ 0.30 after fine-tuning. Results are summarized
in Table 4 and Figure 4.

This decrease reflects improved initial alignment of the residual with the Krylov
subspace within the first M iterations. Assuming that a is negligible, we may estimate

Epoch 1
M

∑M
j=1⟨|s

µ
j,θ|⟩µ

(
1
M

∑M
j=1⟨|s

µ
j,θ|⟩µ

)M
∆+ ∆− a b

0 0.592766 5.36 × 10−3 0.246203 -0.518429 0.009823 0.489628

10 0.399244 1.03 × 10−4 0.346335 -0.119267 0.006651 0.362663

20 0.373864 5.30 × 10−5 0.360928 -0.148762 0.004453 0.349371

40 0.342721 2.20 × 10−5 0.402198 -0.127696 0.005862 0.310482

60 0.335581 1.80 × 10−5 0.352728 -0.122402 0.004203 0.312462

80 0.328283 1.50 × 10−5 0.382090 -0.114524 0.006195 0.294211

150 0.317659 1.00 × 10−5 0.414758 -0.111201 0.003036 0.300960

Table 4 Evolution of principal angles over training epochs. Linear fit of the form
⟨|sµj,θ|⟩µ = aj + b is applied to sine angles across inner iterations j = 1, . . . ,M , with M = 10.

16

Fig. 4 Averaged sine angles ⟨|sµj,θ|⟩µ for j = 1, . . . ,M , with µ ∈ Pvalidation (solid purple line). The

shaded region denotes the envelope of |sµj,θ| curves across the parameter space. The thick dashed blue

line indicates the linear fit of ⟨|sµj,θ|⟩µ at epoch 0, while purple dotted lines show the linear fits at

subsequent epochs. Lower sine values reflect improved alignment of residuals with Krylov subspace
directions.

the product of sines governing the convergence factor via

M∏
j=1

〈
|sµj,θ|

〉
µ
≈

 1

M

M∑
j=1

〈
|sµj,θ|

〉
µ

M

, (5)

which approximates the asymptotic bound for the Krylov Subspace method conver-
gence. By looking at the estimate above, we can observe a substantial drop (two orders
of magnitude) of its value, from 5.3 × 10−3 to 1.0 × 10−5, experienced during the
dynamic training stage. Given the tight relation between principal angles sj and the
convergence rate of the FGMRES algorithm, we expect the same amount of reduction
in the value of the relative residual.

17

7.2.2 Residual Decay Characterization

The progressive alignment between the principal angles and the Krylov subspace basis,
discussed in Section 7.2.1, has a direct impact on the convergence profile of the iter-
ative solver. Indeed, the reduction of |sj | induces a contraction of the residual norm,
consistent with the geometric recurrence relation detailed in (3).

The evolution of the mean residuals can be tracked by a least-squares fitting with
an exponential model 〈

∥rµj ∥
∥rµ0 ∥

〉
µ

= eβeαj , j = 1, . . . ,M,

where α encodes the decay rate and β controls the residual offset. The fitting is
performed over M = 10 iterations, in line with the optimization horizon used in the
dynamic loss functional introduced in (4). At the onset of training (epoch 0, mean sine
≈ 0.59), when the network Nθ has only undergone static pretraining via the residual-
based loss Lstatic (cf. Section 6.2), we observe a relative slow decay with parameters
β ≈ −1.85 and α ≈ −0.4 which leads to an average relative residual of ∼ 10−3 after 10
iterations. As fine tuning progresses, the minimization of the dynamic loss Ldynamic(M)

actively promotes alignment of the residual with the Krylov subspace; thus α decreases
significantly, from α ≈ −0.4 at epoch 0 to α ≈ −1.13 at epoch 150. The reduction in
α reflects an acceleration in the asymptotic convergence rate.

Epoch ⟨||rµM||/||rµ0 ||⟩µ ∆+ ∆− α β

0 1.20 × 10−3 0.003509 -0.000849 -0.489807 -1.851620

10 1.05 × 10−4 0.000415 -0.000079 -0.919889 -0.123565

20 5.50 × 10−5 0.000332 -0.000041 -0.975239 -0.161445

40 2.70 × 10−5 0.000257 -0.000021 -1.049013 -0.225478

60 2.30 × 10−5 0.000252 -0.000018 -1.077473 -0.136004

80 1.80 × 10−5 0.000298 -0.000015 -1.090334 -0.240775

100 2.90 × 10−5 0.000274 -0.000024 -1.057390 -0.052897

150 1.30 × 10−5 0.000209 -0.000010 -1.134431 -0.095151

Table 5 Evolution of relative residual at iteration M. Exponential fit of the form

⟨||rµj ||/||r
µ
0 ||⟩µ = eβeαj is applied to relative residuals for inner iterations j = 1, . . . ,M .

For M = 10, the mean relative residual (averaged over the validation batch)
decreases from 1.12×10−3 at epoch 0 to 1.3×10−5 at the final epoch. This represents
a two-order-of-magnitude improvement in the reduction of the residual norm achieved
through the fine-tuning phase.

As expected, these results perfectly align with the estimates in Eq. 5 reported in
Table 4. All results are summarized in Table 5 and Figure 5, which report the fitted
parameters and associated statistics.

18

Fig. 5 Averaged relative residuals ⟨||rµj ||/||r
µ
0 ||⟩µ for j = 1, . . . ,M , with µ ∈ Pvalidation (solid red

line). The shaded region denotes the envelope of ||rµj ||/||r
µ
0 || curves across the parameter space. The

thick dashed red line indicates the linear fit of ⟨||rµj ||/||r
µ
0 ||⟩µ at epoch 0, while red dotted lines show

the exponential fits at subsequent epochs.

7.3 Localized Control over Krylov Dynamics

An important observation is that the dynamic loss structure defined by Ldynamic(M)

induces a localized improvement in Krylov geometry: by restricting the supervision
window to M = 10 Arnoldi iterations, the neural preconditioner N dy

θ specializes in
optimizing early-stage convergence—where computational savings are most impactful.
Beyond the supervised horizon (j > M), the principal angles |sµj,θ| tend to increase,
reflecting the absence of penalization in later iterations.

Crucially, this behavior is not a limitation but a controllable feature: by tuning the
value of M , one can trade depth for early accuracy, thereby aligning the optimization
objective with specific solver performance targets. This targeted control provides a
flexible and interpretable framework for tailoring the action of learned preconditioners
to varying computational demands.

19

Fig. 6 Comparison of mean principal angles ⟨|sµj,θ|⟩µ and relative residuals ⟨||rµj ||/||r
µ
0 ||⟩µ for j =

1, . . . , 2M , after static training via Lstatic(θ) (left) and after dynamic fine-tuning via Ldynamic(M)(θ)
with M = 10 (right).

7.4 Iteration Count Analysis

We now evaluate the performance of the dynamically fine-tuned neural preconditioner
N dy

θ obtained via the two-stage training protocol outlined in Section 6. The benchmark
involves a parametric family of coupled 3D–1D problems, where the 1D domain repre-
sents vascular networks modeled as randomly generated graphs of different geometric
complexity. This setting introduces significant variability in the system matrices, mak-
ing it a robust test case for generalization across operator structures. The objective
of the preconditioner is to improve both spectral and geometric properties of the sys-
tem matrix to accelerate Krylov subspace convergence. To assess this, we measure the
average number of FGMRES iterations required to reduce the relative residual norm
below 10−6 across a test set of 100 previously unseen graph configurations. Without
preconditioning, the solver requires, on average 147.5 iterations, with values ranging
from 100 to 245. With the statically trained preconditioner, the count drops sharply
to 26.71, with a narrower range of 23 to 31 iterations. Following dynamic fine-tuning,
the average count further decreases to 12.86, with values ranging from 11 to 16.

Fig. 7 FGMRES iteration counts across 100 test 1D graph instances Λi. Left: unpreconditioned

vs. statically trained N st
θ . Center: static vs. dynamically fine-tuned Ndy

θ . Right: global overview
across all configurations.

20

These results show that the neural preconditioner Nθ reduces the average iteration
count by more than an order of magnitude across the parametric problem family
(Aµ, bµ). The additional gain from dynamic tuning confirms that the Krylov subspace
generation process itself is being effectively manipulated by the neural preconditioner.

7.5 Performance Comparisons and Execution Time

Having assessed the positive impact of the dynamic fine-tuning strategy on the neural-
preconditioned FGMRES solver, in this section, we present a comparison between
N dy

θ and well-established preconditioners, namely Jacobi, Incomplete LU factoriza-
tion (ILU), and algebraic multigrid (AMG). The PETSc library implementation [25]
was employed for all standard preconditioners, with the following configurations: the
Jacobi method applies point-wise diagonal scaling; the ILU preconditioner employs
an incomplete LU factorization with no fill-in (default PETSc setting); the AMG pre-
conditioner relies on the BoomerAMG solver with three multigrid levels. Performances
are recorded on a computational mesh consisting of ∼ 104 degrees of freedom, with
computations carried out on a Lenovo Legion 9 16 workstation equipped with an Intel
Core i9-14900HX processor, 64 GB of RAM, and an NVIDIA GeForce RTX 4090 GPU
with 16 GB of GDDR6 memory.

In the following experiments, the GPU is used exclusively for the inference of the
neural-network preconditioner, while the classical preconditioners (Jacobi, ILU, AMG)
rely on their standard CPU PETSc implementations (single MPI rank). This choice
reflects the fact that PETSc’s classical preconditioners are highly optimized for CPU
execution, whereas neural networks are naturally suited for GPU-based inference;
each method therefore operates in its most appropriate computational environment.
We note that GPU-accelerated variants of ILU and AMG generally rely on different
algorithmic formulations and software packages (e.g., AmgX, [26], Kokkos [27], Hypre-
GPU [28]), which do not directly correspond to the standard PETSc implementations
used in our study. For this reason, we restrict the classical preconditioners to their
widely adopted CPU versions. Moreover, the neural preconditioner does not exploit
batch parallelism or throughput-oriented acceleration on the GPU: each precondition-
ing call involves a single forward pass, without amortizing computation across multiple
inferences. This setup ensures that the comparison focuses on algorithmic performance
rather than hardware-driven optimizations.

As reported in the previous section and in Table 6, the dynamically fine-tuned
neural preconditioner, N dy

θ , achieves a mean iteration count of 12.87 with stable
performance across the parameter space (∆+ = +3.24, ∆− = −1.86). This result
demonstrates performance comparable to standard PETSc preconditioners, with only
AMG(3) performing better, requiring 9.65 iterations on average.

In terms of execution time, N dy
θ is the fastest method, with an average execu-

tion time of 17.12ms; this corresponds to a ×3 speed-up compared to AMG(3), which
achieves fewer iterations but requires a more expensive setup phase. The ILU pre-
conditioner follows, with an average execution time of 17.95ms. ILU variants with
fill-in levels up to three were tested, with the no-fill configuration (the one considered
in the table) yielding the lowest execution time among them. The reported analysis

21

Precond. type.
Mean
Iter. ∆+ ∆−

Mean
Time ∆+

t ∆−
t

Speed-Up

w.r.t. AMG(3)

N st
θ 26.71 +4.29 -3.71 35.15 +5.12 -4.82 1.47

Ndy
θ 12.86 +3.14 -1.86 17.12 +5.72 -2.73 3.02

Jacobi 115.06 +78.94 -40.06 59.10 +31.39 -19.02 0.88

ILU 24.73 +8.27 -5.73 17.95 +9.66 -3.42 2.89

AMG(3) 9.56 +2.44 -1.56 51.73 +5.53 -7.56 1.0

Table 6 Mean FGMRES iterations and execution time (in milliseconds [ms]) for different
preconditioners. ∆± denotes the deviation in iteration count from the mean value to the worst (best)
case within the test set, while ∆±

t indicate the corresponding deviations in execution time. The
execution-time speed-up relative to the AMG(3) preconditioner is also reported for comparison.

shows that N dy
θ represents a valuable preconditioning strategy due to its fast execu-

tion time and the absence of online setup requirements. Of course, an offline training
phase is required; however, it needs to be performed only once. Thereafter, the trained
neural preconditioner can be applied to any parametric scenario within the consid-
ered parameter distribution. Importantly, the method does not rely on previously
computed problem solution data. It only requires access to system matrices and right-
hand-side vectors, which makes the generation of the training set straightforward and
computationally efficient.

8 Conclusion and Perspectives

This work introduces a novel training strategy for neural preconditioners that lever-
ages the geometric structure of Krylov subspace methods, specifically the Generalized
Minimal Residual (GMRES) algorithm. The core contribution lies in the formula-
tion of a dynamic fine-tuning phase, wherein the loss functional directly optimizes
the subspace angles si,θ that govern the convergence behavior of iterative solvers. By
embedding this geometric insight into the training process, we offer a principled and
solver-aligned approach to performance enhancement.

A central advantage of our method is that it preserves the strengths of unsu-
pervised learning, such as straightforward data generation and independence from
ground truth solutions, while simultaneously introducing a transparent and solver-
integrated performance metric. The use of a differentiable formulation of the Flexible
GMRES algorithm enables efficient gradient-based optimization through backprop-
agation across the solver’s iterative process. The dynamic residual-based loss we
propose captures the alignment between the residual vector and the Krylov subspace
at each iteration, quantified by the sine of their principal angle, thereby offering a
geometrically meaningful proxy for convergence rate. The effectiveness of this solver-
aware training scheme is validated by substantial reductions in iteration counts for
parameter-dependent linear systems derived from mixed-dimensional partial differ-
ential equations (PDEs)—a class of problems often characterized by ill-conditioning
and geometric complexity. Building upon our earlier work on unsupervised neural

22

preconditioners for mixed-dimensional models, we demonstrate that the combined
static-dynamic training strategy significantly enhances the preconditioner’s adaptabil-
ity to heterogeneous problem instances. In our numerical tests, the average number of
FGMRES iterations dropped from 147.5 (unpreconditioned case) to 26.71 after static
training, and further to 12.86 following dynamic fine-tuning. This outcome attests
to the ability of the neural preconditioner to influence the subspace geometry and
accelerate solver convergence directly. Comparison with established preconditioning
strategies demonstrates the effectiveness of the proposed approach, which yields the
fastest FGMRES execution time among the tested methods.

Despite these encouraging results, several important directions remain for future
research. Extending the proposed approach to alternative iterative solvers and dif-
ferent classes of preconditioners represents a natural next step. Investigating hybrid
training strategies that blend static and dynamic loss formulations, or integrate addi-
tional physics-informed components, could yield further improvements in robustness
and generalization. A particularly relevant challenge is to assess the preconditioner’s
performance on out-of-distribution samples, including unseen geometries and para-
metric regimes, to better understand its extrapolative capabilities. From a theoretical
standpoint, formalizing the role of spectral data augmentation and characterizing the
learning dynamics of Krylov-aware neural networks are crucial for building a more
rigorous foundation for learning-based preconditioning. Moreover, current limitations
related to the use of convolutional neural networks on structured grids suggest the
need for architectural generalizations. Mesh-informed neural networks or graph-based
models could provide the necessary flexibility to extend applicability to unstructured
meshes and more general computational domains. Finally, scaling up the approach to
large-scale problems remains a critical avenue. Optimizing multi-resolution network
design, exploiting GPU-parallel computations, and integrating ensemble methods can
substantially improve throughput in multi-query settings such as parameter studies,
control, or uncertainty quantification.

In conclusion, this study establishes the feasibility and effectiveness of neural pre-
conditioning guided by Krylov subspace geometry as a powerful tool for accelerating
iterative solvers in complex PDE applications. It provides a promising foundation for
advancing the integration of deep learning and numerical linear algebra in scientific
computing.

Acknowledgments

PZ acknowledges the support of the MUR PRIN 2022 grant No. 2022WKWZA8
Immersed methods for multiscale and multiphysics problems (IMMEDIATE) part of
the Next Generation EU program Mission 4, Comp. 2, CUP D53D23006010006. The
present research is part of the activities of the Dipartimento di Eccellenza 2023-2027,
Department of Mathematics, Politecnico di Milano. AC acknowledges the support of
the MUR PRIN 2022 project Evolution problems involving interacting scales project
code 2022M9BKBC, Grant No. CUP D53D23005880006. All authors are members of
the Gruppo Nazionale per il Calcolo Scientifico (GNCS), Istituto Nazionale di Alta
Matematica (INdAM).

23

Competing Interests

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

[1] D’Angelo, C., Quarteroni, A.: On the coupling of 1d and 3d diffusion-reaction
equations: Application to tissue perfusion problems. Mathematical Models and
Methods in Applied Sciences 18(08), 1481–1504 (2008)

[2] Boon, W.M., Nordbotten, J.M., Vatne, J.E.: Functional analysis and exterior
calculus on mixed-dimensional geometries. Ann. Mat. Pura Appl. 200(2), 757–789
(2021)

[3] Kuchta, M., Laurino, F., Mardal, K.-A., Zunino, P.: Analysis and approximation
of mixed-dimensional pdes on 3d-1d domains coupled with lagrange multipliers.
SIAM Journal on Numerical Analysis 59(1), 558–582 (2021)

[4] Heltai, L., Zunino, P.: Reduced lagrange multiplier approach for non-matching
coupling of mixed-dimensional domains. Mathematical Models and Methods in
Applied Sciences 33(12), 2425–2462 (2023)

[5] Saad, Y.: Iterative Methods for Sparse Linear Systems. Applied Mathematics.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2003)

[6] Mardal, K.-A., Winther, R.: Preconditioning discretizations of systems of partial
differential equations. Numerical Linear Algebra with Applications 18(1), 1–40
(2011)

[7] Chen, K.: Matrix Preconditioning Techniques and Applications vol. 19. Cam-
bridge University Press, Cambridge, UK (2005)

[8] Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Elsevier, Amsterdam,
The Netherlands (2000)

[9] Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential
Equations. Oxford University Press, Oxford, UK (1999)

[10] Kuchta, M., Nordaas, M., Verschaeve, J.C.G., Mortensen, M., Mardal, K.-A.:
Preconditioners for saddle point systems with trace constraints coupling 2d and
1d domains. SIAM Journal on Scientific Computing 38(6), 962–987 (2016)

[11] Budǐsa, A., Hu, X., Kuchta, M., Mardal, K.-A., Zikatanov, L.: Algebraic multi-
grid methods for metric-perturbed coupled problems. SIAM Journal on Scientific
Computing 46(3), 1461–1486 (2024)

24

[12] Firmbach, M., Steinbrecher, I., Popp, A., Mayr, M.: An approximate block factor-
ization preconditioner for mixed-dimensional beam-solid interaction. Computer
Methods in Applied Mechanics and Engineering 431, 117256 (2024)

[13] Azulay, Y., Treister, E.: Multigrid-augmented deep learning preconditioners for
the helmholtz equation. SIAM Journal on Scientific Computing 45(3), 127–151
(2023)

[14] Kopaničáková, A., Karniadakis, G.E.: Deeponet based preconditioning strategies
for solving parametric linear systems of equations. SIAM Journal on Scientific
Computing 47(1), 151–181 (2025)

[15] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.: Learning nonlinear operators
via deeponet based on the universal approximation theorem of operators. Nature
Machine Intelligence 3, 218–229 (2021)

[16] Xu, Z.-Q.J., Zhang, Y., Luo, T.: Overview frequency principle/spectral bias in
deep learning. Communications on Applied Mathematics and Computation, 1–38
(2024)

[17] Dimola, N., Franco, N.R., Zunino, P.: Numerical Solution of Mixed-Dimensional
PDEs Using a Neural Preconditioner (2025)

[18] Williams, C., Falck, F., Deligiannidis, G., Holmes, C., Doucet, A., Syed, S.: A
unified framework for u-net design and analysis. arXiv stat.ML(2305.19638)
(2024)

[19] Gunes Baydin, A., Pearlmutter, B.A., Andreyevich Radul, A., Siskind, J.M.:
Automatic differentiation in machine learning: a survey. arXiv e-prints, 1502
(2015)

[20] Saad, Y.: A flexible inner-outer preconditioned gmres algorithm. SIAM Journal
on Scientific Computing 14(2), 461–469 (1993)

[21] Laurino, F., Zunino, P.: Derivation and analysis of coupled pdes on manifolds
with high dimensionality gap arising from topological model reduction. ESAIM:
Mathematical Modelling and Numerical Analysis 53(6), 2047–2080 (2019)

[22] Eiermann, M., Ernst, O.G.: Geometric aspects of the theory of krylov subspace
methods. Acta Numerica 10, 251–312 (2001)

[23] Paszke, A.: Pytorch: An imperative style, high-performance deep learning library.
arXiv preprint arXiv:1912.01703 (2019)

[24] Franco, N.R., Manzoni, A., Zunino, P.: Mesh-informed neural networks for oper-
ator learning in finite element spaces. Journal of Scientific Computing 97(35)
(2023)

25

[25] Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschel-
man, K., Constantinescu, E., Dalcin, L., Dener, A., et al.: Petsc/tao users manual
(rev. 3.20). Technical report, Argonne National Laboratory (ANL), Argonne, IL
(United States) (2023)

[26] Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J.,
Layton, S., Markovskiy, N., Reguly, I., Sakharnykh, N., et al.: Amgx: A library for
gpu accelerated algebraic multigrid and preconditioned iterative methods. SIAM
Journal on Scientific Computing 37(5), 602–626 (2015)

[27] Rajamanickam, S., Acer, S., Berger-Vergiat, L., Dang, V., Ellingwood, N., Harvey,
E., Kelley, B., Trott, C.R., Wilke, J., Yamazaki, I.: Kokkos kernels: Perfor-
mance portable sparse/dense linear algebra and graph kernels. arXiv preprint
arXiv:2103.11991 (2021)

[28] Falgout, R., Cleary, A., Jones, J., Chow, E., Henson, V., Baldwin, C., Brown, P.,
Vassilevski, P., Yang, U.: Hypre: high performance preconditioners. Users Manual.
Version 1(0) (2010)

26

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

12/2026 Corbetta A; Logan K.M.; Ferro M; Zuccolo L; Perola M.; Ganna A.; Di Angelantionio E.;Ieva F.

Longitudinal patterns of statin adherence and factors associated with decline in over one million

individuals in Finland and Italy

11/2026 Cicalese, G.; Ciaramella, G.; Mazzieri, I.; Gander, M. J.

Optimized Schwarz Waveform Relaxation for the Damped Wave Equation

10/2026 Dimola, N.; Franco, N. R.; Zunino, P.

Numerical Solution of Mixed-Dimensional PDEs Using a Neural Preconditioner

09/2026 Manzoni, V.; Ieva, F.;Larranaga, A.C.; Vetrano, D.L.; Gregorio, C.

Hidden multistate models to study multimorbidity trajectories

08/2026 Micheletti, S.

 Newmark time marching as a preconditioned iteration for large SPD linear systems

Micheletti, S.

Newmark time marching as a preconditioned iteration for large SPD linear systems

07/2026 Corti, M.; Ahern, A.; Goriely, A.; Kuhl, E.; Antonietti, P.F.

A whole-brain model of amyloid beta accumulation and cerebral hypoperfusion in Alzheimer's

disease

06/2026 Corti, M.; Gómez, S.

On the compact discontinuous Galerkin method for polytopal meshes

05/2026 Ranno, A.; Ballarin, F.; Lespagnol, F.; Zunino, P.; Perotto, S.

A fictitious domain formulation based on hierarchical model reduction applied to drug-eluting

stents

04/2026 Ragni, A.; Cavinato, L.; Ieva, F.

Penalized Likelihood Optimization for Adaptive Neighborhood Clustering in Time-to-Event Data

with Group-Level Heterogeneity

	Introduction
	Problem Setting
	Static Pretraining for Neural Preconditioning
	Geometric Aspects of Krylov Subspace Methods
	Dynamic Loss Functional Formulation
	Training Strategy for the Neural Preconditioner
	Neural Architecture: A Multi-Level U-Net Design
	Phase 1: Static Pretraining via Residual Loss
	Phase 2: Dynamic Fine-Tuning via Krylov Geometry

	Results and Discussion
	Pre-Training Step: Static Loss
	Fine-tuning via Krylov Geometry
	Evolution of Principal Angles
	Residual Decay Characterization

	Localized Control over Krylov Dynamics
	Iteration Count Analysis
	Performance Comparisons and Execution Time

	Conclusion and Perspectives

