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Abstract

The present work addresses the problem of flexible and efficient parameter esti-
mation for non-stationary Gaussian random fields. This problem is crucial to en-
able modeling and stochastic simulation of complex natural phenomena in the Earth
Sciences. Building on the non-stationary Matérn model of Paciorek and Schervish
(2006), we propose a novel computational method that leverages random and re-
peated domain partitions to construct locally stationary estimates. Unlike existing
approaches that rely on fixed grids of knots, our method employs a bagging-type
strategy to mitigate the influence of domain decompositions in a divide-and-conquer
fashion. This results in more robust and adaptive estimations, overcoming key limi-
tations of traditional methods. Through extensive simulations and a real case study,
we demonstrate that while fixed grids noticeably impact the final estimated mod-
els, our approach produces grid-free estimations, thanks to the additional source of
randomness introduced by the aleatory partitions of the domain.

Keywords: Non Stationarity, Covariance Modeling, Gaussian Processes, Random Domain
Decomposition
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1 Introduction

Gaussian Processes (GP) have become ubiquitous in many fields of Probability, Statis-
tics and Machine Learning, being used as a powerful and flexible tool for estimation and
prediction in regression and classification problems (Rasmussen and Williams, 2006). We
focus here on the use of GPs, and in particular of non-stationary GPs, in the field of
Spatial Statistics (Cressie, 1993). Many connections between GPs and traditional Spatial
Statistics have been established, the most representative example being kriging (Cressie,
1993), which can be framed as a particular or limit case of Gaussian Process Regression
(see Rasmussen and Williams (2006); Stein (2012); Gelfand and Schliep (2016)).

For spatial modeling, Gaussian Processes are appealing because they are completely
specified by their mean and covariance functions. Assume that D ⊂ Rd is a spatial domain
of interest, then a real GP is a real stochastic process {Ys}s∈D whose finite-dimensional
distributions are multivariate Gaussian (Rasmussen and Williams, 2006). In this case, we
write

Y ∼ GP (µ,C + τ 2I)

where µ : D → R is the (spatial) mean function, naturally defined as µ(s) = E[Ys],
for s in D, C : D2 → R is a valid (i.e., positive definite, (Cressie, 1993; Stein, 2012))
(spatial) covariance function, defined as C(s1, s2) = Cov(Ys1 , Ys2) for s1, s2 in D, I is the
identity matrix and τ 2 : D → R

+ is the nugget effect, usually included to account for noisy
measurements (Rasmussen and Williams, 2006; Stein, 2012). For a GP to be stationary, µ
and τ must be constant over space, and C must only depend on the increment vector s1−s2.
If in addition C depends only on the Euclidean distance between s1 and s2, yielding no
preferred correlation directions, the process is said to be stationary isotropic; when this is
not true the process is called stationary anisotropic. Among different kinds of anisotropy,
geometric anisotropy is particularly meaningful and prone to straightforward geometric
interpretations. In this case, C is a function of the Mahalanobis distance between s1 and
s2 induced by the symmetric positive definite anisotropy matrix Σ, whose eigenvalues and
eigenvectors define the main correlation directions (Cressie, 1993; Stein, 2012).

If C cannot be expressed as a function of s1 − s2, for all s1, s2 ∈ D, we say that C is
a non-stationary covariance function and Y is a non-stationary GP. In Fig. 1, we show
realizations of different GP processes, where D = [−1, 1] × [−1, 1] ⊂ R

2. In Fig. 1a, we
present a realization from a stationary isotropic process, while in Fig. 1b a realization of
a stationary anisotropic process characterized by an anisotropy angle of 135 degrees with
the positive horizontal axis. Fig. 1c displays a realization of a non-stationary process,
where both µ and C are non-stationary, with a correlation pattern clearly varying in space
and a mean function increasing from the low-left angle to the up-right angle of the do-
main. In this last case, non-stationarity in C is induced by letting the anisotropy matrix
vary over space, in a sense which will become clear in Section 2. Even this very simple
illustration makes intuitively clear how non-stationary GPs can be very flexible modeling
tools for the statistical analysis of geo-referenced natural phenomena characterized by a
space-varying structure in their mean and in their covariance, like, for instance, those typ-
ically studied in climatology. However, while the stationarity assumption allows one to
leverage a solid theoretical background for spatial estimation, simulation, interpolation,
prediction and posterior inference (Cressie, 1993; Stein, 2012), the non-stationary setting
presents relevant challenges, particularly from the computational viewpoint. In this con-
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Stationary and non-stationary processes
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Figure 1: Realizations of (a) a stationary isotropic process, (b) a stationary anisotropic
process and (c) a non-stationary process (right). With the notation of Section 2, the
process (a) corresponds to setting µ = 1, τ = 0.03, σ = 0.3, λ1 = λ2 = ρ2 = e−7, ν = 2; the
process (b) to λ1 = e−7, λ2 = e−5, θ = π/4; the process (c) to τ = 0.1 and µ(s) = x1 + x2,

σ(s) = e
1
4
x2 , λ1(s) = e−8+x1 , λ2(s) = e−5, θ(s) = π

6
(x1 + 1), denoting by s = (x1, x2)

T .

text, much work has been recently devoted to the development of sound methodological
frameworks for estimation and predictions in a non-stationary setting, keeping, at the same
time, the required computational efforts to a reasonable level (see (Fouedjio, 2017) for a
recent review).

Within this literature, we want here to contribute to the rich research stream which fo-
cuses on convolution methods. Starting with the seminal work of Higdon et al. (1999), this
line of research aims to model non-stationarity by convolving a single stationary process
with a spatially-varying kernel, or alternatively, by convolving different stationary pro-
cesses with a spatially constant kernel (Fuentes, 2001). A major achievement was reached
in (Paciorek and Schervish, 2006), where a closed form, analytic, non-stationary extension
of the Matérn covariance model was introduced. Stemming from its stationary counter-
part, whose appealing properties for spatial modeling are discussed in (Anderes and Stein,
2011), this non-stationary Matérn model allows one to include directly a spatially-varying
smoothness, variance and anisotropy matrix, thus generating a very flexible, intrerpretable,
and yet analytically tractable, family of processes. The huge challenge which comes with
all these advantages, and which motivates our contribution, is the necessity of estimating
parameters which are spatial functions, making the dimension of the parameter space, in
principle, infinite.

The inferential perspective followed in (Paciorek and Schervish, 2006) is Bayesian, since
the authors suggest to elicit stationary GP priors for the spatially varying parameters.
This approach is fully general, but is affected by a heavy computational burden, which
stems from difficult MCMC computations. This forces several kind of approximations of
the GP priors and likelihood to work out the posterior Bayesian inference (Paciorek and
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Schervish, 2006; Risser and Calder, 2015; Risser and Turek, 2020). More parsimonious
models have also been defined, with (Risser and Calder, 2015) explicitly accounting for
exogenous covariates. In (Risser and Turek, 2020) all the models presented in (Paciorek
and Schervish, 2006) and (Risser and Calder, 2015) are carefully reviewed and R software
for their implementation is provided in the BayesNSGP package ((Turek and Risser, 2022)).

Less taxing estimation methods, not relying on Bayesian modeling or MCMC compu-
tations, are framed in (Anderes and Stein, 2011), (Risser and Calder, 2017) and (Fouedjio
et al., 2016). They are all grounded on the concept of local stationarity, i.e, the idea that the
behavior of the process in a small neighbourhood of any spatial location should be approx-
imately stationary. This idea, which has been recently extended to local non-stationarity
in (Li and Sun, 2019), is the starting point for several local likelihood estimation methods
((Anderes and Stein, 2011),(Risser and Calder, 2017)) or methods based on anchor points
(Fouedjio et al., 2016), i.e., fixed spatial locations where stationarity is assumed in small
neighbourhoods.

Fixing some knot locations, typically through a regular spatial grid, is actually a key ele-
ment of many of the cited estimation methods: knots are needed to approximate stationary
GP priors on the spatially-varying parameters ((Paciorek and Schervish, 2006; Risser and
Turek, 2020)) or to exploit the local stationarity assumption (Fouedjio et al., 2016; Risser
and Calder, 2017). However, the grid choice can deeply affect estimation, as for instance
discussed in (Banerjee et al., 2008), which is focused on Gaussian Predictive Processes. We
show empirical evidence of this fact in Section 3.

We here propose a novel estimation approach for the spatially varying parameters of the
non-stationary Matérn model developed in (Paciorek and Schervish, 2006), with the aim of
pairing the cited methods with an alternative that avoids taxing computations as well as
potential inconveniences coming from the necessity of fixing a grid of knots. The approach
is based on Random Domain Decomposition (RDD, Secchi et al. (2013); Menafoglio et al.
(2018, 2021)). Initially developed as a tool for predicting the values of the process in
unobserved locations (Menafoglio et al., 2018, 2021), we here extend it to provide spatially-
varying estimations for all the parameters of the non stationary Matérn model developed
in (Paciorek and Schervish, 2006), and empirically investigate its capability to identify
and estimate non-stationarity. RDD is an ensemble method, based on bagging (Breiman,
1996; Secchi et al., 2013), where each weak estimator is obtained on a random partition
of the spatial domain. The randomness is then integrated out in the aggregation phase,
by taking expectations or medians, achieving smoothness by averaging on many partitions
rather than by imposing smooth priors on parameters or by using smoothing kernels, and
avoiding the choice of a fixed grid of knots. Since in each sub-domain of each partition
stationarity is assumed, we use standard variogram estimation techniques for stationary
anisotropic processes (Cressie, 1993; Sherman, 2011; Stein, 2012), with the same approach
followed by Fouedjio et al. (2016) with their anchor points. This results in an algorithm
that is much faster than alternatives requiring demanding likelihood optimization steps
or MCMC computations (Paciorek and Schervish, 2006; Risser and Calder, 2015; Risser
and Turek, 2020). We also show, on simulated and real case studies, that RDD is able to
capture spatial-varying features of the process under study, performing comparably better
than other models.

The rest of the paper is organized as follows. In Section 2 we describe the non-stationary
Matèrn model introduced in (Paciorek and Schervish, 2006) and we set some notation; in

4



Section 3 we briefly revise available estimation methods and highlight some of their poten-
tial setbacks, motivating the introduction of our proposal, which is described in Section 4;
Section 5 is devoted to an assessment of the performance of the algorithm on simulated
data, making comparisons with the other methods which, to the best of our knowledge,
have not been extensively tested on simulated scenarios; we then proceed, in Section 6,
with the analysis of the Colorado Rain data, a real dataset which has already been used
in (Paciorek and Schervish, 2006). Concluding remarks and lines of future research are
discussed in Section 7.

2 Non-Stationary Matérn Model

The Matérn Covariance model, in its basic stationary isotropic version, is

CS
ν,ρ(h) = σ2RS

ν,ρ(h), ρ > 0, ν > 0, σ > 0,

where RS
ν,ρ(h) is the Matérn stationary correlation function, giving the correlation between

the value of the process in two locations whose Euclidean distance is h and defined as

RS
ν,ρ(h) =

1

Γ(ν)2ν−1

[
2
√
ν
h

ρ

]ν
Kν

(
2
√
ν
h

ρ

)
. (1)

In (1), σ, ρ and ν are the covariance parameters: σ2 is the process variance (also known as
partial sill (Cressie, 1993; Stein, 2012), ρ controls the correlation length of the process (the
so-called range), and ν influences the process smoothness. The function Kν is the modified
Bessel function of the second kind. A complete discussion on the model can be found
in (Stein, 2012). These parameters need to be estimated from the data, sometimes with
the exception of ν which may be kept fixed for interpretation purposes and identifiability
issues, being controversial how smoothness can be learned from discretely sampled data.
The basic model (1) can be made anisotropic, preserving stationarity, by substituting the
scaled Euclidean distance h/ρ with the Mahalanobis distance

hij =
√
[si − sj]TΣ−1[si − sj], (2)

Σ being a symmetric positive definite matrix named anisotropy ellipse. To be rigorous, for
all si, sj ∈ D, this yields

CS
ν,Σ(si, sj) = σ2RS

ν,Σ(si − sj),

where

RS
ν,Σ(si − sj) =

1

Γ(ν)2ν−1
[2
√
νhij]

νKν(2
√
νhij). (3)

Note that stationarity is guaranteed by the fact that the covariance function depends on
locations only via si− sj. The symmetric, positive definite matrix Σ needs to be estimated
from the data, so that the estimation of ρ is replaced by the need of estimating the d(d+1)/2
independent entries of Σ. Of course, the special case Σ = ρ2I corresponds to the isotropic
case.

The 2D case is particularly easy to interpret. Indeed, Σ can be parametrized in terms
(i) of its eigenvalues λ1, λ2 > 0, named maximum and minimum correlation length (re-
lated with the axes-lengths of the elliptic neighbourhoods induced by Σ), and (ii) of an

5



anisotropy angle θ ∈ [0, π/2) , characterizing the eigenvector corresponding to λ1, named
principal correlation direction. Again, λ1 = λ2 = ρ2 brings us back to case (1), θ being
irrelevant in this particular case. The eccentricity of Σ, also known as anisotropy ratio

ϕ =
√

λ1
λ2
, measures how far the process is from being isotropic. In the stationary setting,

all parameters are usually estimated from data via variogram estimation or via maximum
likelihood (see (Cressie, 1993; Stein, 2012) for a detailed review). For two sample realization
from this model, see Figure 1.

In (Paciorek and Schervish, 2006), the Matérn model is extended, allowing for non-
stationarity, by letting standard deviation and anisotropy vary in space. The authors show
that smooth functions σ(s) and Σ(s) can be plugged-in in the stationary anisotropic Matérn
model, still obtaining a valid covariance model. More precisely, denote by σ : D → R

+ and
Σ : D → Sd smooth functions (with respect to the Euclidean metric on D and the 2-norm
on the matrix space Sd) of the spatial location s ∈ D ⊆ Rd, Sd being the cone of positive
definite symmetric matrices of dimension d, and let qij be a “non-stationary Mahalanobis
distance”

qij = q(si, sj) =

√√√√[si − sj]T

(
Σ(si) + Σ(sj)

2

)−1

[si − sj].

Note that qij does not depend only on si − sj, rather being a more complex function of
both locations, although the dependence is dropped to ease the notation. Moreover, qij
does not define a metric in D, failing to satisfy the triangular inequality. On this bases,
for all si, sj ∈ D, Paciorek and Schervish (2006) build a non-stationary kernel CNS

ν,Σ (si, sj)
defined as

CNS
ν,Σ (si, sj) = σ(si)σ(sj)R

NS
ν,Σ(si, sj), (4)

where the associated non-stationary correlation RNS
ν,Σ reads

RNS
ν,Σ(si, sj) = |Σ(si)|

1
4 |Σ(sj)|

1
4

∣∣∣∣∣Σ(si) + Σ(sj)

2

∣∣∣∣∣
− 1

2
1

Γ(ν)2ν−1
[2
√
νqij]

νKν(2
√
νqij).

Model (4) trivially includes the stationary models (1) and (3). The function Σ has the role
of spatially varying anisotropy matrix, and, in the convolution literature, it corresponds to
a spatially varying convolution kernel (Higdon et al., 1999; Paciorek and Schervish, 2006).
If one couples model (4) with non-constant mean and nugget function, full flexibility is
achieved and one obtains a model with spatially-varying mean, nugget, process standard
deviation, and geometric anisotropy (controlled by the function Σ). Note that, also in this
case, it is particularly meaningful to parametrize Σ in terms of eigenvalues and rotation
angles. In particular, when d = 2, the symmetric positive definite matrix Σ can be defined
via three smooth functions λ1 : D → R

+, λ2 : D → R
+, θ : D → [0, π/2) assigning,

to each point in D, the minimum and maximum correlation length, and the anisotropy
angle, respectively. For the sake of illustration, Fig. 2 reports a representation of the
non-stationary realization presented in Fig. 1c, overlaid, for some spatial locations, by the
ellipses defined by Σ. One can clearly see that the variation of the anisotropy parameters
strongly affects the shape of the realization.
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Non-stationary process realization, detail
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Figure 2: Realization of a non-stationary process, generated according to model (4), where

we set ν = 2, µ(s) = x1 + x2, σ(s) = e
1
4
x2 , τ(s) = 0.03, λ1(s) = e−8+x1 , λ2(s) = e−5,

θ(s) = π
6
(x1 + 1).

3 Available Estimation Methods and Their Drawbacks

3.1 State of the art

The extreme flexibility of model (4), while well-suited for non-stationary modelling and
simulations, poses challenges when aiming to estimate the functional parameters µ, τ, σ
and Σ. To the best of our knowledge, three different estimation frameworks explicitly
based on model (4) have been proposed so far. The first one is the Bayesian framework
introduced in (Paciorek and Schervish, 2006), and later extended and implemented in the
works (Risser and Calder, 2015) and (Risser and Turek, 2020). The second one consists
of the local likelihood estimation proposed and implemented in (Risser and Calder, 2017),
while the third is the proposal made in (Fouedjio et al., 2016), based on spatially smoothed
variogram estimations, carried out in fixed locations.

In the following, we assume D ⊂ R
2. Let the random vector Y = (Y1, ..., Yn)

T ∈ Rn

represent the GP realized at the locations s1, ..., sn ∈ D. For ease of notation, for s ∈ D, we
define ψ(s) = (µ(s), τ(s), σ(s), λ1(s), λ2(s), θ(s))

T a vector containing the mean function,
the nugget, and all the spatially varying parameters on which the covariance function Σ
appearing in (4) is defined upon.

With a slight abuse of notation, we can elicit the following Bayesian model which,
conditionally on (ψ(s1), ..., ψ(sn)), assumes

Y ∼ N (µ, τ 2 + CNS
ψ ) (5)

where µ and τ now represent the random vectors collecting the realizations of the functions
µ(s) and τ(s) at the locations s1, ..., sn ∈ D, while the matrix CNS

ψ collects the relevant
covariances, modeled as in (4).For s ∈ D, the six components ψj(s) of the vector ψ(s) define
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six random fields on D. These random fields are assumed to be independent and such that
gj(ψj) ∼ GP (µψj

, Cψj
), where gj is a link function – allowing the distributions of ψj(s), for

s ∈ D, to be compatible with the meaning and constraint inherent in the definition of the
parameter – µψj

is a constant mean and Cψj
is a stationary covariance function, acting as

hyperparameters of the model. For example, Risser and Turek (2020) propose to use as
link function the logarithm of τ , σ, λ1 and λ2 and a scaled inverse logit transformation of
θ.

Model (5) is the most general model proposed in (Paciorek and Schervish, 2006) and
implemented in (Risser and Turek, 2020). Moreover, it is the only Bayesian model not
requiring additional knowledge on the dependence of the spatial parameters on exogenous
covariates (see (Paciorek and Schervish, 2006; Risser and Calder, 2015; Risser and Turek,
2020)). Its generality comes with costly MCMC computations to carry out posterior in-
ference, and thus with the necessity of approximating the stationary GP priors. This is
done via a standard radial basis function approximation requiring a fixed grid of knots
bk ∈ D, k = 1, ...K, usually in the form of a regular grid. This approximation provides the
linear representation

ψj(s) = µψj
+

K∑
k=1

wkj(s)ujk, (6)

where the ujk are independent standard Gaussian random variables and the wkj are the
appropriate smoothing radial basis functions (see (Paciorek and Schervish, 2006), section
3.2.2, for the details). Clearly, the above representation greatly reduces the computational
burden, since at each MCMC step only the ujk, for all j, k are sampled, in contrast with
the full GP priors required by model (5). Model (5), together with the radial basis function
approximation, is implemented in the BayesNSGP R package (Risser and Turek, 2020), with
a solution which is suitable for moderately large datasets, but which cannot be applied to
intensive simulation studies where all parameters are allowed to vary spatially. The need for
knots – and, consequently, variants of representation (6) – is also shared by the other pre-
viously mentioned methods (Fouedjio et al., 2016; Risser and Calder, 2017), which indeed
can be applied in simulation studies, since they avoid MCMC computation altogether.

In (Risser and Calder, 2017), which is partially based on the work (Anderes and Stein,
2011), each knot bk of the grid is the center of a neighborhood, i.e. a ball Nk defined by
a fitting radius r, where a stationary covariance model is assumed to hold. In each Nk,
this covariance model has a different vector of parameters ψbk , defined analogously to ψ.
So one needs to estimate the components ψbkj , in each of the k = 1, ..., K neighbourhoods.
These estimates are carried out independently in each neighbourhood, as is typical of
local likelihood estimation methods (Tibshirani and Hastie, 1987). Once estimates ψ̂bkj are
obtained, the final, spatially varying estimates are defined via a representation analogous
to (6): ψ̂j(s) =

∑K
k=1wk(s)ψ̂

bk
j . In (Fouedjio et al., 2016), where knots are called anchor

points, the approach is quite similar, but in each knot the estimation is carried out by
weighted variogram fitting (Cressie, 1993), resulting in a dramatically faster algorithm,
while the smoothing phase is exactly identical.

Both methodologies require the choice of a stationary covariance model to perform
estimation in each knot: Risser and Calder (2017) suggests an anisotropic stationary Matérn
model, while Fouedjio et al. (2016) adopts an anisotropic exponential model. Apart from
the problem of tuning bandwidth parameters, as the fitting radius r or the parameters
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governing the decay of the smoothing kernel, which can be tackled by means of cross-
validation, the main issue comes with the initial choice of the grid where the latent values
ψbkj must be estimated.

3.2 A simulated example

To the best of our knowledge, none of these methods have been tested on simulations
generated directly by model (4), despite being based on it. In particular, the local likelihood
method has only been tested on mixtures of stationary models (Risser and Calder, 2017),
while the method presented in (Fouedjio et al., 2016) has been tested exclusively on real
world data. An extensive simulation study will be the object of Section 5. Here we
focus on an illustrative example of the possible instabilities associated with the above-
mentioned estimation methods. For this purpose, we consider the same non-stationary
process used to generate Fig 2 (refer to the corresponding captions for its parametric
specification ); Fig. 3 displays its spatially-varying parameters µ, σ and Σ, together with
three independent realizations of the resulting process. These charts should be taken as
reference for comparison with the following Figs. 4 and 5.

Figure 4 reports the estimates of σ(s) and of Σ(s) based on the method of (Fouedjio
et al., 2016) (hereafter named FOU16), the estimates of the remaining parameters being
available as supplementary material. Each column corresponds to one of the three inde-
pendent realizations depicted in Fig. 3. Estimates are obtained by applying the method
to samples of N = 10000 spatial observations, with K = 64 equispaced knots. Visual
inspection of Fig. 4b and 4e suggests that this case is associated with fairly good estimates
of the anisotropy ellipses, capturing the behaviour expected from Fig. 3. This is also
reflected in good estimates of the other parameters (e.g., of σ, see Fig. 4b). In Fig. 4c
and 4f, the estimates of σ appear to be less faithful, even though their scale of variation
is correctly captured. In contrast, Fig. 4a and 4d show very irregular variations for the
estimated ellipses, as well as a strong influence of the structure of the fixed anchor points
in the patterns of the estimated σ.
For the local likelihood methods of Risser and Calder (2017) (hereafter named RC17), we
refer to the results depicted in Fig. 5 – having an analogous structure as Fig. 4. In
this case, the method fails to correctly capture the range of variability of σ(s) as well as
the variation of eccentricity in the field of Σ(s), probably due to the greater instability of
likelihood optimization of RC17 with respect to the variogram fitting underlying FOU16.

These preliminary observations make us argue that it is of interest to develop a grid-
free estimation framework or, at least, a framework where instabilities caused by estimation
problems in some knots do not hugely impact on the results of estimation. This will be the
object of the next Section.

9



Generating parameters
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Figure 3: First row: Parameters µ(s) = x1 + x2, and σ(s) = e
1
4
x2 and the anisotropy

ellipses corresponding to λ1(s) = e−8+x1 , λ2(s) = e−5, θ(s) = π
6
(x1 + 1). Second row: three

independent realizations of the corresponding non-stationary Gaussian process.

4 Random Domain Decomposition for Non-Stationary

Estimation

We here introduce the Random Domain Decomposition (RDD) approach as a generalization
of the seminal proposal illustrated in (Menafoglio et al., 2018), adapting it to the non-
stationary parametric framework defined by model (4). The cornerstone of the methodology
is the introduction of a random partition P of D, generated according to some law L. Any
realization Pb of P is then an array (Pb

1, ...,Pb
K) of mutually disjoint subsets partitioning

D, where the number of elements K of the partition can, in general, be random as well. A
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Estimates of σ(s) and Σ(s) using FOU16
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Figure 4: Estimates of the variance σ(s) and of the anisotropy ellipses Σ(s), for the three
independent realizations in Fig. 3, carried out using the method of Fouedjio et al. (2016)
(FOU16) from a sample of N = 10000 spatial observations, with K = 64.

straightforward example of a valid law L is the Random Voronoi Tesselation, which is the
only example so far explored (Secchi et al., 2013; Menafoglio et al., 2018, 2021), and will
also be our choice throughout the present work. In this case, L is defined via a random
vector of spatial locations P ∈ DK , K being fixed, whose components are independent
and uniformly distributed on D. Conditionally on a realization P b of P , one defines the
corresponding partition as the cells of the Voronoi tesselation of D defined by P b, that is

Pb
k = {s ∈ D| d(s, P b

k) ≤ d(s, P b
r )∀r ̸= k}, k = 1, ..., K.

Given P ∼ L, and the vector of spatially varying parameters ψ, we define the weak
estimator ψ∗ as the random variable defined as follows. Conditionally on P = Pb :

1. Assume that, for k = 1, ..., K, a stationary Matérn covariance model holds true in Pb
k
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Estimates of σ(s) and Σ(s) using RC17
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Figure 5: Estimates of the variance σ(s) and of the anisotropy ellipses Σ(s), for the three
independent realizations in Fig. 3, carried out using the method of Risser and Calder
(2017) (RC17) from a sample of N = 10000 spatial observations, with K = 64 grid points.

(this is the local stationarity assumption);

2. Assign to each Pb
k a (spatially constant) estimate ψ∗k obtained by standard anisotropic

variogram fitting and Kriging of the mean in Pb
k;

3. For a given s ∈ D, define ψ∗(s) as ψ∗k(s) where k(s) is the index of the unique element
of the partition containing s.

Finally, we propose to estimate ψ(s) with

ψ̂(s) = EL[ψ∗(s)],

where the expectation in the right hand side is computed via crude Monte Carlo: as
suggested in (Menafoglio et al., 2018), one can generate, according to L, B independent
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realizations Pb, b = 1, ..., B, of the random partition, entailing then the B realizations ψb∗.
This leads to the estimate

ψ̂(s) =
1

B

B∑
b=1

ψb∗(s). (7)

Medians could be preferred to simple averaging for the sake of robustness. Using the
terminology of ensemble estimation, each ψb∗, which is a piecewise constant random variable,
is a weak estimator (Breiman, 1996), while ψ̂(s), obtained by aggregating all the weak
estimators, has the desired property of varying smoothly in space as a result of taking
expectations.

From now on, we will assume that L is the Random Voronoi Tesselation, so that the
above Monte Carlo estimation amounts to (i) generating B random (and non-regular) grids

of knots P b iid∼ U(DK), b = 1, ..., B, where U is the product measure whose marginal distri-
butions are uniform on D; (ii) computing the corresponding random partitions and weak
estimators; (iii) output ψ̂(s) for any given s.

In our proposal, knots change location for each weak estimator, so that their position
have a very weak influence on the final estimation, if any. Moreover, our choice is also robust
with respect to poor local estimates: the averaging in equation (7) not only overcomes
the need for a final smoothing phase via radial basis functions, but also prevents ψ̂(s)
from being significantly influenced by few anomalous weak estimators. We note that the
estimator proposed in (Fouedjio et al., 2016) can be seen, within our framework, as a
specific weak estimator corresponding to random knots whose realization happens to be
arranged as a regular grid. Another advantageous feature of estimator (7) lays in the fact
that, when L is the Random Voronoi Tesselation, the only relevant hyperparameter is the
integer K (K = 1 corresponding to standard stationary estimation), which could be easily
tuned by means of cross-validation. In Figure 6, we show the estimates obtained by means
of RDD for the three realizations drawn in 3 (setting K =8). It is interesting to note the
similarities between the heatmaps for σ obtained via RDD and via the method in (Fouedjio
et al., 2016): RDD correctly identifies the range of σ and approximately mimic its spatial
behavior. However, it avoids unnatural behaviours due to any underlying grid (compare
the left panel in Figure 4 against the left panel in Figure 6). Note moreover that the
overestimation region of σ (the deep blue part of the heatmaps in the left panels of Figure
4 and 6) is characterized by a much less severe error for RDD, as can be noted by inspecting
the colour scale: this is arguably due to the beneficial smoothing effect of averaging many
weak predictors. We propose more thorough comparisons in the next Section.
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Estimates by RDD: estimate of σ
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Estimates by RDD: estimate of anisotropy
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Figure 6: Estimates, obtained by our RDD proposal, carried out on the realizations drawn
in Figure 3

5 Performance Assessment in Simulations

We show in Fig. 7 the mean and the standard deviation of the spatially averaged error
made on each parameter, by performing RDD and the methods (Fouedjio et al., 2016) and
(Risser and Calder, 2017) on 10 independent realizations of the non stationary Matérn
process described in Figure 2. We show the results for RDD over different sample sizes
N ∈ {1000, 5000, 8000, 10000} and different values of the integer parameter K, controlling
the number of elements of the partitions used to compute the weak estimators; B is set to
100. To be rigorous, for each independent realization p = 1, ...10, each parameter ψj and
each value of N andK, we compute RMSE(ψj)p,N,K . This is the root mean square error for
parameter ψj in realization p, averaged over the spatial domain D, obtained when applying
RDD with those particular values of N and K. We then draw in Fig. 7, for each value
of N and K and each parameter, the average RMSE(ψj)N,K = 1

10

∑10
p=1RMSE(ψj)p,N,K
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Spatially averaged errors and standard deviations over 10 realizations
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Figure 7: Mean and standard deviations of the spatially averaged errors made by performing
RDD on 10 independent realizations of the non-stationary Matérn process described in
Figure 2, as a function of K. Red horizontal lines refer to FOU16, black horizontal lines
to RC17, in both cases applied to the most favorable sample size N = 10000. Remaining
colored lines refer to RDD applied for different sample sizes N ∈ {1000, 5000, 8000, 10000}.

computed over the 10 different realizations (the solid points in the chart) and the corre-
sponding standard deviation (the intervals around the points).
In Fig. 7, the results for FOU16 (in red) and RC17 (black) are drawn in correspondence
of N = 10000 (i.e., the most favorable sample size), and refer to a grid of 64 equi-spaced
knots.

Notice that the parameter K controls the locality of the weak estimators. Indeed, larger
values of K correspond to finer partitions and hence to more local estimates, while K = 1
means standard stationary estimates. In our case, coherently with the non-stationary
nature of the process under study, the quality of estimation benefits from higher values of
K, with K = 4 or K = 8 being the best choices.
The method of (Fouedjio et al., 2016) produces better estimates then those of (Risser and
Calder, 2017), probably because of better stability in variogram estimation with respect to
maximum likelihood estimation, which is coherent with the empirical evidence in Fig. 4 and
Fig. 5. It can be noted that RDD seems to perform better than the other methods, even
when N is only moderately large; interestingly, RDD for a sample of size N = 1000 seems
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to perform comparably with the method of FOU16 when the sample size is N = 10000.
We point out that the method in (Risser and Calder, 2017) has been implemented by the
authors in the R package convospat, which has then been used for our tests, while the
proposal by (Fouedjio et al., 2016) did not come with software. This latter method was
later independently implemented in R package LocallyStationaryModels (De Carlo and
Crippa, 2022), which was used for our tests.

6 A Case Study: Analysis of Colorado Rain data

We focus on the dataset used in the seminal work of Paciorek and Schervish (2006) to
test the Bayesian estimation framework (5). We here compare our RDD estimates with
the estimates produced by such model, obtained in Paciorek and Schervish (2006) and
reproduced in Risser and Turek (2020), where the BayesNSGP R package is introduced. The
dataset consists of the average yearly precipitations in Colorado during 1981, measured
on N = 271 different locations, a limited sample size which makes model (5) computable.
Colorado is an interesting example of a spatial domain where non-stationary modeling
may be appropriate: as can be seen from Fig. 8a, this state is characterized by a very
heterogeneous orography, with flat plains crossed by large rivers in the East and mountain
peaks in the West, as well as a large plateau encompassed by mountains in the South. This
results in different precipitation amounts across the country, as we show in Fig. 8b, where
the yearly average in each observed location is drawn.

Fig. 8c and 8d show the estimates for µ and σ obtained via RDD with K = 6. Pa-
rameter µ seems to coherently capture the variation due to orography, with higher values
corresponding to concentration of mountains, and lower values in flat plains and plateaus.
More interestingly, the estimated standard deviation σ peaks in the area where elevation
varies more abruptly, i.e., in the South area in correspondence of the large plateau.

Notably, in Paciorek and Schervish (2006) and Risser and Turek (2020), when applying
model (5) to the same dataset, µ and σ were not allowed to vary according to GP priors,
which were only elicited for λ1, λ2 and θ. More precisely, µ and σ are constrained to be
(unknown) constants in (Paciorek and Schervish, 2006), or simple parametric functions
of the terrain slope in (Risser and Turek, 2020). This is probably due to the notoriously
difficult MCMC computations mentioned in Section 3. Indeed, we were not able to reach a
satisfactory convergence of Markov Chains by imposing general GP priors on all parameters,
using the package BayesNSGP.

We can however compare how RDD and model (5) estimate the anisotropy ellipses,
which are drawn in Fig. 9. While both methods tend to agree in assigning shorter cor-
relation ranges in correspondence of mountain peaks (see the first row of Fig. 9), the
inclination of the anisotropy ellipses (i.e., θ) is quite different. A closer inspection of the
estimation of the parameter θ shows that, similarly to the method FOU16 in the simulation
study described in the previous section, the estimate for θ is affected by the grid of knots
which was used to approximate the GP priors. Instead, RDD produces for θ a smooth,
interpretable and fully data-driven map, as in the case of µ and σ in Fig. 8.

16



Colorado: Orography and Yearly precipitation in 1981
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Estimates of µ and σ via RDD, K = 6
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Figure 8: (a) Orography of the state of Colorado; (b) logarithm of the average yearly
precipitation in the 217 observed locations; (c) and (d) estimates, obtained via RDD, for
the parameter functions µ and σ, respectively.

7 Conclusion

In this work we have introduced a novel, robust estimation framework for non-stationary
spatial processes in which non-stationarity is modeled by the Matérn model introduced in
(Paciorek and Schervish, 2006). We have empirically shown the possible drawbacks of the
current estimation methods, on a fully non-stationary simulation study which, up to our
knowledge, was never attempted before. Some of these drawbacks are arguably due to the
presence of a preliminary, arbitrary grid of knots: this is particularly true for the estimation
frameworks developed in (Fouedjio et al., 2016) and in (Paciorek and Schervish, 2006; Risser
and Turek, 2020). RDD overcomes altogether this issue, providing estimations which are
at the same time smooth and fully data-driven, for all the parameters of model (4). On
the other hand, the analyses carried out in this work give rise to a number of interesting
question and issues. It would be of great interest to compare the performance of RDD
against other methods when it comes to prediction and uncertainty quantification (e.g.,
through stochastic simulation) of the values of the process of interest in new unobserved
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Estimates of anisotropy and θ via RDD and via model (5) as fitted in (Risser
and Turek, 2020)
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Figure 9: Left panels: RDD estimation of the anisotropy ellipses in representative locations
(top) and of θ (bottom). Right panels: RC17 estimation of the anisotropy ellipses in
representative locations (top) and of θ (bottom); these were obtained by fitting model (5)
using the BayesNSGP package.

locations. Indeed, artifacts in estimated parameters and instabilities affecting methods
for their inference (e.g., induced by the grid of estimation) may potentially propagate
over new realizations of the field, hindering their use in practice. Another area of further
exploration lays in possible refinement of the law governing the RDD partitions, which
might be shaped to include information which is available a priori. Moreover, while model
(4) has been formulated for scalar and multivariate data, the development of an analogous
theoretical framework for functional data would be of great interest and will be the scope
of future work. Developing an asymptotic theory for RDD estimators, whether in finite
or infinite-dimensional settings, remains a critical yet open challenge. Such a theory could
provide additional support for the excellent performance of the proposed method, which
has been empirically demonstrated on both simulated and real data in this work.
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8 Supplementary Material

The R code to reproduce all the analyses described in the present work is available at
https://github.com/RiccardoScimone/RDD_code_paper.
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