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SUPREMIZER STABILIZATION OF POD-GALERKIN APPROXIMATION

OF PARAMETRIZED NAVIER-STOKES EQUATIONS

FRANCESCO BALLARIN1, ANDREA MANZONI2, ALFIO QUARTERONI1,3, AND GIANLUIGI ROZZA2

Abstract. In this work we present a stable proper orthogonal decomposition (POD)-Galerkin
approximation for parametrized steady Navier-Stokes equations. The stabilization is guaran-
teed by the use of supremizers solutions that enrich the reduced velocity space. Numerical
results show that an equivalent inf-sup condition is fulfilled, yielding stability for both velocity
and pressure. Our stability analysis is first carried out from a theoretical standpoint, then
confirmed by numerical tests performed on a parametrized two-dimensional backward facing
step flow.

1. Introduction and motivations

Several applications in physics or engineering need an efficient solution of parametrized partial
differential equations (PDEs); this necessitates the computation of the solution of (possibly
nonlinear) PDEs for several different “scenarios”. A solution by traditional methods like finite
elements or finite volumes may not always be feasible. In general, reduced-order models (ROMs)
are devised to deliver an accurate solution at lower computational costs. For nonlinear PDEs
several issues need however to be faced in order to guarantee efficiency, accuracy and reliability,
also when using ROMs. These include the efficient exploration of the parameters space to build
reduced basis spaces that, ideally, should: (i) have low dimension but also the capability to
capture fine physical features; (ii) be stable also for noncoercive problems as in the case of
saddle-point problems; (iii) allow accurate and fast estimation of stability factors, as recently
pointed out in [1, 2].

POD was born to provide efficient model order reduction in turbulent viscous flow computa-
tions, with the aim of preserving the most important energetic flow features. POD is based on
modal analysis and singular value decomposition [3, 4, 5, 6]. Several further improvements have
been addressed in the subsequent studies; these includes eigenproblems solving, error estimation,
physical parametrization not only restricted to the temporal variable, optimal sampling, etc.,
see e.g. [7, 8, 9, 10, 11, 12, 13]. On the other hand, Reduced Basis (RB) methods were proposed
for nonlinear viscous flows since the Eighties [14], whereas important theoretical contributions
and many new methodological developments were provided in more recent years [15, 16, 17, 18],
including the application to new unconventional fields [19, 20]. In recent years, growing atten-
tion has been dedicated to the combination of Galerkin strategies with POD [21, 22, 23] and to
stabilization techniques both for POD [24, 25, 9, 26] and RB methods [27, 28, 29, 30].

The aim of this work is to use the RB framework in its state of the art formulation for the sta-
ble and accurate approximation of flows in a POD setting, in order to improve the performance
of this latter. In this way, POD could benefit from a previously developed robust framework for
the RB stabilization of viscous flows that can also allow a correct pressure recovery. In this work
we test such a method on nonlinear steady viscous flows modelled by Navier-Stokes equations
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and characterized by both physical and geometrical parametrization. In the offline stage of the
resulting strategy, several Navier-Stokes truth solutions are computed, and a POD is performed
to extract a low dimensional representation of both velocity and pressure spaces. However, ei-
ther when we aim to obtain an online approximation of the pressure field, or when we consider
geometrical parameters, the reduced velocity space needs to be properly enriched by the so-
called supremizers, and a POD procedure needs to be applied also on these functions. Finally,
an online Galerkin projection over this enriched space can be performed online, in order to get a
reduced-order approximation of both velocity and pressure fields. The proposed method offers a
valid approach preserving offline-online computational decomposition procedures, stability, and
all the properties inherited by POD (such as orthormalized basis functions for a robust algebraic
stability, and hierarchical spaces construction), strengthened by the ones offered by Galerkin
projection (best fit approximation). At the same time, such a POD-Galerkin approach could
provide an alternative option to greedy algorithms for systems where error bounds are not yet
available or to integrate already developed numerical codes more easily in the reduced frame-
work. A detailed analysis of the role of supremizer enrichment in the POD-Galerkin context is
then performed, showing some criteria for an efficient enrichment both by means of theoretical
considerations and numerical examples.

In the next Section steady parametrized Navier-Stokes problems and their full-order approx-
imation are introduced, considering both physical and geometrical parameters. In Section 3 a
POD-Galerkin ROM is presented. The usual offline-online decomposition is required; a POD
is used for basis construction, and enrichment of the velocity space by means of supremizers is
performed. Section 4 provides a stability analysis for the POD-Galerkin ROM, as well as the de-
scription of the supremizer enrichment strategy. Some heuristic criteria ensuring a very efficient
enrichment procedure are described in Section 5. Numerical results dealing with parametrized
backward facing step flows are given in Section 6. Finally, some conclusions follow in Section 7.

2. Formulation and full-order approximation of parametrized Navier-Stokes
equations

In this paper we focus on the efficient solution of parametrized steady Navier-Stokes (NS)
equations, because of their ubiquitous role in fluid flows applications. Whenever possible, we
will favor the description of our POD-based ROM using an algebraic formalism.

2.1. Continuous formulation. In the steady case, on a spatial domain Ω(µg) ⊂ Rd, d = 2, 3,
NS equations read as follows:

−ν(µp)∆u+ (u · ∇)u+∇p = f(µp) in Ω(µg),

divu = 0 in Ω(µg),

u = gD(µp) on ΓD,

u = 0, on ΓW (µg),

ν(µp)
∂u

∂n
− pn = gN (µp), on ΓN ,

(1)

for some given distributed force term f , Dirichlet data gD and Neumann fluxes gN . Here we
denote by µ = (µg,µp)

T ∈ D ⊂ RP a vector of parameters which may characterize either
the geometrical configuration Ω(µg) or physical properties of our system, such as dynamical
viscosity ν = ν(µp), boundary data gD = gD(µp), gN = gN (µp) or source terms f = f(µp).
For the sake of notation, we shall distinguish between np physical parameters µp ∈ Dp ⊂ Rnp and
ng = P − np geometrical parameters µg ∈ Dg ⊂ Rng . We thus denote by (u, p) = (u(µ), p(µ))
the velocity and pressure fields, by omitting the dependence on µ for the sake of notation.

We denote by ΓW and ΓD the portion of ∂Ω where we impose homogeneous (resp., inho-
mogeneous) Dirichlet conditions, whereas we assign on ΓN = ∂Ω \ (ΓW ∪ ΓD) the Neumann
conditions; here n denotes the normal unit vector to ΓN . Hereafter we assume that ΓD and ΓN

are not affected by the geometrical parametrization of the domain: this simplifies our problem,
by avoiding the use of Piola transformation even in presence of geometrical parametrizations

2



[31]. For the sake of simplicity, we consider the case f = gN = 0; the extension to other cases is
straightforward. We also define the Reynolds number as Re = L|ū|/ν, being L a characteristic
length of the domain, ū a typical velocity of the flow and ν the kinematic viscosity; in the
numerical test cases presented we will consider flows with Re ∈ [1, 103].

To derive the algebraic formulation of (1), we first need to write this problem under weak
form. To do this, we introduce a reference, µg-independent configuration Ω, by assuming that
each parametrized domain Ω(µg) can be obtained as the image of Ω through a parametrized

map T (·;µg) : Rd → Rd, i.e. Ω(µg) = T (Ω;µg). Moreover, we denote by V,Q the velocity and
the pressure space, respectively, defined over Ω; here

V = H1
0,ΓE

(Ω), Q = L2(Ω)

being ΓE = ΓD ∪ ΓW . We equip V and Q with the (vector) H1-seminorm and the L2-norm,
the former being equivalent to the H1-norm since ΓE 6= ∅. Bold symbols denote vectorial
functions in the velocity space. The weak formulation can be obtained by multiplying (1) for
test functions (v, q) and integrating by parts; then, we trace everything back onto the reference
domain Ω. In this way, we end up with the following weak parametrized formulation of (1):
find1 (u, p) ∈ V ×Q such that{

a(u,v;µ) + b(v, p;µ) + c(u,u,v;µ) + d(u,v;µ) = F (v;µ) ∀v ∈ V
b(u, q;µ) = G(q;µ) ∀q ∈ Q

(2)

where

a(u,v;µ) =

∫
Ω

∂u

∂xi
κij(x;µ)

∂v

∂xj
dx, b(v, q;µ) = −

∫
Ω
qχij(x;µ)

∂vj
∂xi

dx (3)

are the bilinear forms related to diffusion and pressure/divergence operators, respectively,
whereas

c(u,v, z;µ) =

∫
Ω
ui χji(x;µ)

∂vm
∂xj

wm dx (4)

is the trilinear form related to the convective term. We adopt the convention of summation
over repeated indices. Here we denote by

κ(x;µ) = ν(µp)(JT (x;µg))−1(JT (x;µg))−T |JT (x;µg)|
χ(x;µ) = (JT (x;µg))−1|JT (x;µg)|,

(5)

the tensors encoding both physical and geometrical parametrizations in the NS operators; JT ∈
Rd×d is the Jacobian matrix of the map T (·;µg), and |JT | its determinant. Other terms are
devised by the lifting of the Dirichlet boundary conditions: denoting by l(µp) a parametrized
lifting function such that l(µp)|ΓD

= gD(µp), l(µp)|ΓW
= 0, we have that

d(u,v;µ) = c(l(µp),u,v;µ) + c(u, l(µp),v;µ)

F (v;µ) = −a(l(µp),v;µ)− c(l(µp), l(µp),v;µ), G(q;µ) = −b(l(µp), q;µ).

In particular, we consider parametrized Dirichlet data gD(µp) = ΘD(µp)g̃, for a given scalar
function ΘD(µp) and a suitable inlet profile g̃. Thus, a parameter independent lifting function

l̃ is actually computed in practice, and l(µp) = ΘD(µp)̃l. Without loss of generality, we can

take a divergence-free l̃, e.g. considering a suitably scaled velocity of a Stokes flow, so that
G(q;µ) = 0.

1We denote, with a little abuse of notation, the solution on the reference domain still by (u, p). Hereafter
however we will refer only to this solution, so that no confusion arises (with the exception of the plots in Figures
4, 5 and 10 which are drawn on the deformed domain and adding the lifting for a better comparison).
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2.2. The full-order model and its algebraic formulation. To formulate the full-order
model, we introduce two finite-dimensional subspaces Vh ⊂ V , Qh ⊂ Q of dimension Nh

u and Nh
p ,

respectively, being h > 0 related to the computational mesh size. We consider a Galerkin-Finite
Element (FE) approximation, denote by {ϕh

i }i=1,...,Nh
u

and {ζhk }k=1,...,Nh
p

two (Lagrangian) basis

of the FE spaces. The Galerkin-FE approximation of the parametrized problem (2) reads as
follows: given µ ∈ D, we seek for (the full-order solution) (uh(µ), ph(µ)) ∈ Vh ×Qh such that

a(uh(µ),vh;µ) + d(uh(µ),vh;µ) + b(vh, ph(µ);µ)

+c(uh(µ),uh(µ),vh;µ) = F (vh;µ) ∀vh ∈ Vh
b(uh(µ), qh;µ) = G(qh;µ) ∀qh ∈ Qh.

(6)

For algebraic purposes, let us state the following bijection between RNh
u and Vh (resp. RNh

p and
Qh): 

v = (v
(1)
h , . . . , v

(Nh
u )

h )T ∈ RNh
u ↔ vh =

Nh
u∑

r=1

v
(r)
h ϕh

r ∈ Vh,

q = (q
(1)
h , . . . , q

(Nh
p )

h )T ∈ RNh
p ↔ qh =

Nh
p∑

r=1

q
(r)
h ζhr ∈ Qh.

(7)

Thanks to this identification, (6) is equivalent to the following (nonlinear) system:[
A(µ) + C(u(µ);µ) BT (µ)

B(µ) 0

] [
u(µ)
p(µ)

]
=

[
f(µ)
g(µ)

]
(8)

for the vector of coefficients u = (u
(1)
h , . . . , u

(Nh
u )

h )T , p = (p
(1)
h , . . . , p

(Nh
p )

h )T where, for 1 ≤ i, j ≤
Nh

u and 1 ≤ k ≤ Nh
p :

(A(µ))ij = a(ϕh
j ,ϕ

h
i ;µ) + d(ϕh

j ,ϕ
h
i ;µ), (B(µ))ki = b(ϕh

i , ζ
h
k ;µ),

(C(u(µ);µ))ij =

Nh
u∑

m=1

u
(m)
h (µ)c

(
ϕh

m,ϕ
h
j ,ϕ

h
i ;µ

)
,

(9)

(g(µ))k = −b(lh, ζhk ;µ), (f(µ))i = −a(lh,ϕ
h
i ;µ)− c(lh, lh,ϕh

i ;µ) (10)

and lh = lh(µp) ∈ Vh is a FE interpolant of the lifting function. Moreover, let us introduce
the mass matrices Xu, Xp for the velocity and pressure spaces, respectively, whose elements are
given by

(Xu)ij = (ϕh
j ,ϕ

h
i )V (Xp)kl = (ζhl , ζ

h
k )Q

for 1 ≤ i, j ≤ Nh
u and 1 ≤ k, l ≤ Nh

p , being (·, ·)V and (·, ·)Q the (discrete) inner products
defined over the two spaces. Moreover, we denote (with a little abuse of notation) by

(v,w)V = (Xuv,w), (p,q)Q = (Xpp,q)

the corresponding vector inner products for velocity and pressure fields, respectively; here (·, ·)
denotes the usual Euclidean inner product in RNh (Nh = Nh

u , N
h
p depending on the case).

Solving the NS system (8) requires a nonlinear iteration with a linearized problem (involving
nonsymmetric, indefinite matrix) being solved at each step; Newton and fixed-point (or Picard)
iterations are the most common strategies. Here we consider the latter, since the radius of the
ball of convergence of Newton’s method is typically proportional to the viscosity ν, and better
initial guesses would be needed as the Reynolds number increases [32].
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2.3. A key assumption for efficient ROMs: affine parametric dependence. In order to
deal with efficient ROMs, we need to ensure a further assumption on the operators appearing
in (9)-(10), already at the full-order level. The key requirement for an efficient ROM evaluation
is the capability to decouple the construction stage of the reduced-order space (offline) from
the parametric evaluation stage (online), thus featuring the so-called Offline/Online decompo-
sition. To meet this goal, we require that matrices and vectors appearing in (9)-(10) fulfil the
assumption of affine parametric dependence, so that they can be written, e.g., as

A(µ) =

QA∑
q=1

ΘA
q (µ)Aq, C(w;µ) =

QC∑
q=1

ΘC
q (µ)Cq(w), f(µ) =

Qf∑
q=1

Θf
q (µ)f q,

and in a similar way for the other terms. This expression is straightforward to be obtained
in case of (both physical and geometrical) affine parametrizations. Instead, when dealing with
more general nonaffine parametrizations, an approximate affine expansion is usually recovered
by means of the so-called empirical interpolation method (EIM) [33]. See e.g. [16] for further
details.

Although this procedure may entail severe costs (in terms of CPU time and storing), this is
mandatory in order to ensure an efficient evaluation of the POD-based ROM, for any parameter
value. In fact, as we will see in Section 3, under this assumption it is possible to assemble the
reduced-order operators during the Online stage by relying on (Nh

u , N
h
p )-independent algebraic

structures, thus making each ROM query very efficient – and even more when dealing with
nonlinear operators. Alternative strategies – yet related to a discrete empirical interpolation
method (DEIM) – can also be employed, as shown e.g. in [34].

3. A POD-Galerkin ROM for parametrized Navier-Stokes equations

In this section we present a POD-Galerkin ROM for solving parametrized NS equations
based on a Proper Orthogonal Decomposition technique and a Galerkin projection. ROMs
for solving parametrized PDEs are usually based upon a suitable and stable combination of
“snapshot” FE solutions, thus aiming at building reduced spaces VN ⊂ Vh, QN ⊂ Qh of global
approximation functions, for velocity and pressure, respectively. At least two approaches in
the construction stage of the reduced basis can be pursued: greedy algorithms and Proper
Orthogonal Decomposition [1]. In this paper we consider this latter [26, 35, 36, 11].

When dealing with (possibly, unsteady) incompressible flows depending on physical param-
eters, several ROMs based on POD aim at approximating just the velocity fields. This is
motivated by the fact that each snapshot is already divergence free, and so all the pressure
terms in the momentum equation drop out (that is, the continuity equation is automatically
fulfilled). However, we might be interested to get a reduced approximation of the pressure field
too, either because of the application at hand, or since the divergence-free assumption fails to
hold due to the geometrical variation/parametrization. In this case, the reduced model will
benefit of a standard Galerkin projection with orthonormal global approximation basis func-
tions for both velocity and pressure, provided a suitable stabilization is introduced to fulfil an
equivalent inf-sup condition.

3.1. A POD-Galerkin ROM for simultaneous approximation of velocity and pres-
sure. We will first derive the formulation of our POD-Galerkin ROM, leaving the inf-sup sta-
bilization issue to the following section. In particular, we adopt an algebraic standpoint, by
considering the following bijection between the spaces RNu and VN (resp. RNp and QN ):

vN = (v
(1)
N , . . . , v

(Nu)
N )T ∈ RNu ↔ vN =

Nu∑
n=1

v
(n)
N ϕn ∈ VN ,

q
N

= (q
(1)
N , . . . , q

(Np)
N )T ∈ RNp ↔ qN =

Np∑
n=1

q
(n)
N ζn ∈ QN .

(11)
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Let us denote by Ξ = {µ1, . . . ,µn} ⊂ D a (large) training sample of n points chosen randomly
over D, and consider the snapshot matrices

Su = [u(µ1) | . . . | u(µn)] ∈ RNh
u×n, Sp = [p(µ1) | . . . | p(µn)] ∈ RNh

p×n;

here we take n < Nh
p since we assume to deal with a very fine FE discretization, where Nh

u >

Nh
p � 1. A POD basis for the velocity and pressure spaces can be obtained by considering the

singular value decomposition (SVD) of the following matrices

X
1/2
u Su = UuΣuW

T
u , X1/2

p Sp = UpΣpW
T
p

where

• Uu ∈ RNh
u×Nh

u and Up ∈ RNh
p×Nh

p are two orthogonal matrices of left singular vectors;
• Wu ∈ Rn×n and Wp ∈ Rn×n are two orthogonal matrices of right singular vectors;

• Σu ∈ RNh
u×n and Σp ∈ RNh

p×n are two diagonal matrices, made by the singular values
of Su and Sp, so that (Σu)ii = σui with σu1 ≥ σu2 ≥ . . . ≥ σun ≥ 0, (Σp)ii = σpi with
σp1 ≥ σ

p
2 ≥ . . . ≥ σ

p
n ≥ 0.

In fact, for any Nu, Np < n, the POD basis (of dimension Nu, Np) is given by the first Nu, Np

columns of Uu, Up, respectively (left singular vectors). In this way, we can define

Zu = [ϕ
1
| . . . | ϕ

Nu
] ∈ RNh

u×Nu , Zp = [ζ
1
| . . . | ζ

Np
] ∈ RNh

p×Np

as the basis matrices for velocity and pressure, respectively. Thus, the basis functions of spaces
VN and QN are FE solutions, expressed w.r.t. a Lagrangian FE basis by the components of
the columns of Zu, Zp , respectively. An equivalent (and more efficient) approach considers the
so-called method of snapshots. In this case, we shall solve two eigenproblems for the correlation
matrices

Cu = ST
uXuSu ∈ Rn×n, Cp = ST

p XpSp ∈ Rn×n

and define the POD bases for velocity and pressure spaces as their first Nu (resp. Np) eigen-
vectors:

ϕ
j

=
1√
λuj

Suψ
u
j
, ζ

l
=

1√
λpl

Spψ
p
l
, j = 1, . . . , Nu, l = 1, . . . , Np,

being

Cuψ
u
j

= λuj ψ
u
j
, Cpψ

p
l

= λpl ψ
p
l
, j = 1, . . . , Nu, l = 1, . . . , Np

and λuj = (σuj )2, λpl = (σpl )2, respectively. Basis functions are automatically orthonormal, since

(ϕ
i
,ϕ

j
)V =

1√
λui λ

u
j

(ψu
i
, ST

uXuSuψ
u
j
) =

1√
λui λ

u
j

(ψu
i
, λuj ψ

u
j
) =

√
λuj
λui
δij , (12)

(ζ
k
, ζ

l
)Q =

1√
λpkλ

p
l

(ψp
k
, ST

p XpSpψ
p
l
) =

1√
λpkλ

p
l

(ψp
k
, λpl ψ

p
l
) =

√
λpl
λpk
δkl. (13)

We remark that the reduced spaces dimensions Nu, Np can be chosen as the smallest integers
for which the “energy” of the retained modes

Eu(ϕ1, . . . ,ϕNu
) =

∑Nu
j=1(σuj )2∑n
j=1(σuj )2

, Ep(ζ1, . . . , ζNp) =

∑Np

l=1(σpl )2∑n
l=1(σpl )2

is greater than 1− ε∗tol, for some prescribed (small) tolerance ε∗tol.
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3.2. Algebraic formulation of the POD-Galerkin ROM. As shown in the previous sub-
section, by performing a POD over each set of velocity and pressure snapshots, we manage to
obtain two orthonormal sets of basis functions for the spaces VN and QN , respectively. In this
way, a reduced-order approximation of both velocity and pressure field can be sought under the
form

u(µ) ≈ ZuuN (µ), p(µ) ≈ ZppN
(µ), (14)

where uN (µ) ∈ RNu , p
N

(µ) ∈ RNp are determined through a Galerkin projection. To this aim,

we impose that the residual obtained by substituting (14) in (8) is orthogonal to the columns
of Zu, Zp:[

ZT
u O
O ZT

p

] [
f(µ)− (A(µ) + C(ZuuN (µ);µ))ZuuN (µ)−BT (µ)Zup

N
(µ)

g(µ)−B(µ)ZuuN (µ)

]
=

[
0
0

]
.

Thus, once we have built the reduced basis for both velocity and pressure fields (during the
Offline stage), for any new parameter value µ ∈ D the following reduced-order problem has to
be solved (at the Online stage) to find the NS reduced-order approximation:[

AN (µ) + CN (uN (µ);µ) BT
N (µ)

BN (µ) 0

] [
uN (µ)
p
N

(µ)

]
=

[
fN (µ)
g
N

(µ)

]
(15)

where, similarly to what shown in [18], [37, Chapter 19],

AN (µ) = ZT
u A(µ) Zu, BN (µ) = ZT

p B(µ) Zu, CN ( · ;µ) = ZT
uC( · ;µ)Zu; (16)

in the same way, for the right-hand sides we have

fN (µ) = ZT
u f(µ), g

N
(µ) = ZT

p g(µ).

We point out that a suitable Offline/Online decomposition is made possible thanks to the as-
sumption of affine parametric dependence [38]. Nevertheless, this features some extra difficulties
in order to handle nonlinear terms in an efficient way. Our current approach is to store the
third order tensor

CN (ϕj ;µ) = ZT
uC(ϕj ;µ)Zu, ∀j = 1, . . . , Nu

in order to compute, at each fixed point iteration, the nonlinear term as

CN (uN (µ);µ) =

Nu∑
j=1

u
(j)
N CN (ϕj ;µ)

and preserve the Offline/Online decomposition. We remark however that such (dense) third
order tensor may entail high storage costs; recent alternative approaches make use of a discrete
empirical interpolation method [39] or hyper-reduction techniques, such as gappy POD [40], or
again compressive tensor approximations [41] to alleviate this problem.

4. Stability analysis and supremizers enrichment

In this Section we show how to get, from the POD modes, a suitable couple of reduced spaces
for velocity and pressure in order to fulfill a (reduced version of the) inf-sup condition. To this
goal, we provide a detailed stability analysis of the POD-Galerkin ROM we have previously
derived.

4.1. Conditions for solvability and stability of the full-order approximation. In view
of the analysis of the POD-Galerkin ROM, let us briefly recall the conditions ensuring the full-
order problem (8) to be solvable and stable. A deep analysis can be found e.g. in [42, 43],
whereas we refer to [18] for further details about the analysis in the parametrized case.

For any µ ∈ D, at each step k = 1, 2, . . . of the fixed point iteration we need to solve the
linear system obtained from (8) by replacing C(u(µ);µ) with C(z(µ);µ), being at each step

z(µ) = u(k)(µ). In order to obtain stable approximations, we require that
7



(1) there exists α̃h > 0 such that, for any z

αh(µ) = inf
u∈K

sup
v∈K

vT (A(µ) + C(z;µ))u

‖v‖V ‖u‖V
≥ α̃h > 0 ∀µ ∈ D (F1)

being K = K(µ) = ker(B(µ)) = {v ∈ RNh
u : B(µ)v = 0} the kernel of B(µ);

(2) there exists β̃h > 0 such that

βh(µ) = inf
q 6=0

sup
v 6=0

qTB(µ)v

‖v‖V ‖q‖Q
≥ β̃h > 0 ∀µ ∈ D. (F2)

In particular, conditions (F1) and (F2) are sufficient to ensure the solvability of the linear system
obtained at each iteration of the fixed-point algorithm. The former is related to the stability of
the velocity operator – namely, the coercivity of the diffusion term and the continuity of the lin-
earized term – and it is fulfilled whenever a small data condition is satisfied (see e.g. [43]). Under
this condition, we can ensure the unique solvability with respect to the velocity. On the other
hand, unique solvability with respect to the pressure is rather problematic (as it already happens
for a Stokes problem); it is ensured by the latter condition, which is the discrete (parametrized)
version of the well-known Ladyzhenskaya-Brezzi-Babuška (LBB) inf-sup condition. To meet
this requirement, we need to choose a proper couple of velocity and pressure approximation
spaces, such as the Taylor-Hood (P2-P1) finite elements. In particular, condition (F2) implies
that dim(ker(BT (µ))) = 0, so that no spurious pressure modes appear at the numerical level.
Moreover, we must have Nh

u ≥ Nh
p ; as we will detail later on, it is mandatory to ensure a similar

condition at the reduced-order level, too, and to provide a suitable criterion to check its validity.

To this aim, we can express the stability factor βh(µ) as the solution of the following gener-
alized eigenvalue problem:[

Xu BT (µ)
B(µ) O

] [
v
q

]
= −λ(µ)

[
O O
O Xp

] [
v
q

]
. (17)

In this way, the kernel of B(µ) can be identified with zero eigenvalues of eigenproblem (17): if
λ(µ) = 0, then B(µ)v = 0, so that the nonzero eigenvalues are associated with velocity vectors
v /∈ ker(B(µ)) (and nonzero pressures). In particular, we find

B(µ)X−1
u B(µ)Tq = λ(µ)Xpq (18)

that is, we end up with a Rayleigh-quotient characterization of the nonzero eigenvalues2

λ(µ) =
(B(µ)X−1

u B(µ)Tq,q)

(Xpq,q)
⇒ βh(µ) =

√
λ1(µ), (19)

thus providing an equivalent expression of the stability factor; here λ1(µ) denotes the minimum
eigenvalue solution of (17). In fact,

βh(µ) = inf
q 6=0

sup
v 6=0

(q, B(µ)v)

(Xuv,v)1/2(Xpq,q)1/2
= inf

q 6=0

1

(Xpq,q)1/2
sup

w=X
1/2
u v 6=0

(X
−1/2
u BT (µ)q,w)

(w,w)1/2

= inf
q 6=0

(X
−1/2
u BT (µ)q, X

−1/2
u BT (µ)q)1/2

(Xpq,q)1/2
= inf

q 6=0

(B(µ)X−1
u BT (µ)q,q)1/2

(Xpq,q)1/2
=
√
λ1(µ)

since the supremum on the first line is reached when w = X
−1/2
u BT (µ)q; for further details see

e.g. [44], Chapter 5. We thus remark that, for any q 6= 0, the corresponding supremizer, i.e.
the element realizing the supremum in (F2), is given by the solution sµ = sµ(q) of the following

problem: (Xu)1/2sµ(q) = X
−1/2
u BT (µ)q, that is,

Xusµ(q) = BT (µ)q. (20)

2Equivalently, provided that ker(BT (µ)) = 0, B(µ) has Nh
p positive singular values 0 < σ1(µ) ≤ σ2(µ) ≤

. . . ≤ σNh
p

(µ), given by σi(µ) =
√
λi(µ).
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In other words, the supremizer is the element sµ(q) which, given q ∈ Q, realizes the inf-sup
condition. The following properties, useful in the remainder, hold:

Proposition 1. The solution s(µ) of problem (20) is such that

sµ(q) = arg sup
v 6=0

(q, B(µ)v)

‖v‖V
; (21)

moreover,

β2
h(µ) = inf

q 6=0

‖sµ(q)‖V
‖q‖Q

. (22)

Proof. Property (21) easily follows from (20) and Cauchy-Schwarz inequality, that is,

(BT (µ)q,v)

‖X1/2
u v‖

=
(Xusµ(q),v)

‖X1/2
u v‖

=
(X

1/2
u sµ(q), X

1/2
u v)

‖X1/2
u v‖

≤ ‖X1/2
u sµ(q)‖ = ‖sµ(q)‖V ;

on the other hand, property (22) is a straightforward consequence, since

β2
h(µ) = inf

q 6=0

(X
−1/2
u BT (µ)q, X

−1/2
u BT (µ)q)

(Xpq,q)
= inf

q 6=0

(X
1/2
u s(µ), X

1/2
u sµ(q))

(Xpq,q)
= inf

q 6=0

‖sµ(q)‖V
‖q‖Q

.

�

Further details about possible ways to express (and check) the inf-sup condition can be found,
e.g., in [43, 42, 45, 46]. We also remark that the introduction of supremizers is in fact equivalent
to require the notion of T-coercivity on the corresponding bilinear form, as shown in [47, 48]. As
we will see in Section 5, supremizer solutions play a key role in ensuring the stability of a POD-
Galerkin ROM. By properly enriching the reduced spaces of velocity and pressure snapshots
with the supremizer functions, i.e. the solutions of problem (20) for any element q corresponding
to a pressure snapshot, the resulting ROM will satisfy an equivalent inf-sup condition.

4.2. Supremizers enrichment of the reduced velocity space. Even though the velocity
basis functions are obtained by an inf-sup stable method, a Galerkin projection over the spaces
built as in (15) does not guarantee to handle in a proper way either the correct recovery of the
pressure, or the fulfilment of the incompressibility constraint. As we will detail in Section 5,
this is related to the requirement of an equivalent inf-sup condition at the reduced-order level.

For this reason, we enrich the velocity space VN with properly chosen supremizer solutions.
By mapping each element of Zp (that is, each pressure basis function) to a suitable element
realizing the inf-sup condition, and inserting those elements in the velocity space, we shall
obtain an enriched velocity space ṼN that coupled to the pressure space QN fulfills the inf-
sup condition (see Section 4.3). Thus, for any pressure snapshot p(µj) ∈ Sp, we find the

corresponding supremizer solution s(p(µj)) by solving problem (20), that is,

Xusµ(p(µj)) = BT (µ)p(µj). (23)

Then, we compute a POD basis for the supremizer space by considering the SVD of the matrix

X
1/2
u Ss, being Ss = [sµ(p(µ1)) | . . . | sµ(p(µn))]; we denote by

Zs = [η
1
| . . . | η

Ns
] ∈ RNh

u×Ns

the matrix made by Ns < n supremizer modes. We end up with a velocity space ṼN of dimension
Nu +Ns, given by the direct sum of velocity and supremizer basis functions, where

vN = (v
(1)
N , . . . , v

(Nu)
N , s

(1)
N , . . . , s

(Ns)
N )T ∈ RNu+Ns ↔ vN =

Nu∑
n=1

v
(n)
N ϕn +

Ns∑
m=1

s
(m)
N ηm ∈ ṼN

replaces (11)1. From now on, we will omit the superscript ∼ for the enriched velocity space,
and still denote it by VN . Moreover, let us define by

(vN ,wN )VN
= (XN

u vN ,wN ), (p
N
,q

N
)QN

= (XN
p p

N
,q

N
) (24)
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the inner products in the reduced spaces, where XN
u and XN

p are the reduced mass matrices for
velocity and pressure fields, respectively, defined as

XN
u =

[
XN,uu

u XN,us
u

XN,su
u XN,ss

u

]
=

[
ZT
uXuZu ZT

uXuZs

ZT
s XuZu ZT

s XuZs

]
, XN

p = ZT
p XpZp. (25)

In particular, owing to the orthonormality of basis functions in Zu (see (12)), Zs and Zp (see

(13)), XN,uu
u , XN,ss

u and XN
p are identity matrices; this property enhances the algebraic stability

of the resulting ROM. However, we remark that the extra diagonal blocks XN,us
u and XN,su

u do
not vanish because velocity and supremizers basis functions are not mutually orthogonal.

4.3. Evaluating the inf-sup stability of the reduced-order approximation. Following
Section 4.1, let us discuss under which conditions the POD-Galerkin ROM (15) is stable. For
any µ ∈ D, at each step k = 1, 2, . . . of the Online fixed point iteration, we need to solve the
linear system obtained from (15) by replacing CN (uN (µ);µ) with CN (zN (µ);µ), being at each

step zN (µ) = u
(k)
N (µ). In order to obtain stable approximations, we require that

(1) there exists α̃N > 0 such that, for any zN

αN (µ) = inf
uN∈KN

sup
vN∈KN

vT
N (AN (µ) + CN (zN ;µ))uN

‖vN‖VN
‖uN‖VN

≥ α̃N > 0 ∀µ ∈ D (R1)

being KN = ker(BN (µ)) = {vN ∈ RNu : BN (µ)vN = 0} the kernel of BN (µ);

(2) there exists β̃N > 0 such that

βN (µ) = inf
q
N
6=0

sup
vN 6=0

qT
N
BN (µ)vN

‖vN‖VN
‖q

N
‖QN

≥ β̃N > 0 ∀µ ∈ D. (R2)

Numerical evidence shows that the fulfillment of property (R1) is automatic, once the analo-
gous condition (F1) at the full-order level is satisfied and the basis matrices are full-rank. On
the other hand, the pressure stability condition (R2) is much more critical to be fulfilled, and
is not implied by the full-order pressure stability (F2). Here comes into play the supremizer
enrichment.

First of all, we can express the ROM stability factor βN (µ) as the solution of the following
generalized eigenvalue problem:[

XN
u BN (µ)T

BN (µ) O

] [
vN (µ)
q
N

(µ)

]
= −λ(µ)

[
O O
O XN

p

] [
vN (µ)
q
N

(µ)

]
(26)

or, in a similar way,

BN (µ)(XN
u )−1BN (µ)Tq

N
(µ) = λ(µ)XN

p q
N

(µ). (27)

Problems (26) and (27) are the reduced-order equivalent of problems (17) and (18) introduced at
the full-order level, respectively. In particular, it can be shown that the eigenvalues of problems
(26)-(27) are real and non-negative [49]. Denoting by λkN (µ) > 0 the first non-null eigenvalue, if

k = 1 the reduced-order model is inf-sup stable and βN (µ) =
√
λ1
N (µ), otherwise the reduced-

order model is not inf-sup stable and βN (µ) = 0. In particular, enriching the velocity space
with the supremizer solutions ensures the fulfillment of the inf-sup condition (R2), thank to the
following

Proposition 2. Assume that the full-order model satisfies the inf-sup stability condition (F2).
Then, the POD-Galerkin ROM (15) with supremizer enrichment of the velocity space is inf-sup
stable, that is

βN (µ) ≥ βh(µ) > 0 ∀µ ∈ D. (28)
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Proof. The following inequalities hold:

βh(µ) = inf
q 6=0

sup
v 6=0

(q, B(µ)v)

‖v‖V ‖q‖Q

(i)

≤ inf
q
N
6=0

sup
v 6=0

(ZpqN
, B(µ)v)

‖v‖V ‖ZPq
N
‖Q

(ii)

≤ inf
q
N
6=0

(ZpqN
, B(µ)sµ(ZpqN

))

‖sµ(ZpqN
)‖V ‖ZPq

N
‖Q

(iii)

≤ inf
q
N
6=0

sup
vN 6=0

(BT (µ)ZpqN
, ZuvN )

‖ZuvN‖V ‖ZPq
N
‖Q

(iv)
= inf

q
N
6=0

sup
vN 6=0

(q
N
, BN (µ)vN

‖vN‖VN
‖q

N
‖QN

= βN (µ)

where we have exploited the following facts: (i) QN ⊂ Qh; (ii) the supremizer’s definition
(23); (iii) the enrichment of the velocity space by supremizers solutions; (iv) the relation
ZT
uB

T (µ)Zp = BT
N (µ) and the definition of reduced norms, that is

‖ZpqN
‖2Q = (XpZpqN

, ZpqN
) = (ZT

p XpZpqN
,q

N
) = (XN

p q
N
,q

N
) = ‖q

N
‖2QN

thanks to (24)-(25); a similar relation holds for the velocity norms. �

The addition of the supremizers to the velocity space has been inspired by the greedy-RB
setting; see e.g. [28, 29, 27] and different approaches therein. However:

• condition (28) might be in some cases too restrictive, that is, we could have βN (µ) > 0
without necessarily require that βN (µ) ≥ βh(µ);
• the evaluation of the exact supremizers sµ(·) would lead to a µ-dependent velocity space,

because of the dependence on BT (µ) in (23), and thus deteriorates the offline/online
efficiency. Hence, we rather consider some approximate supremizers, that is, we solve
(23) by considering (offline) the same µ = µj values used to store velocity and pressure
solutions, and an enriched (online) velocity space obtained by adding Ns supremizer
POD modes.

If we rely on approximate supremizers we cannot rigorously demonstrate (28); however, we can
provide some heuristic criteria to ensure that βN (µ) > 0 (yielding therefore stability): this is
the goal of the following section.

Before proceeding further, let us mention that other stabilization approaches are also pos-
sible, but would require much care in case of geometrical variation. We refer to [26, 21]
for an online stabilization with a streamline-upwind/Petrov-Galerkin (SUPG) and pressure-
stabilizing/Petrov-Galerkin (PSPG) method. When dealing with fixed geometries, a pressure-
Poisson approach for the recovery of the pressure can be considered as a particular case of
the SUPG/PSPG stabilization (see e.g. [24]). Further details about other possible approaches
can be found, for instance, in [8, 7]. Our belief – confirmed by the analysis reported in the
following sections – is that the supremizer enrichment yields a very competitive alternative to
the strategies mentioned above, for what is concerned with online computational costs. In fact,
although our method requires larger online data structures (because of the additional Ns basis
functions), no additional assembly and storage of terms related to SUPG/PSPG stabilization
is needed.

5. Heuristic criteria for online supremizers enrichment

In this section we give further insights on the stability of the POD-Galerkin ROM, and by
providing some practical criteria for the online supremizers enrichment.

The aim of this section and of the numerical results in the next section is to provide answers
and numerical evidence to the following questions:

Q1. for which values of (Nu, Ns, Np) is the online system stable?
Q2. which values of (Nu, Ns, Np) prevent an online locking phenomenon to occur?
Q3. for which values of (Nu, Ns, Np) the reduced-order model satisfies an inf-sup condition,

provided that the same condition is satisfied at the full-order level?

As shown in Section 3, a computation of the inf-sup constant can be carried out in order
to check the online stability of the reduced-order model. Question Q1 is thus related to the
dimension of ker(BN (µ)T ), that is, to the possible occurrence of spurious pressure modes for
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the reduced-order model. As of question Q2, locking phenomena occur if βN (µ) → 0 as N
“increases”. Finally, question Q3 is equivalent to check whether the inequality βN (µ) ≥ βh(µ)
holds.

An a priori practical criterion for online supremizers enrichment will be detailed in this section
and is inspired by question Q1. Questions Q2 and Q3 will be answered in the next section, by
means of some numerical test cases.

5.1. Case I: physical parametrization only. In the case of parametrized problems involving
only physical parameters, a criterion for the selection of the number Ns of supremizer is to
assume Ns ≥ Np. As a matter of fact, let us consider the matrix

BN (µ)T =

[
BN,pu(µ)T

BN,ps(µ)T

]
∈ R(Nu+Ns)×Np

where BN,ps(µ)T ∈ RNs×Np , BN,pu(µ)T ∈ RNu×Np . The block BN,pu(µ)T is identically zero

because each velocity basis function is divergence free. Then, a necessary condition for BN (µ)T

to be full-rank is that Ns ≥ Np. More insights on the practical convenience entailed by choosing
Ns = Np or Ns > Np will be given in the next section.

5.2. Case II: physical and geometrical parametrization. In the case of both physical and
a geometrical parameters, a possible criterion for the online supremizers enrichment is based on
the following result:

Proposition 3. Let λkN (µ) > 0, k = k(Nu, Ns, Np;µ) ∈ N, be the first non-null eigenvalue of
the generalized eigenvalue problem (26). The following relation holds:

kpm = k − 1 +Np −Nu −Ns > 0 =⇒ dim(ker BN (µ)T ) > 0.

Proof. Equivalently, we shall prove the following:

dim(ker BN (µ)T ) = 0 =⇒ kpm = k − 1 +Np −Nu −Ns ≤ 0.

For the sake of brevity the dependence on µ is omitted. Let

MN =

[
XN

u BT
N

BN O

]
, SN = BN (XN

u )−1 BT
N .

(1) From (26), it follows that dim(ker MN ) = k − 1. Moreover, from the Guttman rank
additivity formula

rank MN = rank XN
u + rank SN ,

it follows that

dim(ker SN ) = Np − rank MN + rank XN
u = k − 1.

(2) Furthermore, we have

dim(ker BT
N ) = Np − rank BT

N = Np − rank BN = Np −Nu −Ns + dim(ker BN ).

(3) Finally, owing to the hypothesis dim(ker BN (µ)T ) = 0 and the invertibility of XN
u ,

k − 1 = dim(ker SN ) = dim[((XN
u )−1BT

N )−1(ker BN )] ≤
≤ dim[ker((XN

u )−1BT
N )] + dim(ker BN ) = Nu +Ns −Np.

�

The previous proposition is an extension to the ROM framework of a similar result holding
for the full-order model [46]. We will rely on this criterion in the next section to detect the
existence of spurious pressure modes; as we will see, in practice, this criterion is able to discard
the choices Ns = 0. More insights on questions Q2 and Q3 will also be provided in the next
section.

12



6. Numerical results: backward facing step flow

In this section we show some numerical results obtained by means of our POD-Galerkin ROM
in the case of a two-dimensional backward facing step flow (see the geometry shown in Figure
1). Moreover, we provide both an inf-sup stability analysis and an error analysis, confirming
the results described in Section 5.

In particular, we consider two different test cases, dealing with (I) physical parameters only
and (II) both physical and geometrical parameters, given as follows:

• Physical parameters. The viscosity ν and the horizontal inlet velocity uin are consid-
ered as physical parameters µp = (ν, uin). The resulting range of Reynolds number is
[0.75, 300] (based on the inlet velocity and the inlet height h).
• Geometrical parameters. The step height Ho is the geometrical parameter µg = (Ho),

chosen so that the ratio Ho/H varies in [0.5, 1.5]. In order to map the reference domain
Ω = Ω1 ∪ Ω2 onto the deformed configuration Ω(µg) = Ω1 ∪ Ω2(µg) we consider the
transformation xo = T (x;µg) defined as

x1,o = x1

x2,o =

{
x2, x2 ≥ −h,
−h+ Ho

H (x2 + h), x2 < −h.
In this way, an immediate offline-online decomposition of the parametrized tensors in
(5) is recovered, since the map T (·;µg) is affine.

Figure 1. Domain: a two-dimensional backward facing step.

Computational details of the offline stage. The offline stage is performed over a random set of
Ntrain = 300 snapshots, solving for each snapshot the parametrized Navier-Stokes problem and
the corresponding supremizer problem. A Taylor-Hood P2 − P1 FE discretization with 116,136
degrees of freedom has been considered; moreover, to ensure a good sampling over higher
Reynolds numbers, a logarithmic scaling on ν and uin has been performed. Computational
details of the offline stage are summarized in Table 1; this stage is performed in parallel on an
Intel Westmere 2.40 GHz cluster.
POD singular values and basis functions. The decay of POD singular values is shown in Figure
2(a) in the case of physical parameters only, and in Figure 2(b) for the case of both physical and
geometrical parameters. As we could expect, considering an additional geometrical parameter
implies a slower decay of the singular values w.r.t. the case of Figure 2(a). The first basis
functions for velocity, supremizers and pressure are given by the first POD modes (with an
additional function used to store the lifting) and are shown in Figure 3. With the exception of
the first POD mode, the geometrical variation significantly affects the qualitative behavior of
the POD modes.

Online results. Some representative ROM solutions for different Reynolds number and step
heights are shown in Figure 4; corresponding errors between truth and reduced solutions are
reported in Figure 5. We can observe that our ROM is able to correctly capture the flow
variability with respect to both physical and geometrical features. The online (nonlinear) ROM
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Case Case I Case II

Physical parameters 2: ν, uin 2: ν, uin

Range ν [0.05, 2] [0.05, 2]
Range uin [0.5, 5] [0.5, 5]
Resulting range of Reynolds number [0.75, 300] [0.75, 300]

Geometrical parameters 0 1: Ho

Range Ho/H – [0.5, 1.5]

Ntrain 300 300
POD offline CPU time 3 h× 6 processors 5 h× 6 processors
Nmax 100 100

Table 1. Computational details of the offline stage.

(a) Case I – physical parameters
only: POD singular values for ve-
locity, supremizers, pressure.

(b) Case II – physical and geometri-
cal parameters: POD singular values
for velocity, supremizers, pressure.

Figure 2. Results of the offline stage: POD singular values for velocity, suprem-
izers, pressure.

takes about 5 seconds to run, in serial, on a laptop, thus leading to a speedup of more than one
order of magnitude in CPU times, for each online query.

6.1. Analysis of the ROM – case I (physical parameters only). In this section an
analysis of the ROM is performed for the case of physical parametrization. Figures 6 and 7
report stability factors and relative errors for some representative values of the Reynolds number
and different choices Ns and Nu = Np. These results provide a useful insight, showing that,
in the case of physical parameters only, it is sufficient to consider Ns ≥ Np supremizers to
obtain both a stable reduced-order model and to ensure that βN (µ) ≥ β(µ). Thus, in this
case, the three questions Q1, Q2, Q3 lead to the same conclusion. We underline again that
the supremizer are subject to a POD procedure too: with respect to the most expensive exact
supremizer options with online parametric dependence, the less expensive approximate option
is successfully exploited.

We also remark that, although necessary to obtain a stable system, ROM solution components
corresponding to supremizer basis functions are actually smaller than the smallest component
related to (divergence-free) velocity basis functions. Thanks to the rapid decay of the singular
values a choice Nu, Ns, Np ≈ 20 is sufficient to obtain an accurate reduced-order solution.
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(a) Case I – physical parameters
only: first basis functions for veloc-
ity, supremizers, pressure.

(b) Case II – physical and geometri-
cal parameters: first basis functions
for velocity, supremizers, pressure.

Figure 3. Results of the offline stage: first basis functions for velocity, suprem-
izers, pressure.

6.2. Analysis of the ROM – case II (physical and geometrical parameters). We now
turn to the second case, dealing with both physical and geometrical parameters. Compared
to the former, this case requires a more detailed analysis. Figures 8 and 9 show a plot of the
stability factors βN (µ) and of the relative errors for representative values of the parameters and
for different choices Ns and Nu = Np. Moreover, we report in Table 2 the evaluation of the
quantities introduced in Proposition 3 (namely, the computed values of k = k(Nu, Ns, Np;µ)
and kpm = kpm(Nu, Ns, Np;µ), together with the value of βN (µ) and the norm of the reduced
pressure ‖p

N
‖QN

), for increasing values of Ns and Nu = Np = 30. We consider Re = 150 and

Ho/H = 1, indeed similar results can be obtained on the whole parameters range.
Thanks to these results, we can answer the questions highlighted in Section 5 as follows:

Q1. In order to ensure dim(ker BN (µ)T ) = 0, it is necessary to enrich the velocity space by
adding at least a few supremizers. In fact, when Ns = 0 or Ns = 1, Table 2 (first and
second rows, respectively) shows that kpm > 0. Then, from Proposition 3, it follows
that spurious pressure modes occur. Numerically, this is confirmed by the large value of
‖p

N
‖QN

(see also Figure 10, first and second rows). Moreover, an incorrect approxima-

tion of the velocity would be provided by the ROM in these cases (see Figure 10, first
row, image on the left).

Q2. An online locking phenomenon (βN (µ)→ 0) may occur if too few supremizers are con-
sidered, say 0 < Ns < Np/2 (see Figure 8). Table 2 (rows 3 and 4) shows that for
Ns = 5 or Ns = 7, even though the ROM is inf-sup stable and the velocity is correctly
approximated, yet the pressure is not recovered accurately (see also Figure 10, rows 3
and 4). However, if enough supremizers are considered (say, Ns > Np/2) the ROM is
not only inf-sup stable but allows also to get a better a qualitative agreement with the
truth FE solutions. The correct order of magnitude for the solution is recovered (see
Table 2, rows 5 and 6, Ns = 10, 15, respectively, and Figure 10, rows 5 and 6). Moreover,
stability factors increase (and errors decrease) as long as Ns increases (see Figure 9).

Q3. As in the case of the previous subsection, we obtain that βN (µ) ≥ β(µ) if Ns ≥ Np (see
Figure 8). Thus, choosing Ns equal to Np guarantees the ROM stability, provided that
the full-order model is stable. Moreover, Ns should not be taken strictly greater than
Np = Nu because (i) the online system dimension would increase and (ii) the algebraic
stability of the system deteriorates, so that more iterations of the nonlinear solver would
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(a) Case I – physical parameters
only: velocity and pressure. From
top to bottom: Re = 30, Re = 85,
Re = 170, Re = 215.

(b) Case II – physical and geomet-
rical parameters: velocity and pres-
sure. From top to bottom: (Re =
85, Ho/H = 0.5), (Re = 215,
Ho/H = 0.5), (Re = 85, Ho/H =
1.5), (Re = 215, Ho/H = 1.5).

Figure 4. Some representative cases of flow over a backward facing step, with a
comparison between truth and reduced-order solutions. Reduced-order solutions
were obtained for Nu = Np = Ns = 50.

be needed to converge. The latter drawback is due to the fact that the supremizers and
velocities basis functions are orthonormal separately into two different sets.

7. Conclusions

In this work a POD-Galerkin reduced basis method, with space construction carried out by
proper orthogonal decomposition for velocity and pressure, has been proposed to approximate
steady nonlinear parametrized viscous flows at different flow regimes (Reynolds number varying
between 1 and 300) and in different domains, properly parametrized. An enrichment procedure
of the velocity space by supremizer solutions has been exploited in this context to ensure the
stability and the fulfilment of a inf-sup stability condition at the reduced order level. This
procedure, adapted from reduced basis methods, can be efficiently employed in this context
by performing offline a proper othogonal decomposition not only on the velocity and pressure
snapshots, but also on the set of (approximate) supremizers solutions. In this way, we still
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(a) Case I – physical parameters
only: relative errors for velocity and
pressure. From top to bottom: Re =
30, Re = 85, Re = 170, Re = 215.

(b) Case II – physical and geomet-
rical parameters: relative errors for
velocity and pressure. From top to
bottom: (Re = 85, Ho/H = 0.5),
(Re = 215, Ho/H = 0.5), (Re = 85,
Ho/H = 1.5), (Re = 215, Ho/H =
1.5).

Figure 5. Relative errors between truth and reduced-order solutions for some
representative cases of flow over a backward facing step. Reduced-order solutions
were obtained for Nu = Np = Ns = 50.

Figure 6. Case I – physical parameters only: analysis of the stability factor βN (µ).

preserve the stabilization properties, but at a greatly reduced cost, thanks to an efficient offline-
online computational decoupling. In fact, this latter would be much more difficult to obtain if
we had considered an exact supremizers approach. Heuristic criteria for an online enrichment
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Figure 7. Case I – physical parameters only: error analysis on velocity (left)
and pressure (right) components. Top: Re = 30; bottom Re = 90, respectively.
Error analysis is not performed for Ns < Np because in these cases reduced
system would be singular.

Ns k kpm spurious pressure modes βN (µ)2
∥∥∥p

N

∥∥∥
2

0 5 4 yes < tol 1.1653e+09
1 4 2 yes < tol 7.5223e+06
5 1 -5 no 1.8201e-09 4.3631e+02
7 1 -7 no 3.3185e-08 2.6174e+01
10 1 -10 no 1.0258e-06 1.1228e+01
15 1 -15 no 1.6581e-05 1.1078e+01
30 1 -30 no 1.7305e-02 1.1061e+01

FOM – – no 1.7312e-02 –

Table 2. Case II – physical and geometrical parameters: stability analysis of
the reduced problem (Re = 150, Ho/H = 1, Nu = Np = 30).

have also been discussed, showing both a theoretical result to detect the existence of spurious
pressure modes, and numerical examples to relate the number Ns of supremizers to the choices
of Nu and Np. These results show that at least a few supremizers should be added to the reduced
velocity space to obtain a stable ROM. Moreover, in the case of physical parametrization only,
a good choice suggested by the current analysis is Ns = Np, whereas in the case of both
physical and geometrical parameters a reliable method can be obtained also for smaller Ns,
say Ns > Np/2. The chance to apply the supremizer enrichment also within a POD context,
shown in this work, makes POD a viable alternative to greedy RB methods in order to recover
pressure fields whenever (i) an accurate and rapid error bound is not available or (ii) lower
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Figure 8. Case II – physical and geometrical parameters: analysis of the stabil-
ity factor βN (µ). Top: Ho/H = 1; center: Ho/H = 0.5; bottom: Ho/H = 1.5.

bound to parametrized stability factors are not easy to obtain [17, 18, 2]. Further attention will
be devoted to time dependent parametrized problems and error bounds calculation, as well as
to the case of higher Reynolds number flows.
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Figure 9. Case II – physical and geometrical parameters: error analysis on
velocity (left) and pressure (right) components. From top to bottom: (Re = 90,
Ho/H = 1), (Re = 150, Ho/H = 1), (Re = 150, Ho/H = 0.5), (Re = 150,
Ho/H = 1.5).
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Figure 10. Case II – physical and geometrical parameters: reduced-order solu-
tions at Re = 150, Ho/H = 1, for Nu = Np = 30 (left: velocity, right: pressure).
From top to bottom: Ns = {0, 1, 5, 7, 10, 15, 30}.21
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