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Abstract

We deal with the problem of curve clustering when curves are mis-
aligned. We propose a k-means alignment algorithm which jointly cluster
and align the curves. We illustrate the procedure via simulation studies
and applications to real data.

A problem, often encountered in functional data analysis, is misalignment
of the data. A typical example, considered by a number of authors, is given
by the kids growth curves (see for example Ramsay and Li [13], Sheehy et al.
[18, 19], Ramsay and Silverman [14], and James [6]). Figure 1 shows the growth
curves of 93 kids (39 boys and 54 girls) from Berkeley Growth Study data (see
Tuddenham and Snyder [22]). Looking at the corresponding growth velocities,
also displayed in Figure 1, it is apparent that all growth curves follow a similar
course, characterized by a sharp peak of growth velocity around 12 years, the
pubertal spurt, and a minor velocity peak around 4 years, the mid-spurt; but
different kids have their growth spurts at different times, some take more time
in their spurts, others less, each kid following his/her personal biological clock.
Thus, to learn something about the common growth path, it is first necessary

∗This work has been supported by Ministero dell’Istruzione dell’Università e della Ricerca
(research project “Metodi numerici avanzati per il calcolo scientifico” PRIN2006). The dataset
analized in Section 5 is provided by the Aneurisk Project.
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Figure 1: Growth curves of 93 kids from Berkeley Growth Study data (left) and
corresponding growth velocity (right).

to register the biological clocks of the kids, separating the variability due to the
different timings.

Many methods for curve alignment (or curve registration) have been pro-
posed in the literature. For example, Lawton et al. [10] and Altman and Villar-
real [1] deal with this problem using self-modelling non-linear regression meth-
ods, Lindstrom and Bates [11] instead develop non-linear mixed-effects models,
and Ke and Wang [8] merge the above approaches in the unifying framework
of semiparametric non-linear mixed-effects models. A different line of research,
advocated by J. O. Ramsay, is followed by Ramsay and Li [13], Ramsay and
Silverman [14], James [6], Kaziska and Srivastava [7] and Sangalli et al. [17],
who define suitable similarity indexes between curves and thus align the curves
maximizing their similarities, by means of a Procustes procedure.

The present paper is in the latter line of research, and moves forward from
the problem of curve alignment, per se, focussing on the more complex problem
of curve clustering when curves are misaligned. Look at Figure 2. Do the two
clusters of curves in case B and case C represent two sets of curves with distinct
shapes? Or do they reflect a clustering in the phase, that could be eliminated if
the curves were suitably aligned? How many set of curves with distinct shape
are present in case D?

We describe a procedure that is able to efficiently cluster and align in k
groups a set of curves. If the number of clusters k is set equal to 1, the algo-
rithm implements a Procustes aligning procedure as the ones mentioned above,
whereas, if no alignment is allowed, it implements a k-means clustering of curves
(see Heckman and Zamar [5], Tarpey and Kinateder [21] and Shimizu and Mizuta
[20] for other implementations of k-means algorithms for curve clustering). For
this reason we well call it a k-means alignment algorithm.

The paper is organized as follows. In Section 1 we formally describe the prob-
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lem of curve alignment. In Section 2 we consider the problem of curve clustering
when curves are misaligned and describe the k-means alignment algorithm. Sec-
tion 3 illustrates the efficiency of the algorithm via simulated studies. Section
4 shows the application to growth curves data, whilst Section 5 is devoted to
the application to another real dataset, concerning three-dimensional vascular
geometries. Finally, some conclusive considerations are drawn in Section 6.

All simulations and analysis of real datasets are performed in R c©.

1 Defining phase and amplitude variabilities

The variability among two or more curves can be though of as having two com-
ponents: phase variability and amplitude variability. Heuristically, phase vari-
ability is the variability that can be eliminated by suitably aligning the curves,
and amplitude variability is the remaining variability among the curves once
they have been aligned. Consider a space C of curves c(s) : R → Rd. Aligning
c1(s) ∈ C to c2(s) ∈ C means finding a warping function h(s) : R → R, of the
abscissa parameter s, such that the two curves c1(h(s)) and c2(s) are the most
similar. It is thus necessary to choose a class W of admissible warping functions
h (with (c ◦ h)(s) := c(h(s)) ∈ C, for any c ∈ C and h ∈ W ), and a similarity in-
dex ρ(·, ·) : C×C → R that measures the similarity between two curves. Aligning
c1 to c2, according to (ρ,W ), means finding h∗ ∈ W that maximizes ρ(c1◦h, c2).
This procedure decouples phase and amplitude variability without loss of infor-
mation: the phase variability is captured by the optimal warping function h∗,
whilst the amplitude variability is the remaining variability between c1◦h∗ and
c2. Note that the choice of the couple (ρ,W ) defines what is meant by phase
variability and by amplitude variability.

Many similarity indexes for measuring closeness between functions have been
considered in the literature on functional data analysis; for a proficient math-
ematical introduction to the issue see the book by Ferraty and Vieu [3]. San-
galli et al. [17] proposed the following similarity index between two curves
c1 ∈ L2(S1 ⊂ R;Rd) and c2 ∈ L2(S2 ⊂ R;Rd), where c′1 ∈ L2(S1 ⊂ R;Rd),
c′2 ∈ L2(S2 ⊂ R;Rd) and S12 = S1 ∩ S2 has positive Lebesgue measure:

ρ(c1, c2) =
1
d

d∑

p=1

∫
S12

c′1p(s)c
′
2p(s)ds√∫

S12
c′1p(s)2ds

√∫
S12

c′2p(s)2ds
.

with cip indicating the pth component of ci, ci = {ci1, . . . , cid}. According to
this index, two curves are completely similar when they are identical except for
shifts and dilations of the components, i.e.

ρ(c1, c2) = 1 ⇔ for p = 1, . . . , d, ∃Ap ∈ R+, Bp ∈ R : c1p = Apc2p + Bp. (1)

The choice of this similarity index comes along with the following choice for the
class W of warping functions:

W = {h : h(s) = ms + q with m ∈ R+, q ∈ R} (2)
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i.e., the group of strictly increasing affine transformations.
The similarity index ρ and the class of warping function W in (1) and (2) sat-

isfy some minimal requirements, that we deem necessary for the well posedness
of the alignment problem:

- The similarity index ρ is bounded, with maximum value equal to 1, so
that two curves c1 and c2 are completely similar when ρ(c1, c2)=1; more-
over, ρ is reflexive (i.e., ρ(c, c) = 1, ∀ c ∈ C), symmetric (i.e., ρ(c1, c2) =
ρ(c2, c1), ∀ c1, c2 ∈ C) and transitive (i.e.,

[
ρ(c1, c2)=1, ρ(c2, c3)=1

] ⇒
ρ(c1, c3)=1, ∀ c1, c2, c3 ∈ C).

- The class of warping functions W is a convex vector space and has a group
structure with respect to function composition ◦.

- The choices of the similarity index ρ and the class of warping functions W
are consistent in the sense that, if two curves c1 and c2 are simultaneously
warped along the same warping function h ∈ W , their similarity does not
change:

ρ (ci, cj) = ρ (ci◦h, cj◦h) ∀ h ∈ W. (3)

This guarantees that it is not possible to obtain a fictitious increment
of the similarity between two curves ci and cj by simply moving them
simultaneously to ci◦h and cj◦h.

2 Curve clustering when curves are misaligned

Consider the problem of clustering and aligning a set of N curves {c1, . . . , cN}
with respect to a set of k template curves ϕ = {ϕ1, . . . , ϕk} (with {c1, . . . , cN} ∈
CN and ϕ ∈ Ck ). For each template curve ϕj in ϕ, define the domain of
attraction

∆j(ϕ) = {c ∈ C : sup
h∈W

ρ(ϕj , c◦h) ≥ sup
h∈W

ρ(ϕr, c◦h), ∀ r 6= j}, j = 1, . . . , k ;

moreover define the labeling function

λ(ϕ, c) = min{r : c ∈ ∆r(ϕ)}.

Note that λ(ϕ, c) = j means that the similarity index obtained by aligning c to
ϕj is at least as big as the similarity index obtained by aligning c to any other
template ϕr, with r 6= j. Thus λ(ϕ, c) indicates a template the curve c can be
best aligned to and hence a cluster it should be assigned to.

Now, if the k templates ϕ = {ϕ1, . . . , ϕk} were known, then clustering and
aligning the set of N curves {c1, . . . , cN} with respect to ϕ would simply mean
to assign ci to the cluster λ(ϕ, ci) and align it to the corresponding template
ϕλ(ϕ,ci), for i = 1, . . . , N .
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Here we are interested in the more complex case were the k templates are
unknown. Ideally, in order to cluster and align the set of N curves {c1, . . . , cN}
with respect to k unknown templates we should solve the following optimization
problem:

1. find ϕ = {ϕ1, . . . , ϕk} ∈ Ck such that

N∑

i=1

sup
h∈W

ρ(ϕλ(ϕ,ci), ci◦h) ≥
N∑

i=1

sup
h∈W

ρ(ψλ(ψ,ci), ci◦h)

for any other set of k templates ψ = {ψ1, . . . , ψk} ∈ Ck;

2. cluster and align the N curves to ϕ = {ϕ1, . . . , ϕk}.
Note that if {ϕ1, . . . , ϕk} is a solution to the optimization problem, then also
{ϕ1 ◦ h1, . . . , ϕk ◦ hk} is a solution, for any h1, . . . , hk ∈ W .

Unfortunately, point 1 of the optimization problem is not easily solvable.
We thus deal with the optimization problem through a k−means alignment
algorithm that iteratively alternates expectation and maximization steps. In the
expectation steps we estimate the set of k candidate templates, identifying the k
clusters; in the maximization steps we assign each of the N curves to one of the
k clusters and align it to the corresponding template, maximizing the similarity
index. Moreover, after each maximization step, we perform a normalization step
in which we select, among all candidate solutions to the optimization problem,
the one that leaves the locations of the clusters unchanged, as will be clarified
in Remark 1.

2.1 k-means alignment algorithm

We describe here a k-means aligning algorithm suitable for the choice of (ρ,W )
described in Section 1; by adapting the technical details, the algorithm can be
applied for different choices of (ρ,W ).
k-means alignment algorithm. Let ϕ[q−1] = {ϕ1[q−1], . . . , ϕk [q−1]} be the set of
templates after iteration q−1, and {c1[q−1], . . . , cN [q−1]} be the N curves aligned
and clustered to ϕ[q−1]. At the qth iteration the algorithm performs the following
steps.
Expectation step. For j = 1, . . . , k, the template of the jth cluster, ϕj [q], is
estimated using all curves assigned to cluster j at iteration q−1, i.e. all curves
ci[q−1] such that λ(ϕ[q−1], ci[q−1]) = j. Ideally the template should be estimated as
the curve ϕ ∈ C that maximizes the similarity:

∑

i:λ(ϕ[q−1],ci[q−1])=j

ρ(ϕ, ci[q−1]).

The implementation of the algorithm that we illustrate here computes the tem-
plate ϕj [q] by means of Loess, as detailed in Remark 2.
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Maximization step. The set of curves {c1[q−1], . . . , cN [q−1]} is clustered and aligned
to the set of templates ϕ[q] = {ϕ1[q], . . . , ϕk [q]}: for i = 1, . . . , N, the i-th curve
ci[q−1] is aligned to ϕλ(ϕ[q],ci[q−1]) and the aligned curve c̃i[q] = ci[q−1] ◦ hi[q] is as-
signed to cluster λ(ϕ[q], ci[q−1]) ≡ λ(ϕ[q], c̃i[q]).
Normalization step. For j = 1, . . . , k, all the Nj [q] curves c̃i[q] assigned to cluster
j are warped along the warping function (h̄j [q])−1, where

h̄j [q] =
1

Nj [q]

∑

i:λ(ϕ[q],c̃i[q])=j

hi[q]

obtaining ci[q] = c̃i[q] ◦ (h̄j [q])−1 = ci[q−1] ◦ hi[q] ◦ (h̄j [q])−1.
The algorithm is initialized with k distinct templates, ϕ[0] = {ϕ1[0], . . . , ϕk [0]},
chosen at random among the N curves available, and stopped when, in the
maximization step, the increments of the similarity indexes are all lower than
0.01 (i.e., 1% of the achievable maximum).
Remark 1. At the qth iteration, the average warping underwent by curves
assigned to cluster j is the identity transformation h(s)=s. Indeed:

1
Nj [q]

∑

i:λ(ϕ[q],ci[q])=j

(
hi[q] ◦ (h̄j [q])−1

)
(s) = s, j = 1, . . . , n.

Hence, the normalization step is used to select, among all candidate solutions
to the optimization problem, the one that leaves the average locations of the
clusters unchanged, thus avoiding the drifting apart of the clusters or the global
drifting of the overall set of curves. Note that the normalization step preserves
the clustering structure chosen in the maximization step, i.e., λ(ϕ[q], c̃i[q]) =
λ(ϕ[q], ci[q]) for all i.
Remark 2. When performing the k-means alignment algorithm with the choices
of ρ and W described in Section 1, we implement the maximization step as fol-
lows. We estimate the first derivative of the template of each cluster, starting
from the first derivatives of the curves assigned to that cluster at the previous
iteration, by means of Loess with gaussian kernel and an appropriate smoothness
parameter α (see for example Cleveland and Grosse [2]). We use this adaptive
fitting method in order to keep the variance of the estimator of the template
as constant as possible along the abscissa (see for example Hastie and Tibshi-
rani [4]), since the domains of the curves are no longer the same due to curve
alignment. Note that, for the implementation of the algorithm, it is sufficient to
estimate the first derivatives of the templates, rather than the templates them-
selves, thanks to the specific choice of (ρ, W ).

3 Simulation studies

In this section we illustrate the potential of our k-means alignment algorithm
through a 4-case simulation study.
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Figure 2: Starting from top left, clockwise, curves simulated in case A, case B,
case C and case D.

3.1 Data generation

Consider the template:

c(s) = 1 ∗ sin(s) + 1 ∗ sin
( s2

2π

)
0 ≤ s ≤ 2π (4)

CASE A. We simulate 90 curves from template (4), with small errors in
amplitude and phase, i.e. for i = 1, . . . , 90 we generate

c
[A]
i (s) = (1 + ε1i) ∗ sin(ε3i + ε4is) + (1 + ε2i) ∗ sin

((ε3i + ε4is)2

2π

)
0 ≤ s ≤ 2π

where the errors ε are all independent and normally distributed with mean 0
and standard deviation 0.05. The simulated 90 curves are displayed in case A
of Figure 2.

CASE B. The 90 curves displayed in case B of Figure 2, c
[B]
1 , . . . , c

[B]
90 , are

obtained as follows:
- for i = 1, . . . , 45, c

[B]
i = c

[A]
i ;

- for i = 46, . . . , 90, c
[B]
i is obtained from c

[A]
i by modifying its amplitude: instead
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of considering as template the curve in (4) we take as template

2 ∗ sin(s)− 1 ∗ sin(
s2

2π
)

using the same amplitude and phase errors that were sampled for c46, . . . , c90.

CASE C. The 90 curves displayed in case C of Figure 2, c
[C]
1 , . . . , c

[C]
90 , are

obtained as follows:
- for i = 1, . . . , 45, c

[C]
i = c

[A]
i ;

- for i = 46, . . . , 90, c
[C]
i is obtained from c

[A]
i by modifying its phase: instead of

considering phase s we take as phase

−1
3

+
3
4
s

using the same amplitude and phase errors that were sampled for c46, . . . , c90.

CASE D. The 90 curves displayed in case C of Figure 2, c
[D]
1 , . . . , c

[D]
90 , are

obtained as follows:
- for i = 1, . . . , 30, c

[D]
i = c

[A]
i ;

- for i = 31, . . . , 60, c
[D]
i is obtained as in case B;

- for i = 61, . . . , 90, c
[D]
i is obtained as in case C.

3.2 Data analysis with k-means alignment

Cases B and C in Figure 2 display two clusters of curves each. We know that
in case B, the two clusters are due to clustering in the amplitude, i.e. to the
presence of two groups of curves with distinct shapes; whereas in case C the
two clusters are due to clustering in the phase, but all curves, once suitably
aligned, belong to the same amplitude cluster. Again, case D in the same figure
displays three clusters of curves, but we know that only two amplitude clusters
are present, and one of the two has associated a further clustering in the phase.
We want our procedure to be able to correctly identify when the clustering is
in the amplitude and when it is in the phase, and more generally to be able to
efficiently separate amplitude variability and phase variability.

Figure 4, case A, shows the aligned curves and warping functions result-
ing from 1-mean alignment of curves A. Figure 3 shows the boxplot of the
similarity indexes between the original A curves and their mean estimated by
Loess (”A, orig”), and the boxplots of the similarity indexes between the k-
means aligned curves and their estimated templates, for k = 1, 2, 3 (”A, k =1”,
”A, k=2” and ”A, k=3” respectively). Note that the 1-mean alignment proce-
dure leads to a significant increase of the similarity indexes, with respect to the
similarities of the original curves, leaving not much scope for further improve-
ment when k is set equal to 2 or 3. Thus, the procedure correctly suggest to use
k=1 amplitude cluster.
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Figure 3: Left: boxplots of similarity indexes between the original curves and
their mean curve estimated by Loess (the scale of the plot is from 0 to 1). Right:
boxplots of similarity indexes of the original curves (which do not appear in full
since the scale of the plot is now from 0.95 to 1) and boxplots of the similarity
indexes between the k-means aligned curves and their estimated templates, for
k = 1, 2, 3 (cases A, B, C and D, respectively); for each case, orange lines link
the median of the boxplots corresponding to original curves, 1-mean, 2-means
and 3-means aligned curves.

Figure 4, case B, shows the aligned curves and warping functions resulting
from 1-mean alignment and 2-means alignment of curves B (”B, k = 1” and
”B, k = 2” respectively). The 1-mean alignment seems to find two clusters in
phase, but fails to give a clear picture of the single amplitude cluster that is
looked for, since the aligned curves still appear to be separated in two groups. A
better picture is instead given by the 2-means alignment, with the 2 amplitude
clusters neatly separated and no clustering in phase. Figure 3 shows the
similarity indexes of the original curves B and of the k-means aligned curves, for
k = 1, 2, 3 (”B, orig”, ”B, k = 1”, ”B, k = 2” and ”B, k = 3” respectively). Note
that 1-mean alignment leads to an high increase in the similarities, but a further
significant gain can be obtained by setting k = 2, whereas an eventual choice
of k = 3 is not justified by an additional increase in the similarities. Thus, the
procedure correctly suggests to use 2 amplitude clusters. We can compare the
similarities attained by 2-means alignment of curves B to the ones attained by 1-
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Figure 4: Starting from top left, clockwise, k-means aligned curves and detail
of corresponding warping functions for case A (k =1), case B (k =1, 2), case C
(k=1, 2) and case D (k=1, 2, 3); the colors of aligned curves and corresponding
warping functions depend on the cluster; superimposed to the aligned curves are
the estimated templates (black lines).
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mean alignment of curves A. In fact, since half of the curves B coincide with the
corresponding curves A, and the other half is obtained from the corresponding
curves A by a common modification of their amplitude, one expects that 2-means
alignment of curves B should lead to a comparable result, in term of similarities,
with respect to 1-mean alignment of curves A. This is confirmed by inspection
of the boxplots.

Figure 4, case C, shows the aligned curves and warping functions resulting
from 1-mean alignment and 2-means alignment of curves C (”C, k = 1” and
”C, k=2” respectively). In this case, the 1-mean alignment seems already to give
good results, with the curves nicely aligned in one single group, and two clusters
evidenced in phase. Also the 2-means alignment gives visually good results,
with two neatly separated amplitude clusters and no clustering in phase. But,
2 amplitude clusters can really better capture the similarity of the 90 curves,
with respect to just 1? Figure 3 shows the similarity indexes of the original
curves C and of the k-means aligned curves, for k=1, 2, 3 (”C, orig”, ”C, k=1”,
”C, k=2” and ”C, k=3” respectively). Note that the similarities attained with
k = 1 amplitude cluster are already very high and the use of k = 2 amplitude
clusters is not paid off by a further reasonable gain in the similarities. Thus, the
procedure correctly suggests that k=1 amplitude cluster is sufficient to capture
the similarity of the curves; hence, the clustering observed in Figure 3, case C, is
due to clustering in the phase, and is captured by the clustering of the warping
functions relative to 1-mean alignment of the curves. Note that when we set
k=2, the procedure uses the unnecessary second amplitude cluster to explain a
clustering that is instead present in the phase space.

Finally, Figure 4, case D, shows the aligned curves and warping functions
resulting from 1-mean, 2-means and 3-means alignment of curves D (”D, k=1”,
”D, k = 2” and ”D, k = 3”). The boxplots of the similarity indexes, shown in
Figure 3 (”D, orig”, ”D, k=1”, ”D, k=2” and ”D, k=3”), correctly suggest to
use 2 amplitude clusters. The 2-means alignment procedure efficiently identifies
the 2 amplitude clusters and evidences that one of the two clusters (the green
one in the picture) has associated a further clustering in the phase. Note that
when we set k = 1, the procedure tries to explain the clustering of curves D
by imputing it to the phase, where it finds three clusters of warping functions,
but the procedure fails to give a clear picture of the single amplitude cluster.
Whereas, when we set k=3, the procedure uses the unnecessary third amplitude
cluster to explain a clustering that is instead present in the phase space, as
noticed for case C.

4 An application to the analysis of growth data

In this section we present the results obtained by applying the k-means alignment
algorithm to Berkeley Growth Study data, which include the heights (in cm) of
39 boys and 54 girls, measured quarterly from 1 to 2 years, annually from 2 to
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Figure 5: Results of k-means alignment of growth curves, for k = 1, 2: aligned
growth curves (with superimposed estimated templates, in black) and corre-
sponding growth velocities (with superimposed first derivatives of estimated
templates, in black), together with detail of warping functions and boxplots
of similarity indexes (for original curves and k-means aligned curves, k=1, 2, 3).

8 years and biannually from 8 to 18 years. We estimate the growth curves by
means of monotonic cubic regression splines (see Ramsay and Silverman [14]),
implemented using the R c© function smooth.monotone available in fda package.
Figure 5 shows the results obtained by 1-mean and 2-means alignment of these
curves. If 2-means alignment is performed, the 2 amplitude clusters discriminate
boys from girls, with a misclassification error of only 14%. This fact can be
appreciated in Figure 6, which displays growth velocities and warping functions
corresponding to k=2 (right), colored in blue for boys and pink for girls. But the
boxplots of the similarity indexes attained by k-means alignment, for k=1, 2, 3,
suggest that the correct number of amplitude clusters to be used is just 1, not
2, since the choice of k = 2 is not payed off by a reasonable further gain in the
similarities (See Figure 5).Thus, the clustering of boys and girls must instead be
looked for in the phase space. This clustering is evidenced in Figure 6, were the
warping functions corresponding to k = 1 (left) are displayed in blue for boys
and pink for girls, evidencing that boys grow later and more slowly than girls.
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Figure 6: Growth velocities and warping functions corresponding to k = 1 and
k =2 (left and right respectively), displayed in blue for boys and pink for girls.
The warping functions corresponding to k = 1 evidence the clustering of boys
and girls in the phase space.

5 An application to the analysis of 3D cerebral vas-
cular geometries

Finally, we show the results obtained by applying the k-means alignment algo-
rithm to the AneuRisk dataset1. This dataset includes the three spatial coordi-
nates (in mm) of 65 Internal Carotid Artery (ICA) centerlines, measured on a
fine grid of points along a curvilinear abscissa, that goes from the terminal bifur-
cation of the ICA towards the heart. The estimates of these three-dimensional
curves are obtained by means of 3D free knot regression splines, described in
Sangalli et al. [16]. The first derivatives, x′, y′, z′, of estimated ICA centerlines
are displayed in Figure 7, top left. Sangalli et al. [17, 15] presents 1-mean
alignment of these curves. Figure 7 shows the first derivatives of 1-mean aligned
curves and also the first derivatives of 2-means aligned curves (bottom left and
bottom right respectively). Looking at the boxplots of the similarity indexes at-
tained by k-means alignment, it could be argued that the use of k=2 amplitude
clusters leads in fact to a reasonable further gain in the similarities, whilst no
additional improvement is obtained for k=3. If k=2 is used, the 2 amplitude
clusters discriminate between Ω-shaped ICA (green cluster) and S-shaped ICA
(orange cluster). This can be appreciated in Figure 8 that gives a 3D image of
the estimated templates of the 2 amplitude clusters. The classification of ICA in
Ω-shaped and S-shaped, introduced in the medical field and used among others
by Krayenbuehl [9], is based on the shape of the terminal part of the ICA (the
part inside the red circle in Figure 8): in some cases this has the form of the
letter Ω, in others the form of the letter S. Since the shape of the ICA influences

1AneuRisk project is a joint research program that aims at evaluating the role of vascular
geometry and hemodynamics in the pathogenesis of cerebral aneurysms. The project involves
MOX Laboratory for Modeling and Scientific Computing (Dip. di Matematica, Politecnico
di Milano), Laboratory of Biological Structures (Dip. di Ingegneria Strutturale, Politecnico
di Milano), Istituto Mario Negri (Ranica), Ospedale Niguarda Ca’ Granda (Milano), and Os-
pedale Maggiore Policlinico (Milano), and is supported by Fondazione Politecnico di Milano
and Siemens Medical Solutions Italia.
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Figure 7: Top left: first derivative of the three estimated spatial coordinates
x′, y′, z′ of ICA centerlines. Top right: boxplots of similarity indexes (for original
curves and k-means aligned curves, k = 1, 2, 3). Bottom: first derivatives of 1-
mean and 2-means aligned curves (left and right respectively).
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Figure 8: 3D image of the estimated templates of the 2 amplitude clusters, found
by 2-means alignment of ICA centerlines. The template of the green cluster is
to prototype of an Ω-shaped ICA, whereas the template of the orange cluster is
to prototype of an S-shaped ICA.

the pathogenesis of cerebral aneurysms through its effects on the hemodynamics
(as discussed in Piccinelli et al. [12], Sangalli et al. [16, 17, 15]) the classification
provided by the 2-means alignment of the ICA centerlines could be helpful in
the determination of the risk level of a given patient.

6 Discussion

We described the problem of curve clustering when curves are misaligned and
proposed a k-means alignment algorithm that jointly clusters and aligns the
curves with respect to k unknown templates. We illustrated the power of this
procedure via simulation studies and applications to real data.
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