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Abstract

We develop and analyze a Discontinuous Galerkin (DG) method based
on weighted interior penalties (WIP) applied to second order PDEs and in
particular to advection-diffusion-reaction equations featuring non-smooth
and possibly vanishing diffusivity. First of all, looking at the derivation of
a DG scheme with a bias to domain decomposition methods, we carefully
discuss the set up of the discretization scheme in a general framework
putting into evidence the helpful role of the weights and the connection
with the well known Local Discontinuous Galerkin schemes (LDG). Then,
we address the a-priori and the a-posteriori error analysis of the method,
recovering optimal error estimates in suitable norms. By virtue of the
introduction of the weighted penalties, these results turn out to be robust
with respect to the diffusion parameter. Furthermore, we discuss the
derivation of an a-posteriori local error indicator suitable for advection-
diffusion-reaction problems with higly variable, locally small diffusivity.
Finally, all the theoretical results are illustrated and discussed by means
of numerical experiments.

1 Introduction

Although the DG methods are usually defined by means of the so called nu-
merical fluxes between neighboring mesh cells, see [2], for most of the interior
penalty methods for second order problems it is possible to correlate the expres-
sion of the numerical fluxes with a corresponding set of local interface conditions
that are weakly enforced on each inter-element boundary. Such conditions are
suitable to couple elliptic PDEs with smooth coefficients and it seems that a
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little attention is paid to the case of problems with discontinuous data or to
the limit case where the diffusivity vanishes in some parts of the computational
domain.

To address these topics, we look at the derivation of a DG scheme with
a bias to domain decomposition methods. Indeed, we discuss the set up of an
interior penalty DG method arising from a set of generalized interface conditions,
introduced in [10] to couple both elliptic and hyperbolic problems, which give
rise to the so called heterogeneous domain decomposition methods, see [14].
Our purpose is to obtain a DG scheme that joins the efficacy of heterogeneous
domain decomposition methods for the approximation of problems that vary
in character form one part of the domain to another with the the flexibility of
the discontinuous approximation spaces, which allow to approximate a possibly
discontinuous function without knowing a priori the location of the discontinuity.
As a result of that, our method will turn out to be very effective for problems
whose solution solution features very sharp internal layers.

In order to obtain such method, it is necessary to modify the numerical
fluxes of a standard interior penalty scheme, replacing the arithmetic mean
with suitably weighted averages where the weights depend on the coefficients
of the problem. We will show that this technique provides several advantages
with respect to standard IP schemes. First of all, it improves the capability of
the method to regulate the degree of smoothness of the approximate solution
by tuning local variation of the penalty weighting function with respect to the
local variation of the coefficients of the problem. As pointed out in the seminal
work by D.N. Arnold, [1], this is a fundamental feature for IP methods and we
will see that it remarkably improves the stability of the scheme. Furthermore,
we will show that the numerical fluxes corresponding to the methods based
on the weighted interior penalties (WIP) are correlated with the ones defining
the family of the local discontinuous Galerkin methods (LDG), see [8, 6, 7].
Interestingly, this provides a new recipe to choose the parameters needed to set
up LDG methods applied to advection-diffusion-reaction problems. Secondly,
we observe that the introduction of WIP can be seen as a way to incorporate
into the definition of the scheme some partial knowledge of the solution. We will
analyze how this feature turns out to be useful in the a-posteriori error analysis
of the scheme and in particular in the definition of a local error indicator.

We point out that the idea of WIP is not completely new. In the framework
of mortar finite-element methods, different authors have already highlighted
the possibility of using an average with weights that differ from one half, see
[17, 12]. These works present several mortaring techniques to match conforming
finite elements on possibly non conforming computational meshes. However,
these works do not consider any connection between the averaging weights and
the coefficients of the problem. More recently, see [5], Burman and Zunino
have introduced this dependence for an advection-diffusion-reaction problem
with discontinuous diffusivity, and they have shown that the stability of the
numerical solution obtained with H1-conformal finite elements can be improved
by means of a mortar scheme inspired to interior penalty methods where the
penalty parameter is proportional to the harmonic mean of the diffusivity on
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the interface of discontinuity. Later on, see [9], the WIP technique has been
extended from mortars to the case of DG methods for the approximation of
problems with anisotropic diffusion.

In this work, we upgrade to a more general framework the ideas proposed in
[5] and [9]. The derivation of the method is carefully discussed together with its
correlation to other families of DG schemes, in the framework of the unifying
formulations proposed in [2] and [4]. Then, the benefits of the WIP scheme
are highlighted in the a-priori and a-posteriori error analysis and confirmed by
means of numerical experiments.

2 Problem set up and numerical approximation

Following [1], we observe that the IP methods are particularly interesting for the
approximation of time dependent advection-diffusion-reaction equations with
non-smooth and possibly vanishing (nonnegative) diffusivity. More precisely,
we focus on problems governed by the following equation,

∂tu + ∇·(−ε(t, u)∇u + βu) + µu = f

complemented by suitable boundary and initial conditions. However, we observe
that the numerical treatment of the time dependence and of the nonlinearity
resorts to consider a sequence of linear and stationary problems. Consequently,
for the set up of a discretization scheme, we focus for simplicity on this type of
equations.

First of all, let be x ∈ R
d with d = 2, 3 and let Ω ⊂ R

d be a bounded open
set with a Lipschitz continuous boundary, for simplicity we assume that Ω is a
polygon/polyhedron. When ε ∈ L∞(Ω) is a nonnegative function that vanishes
on a given part of the domain, an appropriate setting to approach advection-
diffusion-reaction equations is the so called heterogeneous domain decomposi-
tion method developped in [10, 14]. Let µ ∈ L∞(Ω) be a positive function
representing the reaction coefficient, let β ∈ [W 1,∞(Ω)]d be the advection field
such that µ + 1

2∇ · β ≥ µ0 > 0 and f ∈ L2(Ω). In order to set up the hetero-
geneous method, we assume that ε has some additional regularity, in particular
there exist two open and measurable but not necessarily connected sets with
Lipshitz continuous boundary, Ωel and Ωhy, such that

Ωel = {x ∈ Ω : ε(x) > 0}, Ωhy = Ω \ Ω̄el.

Then, let Γ be the interface between the elliptic and hyperbolic regions, precisely
Γ := ∂Ωel∩∂Ωhy. Furthermore, let nhy be the outward unit normal with repsect
to Ωhy and be ∂Ωin := {x ∈ ∂Ωhy : β · nhy < 0}. The heterogeneous method
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consists in finding a couple of functions uel, uhy such that,







































∇·(−ε∇uel + βuel) + µuel = f in Ωel,

∇·(βuhy) + µuhy = f in Ωhy,

−ε∇uel · n + β · nuel = β · nuhy on Γ,

uel = uhy on Γ ∩ ∂Ωin,

uel = 0 on ∂Ω ∩ ∂Ωel,

uhy = 0 on ∂Ω ∩ ∂Ωin,

(1)

where n is the unit normal vector associated to Γ. The weak formulation of
this problem has been analyzed in [10] and it will be addressed later on. If
the location of the interface Γ is known a-priori (typically all the cases where
this line or surface is stationary and is described by a simple geometry) the
numerical approximation of problem (1) is achieved in the framework of the
domain decomposition methods. Furthermore, the numerical approximation
of (1) has been recently reformulated in [5] to treat the case where Γ is any
interface of discontinuity of ε, and not only the one between the elliptic and
the hyperbolic subregions. This leads to a mortar method that automatically
adapts to the heterogeneous problem when ε vanishes on some subregions of Ω.
In this work, we aim to apply the flexibility of DG methods in order to extend
the ideas proposed in [5] to the case where the position of Γ is a-priori unknown.

To start with, we consider Th, a shape regular triangulation of the domain Ω,
and we denote with K an element in Th and with n∂K its outward unit normal.
Let e be an edge (or face) of the element K ∈ Th, which is an open simplex in
Ω. We say that e is an interior edge of the mesh if there are K−(e) and K+(e)
in Th such that e = ∂K−(e) ∩ ∂K+(e). We set K(e) = {K−(e), K+(e)} and
let ne be the unit normal vector to e pointing from K−(e) towards K+(e). The
analysis hereafter does not depend on the arbitrariness of this choice. Similarly,
we say that e is a boundary face of the mesh if e = ∂K(e) ∩ ∂Ω. We denote
with Fh, F i

h and F ∂Ω
h the collections of all edges, of all the internal edges and of

all the edges on ∂Ω respectively. Finally, let he be the size of an edge and hK

be the one of an element.
Let Hs(Th) be the broken Sobolev space of degree s > 0 on Th. For any

v ∈ H2(Th) we introduce the following definitions,

v(x)|∓e := lim
δ→0+

v(x ∓ δne) for a.e. x ∈ e,

v(x)|∓∂K := lim
δ→0+

v(x ∓ δn∂K) for a.e. x ∈ ∂K \ ∂Ω.

When not otherwise indicated, the values v|−∂K , v|−e are implied. Moreover, the
subscripts e and ∂K will be omitted if not necessary to the context. In this
case, we will use the abridged notation v∓(x). The jump over edges is defined
as [[v(x)]]e := v(x)|−e − v(x)|+e , while [[v(x)]]∂K := v(x)|−∂K − v(x)|+∂K is the jump
with resepct to element’s outward normal vectors and we denote the arithmetic
mean with {v(x)} := 1

2v−(x) + 1
2v+(x).
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To develop an approximation scheme for advection-diffusion-reaction equa-
tions with non-smooth and possibly vanishing diffusivity, we replace ε with εh,
a discrete approximation of ε onto a totally discontinuous approximation space
defined on Th. We notice that εh must be either uniformly strictly positive
either null on any K ∈ Th, more precisely εh(x) > 0 or εh(x) = 0 for all x ∈ K,
for all K ∈ Th. This assumption is essential for the development of a numerical
scheme, because we need that any elliptic/hyperbolic interface coincides with
the edges of Th. In other words, the case of an element K ∈ Th where εh > 0 and
εh = 0 simultaneously, is not admissible. We also observe that the introduction
of a discrete vector field βh may be useful from the practical point of view, but
it is not strictly necessary.

In order to develop a suitable method to approximate a problem that may
change in character from element to element, we start from a local problem
formulation, already proposed in [4] for the Laplace equation. The idea consists
in splitting problem (1) in subproblems localized to each element K ∈ Th, com-
plementing them with suitable matching conditions on inter-element interfaces
and with boundary conditions on ∂Ω. The key point is to set up suitable in-
terface conditions that automatically adapt to the variations of εh. As shown
in problem (1), we need two types of interface conditions, one enforcing the
continuity of the fluxes and one enforcing the continuity of the solution, when
necessary. Let us focus on the latter. If εh where positive and quasi-uniform on
Ω, the standard condition to enforce the continuity of the solution would be,

[

1
2 |β · n∂K | + {εh}

]

[[u]]∂K = 0 on ∂K \ ∂Ω.

In order to correct this condition in the case where εh changes from element to
element, we introduce an heterogeneity factor, which quantifies the variation of
εh on each inter-element interface, λh(x)|∂K : ∂K \ ∂Ω → [−1, 1] such that

λh(x)|∂K :=







1
2

[[εh(x)]]∂K

{εh(x)} , if {εh(x)} > 0,

0, if {εh(x)} = 0.

Then, starting from the case of uniform diffusivity considered above, we propose
the following generalized interface conditions for the continuity of the solution,

[

1
2 |β·n∂K |

(

1−sign(β·n∂K)ϕ∂K(λh)
)

+{εh}
(

1−χ∂K(λh)
)]

[[u]]∂K = 0 on ∂K\∂Ω,

where ϕ∂K(λh) and χ∂K(λh) are chosen to make each local problem to be well
posed. To this purpose, we assume that they satisfy |χ∂K(λh)| ≤ 1, |ϕ∂K(λh)| ≤
1 and,

χ∂K(λh) = 0 if λh|∂K = 0,
χ∂K(λh) = 1 if λh|∂K = ±1
ϕ∂K(λh) = 0 if λh|∂K = 0,
ϕ∂K(λh) = ∓1 if λh|∂K = ±1.

(2)

According to these properties, we further assume that χ∂K(λh) is a symmetric
function while ϕ∂K(λh) is skewsymmetric. Then, setting σ(v) = −εh∇v + βv,
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we reformulate problem (1) as follows: we look for a function u such that for all
K ∈ Th,































∇·
(

σ(u)
)

+ µu = f in K,

[[σ(u)]]∂K · n∂K = 0 on ∂K \ ∂Ω,
[

1
2

(

|β · n| − β · n
)

+ εh

]

u = 0 on ∂K ∩ ∂Ω,
[

1
2 |β · n∂K |

(

1 − sign(β · n∂K)ϕ∂K(λh)
)

+{εh}
(

1− χ∂K(λh)
)]

[[u]]∂K = 0 on ∂K \ ∂Ω.

(3)

We notice that problem (3) is equivalent to problem (1) when Γ ⊂ F i
h. This

makes problem (3) the right starting point to approximate second order PDEs
with nonnegative characteristic form and non-smooth coefficients, whithout ex-
ploiting any a-priori knowledge of the interface between the elliptic and hyper-
bolic subregions. For instance, this is particularly interesting in those cases
where the interface evolves in time, because it overrides the application of com-
putationally expensive interface tracking and re-meshing procedures.

We are now ready to introduce the weak formulation of problem (3). Let
Ωel be the subset of Ω where εh > 0 and let be Ωhy := Ω \ Ω̄el. We denote
with ∂Ωel and ∂Ωhy their boundary with nel and nhy their outward normal
vectors and with Γh := ∂Ωel ∩ ∂Ωhy their interface. Here, the subscript h
reminds that Γh lies on the edges of Th because εh is either positive or null on
its elements. We also define Γin

h := {x ∈ Γh | β · nhy < 0}, Γout
h := Γh \ Γin

h and
∂Ωin

hy := {x ∈ ∂Ωhy ∩∂Ω | β ·nhy < 0}, ∂Ωout
hy := {x ∈ ∂Ωhy ∩∂Ω | β ·nhy > 0}.

In this setting, we introduce the following functional spaces,

V el := H1(Ωel), V hy := {v ∈ L2(Ωhy), β · ∇v ∈ L2(Ωhy)},

V el
0 := H1

∂Ω∩∂Ωel
(Ωel), V hy

β,0 := {v ∈ V hy, β · nv|∂Ωin
hy

= 0}.

We also define V := V el × V hy and Vβ,0 := V el
0 × V hy

β,0. Following the analysis
pursued in [10], for any u := (uel, uhy), v := (vel, vhy) ∈ Vβ,0 we introduce the
bilinear form relative to problem (3),

a(u, v) :=

∫

Ωel

(

(εh∇uel−βuel)·∇vel+µuelvel

)

+

∫

Ωhy

(

−βuhy·∇vhy+µuhyvhy

)

+

∫

Γin
h

β · neuel[[v]]e +

∫

Γout
h

β · neuhy[[v]]e +

∫

∂Ωout
hy

β · nuhyvhy,

and the corresponding right hand side F(v) :=
∫

Ωel
fvel +

∫

Ωhy
fvhy. Then, the

weak formulation of problem (3) reads as follows: find u ∈ Vβ,0 such that,

a(u, v) = F(v), ∀v ∈ Vβ,0. (4)

For the analysis of problem (4) we refer to [10, 14]. Conversely, we aim to
briefly discuss here some regularity properties that arise from the multi-domain
formulation (3). Let us consider the case of εh > 0 for any K ∈ Th and assume
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that the coefficients β and µ are regular enough to ensure that the operator
∇ · σ(u) + µu is an isomorphism between H2+s(K) ∩ H1

0 (K) and Hs(K), see
[11]. Let us denote with HK(λ) the lifting on K of the Dirichlet data λ|∂K ,
obtained by means of the operator ∇ · σ(u) + µu. By virtue of the regularity
of ∇ · σ(u) + µu and owing to the trace theorem, we assert that the operator

σ
(

HK(λ)
)

· ne maps H
3
2
+s(e) into H

1
2
+s(e) for any e ∈ ∂K. Recalling now

the fundamentals of domain-decomposition methods, see for instance [15], we

observe that problem (3) is equivalent to determine a function λ ∈ H
1
2

(

∪F i
h

e
)

,

such that
∑

e∈F i
h
[[σ

(

HK(λ)
)

]] · ne = G, where G ∈ H
1
2
+s(F i

h) is a given right

hand side depending on f . Thanks to the regularity of G and of the Dirichlet to
Neumann map λ → σ

(

HK(λ)
)

·ne, we assert that λ ∈ H
1
2

(

∪F i
h

e
)

∩H
3
2
+s(F i

h).

Finally, we reconstruct the solution u of problem (3) by means of the lifting
operator HK(λ) on each element K ∈ Th, and by virtue of its regularity we
conclude that u ∈ H2+s(Th) ∩ H1

0 (Ω). These observations justify the property
u ∈ Hp+1(Th) with p > 0 that will be assumed later on for the analysis of our
numerical scheme.

2.1 Derivation of the numerical method

To set up our discretization scheme we could exploit the general framework pro-
posed in [4] where a discrete solution is obtained by weakly enforcing that the
residuals corresponding to equations (3)1, (3)2, (3)3 and (3)4 are equal to zero.
However, to put into evidence the role of weighted averages to ensure the con-
sistency of the method, we prefer to derive the scheme following a more classical
approach, while the interpretation on the framework of [4] will be discussed in
the following section.

To start with, for any v ∈ H2(Th) we introduce the weighted averages,

{v(x)}w := w−
e (x)v−(x) + w+

e (x)v+(x), ∀x ∈ e, ∀e ∈ F i
h,

{v(x)}w := w+
e (x)v−(x) + w−

e (x)v+(x), ∀x ∈ e, ∀e ∈ F i
h,

where the weights necessarily satisfy w−
e (x) + w+

e (x) = 1. We say that these
averages are conjugate, because they fulfill the following identity,

[[uv]] = {u}w[[v]] + {v}w[[u]], ∀u, v ∈ H2(Th). (5)

The role of {·}w and {·}w can also be interchanged, but for symmetry this choice
does not affect the final setting of the method. Let u ∈ Vβ,0 be the solution of
problem (4), let T el

h be the collection of elements K ∈ Th such that K ⊂ Ωel

and let T hy
h := Th \ T el

h , we assume that u ∈ H2(T el
h ) ∩ Vβ,0. Let us denote for

simplicity σ := σ(u). Then, starting from (3), for any v ∈ H1(Th) we obtain,

∫

Ω

fv =

∫

Ω

(

∇ · σv + µuv
)

=
∑

K∈Th

∫

K

(

∇ · σv + µuv
)

=
∑

K∈Th

[

∫

K

(

− σ · ∇v + µuv
)

+

∫

∂K

σ · n∂Kv
]

, ∀v ∈ H1(Th). (6)
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Then, considering the identity,

∑

K∈Th

∫

∂K

σ · n∂Kv =
∑

e∈F i
h

∫

e

[[σv]]e · ne +
∑

e∈F ∂Ω
h

∫

e

(σv) · n,

and replacing it into (6), owing to (5) we obtain,

∑

e∈F i
h

∫

e

(

{σ}w · ne[[v]]e + [[σ]]e · ne{v}
w
)

+
∑

e∈F ∂Ω
h

∫

e

σ · nv

+
∑

K∈Th

∫

K

(

− σ · ∇v + µuv
)

=

∫

Ω

fv, ∀v ∈ H1(Th). (7)

Now, we need to enforce conditions (3)2, (3)3, (3)4 on each inter-element inter-
face and on the boundary of the domain. To this aim, we introduce λh|e :=
[[εh]]e/2{εh}e. Then, we remind that the function χ∂K(·) is assumed to be
symmetric, consequently for any e ∈ F i

h with e = ∂K+ ∩ ∂K−, we define
χe(λh|e) := χ∂K(λh|∂K+) = χ∂K(λh|∂K−), although the sign of λh|e is arbitrar-
ily determined. Analogously, since ϕ∂K have to be skewsymmetric we set,

β · neϕe(λh|e) := β · n∂K+ϕ∂K(λh|∂K+) = β · n∂K−ϕ∂K(λh|∂K−).

Then, on any edge e ∈ F i
h we introduce,

γh,e(εh, β) := 1
2

(

|β · ne| − β · neϕe(λh|e)
)

+ {εh}
(

1 − χe(λh|e)ξh
−1
e

)

. (8)

Accordingly, for the boundary we set, γh,∂Ω(εh, β) := 1
2

(

|β ·n|−β ·n
)

+ εhξh−1
e .

We notice that we have adjusted the scaling between the advective and diffusive
terms with the introduction of a factor ξh−1

e . This will lead to convenient error
estimates in the energy norm. Furthermore, from now on the heterogeneity
factor on each edge, λh|e will be simply denoted with λh. Expression (8) allows
us to rewrite (3)2, (3)3 and (3)4 in order to be applied on F i

h,

[[σ]]e · ne = 0, on e ∈ F i
h,

γh,e(εh, β)[[u]]e = 0, on e ∈ F i
h,

γh,∂Ω(εh, β)u = 0, on e ∈ F ∂Ω
h . (9)

The first of (9) is enforced weakly by replacing it into (7), while the second and
the third of (9) are enforced at the discrete level by means of a penalty method.

For any integer p ≥ 0, we define the classical totally discontinuous approxi-
mation spaces,

V p
h := {vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ P

p}.
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Starting from (7) and (9), we aim to find uh ∈ V p
h such that,

∑

K∈Th

∫

K

(

− σh · ∇vh + µuhvh

)

+
∑

e∈F ∂Ω
h

∫

e

(

σh · nvh − εh∇vh · nuh

)

+
∑

e∈F i
h

∫

e

(

{σh}w · ne[[vh]]e − {εh∇vh}w · ne[[uh]]e

)

+
∑

e∈F i
h

∫

e

[

1
2

(

|β · ne| − β · neϕe(λh)
)

+ {εh}
(

1− χe(λh)
)

ξh−1
e

]

[[uh]]e[[vh]]e

+
∑

e∈F ∂Ω
h

∫

e

[

1
2

(

|β · n| − β · n
)

+ εhξh−1
e

]

uhvh =

∫

Ω

fvh, ∀vh ∈ V p
h . (10)

where σh := −εh∇uh + βuh for simplicity. We notice that we have added
the new terms {εh∇vh}w · ne[[uh]]e on F i

h and εh∇vh · nuh on F ∂Ω
h to preserve

symmetry. The left hand side of equation (10) can be split in two parts. The
former corresponds to the symmetric terms and it reads as follows,

as
h(uh, vh) :=

∑

K∈Th

∫

K

[

εh∇uh · ∇vh +
(

µ + 1
2∇ · β

)

uhvh

+
∑

e∈F i
h

∫

e

[

− {εh∇uh}w · ne[[vh]]e − {εh∇vh}w · ne[[uh]]e

+
(

1
2 |β · n∂K | + {εh}

(

1 − χe(λh)
)

)

ξh−1
e [[uh]]e[[vh]]e

]

+
∑

e⊂F ∂Ω
h

∫

e

[

− εh∇uh · nvh − εh∇vh · nuh +
(

1
2 |β · n| + εhξh−1

e

)

uhvh

]

.

The remaining part of the bilinear form is,

ar
h(uh, vh) := −

∑

K∈Th

∫

K

[

(βuh) · ∇vh + 1
2 (∇ · β)uhvh

]

+
∑

e∈F i
h

∫

e

[

{βuh}w · ne[[vh]]e −
1
2β · neϕe(λh)[[uh]]e[[vh]]e

]

+
∑

e∈F ∂Ω
h

∫

e

1
2β · nuhvh.

Then, setting ah(uh, vh) := as
h(uh, vh) + ar

h(uh, vh) and F (vh) :=
∫

Ω fvh, our
prototype of method reads as follows: find uh ∈ V p

h such that,

ah(uh, vh) = F (vh), ∀vh ∈ V p
h . (11)

We point out that (11) corresponds to a family of methods that may differ for
the definition of the weights and for the expression of χe and ϕe into (8). We
will consider their choice in the following section.

9



2.2 Definition of the weights and of the scaling functions

In this section, we discuss how to identify specific choices of the weights w−
e , w+

e

and of the scaling functions χe and ϕe that basically influence the behavior of
the method that we have proposed.

First of all, we aim to point out suitable recipes to define the weights on each
edge. Our strategy is to introduce a suitable weighing function φ that will be
applied to construct the tilted weights depending on the heterogeneity factor,
λh. Precisely, we set w±

e := φ(±λh). Observing that λh(x) ∈ [−1, 1] we require
that φ satisfies the following general properties,

φ(·) ∈ C0
(

[−1, 1]
)

, φ([−1, 1]) = [0, 1], φ(−t) + φ(t) = 1, ∀t ∈ [−1, 1],

with the following particular assumption, that is necessary to enable the method
to satisfy (2),

φ(−1) = 0, and φ(1) = 1, or vice versa φ(−1) = 1, and φ(1) = 0. (12)

By virtue of the partition of unity theorem, there are infinitely many functions
satisfying these requirements. For instance, we propose the following family of
weighing functions,

φ(t) := 1
2

(

1± sign(t)|t|α
)

, (13)

where α ∈ R
+ plays the role of tilting factor. We notice that at this level the

choice of the sign into φ(t) is arbitrary, it will be fixed later exploiting (2).
Moreover, we observe that the smaller is α, the more the weights w±

e differ from
the standard value w±

e = 1
2 . For instance, when φ(t) = 1

2 (1 + sign(t)|t|α), we
have the following limit cases,

lim
α→0

φ(t) =







0, if t ∈ [−1, 0),
1
2 , if t = 0,
1, if t ∈ (0, 1],

lim
α→∞

φ(t) =







0, if t = −1,
1
2 , if t ∈ (−1, 1),
1, if t = 1.

We will see later that another case of particular interest is α = 1.
Secondly, we focus our attention on ar(·, ·), the advective part of the bilinear

form. We aim to find a suitable expression for ϕe that makes ar(·, ·) to be
skewsymmetric. By means of integration by parts, equation (5) and exploiting
the regularity of β ∈ [W 1

∞(Ω)]d, we have that

ar
h(uh, vh) =

∑

K∈Th

∫

K

[

(βvh) · ∇uh + 1
2 (∇ · β)vhuh

]

−
∑

e∈F ∂Ω
h

∫

e

1
2β · nvhuh

−
∑

e∈F i
h

∫

e

[

β · ne{vh}
w[[uh]]e + 1

2β · neϕe(λh)[[vh]]e[[uh]]e

]

. (14)

For any e ∈ F i
h we remind that {vh}

w = {vh}w −
(

w−
e − w+

e

)

[[vh]]e, Then, by
means of the specific definition,

ϕe(λh) :=
(

w−
e − w+

e

)

(15)
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we obtain the following identity,

{vh}
w + 1

2ϕe(λh)[[vh]]e = {vh}w − 1
2ϕe(λh)[[vh]]e. (16)

Replacing (16) into (14) we conclude that ar
h(uh, vh) = −ar

h(vh, uh). Further-
more, owing to (15) we obtain the identity,

β · ne{vh}w − 1
2β · ne

(

w−
e − w+

e

)

[[vh]]e = β · ne{vh},

which shows that the advective flux on each inter-element interface coincides
with the standard upwind flux.

Finally, we study how to choose χe. We propose a particular choice of χe

that allows us to rewrite our scheme in the framework introduced in [4] for
the set up and the analysis of DG methods. In particular, we require that χe

satisfies the following property,

{εh}
(

1 − χe(λh)
)

= {εh}w, i.e. χe(λh) =
(

w+
e − w−

e

)

λh. (17)

Let us now consider (15) and (17) and replace φ(·) with (13). We obtain the
following expressions,

ϕe(λh) = ∓sign(λh)|λh|
α, χe(λh) = ±|λh|

α+1,

and we observe that only the choice φ(λh) = 1
2

(

1 + sign(λh)|λh|
α
)

allows to
satisfy (2) for both ϕe and χe. By consequence the ambiguity in definition (13)
is resolved by choosing the positive sign.

Then, to rewrite (10) in the framework proposed in [4], we set ω±
e = w±

e ε±h
and we exploit the identity

{εhv}w = {εh}w{v} +
1

2
[[ω]]e[[v]]e, ∀v ∈ H2(Th),

leading to the following equivalence,

{εh∇vh}w · ne[[uh]]e = {εh}w[[uh]]e

(

{∇vh} · ne +
[[ω]]e
4{ω}

[[∇vh]]e · ne

)

. (18)

Applying integration by parts into (10) over the term
∫

K
−σh ·∇vh and exploit-

11



ing (17) and (18), we obtain the following equation,

∑

K∈Th

∫

K

(

∇ · σh + µuh − f
)

vh +
∑

e∈F i
h

∫

e

[[σh]]e · ne{vh}
w

+
∑

e∈F i
h

{εh}w[[uh]]e

(

h−1
e [[vh]]e − {∇vh} · ne −

[[ω]]e
4{ω}

[[∇vh]]e · ne

)

+
∑

e∈F i
h

∫

e

1
2

(

|β · ne| − β · neϕe(λh)
)

[[uh]]e[[vh]]e

+
∑

e∈F ∂Ω
h

∫

e

(εhuh)(h−1
e vh −∇vh · n)

+
∑

e∈F ∂Ω
h

∫

e

1
2

(

|β · n| − β · n
)

uhvh = 0, ∀vh ∈ V p
h . (19)

According to [4], we observe that equation (19) can be regarded as the weak
counterpart of (3) obtained by enforcing that a linear combination of the resid-
uals associated to equations (3)1-(3)4 is equal to zero. In other words, equation
(19) can be rewritten as,

∑

K∈Th

∫

K

R0(uh)W0(vh)+
∑

e∈F i
h

[

R1(uh)W1(vh)+R2(uh)W2(vh)+R3(uh)W3(vh)
]

∑

e∈F ∂Ω
h

[

R4(uh)W4(vh) + R5(uh)W5(vh)
]

= 0, ∀vh ∈ V p
h , (20)

being Ri(uh) the residuals associated to (3)1-(3)4 in the discrete case, while
Wi(vh) are suitable test functions. Precisely, they read as follows,

R0(uh) = ∇ · σh + µuh − f, W0(vh) = vh,

R1(uh) = [[σh]]e · ne, W1(vh) = {vh}
w,

R2(uh) = {εh}w[[uh]]e, W2(vh) = h−1
e [[vh]]e

−
(

{∇vh} + [[ω]]e
4{ω} [[∇vh]]e

)

· ne,

R3(uh) = 1
2

(

|β · ne| − β · neϕe(λh)
)

[[uh]]e, W3(vh) = [[vh]]e,

R4(uh) = εhuh, W4(vh) = h−1
e vh −∇vh · n,

R5(uh) = 1
2

(

|β · n| − β · n
)

uh, W5(vh) = vh, (21)

In conclusion, we notice that the specific choice of χe proposed in (17) is par-
ticularly interesting because it allows us to rewrite the method (11) in the
general framework (20). An interesting feature is to obtain a formulation where
the test functions Wi(vh) are independent from the coefficients of the problem.
This property is not satisfied in our case, since both W1(vh) and W2(vh) de-
pend on the weights w±

e and thus on εh. However, we notice that the exception
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of W1(vh) is of minor importnce with respect to our purpose, because it can
be easily verified that the term involving W1(vh) cancels out going back from
(20) to (10). Moreover, in the particular case [[ω]]e = 0, we obtain that the
test function W2(vh) becomes W2(vh) = h−1

e [[vh]]e − {∇vh} · ne and thus it is
independent on εh. In this case the weights have to satisfy w+

e ε+h = w−
e ε−h and

by consequence they are defined as follows,

w−
e =

ε+h
ε−h + ε+h

, w+
e =

ε−h
ε−h + ε+h

, if ε−h + ε+h > 0,

w−
e = w+

e = 1
2 , if ε−h = ε+h = 0, (22)

which correspond to choose w±
e = 1

2 (1 ± λh) or equivalently φ(t) = 1
2 (1 + t)

that means α = 1 into (13). Equation (22) implies that the scaling factor of the
penalty term, namely {εh}w, is equivalent to the harmonic average of the values
ε±h . Consequently, the mortar between elements is proportional to the stiffness of
two sequential springs of modulus ε±h respectively. This interpretation suggests
that (22), and thus α = 1, seems to be a very natural choice for problems with
discontinuous coefficients.

2.3 Reinterpretation by means of numerical fluxes

Several DG methods are set up by means of numerical fluxes, denoted here with
ũh and σ̃h ·ne, which represent suitable approximations of u and σ(u) ·ne on the
edges of Th. In order to highlight the relationship between the method proposed
here and other DG approximation schemes, we aim to identify the numerical
fluxes corresponding to our scheme. Following the paradigm presented in [2],
we start from the discretization of the governing equations ∇ · σ + µu = f and
σ = −εh∇u + βu, and exploiting the fluxes ũh and σ̃h · ne we obtain,

∑

K∈Th

∫

K

fvh =
∑

K∈Th

∫

K

(

− σh · ∇vh + µuhvh

)

+
∑

e∈F i
h

(

{σ̃h}w · ne[[vh]]e + [[σ̃h]]e · ne{vh}
w
)

+
∑

e∈F ∂Ω
h

σ̃h · nvh, (23)

−
∑

K∈Th

∫

K

σh · ∇vh = −
∑

K∈Th

∫

K

(

εhuh∆vh + (βuh) · ∇vh

)

+
∑

e∈F i
h

(

{εh∇vh}w · ne[[ũh]]e + [[εh∇vh]]e · ne{ũh}
w
)

+
∑

e∈F ∂Ω
h

εhũh∇vh · n. (24)
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Moreover, by means of integration by parts we obtain,

−
∑

K∈Th

∫

K

εhuh∆vh =
∑

K∈Th

∫

K

εh∇uh · ∇vh

−
∑

e∈F i
h

(

{εh∇vh}w · ne[[uh]]e + [[εh∇vh]]e · ne{uh}
w
)

−
∑

e∈F ∂Ω
h

εhuh∇vh · n,

which can be replaced into (24) in order to give,

−
∑

K∈Th

∫

K

σh ·∇vh =
∑

K∈Th

∫

K

(

εh∇uh−βuh

)

·∇vh+
∑

e∈F ∂Ω
h

εh(ũh−uh)∇vh ·n

+
∑

e∈F i
h

(

{εh∇vh}w · ne[[ũh − uh]]e + [[εh∇vh]]e · ne{ũh − uh}
w
)

. (25)

Combining equations (23) and (25) and reminding that σh = −εh∇uh + βuh,
we conclude that the bilinear form corresponding to the fluxes ũh and σ̃h ·ne is,

ãh(uh, vh) :=
∑

K∈Th

∫

K

(

− σh · ∇vh + µuhvh

)

+
∑

e∈F i
h

(

{σ̃h}w · ne[[vh]]e + [[σ̃h]]e · ne{vh}
w
)

+
∑

e∈F i
h

(

{εh∇vh}w · ne[[ũh − uh]]e + [[εh∇vh]]e · ne{ũh − uh}
w
)

+
∑

e∈F ∂Ω
h

(

σ̃h · nvh + εh(ũh − uh)∇vh · n
)

.

Now we compare ãh(uh, vh) with a(uh, vh) and we observe that these two
forms are equivalent provided that,

σ̃h · ne = {σh}w · ne + γh,e(εh, β)[[uh]]e, ũh = {uh}
w. (26)

Indeed, owing to (26) we obtain,

{σ̃h}w · ne = σ̃h · ne and [[σ̃h]]e · ne = 0,

{ũh − uh}
w = {ũh}

w − {uh}
w = 0 and [[ũh − uh]]e = [[ũh]]e − [[uh]]e = −[[uh]]e,

which directly imply ãh(uh, vh) = a(uh, vh). In conclusion, the numerical fluxes
associated to our weighted interior penalty scheme are given by (26). According
to the terminology introduced by [2] such fluxes are conservative. Finally, a
simple manipulation of (26) puts into evidence a close connection between our
scheme and the LDG methods. Indeed, reminding (15), for any vh ∈ V p

h we
obtain,

{vh}w = {vh} + 1
2ϕe[[vh]]e, {vh}

w = {vh} −
1
2ϕe[[vh]]e,
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and consequently (26) can be rewritten as,

σ̃h · ne = {σh} · ne + 1
2ϕe[[σh]]e · ne + γh,e[[uh]]e,

ũh = {uh} −
1
2ϕe[[uh]]e.

On the edges where λh 6= 0 and thus ϕe(λh) 6= 0, these fluxes turn out to be
equivalent to the fluxes of the LDG method, proposed in [6], if we set C11 = γh,e,
C12 = 1

2ϕe and C22 = 0, according to the terminology defined there. A specific

choice for the parameter C12 together with the expression ũh = w+
e u+

h + w−
e u−

h

with w+
e , w−

e 6= 1
2 has already been applied in [7], in order to prove a supercon-

vergence property for the approximation of the Poisson problem. However, the
ideas underlying [7] are very different from ours. Indeed, definition (26) can be
seen as a new recipe to properly scale the characteristic parameters C11 and C12

of the LDG method with respect to the coefficients of an advection-diffusion-
reaction problem. In other words, the WIP scheme is capable to automatically
adapt its numerical fluxes to the degree of smoothness of the diffusion coeffi-
cient. In particular, WIP coincides with the symmetric interior penalty scheme
on the edges where εh is continuous, while it switches to the LDG formulation
where εh is discontinuous and thus λh 6= 0.

3 A-priori error analysis

The goal of this section is to establish an error estimate being robust with
respect to locally vanishing diffusion. The analysis is performed in the spirit of
Strang’s Second Lemma by addressing the consistency, coercivity and continuity
properties of the bilinear form. To obtain such result, we follow the analysis
proposed in [9], with the necessary modifications to adapt it to the method at
hand.

For any v ∈ V we consider the energy norm associated to problem (11),

|||v|||2a :=‖ε
1
2

h∇v‖2
0,Th

+ ‖µ
1
2

0 v‖2
0,Th

+ ‖
(

1
2 |β · n| + εhh−1

e

)
1
2 v‖2

0,F ∂Ω
h

+ ‖
(

1
2 |β · ne| + {εh}wh−1

e

)
1
2 [[v]]e‖

2
0,F i

h

and for any v ∈ V ∩ H2(T el
h ) we introduce the following augmented norm,

|||v|||2⊥ :=|||v|||2a + ‖|β · ne|
1
2 v‖2

0,F i
h

+ ‖(εhhe)
1
2∇v · n‖2

0,F ∂Ω
h

+ ‖
(

εhhe

)
1
2∇v · ne‖

2
0,F i

h
,

where ‖ · ‖0,K , ‖ · ‖0,e are the L2-norms on K, e respectively, and,

‖v‖2
0,Th

:=
∑

K∈Th

‖v‖2
0,K , ‖v‖2

0,F i
h

:=
∑

e∈F i
h

‖v‖2
0,e, ‖v‖2

0,F ∂Ω
h

:=
∑

e∈F ∂Ω
h

‖v‖2
0,e.
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In the analysis, we will make use of the following inverse inequalities, see [1],
that hold true for all K ∈ Th and for all vh ∈ V p

h , provided that Th is shape
regular,

h
1
2
e ‖vh‖0,e . ‖vh‖0,K , (27)

hK‖∇vh‖0,K . ‖vh‖0,K . (28)

Here and in the sequel, the symbol . denotes an inequality involving a positive
constant C independent of the size of the mesh family and of the diffusion pa-
rameter. Moreover, we will make use of the following approximation properties
of V p

h . Let πh : Hp+1(Th) → V p
h be the L2-projection operator onto V p

h . Then,
it satisfies,

‖v − πhv‖0,K + hK‖∇(v − πhv)‖0,K . hp+1
K |v|p+1,K , (29)

‖v − πhv‖0,e + he‖∇(v − πhv) · ne‖0,e . h
p+ 1

2

K |v|p+1,K , (30)

where |v|s,K is the seminorm in Hs(K).

Lemma 1. For any v ∈ Hp+1(Th) with p > 0 we have,

|||v − πhv|||∗ .
∑

K∈Th

(

hp
K‖εh‖L∞(K) + h

p+ 1
2

K ‖β‖W 1
∞

(K) + hp+1
K µ0

)

|v|p+1,K ,

where |||·|||∗ represents both |||·|||a and |||·|||⊥.

Proof. The result follows immediately from the application of (29) and (30) into
|||v − πhv|||a and |||v − πhv|||⊥.

Lemma 2. Let u ∈ Vβ,0 ∩ H2(T el
h ) be the solution of problem (4). Then,

ah(u, v) = F (v), ∀v ∈
(

V ∩ H2(T el
h )

)

⊕ V p
h and ah(u − uh, vh) = 0 ∀vh ∈ V p

h .

Proof. Let us consider ah(u, v). First of all, we observe that u ∈ H2(T el
h )

implies that [[u]]e = 0 in the sense of traces for any edge such that K(e) ∈ T el
h .

Analogously, {εh∇v}w · ne = 0 for any edge such that K(e) ∈ T hy
h . Finally, by

virtue of the definition of the weights, see (12), we obtain that {εh∇v}w ·ne = 0
for all e ∈ Γh. Then, the term {εh∇v}w · ne[[u]]e is equal to zero on any e ∈ F i

h,
because either [[u]]e = 0 and {εh∇v}w 6= 0 or [[u]]e 6= 0 and {εh∇v}w = 0.
Proceeding similarly, we obtain that εh∇v · nu = 0. For the same reasons, we
assert that γh,e(εh, β)[[u]]e[[v]]e = 0 for any internal edge of T el

h while for the

edges inside T hy
h we may have we may have [[u]]e 6= 0 but β · ne[[u]]e = 0, since

u ∈ V and β ∈ W 1
∞(Ω). Moreover, since [[u]]e = 0 on Γin

h , and γh,e(εh, β) = 0 on
Γout

h , we conclude that γh,e(εh, β)[[u]]e = 0, for any e ∈ F i
h. Finally, we observe

that u ∈ V ∩ H2(T el
h ) ensures that [[σ]]e · ne = 0 in the sense of traces for any

e ∈ F i
h. By consequence, a(u, v) is equivalent to the second row of (6). Then,

integrating by parts and applying the equivalence ∇ · σ + µu = f in L2(Ω), we
obtain a(u, v) = F (v) for all v ∈

(

V ∩H2(T el
h )

)

⊕V p
h . Finally, setting v = vh, the

Galerkin orthogonality ah(u − uh, vh) = 0 ∀vh ∈ V p
h follows immediately.
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Lemma 3. Choosing ϕe as in equation (15), namely ϕe(λh) :=
(

w−
e − w+

e

)

,
the bilinear form ar

h(·, ·) skew-symmetric, more precisely ar
h(u, v) = −ar(v, u)

for all u, v ∈
(

V ∩ H2(T el
h )

)

⊕ V p
h .

Proof. The proof follows immediately form the combination of equations (14)
and (16).

Lemma 4. Choosing ξ large enough in the definition of γh,e(εh, β) and γh,∂Ω(εh, β),
see equation (8), the bilinear form as

h(·, ·) is coercive in the energy norm, pre-
cisely |||vh|||a . as

h(vh, vh) for all vh ∈ V p
h .

Proof. First of all, it is straightforward to verify that,

∑

K∈Th

∫

K

[

εh(∇vh)2 +
(

µ + 1
2∇ · β

)

v2
h

]

+
∑

e∈F i
h

∫

e

(

1
2 |β · ne| + {εh}wξh−1

e

)

[[vh]]2e +
∑

e∈F ∂Ω
h

∫

e

(

1
2 |β · n| + εhξh−1

e

)

v2
h

≥ ‖ε
1
2

h∇vh‖
2
0,Th

+ ‖µ
1
2

0 vh‖
2
0,Th

+ ‖
(

1
2 |β · ne| + {εh}wξh−1

e

)
1
2 [[vh]]e‖

2
0,F i

h

+ ‖
(

1
2 |β · n| + εhξh−1

e

)
1
2 vh‖

2
0,F ∂Ω

h

. (31)

For the remaining terms of as
h(·, ·), reminding that ω±

e = w±
e ε±h and ω+

e + ω−
e =

{εh}w, we obtain the following bounds,

2
∑

e∈F i
h

∫

e

{εh∇vh}w · ne[[vh]]e + 2
∑

e∈F ∂Ω
h

∫

e

εh∇vh · nvh

= 2
∑

e∈F i
h

∫

e

(ω−
e ∇v−h + ω+

e ∇v+
h ) · ne[[vh]]e + 2

∑

e∈F ∂Ω
h

∫

e

εh∇vh · nvh

≤
∑

e∈F i
h

[

αhe

(

‖(ε−h )
1
2∇v−h · ne‖

2
0,e + ‖(ε+h )

1
2∇v+

h · ne‖
2
0,e

)

+
1

αhe

‖{εh}
1
2
w[[vh]]e‖

2
0,e

]

+
∑

e∈F ∂Ω
h

[

αhe‖ε
1
2

h∇vh · n‖2
0,e +

1

αhe

‖ε
1
2

h vh‖
2
0,e

]

.

By means of inequality (27), we get,

2
∑

e∈F i
h

∫

e

{εh∇vh}w · ne[[vh]]e + 2
∑

e∈F ∂Ω
h

∫

e

εh∇vh · nvh

. α‖ε
1
2

h∇vh‖
2
0,Th

+
1

α
‖{εh}

1
2
wh

− 1
2

e [[vh]]e‖
2
0,F i

h
+

1

α
‖ε

1
2

h h
− 1

2
e vh‖

2
0,F ∂Ω

h

. (32)

The coercivity of as
h(·, ·) in the norm |||·|||a directly follows from the combination

of (31) and (32) provided α and ξ are such that α . 1 and 1
α

. ξ.
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Corollary 1. Under the assumptions of Lemma 3 and Lemma 4 the bilinear
form ah(·, ·) is coercive in the energy norm |||·|||a for all vh ∈ V p

h .

Corollary 2. Corollary 1 ensures that problem (11) is well posed.

Now, to suitably define the continuity of the bilinear form ah(·, ·), we intro-
duce the space,

V⊥ := {v ∈ V ∩ H2(T el
h );

∫

K
vvh = 0, ∀vh ∈ V p

h }.

Lemma 5. The bilinear form ah(·, ·) is continuous, precisely it satisfies

ah(u, vh) . |||u|||⊥|||vh|||a ∀u ∈ V⊥, ∀vh ∈ V p
h .

Proof. We proceed by bounding each term of ah(u, vh) with respect to |||u|||⊥
and |||vh|||a. First, we consider as

h(u, vh) and we observe that,

∑

e∈F i
h

∫

e

{εh∇u}w · ne[[vh]]e +
∑

e∈F ∂Ω
h

∫

e

εh∇u · nvh

. ‖(εhhe)
1
2∇u · ne‖0,F i

h
‖( 1

2{εh}wh−1
e )

1
2 [[vh]]e‖0,F i

h

+ ‖(εhhe)
1
2∇u · n‖0,F ∂Ω

h
‖(εhh−1

e )
1
2 vh‖0,F ∂Ω

h
,

and from (32) we get,

∑

e∈F i
h

∫

e

{εh∇vh}w · ne[[u]]e +
∑

e⊂F ∂Ω
h

∫

e

εh∇vh · nu

. ‖ε
1
2

h∇vh‖0,Th

(

‖({εh}wh−1
e )

1
2 [[u]]e‖0,F i

h
+ ‖ε

1
2

h h
− 1

2
e u‖0,F ∂Ω

h

)

.

Exploiting the previous inequalities, the bilinear form as
h(u, vh) can be easily

estimated as follows,

as
h(u, vh) −

∫

Ω

( 1
2∇ · β)uvh . |||u|||⊥|||vh|||a.

where the term 1
2∇ · βuvh cancels out with the opposite one in ar

h(u, vh).
Second, we consider ar

h(u, vh). To bound the term
∑

K∈Th

∫

K
(βu) · ∇vh, let

βh := Π0
hβ be the piecewise constant vector-valued field equal to the mean value

of β on each K ∈ Th. Then,
∫

K

(βu) · ∇vh =

∫

K

uβh · ∇vh +

∫

K

u(β −βh) · ∇vh =

∫

K

u(β −βh) · ∇vh, (33)

since βh · ∇vh ∈ V p
h and u ∈ V⊥. Moreover, β ∈ [W 1,∞(Ω)]d thus we have

‖β−βh‖[W 0
∞

(K)]d . hK for all K ∈ Th, so that the inverse inequality (28) yields

∑

K∈Th

∫

K

|(βu) · ∇vh| . ‖u‖0,Th
‖vh‖0,Th

≤ |||u|||a |||v|||a.
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For the remaining terms of ar
h(u, vh) we get,

∑

e∈F i
h

∫

e

[

{βu}w · ne[[vh]]e −
1
2β · neϕe(εh)[[u]]e[[vh]]e

]

+
1

2

∑

e∈F ∂Ω
h

∫

e

β · nuvh

. ‖|β · ne|
1
2 u‖0,F i

h
‖|β · ne|

1
2 [[vh]]e‖0,F i

h
+ ‖|β · ne|

1
2 [[u]]e‖0,F i

h
‖|β · ne|

1
2 [[vh]]e‖0,F i

h

+ ‖|β · n|
1
2 u‖0,F ∂Ω

h
‖|β · n|

1
2 vh‖0,F ∂Ω

h
.

From the two previous inequalities we obtain that,

ar
h(u, vh) +

∫

Ω

( 1
2∇ · β)uvh . |||u|||⊥|||vh|||a. (34)

Finally, the result directly follows from the combination of (33) and (34).

We are now ready to prove an a-priori error estiamte in the energy norm for
method (11).

Lemma 6. Let u ∈ Vβ,0 ∩ H2(T el
h ) be the solution of (3), let πhu be the L2-

projection of u onto V p
h and let uh be the solution of (11). Under assumptions

of lemmas 2, 4, 3 and 5 we obtain,

|||u − uh|||a . |||u − πhu|||⊥. (35)

Moreover, under the assumptions of lemma 1 we get,

|||u − uh|||a

.
∑

K∈Th

[

(

hp
K‖εh‖L∞(K) + h

p+ 1
2

K ‖β‖W 1
∞

(K) + hp+1
K µ0

)

|v|p+1,K

]

. (36)

Proof. Lemmas 2, 4, 3 and 5 imply that

|||uh − πhu|||a .
ah(uh − πhu, uh − πhu)

|||uh − πhu|||a
.

ah(u − πhu, uh − πhu)

|||uh − πhu|||a

. |||u − πhu|||⊥, (37)

owing to the fact that u−πhu ∈ V⊥. We complete the proof of (35) by applying
the triangle inequality and using the fact that |||·|||a ≤ |||·|||⊥, precisely,

|||u − uh|||a . |||uh − πhu|||a + |||u − πhu|||a . |||u − πhu|||⊥.

Moreover, (36) directly follows from the combination of (35) and lemma 1.

4 Duality based a-posteriori error analysis

In this section we aim to put into evidence some peculiar advantages of the
weighted interior penalty method in the derivation of a local error estimator.
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First of all, we observe that there are different strategies to obtain a local error
estimator, which can be mainly classified into residual based or duality based
error estimates. In our context, the derivation of a residual based error ertimate
is particularly challenging, because we aim to obtain a result that is robust with
respect to the diffusion parameter, see [18] for a recent discussion of these topics.
Conversely, a duality based error estimate can be derived following the frame-
work proposed in [3] and references therein, and can be also easily adapted to
the case of nonconforming elements, see for instance [13]. In particular, we no-
tice that the duality based approach straightforwardly preserves the robustness
of the weighted interior penalty method with respect to locally vanishing dif-
fusivities. By consequence, for this preliminary study, we focus on the duality
based a-posteriori error analysis.

4.1 Duality based error representation

To start with, we introduce a linear functional J(·) : V → R that is the output
functional for which we aim to control the error. The definition of J(·) will

be made precise later on. Let β̂ be the dual advection field, namely β̂ = −β.
We denote with the same superscript all the quantities, depending on the new
advection field, that are involved in the definition of problem (4). Furthermore,

we introduce the dual space V
β̂,0 := V el

0 × V hy

β̂,0
and for any u, v ∈ V we define

the dual bilinear form,

â(u, v) :=

∫

Ωel

(

(εh∇uel − β̂uel) · ∇vel + (µ −∇ · β̂)uelvel

)

+

∫

Ωhy

(

− β̂uhy · ∇vhy + (µ −∇ · β̂)uhyvhy

)

+

∫

Γ̂in
h

β̂ · nuel[[v]] +

∫

Γ̂out
h

β̂ · nuhy[[v]] +

∫

∂̂Ω
out

hy

β̂ · nuhyvhy,

where Γ̂in
h , Γ̂out

h and ∂̂Ω
out

hy refer to β̂ = −β. It is easily verified that â(u, v) =
a(v, u) ∀ u, v ∈ V

β̂,0 or vice versa a(u, v) = â(v, u) ∀ u, v ∈ Vβ,0. In this

framework, we introduce the dual problem with respect to (4): find z ∈ V
β̂,0

such that,
â(z, ϕ) = J(ϕ), ∀ϕ ∈ V

β̂,0. (38)

The analysis of the dual problem is analogous to the primal one, namely problem
(4). To proceed, we set up a discretization method for the dual problem. Mim-
icking the derivation of the WIP method, we obtain the bilinear form âh(uh, vh),

which differs from ah(uh, vh), because the avection field β is replaced by β̂ = −β.
We observe that âh(uh, vh) satisfies the following properties,

âh(uh, vh) := âs
h(uh, vh) + âr

h(uh, vh),

âs
h(uh, vh) := as

h(uh, vh),

âr
h(uh, vh) := ar

h(β̂; uh, vh),
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where in the last row we have highlighted the dependence of ar
h(uh, vh) from β.

Owing to the symmetry of as
h(uh, vh) and to the skew-symmetry of ar

h(uh, vh)
we immediately obtain that,

âh(uh, vh) = as
h(uh, vh) − ar

h(β; uh, vh)

= as
h(vh, uh) + ar

h(β; vh, uh) = ah(vh, uh). (39)

Then, we consider the discrete dual problem that consists in finding zh ∈ V q
h

such that,
âh(zh, ϕh) = J(ϕh), ∀ ϕh ∈ V q

h , (40)

where the discrete dual space V q
h is generally richer than V p

h , i.e. q > p.
We notice that mimicking Lemma 3 and 4 as well as Corollary 1 and 2

we immediately conclude that problem (40) is coercive and thus well-posed.
Finally, in analogy with Lemma 2, we obtain the following result that states the
consistency of problem (40) with respect to (38).

Lemma 7. Let z ∈ V
β̂,0 ∩ H2(T el

h ) be the solution of problem (38). Then,

âh(z, ϕ) = J(ϕ), ∀ϕ ∈
(

V ∩ H2(T el
h )

)

⊕ V p
h and ah(z − zh, ϕh) = 0 ∀ϕh ∈ V p

h .

The proof is omitted since it is analogous to one of lemma 2.
Now, let e := u − uh be the error relative to our numerical method, where

u ∈ Vβ,0 ∩ H2(T el
h ) is the solution of (4) and uh ∈ V p

h satisfies (11). We easily
conclude that e ∈

(

V ∩ H2(T el
h )

)

⊕ V p
h . Lemma 7 allows to rewrite the error

on the output functional J(e) = J(u) − J(uh) in terms of the residuals of the
numerical method, more precisely we obtain the following error representation
formula.

Lemma 8. Let z ∈ V
β̂,0 ∩H2(T el

h ) be the solution of problem (38) and uh ∈ V p
h

the one of (11). Then, for any ζ := (z − vh) ∈ V ∩ H2(T el
h ) ⊕ V p

h ,

J(e) = −
∑

K∈Th

∫

K

R0(uh)W0(ζ)

−
∑

e∈F i
h

∫

e

(

R1(uh)W1(ζ) + R2(uh)W2(ζ) + R3(uh)W3(ζ)
)

−
∑

e∈F ∂Ω
h

∫

e

(

R4(uh)W4(ζ) + R5(uh)W5(ζ)
)

, (41)

where Ri(·) and Wi(·) are defined in (21).

Proof. Since e ∈
(

V ∩ H2(T el
h )

)

⊕ V p
h , we apply Lemma 7 with ϕ = e. Owing

to (39) and the Galerkin orthogonality of the primal problem, we get,

J(e) = âh(z, e) = ah(e, z) = ah(e, ζ).

Now, starting from the expression of ah(e, ζ), mimicking the steps that lead
from (10) to (19), and taking into account that u weakly satisfies problem (3),
we exactly obtain (41).
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4.2 Definition of the local error indicator

We are interested on the error representation identity (41) because it is the
starting point to develop an adaptive finite element method. To this purpose,
the first step is to define a local error indicator, that is a discrete function that
quantifies at which extent the local approximation on each element K ∈ Th

contributes to the global error J(e). Looking at equation (41), it is clear that
the quantities Ri(uh)Wi(ζ), i = 0, . . . , 5 are the natural bricks to build up the
local error indicator. In this perspective, we observe that it is necessary to set
up a suitable strategy for the repartition on each element K ∈ Th of the error
indicators Ri(uh)Wi(ζ) with i = 1, 2, 3, lying on the mesh skeleton, namely F i

h.
Moreover, this is particularly significant in the case of DG methods, since they
are suited to the use of non-conformingly refined meshes, where a non smooth
distribution of the error indicator directly reflects into the pattern of the refined
mesh.

We also observe that, in the specific case of problems with highly variable
diffusivity, the residual R1(uh) = [[σh]]e · ne is likely to be one of the leading
contributions to determine the error. In this framework, we will see that dif-
ferent strategies to split R1(uh)W1(ζ) over the neighboring elements lead to
remarkably different local error indicators.

In general, the most common and natural strategy to break up the weighted
residuals on each edge, precisely

∫

e
Ri(uh)Wi(ζ), i = 1, 2, 3, e ∈ F i

h, is to equally
divide them into the elements K± ∈ K(e). This seems to be the only possibil-
ity to treat R2(uh)W2(ζ) and R3(uh)W3(ζ), since no information on the dual
solution z is a-priori available. This is not the case for

∫

e
R1(uh)W1(ζ). Indeed,

W1(ζ) is the only weighting function that depends on the heterogeneity factor,
more precisely W1(ζ) = {ζ}w = w−

e ζ+ + w+
e ζ−. By consequence, exploiting

the infromation of w±
e , we can conceive different options to separate W1(ζ) into

K±. Let us denote with
∫ −

e
R1(uh)W1(ζ) :=

∫

e
R1(uh)W ∗

1 (ζ) the contribution
of the error indicator that falls on K−. We consider the following alternative
splitting strategies,

W ∗
1 (ζ) :=











1
2W1(ζ) (a)

w−
e ζ+ (b)

w+
e ζ− (c)

(42)

Then, we notice that equation (41) can be rewritten as follows, where now ±
refer to the normal vector n∂K ,

J(e) = −
∑

K∈Th

[

∫

K

R0(uh)W0(ζ)

+

∫

∂K\∂Ω

(

R1(uh)W ∗
1 (ζ) + 1

2R2(uh)W2(ζ) + 1
2R3(uh)W3(ζ)

)

+

∫

∂K∩∂Ω

(

R4(uh)W4(ζ) + R5(uh)W5(ζ)
)]

. (43)

There are several ways to derive from (43) a local error indicator η∗
K(uh, ζ) such
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that
J(e) ≤

∑

K∈Th

η∗
K(uh, ζ).

In our case, we privilege the efficacy of the indicator to set up a mesh refinement
strategy rather than its sharpness to represent the global error. Then, disre-
garding the criteria aiming to minimize the effectivity index, see [3], we propose
the following local estimator,

η∗
K(uh, ζ) =

∫

∂K\∂Ω

(

|R1(uh)W ∗
1 (ζ)| + 1

2 |R2(uh)W2(ζ)| + 1
2 |R3(uh)W3(ζ)|

)

+

∫

∂K∩∂Ω

(

|R4(uh)W4(ζ)| + |R5(uh)W5(ζ)|
)

+

∫

K

|R0(uh)W0(ζ)|. (44)

The difference between the three options proposed in (42) and the most appro-
priate choice will be pointed out later on by means of numerical experiments.

Finally, for the sake of completeness, starting from the error representation
formula (41), we prove an a-posteriori error estimate in the L2 norm. We
consider εh > 0 for any K ∈ Th and by consequence, provided that the data of
the primal problem are regular enough, we assume that u ∈ H1

0 (Ω)∩Hp+1(Th),
which directly implies e ∈ Hp+1(Th). To proceed, we define J(ϕ) as follows,

J(ϕ) :=

∫

Ω

jϕ with j :=
e

‖e‖0,Ω
∈ Hp+1(Th) ⊂ L2(Ω),

that immediately gives J(e) = ‖e‖0,Ω. Moreover, since the functional J(ϕ)
admits an L2 representation that is locally regular, we conclude that the solution
of the dual problem satisfies z ∈ H1

0 (Ω) ∩Hp+1(Th) too. In this framework, we
obtain the following result.

Lemma 9. Under the regularity assumption z ∈ Hp+1(Th) the following a-
posteriori error estimate holds,

‖e‖0,Ω .
∑

K∈Th

hp+1
K η∗

K(uh)|z|p+1,K ,

where η∗
K(uh) is defined as follows,

η∗
K(uh) := ‖R0(uh)‖0,K +

∑

e∈∂K∩∂Ω

(

1
2h

− 3
2

K ‖R4(uh)‖0,e + 1
2h

− 1
2

K ‖R5(uh)‖0,e

)

+
∑

e∈∂K\∂Ω

(

h
− 1

2

K w∗‖R1(uh)‖0,e + 1
2h

− 3
2

K ‖R2(uh)‖0,e + 1
2h

− 1
2

K ‖R3(uh)‖0,e

)

,

where w∗ = wa = 1
2 , w∗ = wb = w−

e or w∗ = wc = w+
e according to (42).

Proof. The desired result directly follows from (41) by choosing ζ = z−πhz and
replacing the following inequalities into the definition of Wi(ζ), i = 0, . . . , 5,

‖ζ‖0,K . hp+1
K |z|p+1,K ,

h−1
e ‖ζ‖0,e + ‖∇ζ · ne‖0,e . h

p− 1
2

K |z|p+1,K .
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5 Numerical results

In the previous sections we have built up a family of weighted interior penalty
(WIP) methods that depend on the value of a scalar parameter, the tilting
factor α. The aim of this section is to highlight the benefits they provide to
the approximation of advection - diffusion - reaction equations with non-smooth
and possibly locally vanishing diffusivity.

We will first compare the WIP scheme with several variants of the interior
penalty DG methods, trying to point out how the tilting factor influences the
accuracy and the robustness of the method. Secondly, we will focus on the
a-posteriori error estimate and we will compare the three local error indicators
arising from (42), with the perspective to set up an adaptive mesh refinement
strategy.

5.1 A test case with non-smooth coefficients

In order to pursue a quantitative comparison between our scheme and the stan-
dard interior penalty method, we aim to set up a test problem, featuring discon-
tinuous coefficients, that allows us to analytically compute the exact solution.
To this aim, we consider the following test case, already proposed in [5, 9]. For
the sake of clarity, we remind it here.

Let be Ω ⊂ R
2 and let x, y be the space coordinates. We split the domain

Ω into two subregions, Ω1 = (x0, x 1
2
) × (y0, y1), Ω2 = (x 1

2
, x1) × (y0, y1) and

we choose for simplicity x0 = 0, x 1
2

= 1
2 , x1 = 1 while y0 = 0, y1 = 1. The

viscosity ε(x, y) is a discontinuous function across the interface x = x 1
2
, for any

y ∈ (y0, y1). Precisely, we will consider a constant ε(x, y) in each subregion with
several values of ε1 in Ω1 and a fixed ε2 = 1.0 in Ω2. Moreover, we set β =
[βx = 1, βy = 0], µ = 0, f = 0 and the boundary conditions u1(x0, y) = u0 = 1,
u2(x1, y) = u1 = 0, ∂yu(x, y0) = ∂yu(x, y1) = 0. Then, the exact solution of the
problem on each subregion Ω1, Ω2 can be expressed as an exponential function
with respect to x independently from y. The global solution u(x, y) is provided
by choosing the value at the interface x = x 1

2
in order to ensure the following

matching conditions,

lim
x→x

−

1
2

u(x, y) = lim
x→x

+
1
2

u(x, y),

lim
x→x

−

1
2

−ε(x, y)∂xu(x, y) + βxu(x, y) = lim
x→x

+
1
2

−ε(x, y)∂xu(x, y) + βxu(x, y).

More precisely, introducing the Péclét numbers pe1 := |βx|(x 1
2
− x0)/ε1, pe2 :=

|βx|(x1 − x 1
2
)/ε2, by consequence of the matching conditions we obtain that

u 1
2

:= u(x 1
2
, y) reads as follows,

u 1
2

=
[ u0 exp(pe1)

1 − exp(pe1)
+

u1

1 − exp(pe2)

][ exp(pe1)

1 − exp(pe1)
+

1

1 − exp(pe2)

]−1

.
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As a result of that, the exact solution in each subdomain can be expressed as,

u1(x, y) =
u 1

2
− exp(pe1)u0 + [u0 − u 1

2
] exp(β(x − x0)/ε1)

1 − exp(pe1)

u2(x, y) =
u1 − exp(pe2)u 1

2
+ [u 1

2
− u1] exp(β(x − x 1

2
)/ε2)

1 − exp(pe2)
.

It is easy to see that when 0 ' ε1 � ε2 = 1 the global solution, u, features a
very sharp internal layer upwind to the discontinuity of ε, located at x = x 1

2
.

5.2 Comparison of different interior penalty methods

In the numerical simulations that will follow, our reference standard interior
penalty method (IP) is obtained by setting λh = 0 and choosing w±

e , ϕe(λh)
and χe(λh) according to (13), (15) and (17) respectively. We consider both
the symmetric interior penalty method (SIP) and the skew-symmetric version
(SSIP), also known as NIPG, [16]. The latter variant has the advantage that
it only requires the condition ξ > 0 to prove lemma 4. Consequently, we will
set ξ = 2 10−2 for SSIP while ξ = 2 for SIP and WIP, and we will study how
this parameter influences the accuracy when ε is vanishing. For all test cases
we consider a uniform triangulation Th with h = 0.05 and we apply piecewise
linear elements. In this setting, we perform a quantitative comparison based on
several indicators. In particular, we consider the energy norm, the L2 norm and
the norm of the advective derivative that is defined as ‖v‖2

h,β :=
∑

K∈Th
hK‖β ·

∇v‖2
0,K and it has been analyzed in [9] for a case similar to the present one.

Finally we introduce the following indicator,

4 := max(|max
Ω

(uh) − max
Ω

(u)|, |min
Ω

(uh) − min
Ω

(u)|),

which quantifies to which extent the numerical solution exceeds the extrema of
the exact one.

The results, reported in figure 1, put into evidence that the WIP scheme
performs better than the standard IP methods, particularly in those cases where
the solution is non smooth and at the same time the computational mesh is not
completely adequate to capture the singularities. From the analysis of figure 1,
it is possible to identify three regimens where the numerical methods behave
differently. The first one consists on the diffusive region, namely 2−4 < ε1 ≤ 1,
where all the methods provide similar results. For ε1 ≤ 2−4 a transition takes
place and all the error indicators increase, because the computational mesh is
not adequate any more to capture the very sharp internal layer that originates
upwind to the discontinuity of ε. In this case, we notice that the error is quite
sensitive to the choice of the tilting factor α. More precisely, it seems that the
tilting factor influences the tradeoff between the accuracy of the method and its
robustness. The smaller is α the more the method is robust with respect to a
discontinuity of the diffusivity, as it is suggested by the behavior of the L2 norm
and of the indicator 4. However, for the smallest values of α we notice that
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Figure 1: The norms ‖·‖0,Ω (top-left), |||·||| (bottom-left), ‖·‖h,β (bottom-right)
and the indicator 4 (top-right) are plotted for the values ε1 = 2−i, i = 0, . . . , 16.
Several schemes are compared with respect to these indicators.
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Figure 2: The solution of the SIP and WIP methods for ε1 = 10−6 and ε2 = 1.

0

1

2

2.2

0

1

0

1

0

1

2

2.2

0

1

0

1

26



the accuracy of the scheme slightly decreases in the energy and in the advective
norms. Finally, the smallest values of ε1, namely ε1 < 2−12, correspond to
the hyperbolic regimen. In this case, the global solution u can be seen as a
discontinuous function in correspondence of the jump of ε. However, we observe
that the standard interior penalty schemes compute a solution that is almost
continuous, as reported in figure 2. This behavior promotes the instability of
the approximate solution in the neighborhood of the boundary layer, because
the computational mesh is not adequate in order to smoothly approximate the
very high gradients across the interface. The quantity 4 shows that the the
spurious oscillations generated in this case reach the 100% of the maximum of
the exact solution. This is true both for the symmetric and the skew-symmetric
variants, thus we conclude that the magnitude of the penalty parameter ξ is less
significant than the application of the weighted averages. Conversely, the WIP
methods are very effective for any value of α, because the scheme is consistent
with the elliptic-hyperbolic limit case.

5.3 Approximation and comparison of the local error in-

dicators

In order to apply the local error indicators η∗
K(uh, ζ) to the test case of section

5.1, first of all we have to provide a precise definition for the output functional
J(u). For simplicity, we consider J(u) :=

∫

Ω u.
To proceed, we approximate the exact solution, z, of the dual problem (38)

by means of its discretization through the WIP method. Because of the ar-
bitrariness of vh in the definition of ζ, it is clear that we have to compute zh

choosing q > p into (41). The simplest case is to choose p = 1 and q = 2. We

denote with z
(2)
h the solution of (40) into V 2

h and with u
(1)
h the solution of (11)

into V 1
h . Then, our approximate local error indicator is given by η∗

K(u
(1)
h , z

(2)
h )

on each element K ∈ Th.
For the comparison of the indicators ηa,b,c

K we rescale each of them with re-
spect to the estimated global error. This results in a piecewise constant function
that quantifies to which percentage the error on each element contributes to the
global one. More precisely, we introduce the relative local error estimators,

Table 1: Quantitative comparison between the relative error indicators.

indicator ρK(|e|) − ρa
K ρK(|e|) − ρb

K ρK(|e|) − ρc
K

maxK∈Th
0.0428329 0.0358393 0.0498264

minK∈Th
-0.0107334 -0.00820335 -0.017727

indicator ρK(|e|)/ρa
K ρK(|e|)/ρb

K ρK(|e|)/ρc
K

maxK∈Th
2.27904 1.88532 2.88062

minK∈Th
0.0476816 0.0476819 0.0476812
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Figure 3: Comparison between the relative local error estimators ρa,b,c
K .
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defined by

ρ∗K := η∗
K

(

∑

K∈Th

η∗
K

)−1

,

and we compare them with the quantity

ρK(|e|) :=
(∫

K
|e|

)(∫

Ω
|e|

)−1
= J(|e|)|K

(

J(|e|)
)−1

.

The relative local error indicators ρ∗
K and ρK(|e|) are reported in figure 3,

where they are plotted in a region neighboring the interface, x = 1
2 , where ε

jumps from ε1 = 5 10−3 to ε2 = 1. For their comparison, we take the exact
indicator ρK(|e|) as a reference. From the plot of ρK(|e|) in figure 3, we imme-
diately notice that the elements that mostly contribute to the error are the ones
on the left of the interface where ε is discontinuous, because the exact solution
of the problem at hand features a very sharp internal layer in this region. We
observe that the indicators ρa,b,c

K are significantly different on those elements
where the heterogeneity factor differs from zero and thus the averaging weights
w±

e differ from 1
2 . Moreover, we notice that ρb

K is the one that mostly resem-
bles to ρK(|e|). More precisely, ρb

K favorably clusters the error on the elements
that lay on the left with respect to the interface, while ρa

K and in particular ρc
K

promote the dispersion of the local error on both sides.
A more quantitative comparison is pursued in table 1, where we consider the

indicators ρK(|e|)−ρa,b,c
K and ρK(|e|)/ρa,b,c

K , which can be seen as two alternative
ways to define a local and relative effectivity index. For both cases, we conclude
that ρb

K is the best relative indicator with respect to ρK(|e|) and it is definitely
more effective than ρa,c

K . This is achieved by means of the averaging weights
w±

e that have been suitably exploited to better gather the local residuals of the
numerical solution into the local error indicator.

To sum up, figure 3 suggests that the strategies (a), (b) and (c) proposed in
(42) to build up a local error indicator may lead to considerably different adap-
tively fitted computational meshes, especially when non conforming refinements
are allowed, thanks to the flexibility of the DG method. Indeed, by means of the
simple fixed error reduction strategy applied iteratively, or through one single
step of a mesh optimization strategy, see [3], the piecewise constant (and thus

discontinuous) relative error indicators ρa,b,c
K can be translated into a function

that prescribes how to refine the mesh in order to satisfy a suitable tolerance on
the global error. Furthermore, this is not only applicable in the context of mesh
refinement, but it also fits to the case of error reduction by means of hierarchical
basis functions.

6 Conclusions

We have proposed a family of DG methods that extends the standard IP schemes
by means of weighted averages. This generalization does not increase the com-
putational cost of the scheme but remarkably improves its robustness for the
approximation of advection-diffusion-reaction problems that vary in character
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from one part of the domain to another, because the diffusivity coefficient may
be discontinuous and locally vanishing. These benefits emerge from the a-priori
error analysis of the method and are also confirmed by numerical experiments.
Finally, we have considered the a-posteriori error analysis of the scheme, putting
into evidence that the introduction of weighted interior penalites also helps to
improve the effectivity of a local error estimator.
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