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Abstract

Computational modelling has been proven to be a useful tool to simulate heart
functioning and have been increasingly used in patient-specific treatments. Cardiac
modelling is intricately multi-scale and multi-physics and this makes the problem
really complex both to formulate and to solve. In this work, we propose an elec-
tromechanical model that, in bi-ventricle geometries, combines the monodomain
equation, the Bueno-Orovio minimal ionic model, and the Holzapfel-Ogden strain
energy function for the passive myocardial tissue modelling together with the active
strain approach combined with a model for the transmurally heterogeneous thick-
ening of the myocardium. Since the distribution of the electric signal is dependent
on the fibres orientation of the ventricles, we use a Laplace-Dirichlet Rule-Based
algorithm to determine the myocardial fibres and sheets configuration in the whole
bi-ventricle. In this paper, we study the influence of different fibre directions and
incompressibility constraint values (bulk modulus) recently proposed and validated
in [5] on the pressure-volume relation simulating a full heart beat. The coupled
electromechanical problem is addressed by means of a fully segregated scheme. The
numerical discretization is based on the Finite Element Method for the spatial dis-
cretization and on Backward Differentiation Formulas for the time discretization.
The arising non-linear algebraic system coming from application of the implicit
scheme is solved through the Newton method. Numerical simulations are carried
out in a patient-specific bi-ventricle geometry to highlight the most relevant results
of both electrophysiology and mechanics and to compare them with physiological
data and measurements. We show that various fibre configurations and bulk val-
ues modify relevant clinical quantities such as stroke value, ejection fraction and
ventricle contractility. It is therefore important to reconstruct subject-specific fibre
orientation to obtain physiological behaviours.

*Corresponding Author: luca.azzolin@kit.edu
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1 Introduction

The heart has the role of pumping deoxigenated blood to the lungs to get oxygen and,
simultaneously, delivers blood rich of all sort of vital substances to tissues and organs
through the arterial circulatory system [31]. Cardiovascular diseases are the leading cause
of death in the global population, with millions of new patients every year [30]. Despite
new experimental discoveries and improvements in the medical care, we are still distant
from fully understanding these pathologies. Computational modelling has shown to be a
potential mean of addressing this problem. The latest progresses in mathematical models
and numerical simulations give us the possibility of having still better insights in cardiac
functions and disease treatments. However, many difficulties arise when approximating
the modelling of cardiac function (including e.g. the mismatch of model parameters and
spatio-temporal scales, associated to the difficult task of retrieving in-vivo measurements
from the tissue) and when trying to simulate their joint electromechanical behaviour as a
coupled multi-physics and multi-scale problem [21]. Advances in the fields of experimental
and theoretical biology, physics, computer science and clinical data allow the improvement
of the mathematical models, allowing numerical simulations in patient-specific framework
[12, 27, 28]. Moreover, application of image segmentation techniques to Magnetic Reso-
nance Imaging (MRI) and Computed Tomography (CT) scans provide data to proceed
with personalized computational modelling and patient-specific diagnoses and therapies.

The simulations of human heart functioning involve several challenges intrinsically
related to its complexity [10, 11, 15]. At the moment, several cardiac modelling studies at
the whole heart level are still restricted to simulating particular components, such as, e.g.,
the electrophysiology or the electromechanics. Only few works presented a fully coupled
model taking into account the integrated electro-mechano-fluid behaviour [16, 43].

Heart physiology can be briefly summarized as follows: an electric potential propagates
across the membrane of the cardiac muscle cells (cardiomyocytes) and induces complex
biochemical reactions inside the cytosol that releases calcium from the sarcoplasmic retic-
ulum, thus resulting in the generation of force within the sarcomeres (the basic contractile
units within cardiac muscle cells), finally causing the individual cells to contract and the
muscle to deform. The contraction of the muscle yields a rapid increase of pressure inside
the ventricular cavities, which allows the heart valves to open and close in careful sequence
and induces the periodic filling and ejection of blood from the ventricles and the atria
[14, 32, 34, 35, 44, 45, 46]. This physiological process is intrinsically multi-scale; therefore
the equations that govern each mechanism combine terms of different length/time scales.
As a matter of fact, ion channels on the cell membrane and the excitation-contraction
mechanism are typically modelled through systems of ODEs to be solved for each individ-
ual cell (length scales of µm) and are endowed with time scales of 10−4 ms. On the other
hand, the description of fluid dynamics and solid mechanics of the tissue at the organ
level (length scales of cm) and of the propagation of the electrical signal (monodomain)
are translated in non-linear partial differential equations of either parabolic or parabolic-
hyperbolic type with time scales of 0.1 ms (for the fluid dynamics and solid mechanics)
[35].

In this work, we analyse the effect of fibre direction and bulk value on the pressure-
volume relationship through electromechanical modelling for both the left and right ven-
tricles [4]. This is an extension of the model presented in [18, 19] that was however applied
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to the left ventricle only. We use state-of-the-art models in passive myocardial tissue mod-
elling (the Holzapfel-Ogden model [22]) together with the active strain approach [1, 2] in
combination with a recently proposed model for the transmurally heterogeneous thicken-
ing of the myocardium [5]; the latter is used in the integrated electromechanics context
for both the left (LV) and the right (RV) human ventricles. Once established, the active
mechanics is coupled with the electrophysiology through a model describing the short-
ening of the myocardial fibres [40], which is in turn triggered by a change in the ionic
concentrations in the cardiac cells. We use a Laplace-Dirichlet Rule-Based algorithm [6]
to reproduce the ventricles fibres and sheets configuration.

From the numerical point of view, we discretize in space the models by means of
the Finite Element Method (FEM) with piecewise linear polynomials of degree one (P1)
for both the myocardium displacement and the transmembrane potential, while the time
discretization is carried out by means of Backward Differentiation Formulas (BDFs) of
order 2 [36]. We then exploit a fully segregated algebraic problem, where the discretized
core models are solved sequentially. This segregated strategy was proposed in [19] for the
LV through a Godunov splitting scheme.

In this work, we successfully use a segregated scheme for the simulation of the full
heartbeat, by realizing pressure-volume loops patient-specific bi-ventricles. We propose
an innovative electro-mechanical model of human ventricles employing an original mod-
elling of transversal and isotropic mechanical activation. The fluid-structure interaction
(FSI) between the blood contained in each chamber and the endocardial wall is addressed
through a simple 0D model (spatially independent) for the pressure variable tailored for
the different phases of the heartbeat [13, 38, 48]; a prestress phase is also implemented
for both the LV and the RV in order to estimate the internal stresses of the myocardium
at the initial time [24, 47], i.e. in the reference configuration of the muscle. It is relevant
to notice that, at telediastole (the final phase of the ventricular diastole), the endocardial
pressure is significantly different in the LV and RV chambers, thus this method has to be
able to compute the response of the tissue to the fluid in the corresponding chamber. All
the solvers are implemented in the open source finite element library LifeV (www.lifev.org)
[17].

The simulations are carried out on a bi-ventricle geometry extracted from a full heart
atlas derived from multiple patients [26]. A set of various fibre orientation and bulk values
is tested to show the effect of these changes on the mechanical behaviour of the ventricles.
We show the obtained simulated pressure-volume loops to assess the influence on the
various phases of a full heartbeat. Finally, the numerical results are compared against
physiological data and clinical measurements. In our work, we show the influence of fibre
direction on the electro-mechanical computational modelling of human ventricles.

The article is organized as follows: in Sec. 2 we introduce the mathematical models
for the electrophysiology, the mechanics and the activation of the myocardium; we then
couple them to obtain a integrated model. We then proceed in Sec. 3 presenting the
characteristics of the cardiac cycle and the various phases performed by the ventricles
composing a single heartbeat. In Sec. 4 we carry on the space and time numerical ap-
proximations of the single core models and their numerical coupling. In Sec. 5 we describe
the method used to generate the bi-ventricle geometry and the fibres and sheets direc-
tions. We report and discuss in Sec. 6 the numerical results obtained with the proposed
methods. Finally, we draw our conclusions in Sec. 7.
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2 Mathematical modelling

In this section we introduce the mathematical models used to represent the complex
behaviour of the bi-ventricle electro-mechanics.

2.1 Ionic model and monodomain equation

Assuming the same electrophysiological behaviour for both left and right ventricles, we
consider the monodomain equation for the description of the evolution of the cellular
transmembrane potential V [11, 19, 25, 33, 42]. The system of differential equations
modelling the electrophysiology reads:



∂V

∂t
+ I ion(V,w) = ∇ · (JF−1DmF−T∇V ) + Iapp(t) in Ω0 × (0, T ),

(JF−1DmF−T∇V ) ·N = 0 on ∂Ω0 × (0, T ),

∂w

∂t
= α(V )(w∞(V )−w) + β(V )w in Ω0 × (0, T ),

V = V0, w = (1, 1, 0)T in Ω0 × {0},

(1)

Here, Ω0 is the reference computational domain (represented e.g. by the configuration
of the ventricles at the end of the diastolic phase) and T > 0 is the final time of our
simulation. The components wj, with j ∈ {1, . . . ,M} are M so-called gating variables.
F = I + ∇0d is the strain tensor and N is the normal vector. In order to take into
account the anisotropic electrical conductance [41], we define the diffusion tensor as
Dm = σt I + (σl − σt) f0 ⊗ f0, where σt, σl ∈ R+ are the electric conductivities in the
directions transversal and longitudinal with respect to the fibres, respectively. f0 is the
local fiber orientation, while s0 is the direction longitudinal to the sheet orientation. The
function Iapp(t) represents an externally applied current, which stands for the electric
stimulus injected at the endocardium by the terminal fibres of the Purkinje network; for
our purposes, we consider it as a source term which triggers the electrophysiological ac-
tivity. The terms I ion(V,w),w∞, α(V ), β(V ) are peculiar of the ionic model which, in our
case, following the approach of [19], is the Bueno–Orovio minimal model [9].

2.2 Passive and active mechanics

We assume, for the moment, the same characteristic laws for both the ventricles to describe
both the active and passive mechanics of the tissue. We will highlight later differences
and settings for the RV and LV. We recall the momentum conservation equation in the
reference configuration Ω0, endowed with boundary and initial conditions, in the unknown
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Figure 1: The patient–specific biventricle geometry used in this work with the Γepi,LV0 , Γepi,RV0 ,

Γendo,RV0 , Γendo,LV0 and Γbase0 boundary subsets highlighted.

displacement variable d [29]:

ρ
∂2d

∂t2
−∇0 ·P(d, γf ) = 0 in Ω0 × (0, T ),

q(d,dt) + P(d, γf ) N = 0 on Γη0 × (0, T ),

P(d, γf ) N = pendo,LV (t)N on Γendo,LV0 × (0, T ),

P(d, γf ) N = pendo,RV (t)N on Γendo,RV0 × (0, T ),

d = d0,
∂d

∂t
= ḋ0 in Ω0 × {0}.

(2)

where q(d,dt) = (N ⊗N) (Kη
⊥d + Cη

⊥dt) + (I −N ⊗N)
(
Kη
‖d + Cη

‖dt

)
. We denote by

Kη
⊥, K

η
‖ , C

η
⊥, C

η
‖ ∈ R+ the parameters of generalized Robin conditions on each of these

boundary subsets: the symbols ⊥ and ‖ identify either a parameter relative to the nor-
mal or the tangential direction, respectively. ρ is the density of the myocardium, γf
denotes the local shortening of the fibres, d0 and ḋ0 are initial conditions. We notice
that pressures pendo,RV (t) and pendo,LV (t) are still prescribed at this stage; we will explain
in the Section 2.3 the manner in which they are determined. Γη0, with η = {epi, base},
represents the subsets of the boundary corresponding to the epicardium and the base
of the myocardium, meanwhile Γendo,LV0 and Γendo,RV0 are, respectively, the left and right
endocardium, as depicted in Fig. 1. Following [19], we model the myocardium as an

hyperelastic material, thus: P(d) = ∂W(C)
∂F

. For more details on the strain-energy den-
sity function used, we refer the interested reader to [19]. We emphasise that our final
W is obtained by adding to the strain energy function a convex term Wvol(J), where
J = det(Fv) = det(F), being det

(
F
)

= 1, used to weakly enforce the incompressibility
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constraint, such that J = 1 is its global minimum; penalizing large variations in volume.
We choose:

Wvol(J) =
B

2
(J + J log J − 1), (3)

hence, in this quasi-incompressible formulation, we obtain a “stronger” enforcement of
the incompressibility constraint with a larger bulk modulus B ∈ R+.

We proceed with the active strain approach [39] to take into account the active be-
haviour of the myocardial muscle. This formulation consists in a particular decomposition
of the strain tensor:

F = FEFA = FvFEFA = J
1
3 FEFA,

where FE is the isochoric component of the elastic (passive) part of the deformation, FA

corresponds instead to the active part. We recall the orthotropic form for the tensor FA

FA = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0.

Moreover, to take into account the fact that the thickening of the ventricles’ walls is
transversely non-homogeneous, we use the formulation proposed in [5], that is:

γn = k′(λ)

(
1√

1 + γf
− 1

)
, γs =

1

(1 + γf )(1 + γn)
− 1,

k′(λ) = k
′
(
kendo

λ− λepi
λendo − λepi

+ kepi
λ− λendo
λepi − λendo

)
.

Since the cardiomyocites stretching is driven by the sarcomeres dynamics due to the
concentration of the calcium ions (here denoted as w3), we will use the fibres’ shortening
model [18]: 

µ̂Aw
2
3

∂γf
∂t
− ε∆γf = Φ(w3, γf ,d) in Ω0 × (0, T ),

∇γf ·N = 0 on ∂Ω0 × (0, T ),

γf = 0 in Ω0 × {0}.
where µ̂A represent a quantity to be properly tuned for the case under consideration. For
the explicit form of the term Φ(w3, γf ,d) we refer to [18].

2.3 Prestress

The bi-ventricle geometries in the configuration at t = 0 will not be stress–free since we
assume that Ω0 is at telediastole. Therefore, we have to take into account the pressures
pendo,LV (t) and pendo,RV (t) on each endocardium wall exerted by the blood. We recall that
these quantities are always larger than zero during the cardiac cycle. In fact, from medical
measurements (e.g. [8, 37]), one obtains the approximate values in Table 1, corresponding
to an healthy individual. Solving problem (2) with physiological endocardial pressures
pendo,LV > 0 and pendo,RV > 0 would give rise to non-physiological displacements as the
internal stresses are not in equilibrium with the intraventricular blood’s pressure of the
ventricles. We indicate with pendo,LV and pendo,RV the pressure at telediastole and the
stressed ventricles’ configuration is determined in these conditions. To address this issue,
we adapt the method proposed in [18], an extension of the one presented in [24], called
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Site Normal pressure range (in mmHg)

Right ventricular pressure
systolic 15–30
diastolic 3–8

Left ventricular pressure
systolic 100–120
diastolic 3–12

Table 1: Characteristic pressure values in the ventricles.

pressure prestress [47]. We compute an internal stresses distribution such that the refer-
ence geometry is in equilibrium with the blood pressures pendo,LV and pendo,RV both in the
left and in the right ventricles. With this aim we proceed with an additive decomposition
of the strain tensor P̃ = P(d)+P0, where the prestress tensor P0 is determined to ensure
a null displacement d0 in correspondence of the assigned pressures pendo,LV and pendo,RV .

In order to compute P0 according to this approach, we proceed by adapting the method
proposed in [24] to our model by first defining the following mechanical problem:

∇0 ·P(d) = −∇0 ·P0 in Ω0,

(N⊗N)Kη
⊥d + (I−N⊗N)Kη

‖d + P(d) N = 0 on Γη0,

P(d) N = pendo,LV (t)N on Γendo,LV0 ,

P(d) N = pendo,RV (t)N on Γendo,RV0 .

(4)

Moreover, we set

pendo,LVk =
k

S
pendo,LV and pendo,RVk =

k

S
pendo,RV , k = 1, . . . , S,

where S ∈ N is the number of steps of the continuation method that we exploit to gradu-
ally increase the pressure value inside each chamber. We recall that, in our case, the endo-
cardium is subdivided into two ventricles so we need to initialize our pressures taking phys-
iological values for the right and left chamber at telediastole. We can do that since we have
a particular label for each ventricle. We set pendo,LV = 10 mmHg and pendo,RV = 5 mmHg.
Eq. (4) is the steady, passive version of problem (2) with decomposition of the strain ten-
sor. Then, the fixed point iteration described in Algorithm 1 is applied to compute P0.
First, we compute the approximation P̃0 =Prestress(100, 10−2, pendo,LV , pendo,RV ,0)

and finally we set P0 =Prestress(1, 10−5, pendo,LV , pendo,RV , P̃0). The additional step
is performed to require a smaller tolerance when the pressures have already reached a

closer value of the tensor P̃0 to the target. We observe that, while
‖P(dmk ,I)‖∞
‖Pm0,k‖∞

−→ 0 for

m −→ +∞ in Algorithm 1, the displacement dm+1
k does not converge to 0 but to a vector

which we denote by d̂ and will be our initial state for the displacement. However, we
observe that the quantity ‖d̂‖∞ is negligible with respect to the endocardial walls thick-
ness, and that this initial displacement ensures that the prestress is in equilibrium with
the pressure at the epicardium. Therefore, we set d0 = d̂ in (2).
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Algorithm 1 Prestress computation

function Prestress(S, tol,pendo,LV , pendo,RV , P0,0)

for k = 1, . . . , S do

set m = 1, Pm
0,k = P0,k−1;

repeat

obtain dm+1
k by solving problem (4) with

pendo,LV = pendo,LVk = k
S
pendo,LV , pendo,RV = pendo,RVk = k

S
pendo,RV and

P0 = Pm
0,k;

update Pm+1
0,k = Pm

0,k + P
(
dm+1
k , I

)
;

set m = m+ 1;

until
‖P(dmk ,I)‖∞
‖Pm0,k‖∞

< tol

set P0,k = Pm
0,k;

end for

return P0,S

end function

3 Cardiac cycle

For our simulations we will consider a full heartbeat, by taking the conventional duration
of T = 0.8 s. With this aim, we take into account for the fluid-structure interaction of the
endocardium with the blood by modeling the pressures pendo,LV and pendo,RV as in Eq. (4).
Before introducing the models used to describe the behaviour of the blood, we first recall
that the heartbeat of each ventricle is conventionally split into four phases (see Fig. 2):

1. an isovolumic contraction phase (the red one in Fig. 2) in which the endocardial
pressures pendo,RV (t) and pendo,LV (t) increase from the End Diastolic Pressure (EDP)
to the value measured at the pulmonary artery or at the aorta. This increment is
driven by the early stages of the ventricles contraction;

2. an ejection phase (the one in yellow) characterized by a decrement in the ventricular
volumes V endo,LV (t) and V endo,RV (t) due to the contraction of the ventricles. It is
called ejection phase since the contraction forces the blood to flow out from the
ventricular chambers;

3. an isovolumic relaxation (green one) phase during which pendo,LV (t) and pendo,RV (t)
decrease as a consequence of the ventricles early relaxation;

4. a filling phase (purple one) starting with the opening of the tricuspid valve or of the
mitral valve causing an increment of the endocardial volume until pendo,LV (t) and
pendo,RV (t) reach the EDP value.
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Figure 2: The Wiggers diagram of both the left and the right heart depicting the aortic, pul-
monary artery, ventricular, and atrial pressures and the ventricular volume, as well as the four
phases of the cardiac cycle. Image taken from [7].

Before proceeding it is essential to evaluate the behaviour and interaction of the ven-
tricles. The LV and RV are asynchronous, moreover the timing of each phase is strictly
dependent on the ventricle, as we can see in Fig. 3. Finally, we can rewrite the four phases
depicted before to describe the coupled dynamics of the ventricles:

1. we begin with the phase in which both ventricles are in the isovolumic contraction
phase. The right ventricular free wall shortens and moves toward the septum (steps
2, 3 from Fig. 3A), the left ventricular chamber compresses and shortens (steps 1,
2 from Fig. 3B);

2. since the pulmonary valve opens before the aortic one (see Fig. 4), the RV enters
the ejection phase meanwhile the LV is still in the isovolumic phase;

3. the opening of the aortic valve determines the beginning of the ejection phase also
for the LV. At this moment, both the chambers are ejecting blood. The ventricles
keep contracting until there is fluid within;

4. the first valve to close is the aortic one (see Fig. 4) and thus the LV enters in the
second isovolumic phase, meanwhile the RV continues the ejection;

5. when the pulmonary valve closes too both ventricles are in the isovolumic relaxation;
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Figure 3: Timing of the LV and RV phases. Image taken from [7].

Figure 4: Valve movements of the right and left ventricles. Image taken from [7].

6. since the tricuspid valve opening occurs before than the mitral one (see Fig. 4), the
RV is the first to enter the filling phase;

7. during the filling phase both pressures pendo,LV (t) and pendo,RV (t) are increasing until
reaching the EDP value.

Fig. 4 sheds light on the valves’ dynamics in both right and left parts of the human heart.

4 Numerical discretization

We concisely present the numerical discretization of each single continuous core models
introduced in Sec 2. We start with the space semi-discrete formulation and we will end up
with the full time discretization. We perform our numerical coupling through a segregated
algorithm strategy, instead of a monolithic approach.
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4.1 Space discretization

As already noticed, we will approximate each of the single core models in the computa-
tional domain with a space discretization based on the FEM. We consider a mesh com-
posed of tetrahedrons Th, with h representing the maximum size of the elements K ∈ Th,
such that ∪K∈ThK = Ω0; the mesh elements are pairwise disjoint and their union Ω0 ⊂ R3

is the region of the space identified by the myocardium at the telediastolic phase of the
heartbeat. We denote by Ndof

V , Ndof
w , Ndof

d , and Ndof
γf

the number of Degrees of Freedom

(DoF) (i.e. the size of the discretized single core model) for the potential, ionic variables,
displacement, and fibre shortening, respectively. The underlying number of nodes deter-
mined by the mesh Th is indicated as Nh. Firstly we introduce the finite dimensional space
X 1
h =

{
v ∈ C0(Ω0) : v|K ∈ P1(K) ∀K ∈ Th

}
, where P1(K) is the set of polynomials of

degree equal to 1 in the element K.

We denote with {xj}N
dof
w

j=1 the set of the degrees of freedom and the value of the l-th ionic

variable in xj by wlj(t). Similarly, we write Vj(t) = Vh(xj, t), and finally rearrange the

unknowns in the vector wh(t) as wh(t) =
{
wl
h(t)
}NI
l=1

andwl
h(t) =

{
wlj(t)

}Ndof
w

j=1
. Moreover,

we denote by {ψi}
Ndof
V

i=1 the lagrangian basis of X 1
h with Ndof

V = dim (X 1
h ). The projection

of the solution V (t) on the finite element space X 1
h can hence be written as Vh(t) =∑Ndof

V
j=1 Vj(t)ψj and the weak semidiscrete formulation of the problem reads: given wh(t)

and dh(t), find, for all t ∈ (0, T ), Vh(t) such that
MV̇h(t) + K(dh(t))Vh(t) + Iion(Vh(t),wh(t)) = Iapp(t) t ∈ (0, T ),

Vh(0) = V0,h,

ẇh(t) + U(Vh(t))wh(t) = Q(Vh(t)),

wh(0) = w0,h,

(5)

where Mij =
∫

Ω0
ψjψi dΩ0, Kij(dh) =

∫
Ω0

(JF−1
h DmF−Th ∇ψj) ·∇ψi dΩ0, (Iion(Vh,wh))i =∑

q∈{fi,so,si}
∫

Ω0
Iq (Vh,wh)ψi dΩ0, (Iapp(t))i =

∫
Ω0
Iapp(t)ψi dΩ0, (Q(Vh))m = αl(Vj)w

∞
l (Vj),

(U(Vh))mm = αl(Vj) − βl(Vj) and m = l Ndof
w + j, for l = 1, . . . , NI , j = 1, . . . , Ndof

w . We
will use in Eq. (5) a lumped mass matrix ML in place of M in order to avoid numerical
oscillations as presented in [18].

To proceed with the FEM approximation of the momentum equation (2) we denote

by [X 1
h ]3 the finite dimensional subspace of vector valued functions and by {ψi}

Ndof
d

i=1 its
basis. Recall that, in our case, the endocardium splits right and left ventricle chambers,
as defined in Fig. 1, so we have to take into account two different pressure values. Our
semi-discrete formulation for the mechanics reads: given γf,h(t), find, for all t ∈ (0, T ),
dh(t) ∈ [X 1

h ]3 such that:{
ρsMd̈h(t) + Fḋh(t) + Gdh(t) + S(dh(t), γf,h(t)) = pendo,LV (t) + pendo,RV (t) t ∈ (0, T ],

dh(0) = d0,h, ḋh(0) = ḋ0,h,
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where, in particular,

Fij =
∑

η∈{epi,base}

∫
Γη0

(
Cη
⊥(N⊗N) + Cη

‖ (I−N⊗N)
)
ψj ·ψi dΓ0,

Gij =
∑

η∈{epi,base}

∫
Γη0

(
Kη
⊥(N⊗N) +Kη

‖ (I−N⊗N)
)
ψj ·ψi dΓ0,

and

Si(dh(t), γf,h(t)) =

∫
Ω0

P(dh, γf,h) : ∇0ψi dΩ0.

Finally, we once again use the FEM to discretize in space the equation for the unknown
γf : given ch(t) and dh(t), find, for all t ∈ (0, T ), γf,h(t) ∈ Xh such that{

Mγ̇f,h(t) + εK(c(t))γf,h(t) + Φ(c(t),γf,h(t),d(t)) = 0 t ∈ (0, T ],

γf,h(0) = 0.

4.2 Time discrezation

We naturally proceed with the time discretization of each spatially discretized core model,
in the form of a non-linear system of ODEs. Following the notation defined in [18] we
denote by z = (zw, zV , zγf , zd)T the block vector containing the unknowns of each single
core problem and we write:

Mz(t) + T(z(t)) = h(t) t ∈ (0, T ],

z(0) = z0,

żd(0) = ḋ0,h,

(6)

where we define the differential operator

M = diag

(
d

dt
,

d

dt
,

d

dt
,

d2

dt2

)
,

This operator permits us to apply a first order time derivative to the ionic variables, the
transmembrane potential and the fibres shortening, while a second order time derivative
to the displacement. We use the BDF for the time approximation of Eq. (6), in order to
obtain a fully discretized formulation. Hence, we write:

żi(t
n+1) ≈ 1

∆t

(
ϑ

(I)
0 zn+1

i − zRHSi

)
, zRHSi =

σ∑
k=1

ϑ
(I)
k z

n−k+1
i ,

z̈i(t
n+1) ≈ 1

(∆t)2

(
ϑ

(II)
0 zn+1

i − zRHSi

)
, zRHSi =

σ+1∑
k=1

ϑ
(II)
k zn−k+1

i ,

where ∆t = T
NT

is the timestep, NT being the number of timesteps, while the parameters

ϑ
(I)
k , ϑ

(II)
k , k = 0, . . . , σ depend on the order σ of the BDF scheme. We will in particular use

BDF of order σ = 2. For the electrophysiology we use a semi-implicit scheme. However,
for the mechanical part, we proceed with an implicit scheme.
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Figure 5: Graphical representation of the time advancement. Image taken from [19].

Eventually, in the implicit case, we obtain the following non-linear system:

A(zn+1) = bn+1 n = σ, . . . , NT − 1, (7)

with zk assigned for k = 0, . . . , σ and we set for simplicity ḋ0,h = 0. Problem (7) is solved
by exploiting the Newton method [36] at each timestep.

4.3 Fully segregated strategy

We proceed by solving a fully segregated scheme proposed in [19], instead of the previous
monolithic approach used in [4] for the same electromechanical model of both ventricles.
In Fig. 5 we graphically represent the time advancement. During each timestep tn, the
algorithm performs in order, for m = 1, ..., Nsub, the following steps:

1. find w
n+ m

Nsub by solving (I):(
ϑI

0

∆t
+ U(v)

)
w
n+ m

Nsub =
1

τ
wI + Q(v); (8)
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2. use w
n+ m

Nsub , obtained from Eq. 8, to find v
n+ m

Nsub by solving (E):(
ϑI

0

∆t
M + K(d) + Iionv (v,w

n+ m
Nsub )

)
v
n+ m

Nsub

=
1

τ
MvIIion(v,w

n+ m
Nsub )− Iionw (v,w

n+ m
Nsub )w

n+ m
Nsub + MIapp(t

n+ m
Nsub );

(9)

3. use w
n+ m

Nsub and v
n+ m

Nsub , obtained from Eq. 8 and Eq. 9, to find γ
n+ m

Nsub
f by solving

(A): (
ϑI

0

∆t
M + εK(w

n+ m
Nsub ) + Pγfv (w

n+ m
Nsub ,γf ,d)

)
γ
n+ m

Nsub
f

=
1

τ
MγIf + Φ(w

n+ m
Nsub ,γf ,d);

(10)

After Nsub steps, we solve at tn+1, with the Newton method, the implicit mechanics
problem (M): (

ρs
ϑII

0

(∆t)3
M +

ϑI
0

∆t
F + G

)
dn+1 + S(dn+1,γn+1

f )

= ρs
1

(∆t)3
MdII +

1

∆t
FdI + pendo(tn+1)− S0;

(11)

We decided to use a staggered strategy since this has mainly two advantages that result
in a faster computational solution of our problem. First, in a monolithic scheme, the time
advancement must be carried out using the same timestep size ∆t for all the core models
involved. Therefore, the small timestep size required by the electrophysiology is going
to be used for the mechanics too, thus solving the latter more often than “necessary”.
Second, we will need both a large amount of memory since we have to store a highly dense
Jacobian matrix and processes to assemble it. In order to overcome these issues, we follow
a segregated algorithm exploiting the Godunov splitting scheme [20]. The latter consists
of properly uncoupling the core problems solving the final system in two consecutive steps
at each timestep.

4.4 Discretization of the cardiac cycle

We can now proceed with the description of the models used to reproduce the pressure
and volume behaviour inside the ventricles. We will adapt the procedure presented only
for the left ventricle in [18] to the case of both the ventricles. As we have seen rewriting
the four phases for the bi-ventricle, we have to define a model which has to be able to take
into account the fact that the ventricles are not aligned during the cardiac cycle, thus
they can be in different phases modelled in a completely distinct way. We compute the
volumes V endo,LV (t) and V endo,RV (t) of each chamber at time n by exploiting the formula

V endo,LV ; n =

∫
Γendo,LV0

J(dnh)ξLV · F−T (dnh)N dΓ0, (12)

V endo,RV ; n =

∫
Γendo,RV0

J(dnh)ξRV · F−T (dnh)N dΓ0, (13)
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which is rigorously derived in [38] and where ξLV and ξRV are vectors directed as the
centerline of, respectively, the LV and RV. We point out that the formulas 12 and 13 are
valid only in the case in which the base is flat and orthogonal to the centerline.

We then model the endocardial pressures pendo,LV (t) and pendo,RV (t) with different 0D
models, proposed in [13, 18, 38, 48], for each one of the phases presented above (in the
following, we drop the “endo” superscript for simplicity and we leave “LV ” or “RV ”
depending on the ventricle):

1. Both ventricles in isovolumic phase: We assume that both ventricles begin this
phase at t = 0. At the beginning the endocardial pressures are pLV = 10 mmHg
and pRV = 5 mmHg. At each timestep, we update the pressure in the following
manner:

pi,n+1
k+1 = pi,n+1

k − ∆t

ζ i
(V i,n+1

k − V i,n) k = 0, . . . (14)

here we iterate on k until convergence, with pi,n+1
0 = pi,n, V i,n+1

0 = V i,n, i ∈
{LV,RV }, until the condition

|V i,n+1
k −V i,n|

∆t
< ε is satisfied. The parameter ζ i < 0 has

to be tuned, it has to be “sufficiently” large in order for the fixed point algorithm to
converge but small “enough” to allow a quick convergence.The first ventricle to start
the second phase is the right one, this happens when the pressure pRV,n+1

k+1 reaches

the value pRV = 15 mmHg.

2. RV in ejection phase and LV in isovolumic: For the RV ejection phase we will use
a two-element Windkessel model [50] of the form:C

RV dp
RV

dt
= − p

RV

RRV
− dV RV

dt
t ∈ (TRV,1, TRV,2]

pRV (TRV,1) = pRV

(15)

which is solved in the pressure variable, for simplicity, with a BDF scheme of order
σ = 1 while the term dV RV

dt
is approximated at time n + 1 as V RV,n−V RV,n−1

∆t
, for

simplicity. TRV,1 and TRV,2 are the initial and final time of this phase, for the right
ventricle in this case, while the parameters CRV , RRV > 0 represent the capacitance
and resistance of the equivalent electric circuit respectively. At the same time the
left ventricular pressure keeps increasing till it reaches the value pLV = 85 mmHg.

3. Both ventricles in ejection phase: Here both the pressures are updated through the
Windkessel model: C

idp
i

dt
= − p

i

Ri
− dV i

dt
t ∈ (T i,1, T i,2]

pi(T i,1) = pi
(16)

where i ∈ {LV, RV }. This phase ends when the (initially negative) term dV LV

dt

changes sign.

4. LV in isovolumic and RV in ejection phase: The second isovolumic phase for the
left ventricle is modelled as the first isovolumic phase. Meanwhile, the RV ejection
continues until the (initially negative) term dV RV

dt
changes sign.
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Figure 6: The biventricle 3D mesh.

5. Both ventricles in isovolumic phase: This phase is modelled as the first isovolumic
phase and ends when the right ventricular pressure reaches the minimal value of

pRV = 5 mmHg.

6. RV in filling and LV isovolumic phase: At each time step the right ventricular
pressure is, for simplicity, linearly increased so that is reaches the EDP value at the

final time T . The LV isovolumic phase finishes when pLV = 5 mmHg.

7. Both ventricles in filling phase: At each time step the pressures are linearly increased
so that they reach the EDP value at the final time T .

We have here presented an adaptation of a model previously proposed for the left ventricle
only [19], to the bi-ventricle case, in which the behaviour and the implementation of the
various phases of the heartbeat are asynchronous.

5 Patient–specific mesh and fibres generation

Our geometry has been generated by image segmentation. We will take advantage of a
complete human heart atlas presented in [23]. Since we are interested in modelling only
the ventricles, we have extracted them from the whole heart, so obtaining the patient-
specific mesh presented in Figure 6 with 7’718 vertices and 27’636 tetrahedra.

To generate the fibres configuration we follow the Laplace–Dirichlet Rule-Based (LDRB)
algorithm of [6], which is derived from histological and DTI data. The algorithm con-
sists in extracting the transmural and apicobasal directions throughout the entire my-
ocardium solving four Laplace equations with prescribed Dirichlet boundary conditions.
The orthotropic fibers direction is obtained by a continuous interpolation throughout the
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σt σl λepi λendo kepi kendo k
′

α c0 µ̂1
A µ̂2

A µ̂3
A µ̂4

A ρ
17.61 120.4 0.8 0.5 0.75 1.0 -7.0 -5.0 0.05 2.1 7.0 12 500 10−3

Kepi,LV
⊥ Kepi,RV

⊥ Kbase
⊥ Kepi,LV

‖ Kepi,RV
‖ Kbase

‖ Cepi,LV
⊥ Cepi,RV

⊥ Cbase
⊥ Cepi,LV

‖
12 13 1700 0 0 10−4 5 5 1 0

Cepi,RV
‖ Cbase

‖ CLV,I
p CLV,II

p CRV,I
p CRV,II

p CLV RLV CRV RRV

0 0 -0.045 -0.06 -0.005 -0.06 3.5 0.035 6.0 0.01

Table 2: Parameters used in the electromechanical simulation: transversal and longitudi-
nal conductivities (mm

2

s
); transmurally heterogeneous wall thickening model parameters

in Eq. (2.2); activation model coefficients α (µM−2), c0, and µ̂A (µM2 · s) in the four
cardiac phases in Eq. (2.2); density ρ ( g

mm3 ); Robin boundary condition coefficients (kPa
mm

and kPa·s
mm

) in Eqs. (2) - (3); bulk modulus B (kPa), relaxation parameter for the two
isochoric phases CI

p and CII
p ( kPa

mm3 ) in Eq. (14); Windkessel model parameters C and R

(mm
3

kPa
and kPa·s

mm
) in Eq. (16).

myocardium passing through a straight-forward adaptation of quaternion spherical linear
interpolation. Following the fibres orientation presented in [3], for a similar patient-specific
bi-venticle geometry, we take different settings for αendo, αepi, βendo and βepi, these will
result similar to the one found in human ventricles (see for examples the fibres obtained
in [49]):

1. αendo = 60◦, αepi = −60◦, βendo = 90◦, βepi = 80◦;

2. αendo = 55◦, αepi = −55◦, βendo = 90◦, βepi = 80◦;

3. αendo = 65◦, αepi = −65◦, βendo = 90◦, βepi = 80◦;

4. αendo = 70◦, αepi = −70◦, βendo = 90◦, βepi = 80◦.

By applying this method with the first set of angles to our geometry we obtain fibres
and sheets displayed in Figure 7.

6 Numerical results

For our numerical simulations we employ LifeV1, an open–source finite element library. We
apply the numerical methods implemented in a High Performance Computing framework
and the computation are performed using Piz Daint, a Cray XC50/XC40 supercomputer
installed at the Swiss National Supercomputing Center (CSCS)2. In Tab. 2 we present
the common parameters used throughout the electromechanical simulations.

We trigger the contraction of the ventricles simulating the propagation of the cardiac
action potential along the myocardium. In physiological conditions the electrical wave
follows the pathways prescribed by the fast conducting Purkinje fibres. To model this

1https://www.lifev.org/
2https://www.cscs.ch/
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Figure 7: Fibres (top) and sheets (bottom) on patient-specific mesh with angles αendo = 60◦,
αepi = −60◦, βendo = 90◦, βepi = 80◦.

behaviour we decided to set delayed stimuli in five points in the bi-ventricle. The first
stimulus is set at t = 0 ms at the centre of the septum, followed by an impulse next to
the apex of each ventricle at t = 2.5 ms and one at the upper part of each free wall at
t = 5.0 ms. In Figure 8 we can see the spreading of the transmembrane potential along
the myocardium at different time steps.

The electrical activation causes consequent changes in the Ca2+ concentration result-
ing in mechanical stretching. We can notice how in Figure 9 the ion concentration and/or
the fraction of open ionic channels on the cellular membrane follows clearly the trans-
membrane potential spreading along the cardiac tissue.

The presence of calcium in the myocardium drives the mechanical activation and the
consequent contraction and relaxation. In Figure 10 we present the time evolution of both
endocardial pressure and ventricular internal volume together with the pressure-volume
(pV) loops using different fibre setting.

Furthermore, we decided to show the End Systolic Pressure-Volume Relationship (ES-
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Figure 8: Spreading of the action potential along the myocardium. From left to right the
screenshots are taken at t = 2.0 ms, t = 3.7 ms and t = 6.4 ms.

Figure 9: Ca2+ concentration at t = 2.9 ms, t = 4.3 ms and t = 6.9 ms.

PVR), a feature representing the end-systolic elastance or inotropy, which provides a
measure of the tissue contractility. This quantity is computed as the ratio between the
ventricular pressure and volume at the end of the systolic phase. It can be easily evaluated
as the slope of the tangent in the upper left corner of the pV loop. In Figure 11 we find the
pV loops together with the value of ESPVR of the left ventricle. It is worth to notice the
effect of varying the fibre orientation on the slope of the ESPVR. We obtained the flattest
slope with a fibre direction of 60°, -60°, this means that we have a decreased inotropy and
so less contractility. All the other settings showed a steeper ESPVR, therefore varying
the fibre orientation resulted in an increased contractility.

Additionally, we wanted to see how an increasing bulk would affect the pressure and
volume evolution along the heart beat, having the same fibre direction (in this case we
chose 60, -60). In Figure 12 we therefore report the pV loops and the bi-ventricle pres-
sure/volume changes with three different bulk values (B = 1, B = 1.5 and B = 2). We
highlight in Figure 13 the behaviour of the ESPVR with respect to the bulk modulus. As
we expected, a lower bulk results in an increased contractility, since we are enforcing less
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Figure 10: Evolution of pressures and volumes vs time and pV loops for different fibres settings.

Figure 11: The pV loops and the ESPVR for different fibres settings.
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Fibre setting
-55°, 55° -60°, 60° -65°, 65° -70°, 70°

SVLV [ml] 60.1 60.2 60.5 61.1
SVRV [ml] 49.7 50.6 50.0 49.9

EFLV 45.2% 45.2% 45.5% 46.0%
EFRV 39.8% 40.6% 40.0% 40.0%

ESPVR [mmHg/ml] 1.64 1.58 1.63 1.69

Table 3: SV and EF for both left and right ventricles and ESPVR for the left ventricle
for different fibre setting.

B
1 1.5 2

SVLV [ml] 60.2 60.4 60.5
SVRV [ml] 50.6 50.5 50.3

EFLV 45.2% 45.4% 45.5%
EFRV 40.6% 40.4% 40.3%

ESPVR [mmHg/ml] 1.58 1.57 1.53

Table 4: SV and EF for both left and right ventricles and ESPVR for the left ventricle
for different bulk values.

our incompressibility constraint.
Other important quantities that are commonly exploited in clinical practice are stroke

volume (SV) and ejection fraction (EF). The SV is computed by taking the difference
between end-systolic volume (ESV) and end-diastolic volume (EDV) for a given ventricle.
The EF is simply obtained dividing the SV with the EDV. In formula:

SV = EDV− ESV, EF =
SV

EDV
.

In Table 3 and 4 we report the values of SV, EF and ESPVR for the different fibre
settings and the various bulk values. We notice how for LV the EF is increasing by varying
the fibre direction from -55°, 55° to -70°, 70°. However, we obtained the highest value of
EF for the right ventricle with a fibre orientation of -60°, 60°. From the simulations
keeping fixed the fibres and changing the bulk value, we noticed an opposite behaviour
happening in the two ventricles. Incrementing the bulk value resulted in a higher EF in
LV and a smaller EF in RV.

7 Conclusions

In this work, we successfully implemented a segregated method for the electro-mechanical
modelling of both human ventricles in which we exploited a transversal and isotropic
model for the mechanical activation. We simulated one full heartbeat in a bi-ventricular
geometry varying both active and passive mechanical parameters, such as fibre orientation
and bulk, realizing pressure-volume loops.
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Figure 12: Evolution of pressures and volumes over time and pV loops for different bulk values.

Figure 13: The pV loops and the ESPVR for different bulk values.
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We simulated the action potential propagation across the myocardium solving the
monodomain equation coupled with the minimal ionic model. This leads to mechanical
activation and contraction along the fibres following the action strain approach. We
prestressed the geometry and solved a 0D circulatory models to take into account the
blood-endocardium interaction.

We modelled a full heartbeat taking into consideration that the ventricles are asyn-
chronous between each other, as a consequence each phase of the cardiac cycle is depen-
dent on the ventricle. This complex joint behaviour is mutually influencing both ventricles
through the septum. Future works should better address the filling stages to represent
the full heartbeat in a detailed fashion including in the model both atria and the muscle
contraction.

We performed our numerical simulations in a patient-specific geometry obtaining re-
sults qualitatively comparable with physiological data in healthy patients. Furthermore,
we showed how changing fibres and bulk values influenced the pressure and volume evo-
lutions over time of both ventricles in a different way. It is therefore important to know
precisely the fibre direction when we would like to run patient-specific electro-mechanical
simulations, since this is going to affect essential quantities as stroke volume and ejection
fraction, commonly used by clinicians when checking the functioning of patients’ heart.
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[45] A. Tagliabue, L. Dedè, and A. Quarteroni. Complex blood flow patterns in an
idealized left ventricle: a numerical study. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 27(9):093939, 2017.

26
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