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Abstract

In this paper we review some recent applications of the mimetic fi-
nite difference method to nonlinear problems (variational inequalities and
quasilinear elliptic equations) and optimal control problems governed by
linear elliptic partial differential equations. Several numerical examples
show the effectiveness of mimetic finite differences in building accurate
and robust numerical approximations. Finally, we draw some conclusions
highlighting possible further applications of the mimetic finite difference
method to nonlinear Stokes equations and shape optimization problems.
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1 Introduction

Nowadays, the mimetic finite difference (MFD) method has become a very pop-
ular numerical approach to successfully solve a wide range of problems. This
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is undoubtedly connected to its great flexibility in dealing with very general
polygonal meshes and its capability of preserving the fundamental properties of
the underlying physical and mathematical models (for a very restricted list see,
for instance, [7–9,12,13,15–18,23] and the review paper [24] for a detailed intro-
duction of the MFD method). The aim of this paper is to review some recent
applications of the MFD method to nonlinear problems (variational inequalities
and quasilinear elliptic equations) and constrained control problems governed
by linear elliptic PDEs. In particular, we will show through several numerical
examples the efficacy of mimetic finite differences in building accurate and ro-
bust numerical approximations. This is of paramount importance due to the
ubiquitous presence of nonlinear and control problems in applied and industrial
problems.

The outline of the paper is the following. In the next section we collect
some useful notation and assumptions that will be employed throughout the
paper. In Section 3 we consider the mimetic finite difference approximation of
the obstacle problem, a paradigmatic example of variational inequality, while in
Section 4 we consider the performance of the MFD method in approximating
quasilinear elliptic problems. In Section 5 we turn the attention to the mimetic
approximation of optimal control problems governed by linear elliptic equations.
Finally, in Section 6 we highlight possible further applications of the MFD
method to nonlinear Stokes equations and shape optimization problems, while
in Section 7 we draw some conclusions.

2 Mesh assumptions and degrees of freedom

The aim of this section is to introduce some notation and the mesh assumptions,
and to define the degrees of freedom for the discrete approximation spaces we
are going to introduce later on. Throughout the paper, we will follow the
usual notation for Sobolev spaces and norms (see e.g. [20]). Moreover, for any
subset D ⊆ R

2 and non-negative integer k, we indicate by Pk(D) the space of
polynomials of degree up to k defined on D. Finally, we will use the symbol .
to indicate an upper bound that holds up to a positive multiplicative constant
independent of h.

2.1 Mesh assumptions

Let Ω be a regular enough two-dimensional domain, and let Ωh be a non-
overlapping partition of Ω into, possibly non-convex, polygonal elements E with
granularity h = supE∈Ωh

hE , being hE the diameter of E ∈ Ωh. We denote by
N ◦

h and N ∂
h the sets of interior and boundary mesh vertices, respectively, and

set Nh = N ◦
h ∪N

∂
h . Proceeding as in [12] we also assume the following.

Assumption 2.1 (Mesh regularity assumptions) There exist an integer num-
ber N and a shape regularity constant, both independent of h, such that for every
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element E ∈ Ωh it exists a compatible sub-decomposition T E
h with at most N

shape-regular triangles.

We point out that Assumption 2.1 only requires the existence of a compatible
sub-mesh that does not have to be constructed in practice. Moreover, it is easy
to check that Assumption 2.1 guarantees that the following mesh regularity
properties are satisfied

i) There exists Ne > 0 such that every element E has at most Ne edges;

ii) There exists γ > 0 such that for every element E and for every edge e of
E, it holds |e| ≥ γhE , where |e| is the length of e;

iii) For every E ∈ Ωh and for every edge e of E, the following trace inequality
holds

‖ψ‖2L2(e) . h−1
E ‖ψ‖

2
L2(E) + hE |ψ|

2
H1(E) ∀ψ ∈ H1(E).

2.2 Degrees of freedom for scalar and vector fields

In the following we will require to discretize scalar fields in H1(Ω) and L2(Ω),
as well as vector fields in H(div,Ω). Therefore, the scope of this section is to
introduce the corresponding finite dimensional spaces Vh, Qh, and Xh together
with suitable interpolation operators from the continuous spaces to the associ-
ated discrete ones, and set up some notation.

We start defining the finite dimensional space Vh aiming at approximating
the elements of H1(Ω). Every discrete function vh ∈ Vh is a vector of real
components vh = {vv}v∈Nh

one per mesh vertex, so that the dimension of Vh
equals to the numbers of vertices of the mesh Ωh. We also define V g

h as the subset
of Vh consisting of functions satisfying a Dirichlet-type boundary condition

V g
h = {vh ∈ Vh : vvh = g(v) ∀v ∈ N ∂

h },

with g a given smooth enough function. Accordingly, V 0
h represents the space

of discrete functions vanishing at the boundary nodes.
The space Vh is endowed with the following discrete seminorm

‖vh‖
2
1,h =

∑

E∈Ωh

‖vh‖
2
1,h,E =

∑

E∈Ωh

|E|
∑

e∈Eh

e⊂∂E

[

1

|e|
(vv2 − vv1)

]2

, (1)

which becomes a norm in V 0
h . Here v1 and v2 are the two endpoints of e ∈ Eh,

and |E| is the area of the element E ∈ Ωh.
We define the following interpolation operator from the space C0(Ω)∩H1(Ω)

into the discrete space Vh. For any v ∈ C
0(Ω) ∩H1(Ω), vI ∈ Vh is defined as

vvI = v(v) ∀ v ∈ Nh. (2)
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Notice that, under Assumption 2.1, the above interpolation operator satisfies
classical approximation estimates, see [3]. The local version of the operator (2)
is defined accordingly. That is, for any v ∈ C0(E) ∩H1(E), vI ∈ Vh|E is given
by

vvI = v(v) ∀ v ∈ NE
h ,

with NE
h the set of vertices of the polygon E ∈ Ωh.

Next we introduce the discrete space Qh describing the degrees of freedom
associated to a scalar field in L2(Ω). Every discrete function qh ∈ Qh is a vector
of real components one per mesh cell, so that the dimension of Qh equals the
number of polygons in Ωh. That is, for qh ∈ Qh we have qh = {qE}E∈Ωh

, with
qE ∈ R the value of the discrete variable associated to the polygon E ∈ Ωh.

We endowed Qh by the following scalar product

[ph, qh]Qh
=

∑

E∈Ωh

|E|pEqE ∀ ph, qh ∈ Qh, (3)

and denote by ‖ · ‖Qh
the induced norm, i.e.,

‖ph‖
2
Qh

= [ph, ph]Qh
∀ ph ∈ Qh. (4)

Notice that (3) coincide with the L2(Ω) scalar product for piecewise constant
functions.

For further use, we also introduce the following operator from L1(Ω) onto
Qh

qI|E =
1

|E|

∫

E

q dV ∀E ∈ Ωh ∀ q ∈ L1(Ω), (5)

Finally, we introduce the finite dimensional space Xh aiming at approximat-
ing the elements of H(div,Ω). In order to completely describe a vector field
Gh ∈ Xh, we associate to any mesh edge e ∈ Eh a real number Ge ∈ R, so that
for Gh ∈ Xh, we have Gh = {Ge}e∈Eh

. Clearly, the dimension of Xh is equal to
the cardinality of Eh.

The scalar product in Xh is defined by assembling elementwise contributions
from each element, i.e.,

[Fh, Gh]Xh
=

∑

E∈Ωh

[Fh, Gh]E ∀Fh, Gh ∈ Xh, (6)

where the precise definition of [·, ·]E will made be clear later on. The space Xh

is equipped with the induced norm i.e..

‖Fh‖
2
Xh

= [Fh, Fh]Xh
∀Fh ∈ Xh,

For any edge e ∈ Eh, we denote by ne the unit normal vector to e ∈ Eh fixed
once and for all, and define the projection operator from H(div,Ω) ∩ [Ls(Ω)]2,
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s > 2, onto Xh as follows

GI|e =
1

|e|

∫

e

G · ne dS ∀ e ∈ Eh ∀G ∈ H(div,Ω), (7)

Finally, we define the discrete divergence operator form the space Xh onto
Qh

DIVh : Xh → Qh DIVh(Gh)|E =
1

|E|

∑

e⊆∂E

|e|GE
e
∀E ∈ Ωh, (8)

where GE
e

= Gene · n
E
e
∈ R and nE

e
is the unit normal vector to e pointing

outward to E ∈ Ωh. It is immediate to check that DIVh(GI) = (div G)I for
all sufficiently regular vector fields G, where the first interpolation is in Xh and
the second in Qh.

The local bilinear forms (6) are defined as in [14] and satisfy the following
two conditions:

(S1) Continuity and coercivity : For any E ∈ Ωh, it holds
∑

e⊆∂E

|E|(GE
e
)2 . [Gh, Gh]

2
E .

∑

e⊆∂E

|E|(GE
e
)2 ∀Gh ∈ Xh.

(S2) Local consistency : for every linear function q1 on E ∈ Ωh, it holds

[(∇q1)I, Gh]E +

∫

E

q1DIVh(Gh) dV =
∑

e⊆∂E

GE
e

∫

e

q1 dS ∀Gh ∈ Xh.

3 The obstacle problem

The aim of this section is to show that MFD methods can be successfully ap-
plied to discretize variational inequalities. To this aim we consider the simplest
example, namely the obstacle problem which consists in finding the equilibrium
position of an elastic membrane whose boundary is held fixed, and which is
constrained to lie above a given obstacle. In the next Section we recall the con-
tinuous problem, then Section 3.2 is devoted to present the MFD discretization
and the approximation results and finally Section 3.2 presents some numerical
computations. Throughout this Section we will assume that the computational
domain Ω is an open, bounded, convex set of R2, with either a polygonal or a
C2-smooth boundary.

3.1 Continuous problem

Let ψ ∈ H2(Ω) a given function that satisfies ψ ≤ g on ∂Ω, where g is the trace
of a given function in H2(Ω), and let K be the convex set defined as

K = {v ∈ H1(Ω) : v = g on ∂Ω and v ≥ ψ a.e. in Ω}.
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The obstacle problem can be written as the following variational inequality:

Find u ∈ K such that a(u, v − u) ≥ F (v − u) ∀v ∈ K, (9)

respectively, where the bilinear form a(·, ·) : H1(Ω) × H1(Ω) −→ R and the
linear functional F (·) : H1(Ω) −→ R are defined as

a(u, v) =

∫

Ω

∇u · ∇v dV , F (v) =

∫

Ω

f v dV , (10)

with f ∈ L2(Ω) a given function. It can be shown that under the above data
regularity assumption, the elliptic obstacle problem (9) admits a unique solution
u ∈ H2(Ω), see e.g. [11] and [26, Corollary 5:2.3].

3.2 Discrete problem and convergence

We denote by ah(·, ·) : Vh×Vh → R the discretization of the bilinear form a(·, ·),
defined as follows:

ah(vh, wh) =
∑

E∈Ωh

aEh (vh, wh) ∀ vh, wh ∈ Vh, (11)

where aEh (·, ·) : Vh|E × Vh|E → R are symmetric bilinear forms built on each
element E ∈ Ωh in such a way that the following properties are satisfied [12]

(S1) Continuity and coercivity : For every uh, vh ∈ Vh and each E ∈ Ωh, we
have

‖vh‖
2
1,h,E . aEh (vh, vh), aEh (uh, vh) . ‖uh‖1,h,E‖vh‖1,h,E .

(S2) Local consistency : For every element E, every function q1 ∈ P
1(E), and

every vh ∈ Vh, it holds

aEh (vh, (q
1)I) =

∑

e∈EE
h

(∇q1 · ne

E)
|e|

2

(

vv1h + vv2h
)

,

where v1 and v2 are the two vertices of e ∈ Eh.

The meaning of the above consistency condition (S2) is that the discrete bilin-
ear form respects integration by parts when tested with linear functions. The
discretization of the load term is defined as

(f, vh)h =
∑

E∈Ωh

f |E

kE
∑

i=1

vviωi
E , (12)

where v1, . . . , vkE
are the vertices of E, ω1

E , . . . , ω
kE

E are positive weights such

that
∑kE

i=1 ω
i
E = |E|, and

f |E =
1

|E|

∫

E

f dV .
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Finally, we are able to define the proposed MFD method for the obstacle
problem (9). Indeed, let us introduce the discrete convex space

Kh = {vh ∈ V
g
h : vvh ≥ ψ(v) ∀v ∈ Nh};

then the mimetic discretization of problem (9) reads:

Find uh ∈ Kh such that ah(uh, vh − uh) ≥ (f, vh − uh)h ∀vh ∈ Kh. (13)

It can be shown that problem (13) admits a unique solutions. Indeed, from
property (S1), it is immediate to infer that the bilinear form ah(·, ·) is coercive
on Vh/R. Then, the well posedness of (13) follows recalling that Kh ⊂ Vh is
convex and closed, and using standard results [20]. The following convergence
result has been proved in [3].

Theorem 3.1 Let u ∈ K∩H2(Ω) be the solution to the continuous problem (9),
and uh ∈ Kh be the corresponding mimetic approximation obtained by solving
the discrete problem (13). Then, it holds

‖uh − uI‖1,h . h.

3.3 Numerical results

We set Ω = (−1, 1)2 and consider a variant of the example presented in [3]. Let
ψ(x, y) = 0, and choose as exact solution of model problem (9)

u(x, y) = (max{x2 + y2 − r2, 0})2, (14)

with r ∈ (0, 1) a parameter at our disposal. Figure 1 depicts the minimizer u
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Figure 1: Obstacle problem. Exact solution u given in (14), r = 0.3, and the
obstacle ψ = 0.

given in (14) together with the obstacle ψ in the case r = 0.3. The corresponding
load f(·, ·) is given by

f(x, y) =

{

− 8(2x2 + 2y2 − r2) if
√

x2 + y2 > r,

− 8r2(1− x2 − y2 + r2) if
√

x2 + y2 ≤ r,
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and the Dirichlet boundary data g(x, y) = (x2+y2−r2)2. The obstacle problem
(9) has been solved numerically by the Projected Successive Over Relaxation
(PSOR) method (see [3] for more implementation details).

(a) Quadrilateral meshes. Refinement levels ℓ = 1, 2, 3

(b) Media type-1 meshes. Refinement levels ℓ = 1, 2, 3

(c) Media type-2 meshes. Refinement levels ℓ = 1, 2, 3

Figure 2: Samples of quadrilateral, median-type 1 and median-type 2 decompo-
sitions of Ω = (−1, 1)2. From left to right: refinement levels ℓ = 1, 2, 3.

We have consider sequences of quadrilateral, median-type 1 and median-type
2 of decompositions as those shown in Figure 2 for the first three refinement
levels ℓ = 1, 2, 3. In Table 1 we report the errors ‖uI − uh‖1,h measured in
the discrete energy norm defined in (1) for the considered sequence decompo-
sitions. In the last row of Table 1 we also report the computed convergence
rates obtained by the linear regression algorithm. We can observe that on all
the sequences of meshes a linear convergence rate is observed as predicted by
Theorem 3.1. We refer to [4] for more numerical experiments including the
numerical performance of an adaptive MFD method driven by a hierarchical a
posteriori error estimator similar to the one proposed in [2].
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Table 1: Obstacle problem. Computed errors ‖uI − uh‖1,h on the sequence of
quadrilateral, median-type 1 and median-type 2 decompositions.

Refinement level quadrilateral median-type 1 median-type 2

ℓ = 1 6.67435e-2 1.57514e-1 1.57514e-01

ℓ = 2 6.04445e-2 6.71848e-2 6.20040e-02

ℓ = 3 2.18688e-2 4.99534e-2 4.36785e-02

ℓ = 4 1.04561e-2 2.55444e-2 1.95246e-02

ℓ = 5 5.15400e-3 1.05753e-2 7.49375e-3

rate 0.99210 1.02879 1.04544

4 Quasilinear elliptic problems

The aim of this section is to show that the MFD method can be successfully
employed to discretize quasilinear elliptic equations (see also, e.g., [1,10] for the
finite volume approximation of nonlinear problems). In the following, we will
recall the model problem under investigation, and its MFD discretization. The
theoretical results reported below will also be validated by means of numerical
experiments.

4.1 Continuous problem

In this section, we discuss the application of the MFD method for the ap-
proximation of the solution to the following quasilinear elliptic problem: Find
u ∈ H1

0 (Ω) such that

b(u;u, v) = F (v) ∀ v ∈ H1
0 (Ω), (15)

where f ∈ L2(Ω) is given function, F (·) is defined as in Section 10, and b(·; ·, ·)
is a semilinear form defined as follows

b(u; v, w) =

∫

Ω

κ(|∇u|2)∇v · ∇w dV ∀u, v, w ∈ H1
0 (Ω). (16)

The nonlinearity κ : R+ −→ R
+ appearing in (16) is assumed to satisfy the

following assumptions

i) κ(·) is continuous over [0,+∞);

ii) there exist two positive constants k∗, k
∗ such that:

k∗(t− s) ≤ κ(t
2)t− κ(s2)s ≤ k∗(t− s) ∀ t > s ≥ 0.
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Among all the functions that satisfy the above conditions, we are particularly
interested in the Carreau law

κ(t) = η∞ + (η0 − η∞)(1 + λt)
p−2

2 , t ≥ 0, (17)

with η0 ≥ η∞ > 0, λ > 0 and p ∈ (1, 2). We recall that a fluid that obeys
to a Carreau law is a type of generalized quasi-Newtonian fluid where viscos-
ity depends upon the shear rate. For example, the rheologic behavior of many
polymeric fluids or rubber-like liquids are frequently described in engineering lit-
erature by the Carreau law. Next, we briefly discuss the mimetic approximation
of problem (15) and we refer to [6] for a more detailed discussion.

4.2 Discrete problem and convergence

Let us introduce an admissible partition Ωh of the domain Ω, as explained in
Section 2. In order to introduce a mimetic discretization of problem (15), we
first consider the restriction of the form (16) on each element E ∈ Ωh, i.e.,

bE(u; v, w) =

∫

E

κ(|∇u|2)∇v · ∇w dV ∀u, v, w ∈ H1(E). (18)

Observe that, whenever ϕ ∈ P
1(E), the local form bE(ϕ; ·, ·) can be rewritten

as

bE(ϕ; v, w) = κ(|∇ϕ|2)

∫

E

∇v · ∇w dV ∀ϕ ∈ P
1(E) ∀ v, w ∈ H1(E).

In view of the above relation, a MFD discretization of (18) can be obtained
once that a suitable discrete approximation of the nonlinear term κ(·) and of
the integral term

∫

E
∇v ·∇w dV are available. For the latter, we proceed exactly

as in Section 3.2, by introducing the bilinear form (11) over the space Vh defined
in Section 2.2. Therefore, we only have to discuss the MFD discretization of the
nonlinear term κ(·) within each element E ∈ Ωh. Let us introduce the following
operator

GEh : V E
h −→ R

+ GEh (uh) :=
aEh (uh, uh)

|E|
, (19)

on each E ∈ Ωh. Bearing in mind the fact that the bilinear form (11) is a
discretization of the term

∫

E
∇v · ∇w dV , the operator (19) turns out to be a

good candidate to approximate |∇u|2 within each element. Indeed,

∫

E
|∇u|2 dV

|E|
∼ GEh (uI) ∀u ∈ H1(E)

where the local interpolation operator uI ∈ Vh|E is defined according to (2) and
the symbol ∼ stands for approximation. In view of the above discussion, we
obtain the following mimetic discretization of the local form (18)

bEh (uh; vh, wh) = κ(GEh (uh)) a
E
h (vh, wh) ∀uh, vh, wh ∈ Vh|E .
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Then, the discrete formulation of problem (15) reads: find uh ∈ V
0
h , such that

bh(uh;uh, vh) = Fh(vh) ∀ vh ∈ V
0
h , (20)

where
bh(uh; vh, wh) =

∑

E∈Ωh

bEh (uh; vh, wh) ∀uh, vh, wh ∈ Vh,

and where the right-hand-side of problem (20) is built as in (12).
In [6] it has been proved that the discrete problem (20) is well posed and

that the following convergence result holds provided a suitable approximation
property is satisfied. The validity of such assumption will be verified through
numerical computations in Section 4.3.

Theorem 4.1 Assume that the following approximation property holds: there
exists α > 0 so that

‖κ(|∇v|2)− κ(GEh (vI))‖∞ . hα ∀v ∈ H1(Ω). (21)

Let u ∈ H2(Ω) ∩ H1
0 (Ω) and uh ∈ V 0

h be the solutions of the continuous and
discrete problems (15) and (20), respectively. Then, it holds

‖uI − uh‖1,h . hmin(1,α),

where uI is the interpolation of the exact solution defined as in (2).

4.3 Numerical results

We propose to solve the nonlinear problem (20) via linearization employing the
Kačanov method. The idealized algorithm (i.e. without any stopping criterion)

reads: given u
(0)
h ∈ V 0

h

Find u
(k+1)
h ∈ V 0

h such that bh(u
(k)
h ;u

(k+1)
h , vh) = Fh(vh) ∀ vh ∈ V

0
h , k ≥ 0.

The convergence of the sequence {u
(k)
h }k≥0 to the “exact” discrete solution uh

of problem (20) is stated in the following result. We refer to [6] for the proof.

Theorem 4.2 Let {u
(k)
h }k≥0 be the sequence built by the Kačanov method, then

u
(k)
h −→ uh in Vh, as k → +∞.

Next, we present a numerical example taken from [6], where we have em-
ployed the feasible Kačanov method supplemented with a suitable stopping
criterion as described in Algorithm 4.1. The reliability of the stopping criterion
employed in Algorithm 4.1 is discussed in [6] where it is also proposed a com-
putable error indicator as a possible alternative strategy to stop the iterative
scheme.

We suppose that the nonlinearity κ(·) obeys to the Carreau law (17), with
η0 = 3, η∞ = 1 and p = 1.7. The source term f is selected so that u(x, y) =

11



Algorithm 4.1: Feasible Kačanov algorithm

1 Given the initial guess u
(0)
h , set toll, k = −1, u

(−1)
h = u

(0)
h ;

2 while ‖u
(k+1)
h − u

(k)
h ‖1,h ≥ toll do

3 k + 1← k;

4 SOLVE bh(u
(k)
h ;u

(k+1)
h , vh) = Fh(vh) ∀ vh ∈ Vh;

5 end

6 SET uh = u
(k+1)
h ;

x(1−x)y(1−y)(1−2y) exp(−20((2x−1)2)) is the analytical solution of problem
(20). We test our scheme on the same sequences of grids as the ones considered
in Section 3.3, and throughout this section we set the tolerance toll equal to
10−8.

In Table 2 we report the computed relative errors ‖uI−uh‖1,h/‖uI‖1,h mea-
sured in the discrete energy norm (1) as a function of the refinement level ℓ.
The last row of Table 2 also shows the computed convergence rate obtained by
the linear regression algorithm. We observe that the error goes at a rate that is
slightly better than predicted by our theoretical results given in Theorem 4.1,
probably due to some improved convergence rate at the nodes of the mesh.

Finally, we present a numerical approach to validate hypothesis (21). Let us
introduce the following discrete norm

‖vh‖∞,h := sup
v∈Nh

|vvh| ∀vh ∈ Vh,

and let us denote with Π0 the projection onto the space of piecewise constant
functions defined on Ωh. By keeping in mind standard interpolation error esti-
mates, hypothesis (21) can be validated by checking the numerical behavior of
the following quantity

∥

∥

∥
κ
(

Π0 |∇u|2
)

− κ(GEh (uI))
∥

∥

∥

∞,h
,

where uI is the interpolation of the exact solution. The numerical results are
reported in Figure 3, from which the value α = 1 can be guessed. Then, we can
conclude that the optimal parameter α appearing in (21) can be set equal to
one.

5 Optimal control problems

In this section we show the ability of the MFD method to approximate elliptic
optimal control problems. In particular, we consider the following prototypal
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Figure 3: Quasi-linear elliptic problem and numerical validation of assumption

(21): the behavior of ‖κ
(

Π0 |∇u|2
)

− κ(GEh (uI))‖∞,h versus 1/h (loglog scale)

is reported, with u denoting the exact solution.

Table 2: Quasi-linear elliptic problem. (Example taken from [6]) Computed
relative errors ‖uI − uh‖1,h/‖uI‖1,h in terms of the refinement level ℓ.

Refinement level median-type 1 median-type 2 quadrilateral

ℓ = 1 2.6147e+0 2.6147e+0 4.0053e-1

ℓ = 2 1.1489e+0 1.0159e+0 1.7027e-1

ℓ = 3 4.8404e-1 6.0820e-1 5.5403e-2

ℓ = 4 1.8830e-1 2.3530e-1 1.6881e-2

ℓ = 5 5.8092e-2 8.6861e-2 5.7466e-3

rate 1.5580 1.2843 1.2633
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problem: find (F, y, u) such that



























min
u∈K

{

1

2
‖y − y∗‖2L2(Ω) +

1

2
‖F − F ∗‖2L2(Ω) +

α

2
‖u− u∗‖2L2(Ω)

}

F = −∇y in Ω,

div(F ) = f + u in Ω,

y = 0 on ∂Ω,

(22)

where K is a given convex subset of L2(Ω), f, y∗, u∗ ∈ L2(Ω) and F ∗ ∈
[

L2(Ω)
]d

are given functions and α is a positive real number.

5.1 Continuous problem

We start introducing the variational formulation of problem (22) that reads as
follows. Find (F, y, u) ∈ H(div,Ω)× L2(Ω)×K such that



















min
u∈K

{

1

2
‖y − y∗‖2L2(Ω) +

1

2
‖F − F ∗‖2L2(Ω) +

α

2
‖u− u∗‖2L2(Ω)

}

(F,G)L2(Ω) − (y, div(G))L2(Ω) = 0 ∀G ∈ H(div,Ω),

(div(F ), q)L2(Ω) = (f + u, q)L2(Ω) ∀ q ∈ L2(Ω).

It is well known (see e.g., [22]) that the above problem admits a unique solution
(F, y, u) ∈ H(div,Ω)×L2(Ω)×K if and only if there exists (P, z) ∈ H(div,Ω)×
L2(Ω) such that (F, y, P, z, u) ∈ H(div,Ω) × L2(Ω) × H(div,Ω) × L2(Ω) × K
satisfies the following optimality conditions:































(F,G)L2(Ω) − (y, div(G))L2(Ω) = 0 ∀G ∈ H(div,Ω),

(div(F ), q)L2(Ω) = (f + u, q)L2(Ω) ∀ q ∈ L2(Ω),

(P,G)L2(Ω) − (z, div(G))L2(Ω) = −(F − F
∗, G)L2(Ω) ∀G ∈ H(div,Ω),

(divP, q)L2(Ω) = (y∗ − y, q)L2(Ω) ∀ q ∈ L2(Ω),

(α(u− u∗)− z, w − u)L2(Ω) ≥ 0 ∀w ∈ K.
(23)

5.2 Discrete problem and convergence

Let Xh and Qh be defined as in Section 2, and suppose that Kh ⊆ Qh is a closed
subset of Qh, then the discrete formulation of problem (23) is easily obtained
as follows: Find (Fh, yh, Ph, zh, uh) ∈ Xh ×Qh ×Xh ×Qh ×Kh such that































[Fh, Gh]Xh
− [yh,DIVh(Gh)]Qh

= 0 ∀Gh ∈ Xh,

[DIVh(Fh), q]Qh
= [fI + uh, qh]Qh

∀ qh ∈ Qh,

[Ph, Gh]Xh
− [zh,DIVh(Gh)]Qh

= − [Fh − F
∗
I , Gh]Xh

∀Gh ∈ Xh,

[DIVh(Ph), q]Qh
= [y∗I − yh, qh]Qh

∀ qh ∈ Qh,

[α (uh − u
∗
I )− zh, wh − uh]Qh

≥ 0 ∀wh ∈ Kh ,

(24)
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where fI, y
∗
I , F

∗
I and of u∗I are the interpolation of f , y∗, F ∗ and of u∗, respec-

tively, defined according to (5) and (7), and DIVh is the discrete divergence
operator defined in (8). Moreover, we can state the following a-priori error
estimates for the MFD discretization of problem (23) which has been proved
in [5].

Theorem 5.1 Let (F, y, P, z, u) ∈ X × Q × X × Q × K be the exact optimal
solution to (23) and let (Fh, yh, Ph, zh, uh) ∈ Xh × Qh ×Xh × Qh ×Kh be the
discrete optimal solution to (24). Then,

‖uI − uh‖Qh
. h,

where uI ∈ Qh is the projection of u as defined in (5) and

‖FI − Fh‖Xh
+ ‖yI − yh‖Qh

. h,

‖PI − Ph‖Xh
+ ‖zI − zh‖Qh

. h ,

where yI, zI ∈ Qh are the projection of y and z, respectively, defined as in (5),
and FI, PI ∈ Xh are the interpolants of F and P , respectively, defined according
to (7).

We recall that the above estimates can be extended analogously to high-order
MFD method (see [5]).

5.3 Numerical results

The numerical example presented in this section has been performed again on
the quadrilateral, median-type 1 and median-type 1 decompositions of the do-
main Ω = (0, 1)2 as the ones shown in Figure 2. The optimization problem has
been solved numerically by using the Primal-Dual strategy and the constant α
appearing in the optimality conditions (23) has been set equal to 1. We have
chosen

y∗ = (1− 2π2)y F ∗ = −∇y, u∗ = exp(x21 + x22) sin(5πx1) + sin(5πx2),

and f = −∆y − u, so that the exact solution (F, y, P, z, u) of problem (23) is
given by:

y =sin(πx1) sin(πx2), z =− sin(πx1) sin(πx2), u =max(u∗ + z, 0),

F = −∇y, P =−∇z.

In Figure 4 (loglog scale) we report the errors ‖yI − yh‖Qh
, ‖zI − zh‖Qh

, ‖uI −
uh‖Qh

computed in the discrete energy norm defined in (4) versus 1/h. We can
observe that the errors of the primal and the dual variables y and z go to zero
quadratically, whereas for the control variable z we observe a convergence rate
equal to 3/2 as the mesh-size h goes to zero. Moreover, let us recall that the
error estimates given in Theorem 5.1 predict a linear convergence rate for all of
the variables, while the computed rates seems to be at least half order better
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Figure 4: Optimal control problem. Computed errors ‖yI− yh‖Qh
, ‖zI− zh‖Qh

,
‖uI − uh‖Qh

versus 1/h (loglog scale).

than predicted. For a similar problem in the finite element context, such a
superconvergence phenomenon has already been observed in [19], where a proof
of this behavior for the case of the lowest order Raviart-Thomas elements is
presented.

6 Perspectives

In this section, we will shortly present two very recent lines of investigation
naturally stemming from the problems and the techniques considered in this
review. In particular, hinging upon the mimetic solver for quasilinear elliptic
problems, in Section 6.1 we explore the numerical performance of the MFD
method to approximate a nonlinear Stokes equation. Finally, in Section 6.2 we
explore the capability of the MFD method to deal with very general polygonal
decomposition by considering the mimetic approximation of a control problem
where the control variable is represented by the computational domain; in par-
ticular, we will solve a simple shape optimization problem governed by a linear
elliptic equation.

6.1 Nonlinear Stokes problems

In this subsection, we briefly describe the numerical performance of the MFD
method for the approximation of the solution of the following nonlinear Stokes
problem











−div
(

κ
(

|ǫ(u)|2
)

ǫ(u)
)

+∇p = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω,

(25)

where ǫ(u) = ∇u+∇u
T

2 is the symmetric gradient operator and the nonlinear
function κ(·) obeys the Carreau law, i.e.

κ(|ǫ(u)|) = η∞ + (η0 − η∞)(1 + λ|ǫ(u)|2)
p−2

2 ,
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with η0 ≥ η∞ > 0, λ > 0 and p ∈ (1, 2). The above nonlinear Stokes problem
(25) is approximated by resorting to the Uzawa’s iterative method which re-
quires the solution of a quasilinear elliptic problem at each iteration. The latter
is addressed by employing the MFD method that is an extension of the scheme
in Section 4. Without addressing the details, we just mention that we search
for uh ∈ [Vh]

2 and ph ∈ Qh.

In the following, we present a numerical example where the exact solution
(u, p) of problem (25) is set chosen as

u = [− cos(2πx) sin(2πy) + sin(2πy), sin(2πx) cos(2πy)− sin(2πx)]

p = 2π(cos(2πy)− cos(2πx)).

In Figure 5 (loglog scale) we report, for the set of computational meshes
depicted in Figure 2, the computed errors ‖pI − ph‖Qh

and ‖uI −uh‖1,h versus
the meshsize h. Here, (uh, ph) denotes the exact discrete solution, (pI,uI) are
the interpolations of the exact continuous solution defined as in Section 2.2,
‖ · ‖1,h is the energy norm defined as in (1), and ‖ · ‖Qh

is the mesh-dependent
norm introduced in (4).
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Figure 5: Nonlinear Stokes problem: MFD discretization of problem (25). Com-
puted errors versus 1/h.

We observe that in all the cases errors converge linearly to zero, as the mesh
size h goes to zero.

6.2 Shape optimization problems

In this section, we apply the MFD method to solve a simple shape optimization
problem of the form:

find Ω∗ ∈ Uad : J (Ω∗, y(Ω∗)) = inf
Ω∈Uad

J (Ω, y(Ω)),

where J is a given cost functional, Uad is the set of admissible domains in R
2

and y(Ω) is the solution of an elliptic equation on Ω. In this context, the cru-
cial issue in obtaining reliable numerical simulations is to correctly handle the
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deformation of the computational domain that usually requires a massive use of
re-meshing techniques to preserve mesh regularity (see e.g. [25]). Here, we show
that the MFD method represents a very promising technology to solve shape
optimization problems, without resorting to any re-meshing strategy, since the
MFD method can naturally deal with meshes made of very general polygons.

In the following, we consider the benchmark problem introduced in [21]. In
particular, we consider the domain Ω ⊂ R

2 with ∂Ω = Γ ∪ Σ1 ∪ Σ2 as depicted
in Figure 6. Moreover, let D be an open bounded subset of Ω. The set Uad of
admissible domains contains all domains obtained through a deformation of Ω
by keeping Σ1 and Σ2 fixed and by moving only Γ in such a way that Γ∩D = ∅.
We define the cost functional as follows

Γ

Σ1

Σ2 Σ2

DΩ

Figure 6: Computational domain for the optimization problem (26)-(27).

J (Ω, y(Ω)) :=
1

2

∫

D

(y(Ω)− zg)
2
dV +

γ

2

(
∫

Γ

dS − P

)2

, (26)

where γ > 0 is a penalization parameter for the length of the moving boundary
Γ, P is a target value for the perimeter, zg : D → R is a given function and
y(Ω) is the solution of the following elliptic problem on Ω

−∆y = 0 in Ω, y = 0 on Σ1, ∂ny = 0 on Σ2, ∂ny = 1 on Γ.
(27)

Let x = (x1, x2), and let ‖ · ‖ denote the Euclidean norm. In the numerical test,
we choose the region D equal to the half ring {2 ≤ ‖x‖ ≤ 2.5} ∩ {x2 > 0} and
zg is the exact solution of (27) on Ω = {1 < ‖x‖ < 3}∩ {x2 > 0}. We point out
that a global minimizer exists and it is exactly Ω∗ = {1 < ‖x‖ < 3} ∩ {x2 > 0}.

In Figure 7 we report the starting computational domain Ω0 and the final op-
timal computational domain obtained after four iterations of a steepest-descent
like algorithm (see e.g. [21] for more details). In the algorithm, we solve problem
(27) using the mixed MFD method as in Section 5.2, see also [13,15]. Boundary
conditions are suitably modified to include the Neumann term.

In Figure 8 (right) we report the convergence history in terms of the iter-
ation numbers. We can observe that the deformation of the elements close to
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Figure 7: Shape optimization problem. Starting computational domain Ω0 (left)
and final one Ω4 (right) obtained after four iterations.

the moving boundary (see Figure 8 (left)) does not affect the efficiency of the
algorithm. Therefore, re-meshing technique seem not to be necessary when us-
ing the MFD method for solving shape optimization problems. This issue will
be the object of further investigations.
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Figure 8: Shape optimization problem. Final domain Ω4: zoom on the distorted
elements of the computational grid (left). Convergence history in terms of the
number of iteration (right)

7 Conclusions

In this paper we reviewed some recent applications of the MFD method to
nonlinear problems (variational inequalities and quasilinear elliptic equations)
and constrained control problems governed by linear elliptic PDEs. In all these
cases we showed the efficacy of mimetic finite differences in building accurate
and robust numerical approximations. We also presented two very recent lines of
investigation naturally stemming from the problems and the techniques consid-
ered in this review, namely the impact of the MFD method on the approximate
solution of nonlinear Stokes equations and shape optimization problems.
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terdam, 1987. Notas de Matemática [Mathematical Notes], 114.

22



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

12/2013 Antonietti, P.F.; Beirao da Veiga, L.; Bigoni, N.; Verani,

M.

Mimetic finite differences for nonlinear and control problems

11/2013 Discacciati, M.; Gervasio, P.; Quarteroni, A.

The Interface Control Domain Decomposition (ICDD) Method for El-
liptic Problems

10/2013 Antonietti, P.F.; Beirao da Veiga, L.; Mora, D.; Verani,

M.

A stream virtual element formulation of the Stokes problem on polygonal
meshes

09/2013 Vergara, C.; Palamara, S.; Catanzariti, D.; Pangrazzi, C.;

Nobile, F.; Centonze, M.; Faggiano, E.; Maines, M.; Quar-

teroni, A.; Vergara, G.

Patient-specific computational generation of the Purkinje network driven
by clinical measuraments

08/2013 Chen, P.; Quarteroni, A.; Rozza, G.

A Weighted Reduced Basis Method for Elliptic Partial Differential Equa-
tions with Random Input Data

07/2013 Chen, P.; Quarteroni, A.; Rozza, G.

A Weighted Empirical Interpolation Method: A-priori Convergence Anal-
ysis and Applications

06/2013 Ded, L.; Quarteroni, A.

Isogeometric Analysis for second order Partial Differential Equations
on surfaces

05/2013 Caputo, M.; Chiastra, C.; Cianciolo, C.; Cutri , E.; Dubini,

G.; Gunn, J.; Keller, B.; Zunino, P.;

Simulation of oxygen transfer in stented arteries and correlation with
in-stent restenosis

04/2013 Morlacchi, S.; Chiastra, C.; Cutr, E.; Zunino, P.; Bur-

zotta, F.; Formaggia, L.; Dubini, G.; Migliavacca, F.



Stent deformation, physical stress, and drug elution obtained with pro-
visional stenting, conventional culotte and Tryton-based culotte to treat
bifurcations: a virtual simulation study

03/2013 Antonietti, P.F.; Ayuso de Dios, B.; Bertoluzza, S.; Pen-

nacchio, M.

Substructuring preconditioners for an h − p Nitsche-type method


