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Abstract

Neurodegenerative diseases (NDs) result from the transformation and accumula-

tion of misfolded proteins within the nervous system. They have common features,

like the chronic nature and the progressive destruction of neurons in specific areas

of the brain. Several mathematical models have been proposed to investigate the

biological processes underlying NDs, focusing on the kinetics of polymerization and

fragmentation at the microscale and on the spread of neural damage at a macro-

scopic level. The aim of this work is to bridge the gap between microscopic and
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macroscopic approaches proposing a toy partial differential model able to take into

account both for the short-time dynamics of the misfolded proteins aggregating in

plaques and the long-term evolution of tissue damage. Using the theoretical frame-

work of mixtures theory, we considered the brain as a biphasic material made of

misfolded protein aggregates and of healthy tissue. The resulting Cahn-Hilliard

type equation for the misfolded proteins contains a growth term depending on the

local availability of precursor proteins, that follow a reaction-diffusion equation.

The misfolded proteins also posses a chemotactic mass flux driven by gradients of

neural damage, that is caused by local accumulation of misfolded protein and that

evolves slowly according to an Allen-Cahn equation. The partial differential model

is solved numerically using the finite element method in a simple two-dimensional

domain, evaluating the effects of the mobility of the misfolded protein and the dif-

fusion of the neural damage. We considered both isotropic and anisotropic mobility

coefficients, highlighting that the spreading front of the neural damage follows the

direction of the largest eigenvalue of the mobility tensor. In both cases, we com-

puted two biomarkers for quantifying the aggregation in plaques and the evolution

of neural damage, that are in qualitative agreement with the characteristic Jack

curves for many NDs.

1 Introduction

Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease

and amyotrophic lateral sclerosis, result from the transformation and accumulation of

specific proteins within the nervous system [1]. They result into a neuronal degenera-

tion that could lead to cognitive impairment, dementia, motor difficulties, psychological

and behavioural disorders. Typically NDs have common features, like the chronic and
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progressive nature, the destruction of neurons in specific areas of the brain, the dam-

age of the synaptic connections network, and the increase of prevalence with age. Most

importantly, they all display a common biochemical origin, that is the accumulation of

misfolded protein aggregates [2].

There is experimental evidence that the proteins involved in NDs acquire their pathogenic-

ity by a prion-like mechanism. Indeed, the pathogenic proteins are released by a cell in the

extracellular fluid. They later move into other cells, where they act as seeds and induce

misfolding of healthy protein [3]. The most important seed-proteins are amyloid-β (in-

volved in senile plaques formation in AD), tau (involved in tauopathies) and α-synuclein

(in Lewy-diseases). In physiological conditions the conformation of these proteins ensures

the solubility and thus the correct secretion. In NDs the protein is misfolded, it shows an

increase in the β-sheet structure getting into a pathologic aggregate-fibrillar state. The

misfolded protein, at the beginning, gives small oligomers that increase in size till they

form large aggregates. The aggregates of all sizes are toxic for cells, and thus for neurons,

and they lead to neural damage [2]. On the other hand, the neural damage activates

the amyloid precursor proteins involved in the cells signalling driven by synapse retrac-

tion, which in turn induce an increase in the amyloid-β production [4]. Thus, amyloid-β

synaptotoxicity drives amyloid-β production in a positive feedback loop.

Several mathematical models have been proposed to investigate the biological pro-

cesses underlying NDs at different scale. At a microscopic level, Smoluchowski equations

are often used to describe the self-association among monomers and polimers of differ-

ent sizes for describing the elongation of fibrils by end-to-end formation[5–8]. Further

models include the role of prions ([9]), the growth kinetics of amyloids [10–12], and the

use of network-approaches to understanding the behaviour of different brain regions [13,

14]. At the macroscopic level, the spreading of neural damages is typically modelled
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through a nonlinear reaction-diffusion mechanism [15, 16], that can be effectively coupled

with nucleation-aggregation-fragmentation models for the dynamics in the brain connec-

tome [17, 18]. Multiscale approaches have been proposed in [19–21], assuming that the

damage diffuses in the neuronal net through a neuron-to-neuron prion-like propagation

mechanism and that monomeric form of the amyloid spreads through the brain tissue

undergoing agglomeration.

The aim of this work is to bridge the gap between microscopic and macroscopic ap-

proaches proposing a toy partial differential model able to take into account both for the

short-time dynamics of the misfolded proteins aggregating in plaques and the long-term

evolution of neural damage. In particular, we are focused on modeling the evolution of

the disease starting from a delimited brain region presenting an hoarding of amyloid-β

and amyloid precursor proteins. The article is organised as follows. In Section 2, we in-

troduce the mathematical model and in Section 3 we perform its dimensional analysis. In

Section 4, we describe its numerical implementation and we discuss the numerical results

in few test cases. We also propose two biomarkers to be compared with the ones used for

describing the progressing of NDs. In Section 5 we collect few concluding remarks.

2 The mathematical model

We consider the brain tissue as a binary, saturated, closed and incompressible mixture

composed by a protein phase of proliferating plaques and a healthy phase representing the

host tissue. Let ϕp and ϕt be the volume fraction of the plaques and the healthy tissue,

respectively. Assuming that both phases have the same mass density γ, the following
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continuity equations hold:

∂ϕp

∂t
+∇ · (ϕpvp) =

Sp

γ
+∇ · kp,

∂ϕt

∂t
+∇ · (ϕtvt) =

St

γ
+∇ · kt,

(1)

where vi, with i = (p, t), is the velocity of the i-th phase, Si is the volumetric source term

and ki is the non-convective mass flux. The mixture is saturated, i.e.

ϕp + ϕt = 1, (2)

and it is not growing, i.e.

Sp + St = 0; kp + kt = 0. (3)

in order to locally satisfy the conservation of mass exchanged between the phases. Ac-

cordingly, the continuity equation for the whole mixture obtained summing up the two

equations in (1) reads:

∇ · (ϕpvp + ϕlvt) = 0. (4)

Following [22, 23], we use the principle of maximum dissipation to obtain the consti-

tutive laws for phase velocities. In particular, we aim to find the stationary values of the

Rayleghian R, defined as:

R = W +
dE

dt
, (5)

where W is the energy dissipation and E is the Landau free energy of the system. We

assume that the main dissipation source is given by the viscous interactions due to the
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relative motion between the phases, i.e.

W =
1

2

∫
Ω

ϕp(vp − vt)
TM(vp − vt)dV, (6)

where M = M0T
−1, is a tensor representing volumetric friction, that is inversely propor-

tional to the preferential directions tensor T, M0 is a friction parameter, and Ω represents

the whole brain. The tensor T takes into account for the local anisotropy of the brain

micro-structure, and it can be extracted from clinical neuroimaging data, such as diffusion

tensor imaging.

The Landau free energy E reads:

E =

∫
Ω

(
γ2
ϕ

2
|∇ϕp|2 +Ψ(ϕp)

)
dV, (7)

where Ψ(ϕp) is a local interaction potential of the Lennard-Jones type, while the quadratic

gradient terms is a short-range nonlocal potential governed by the small parameter γϕ.

In particular, we assume that Ψ(ϕp) has the form:

Ψ(ϕp) = F
ϕ2
p(ϕp − ϕe)

1− ϕp

,

where F is a characteristic interaction energy density. Since Ψ(ϕp) is non-convex, the

gradient term in (7) acts as a regularizing effect that creates a diffuse interface between

region with higher and lower concentration of plaques. Assuming that the mixture is

highly viscous and that the tissue behaves as a perfect fluid, following [24] we derive a
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Cahn-Hilliard type equation for the plaque concentration:


∂ϕp

∂t
= ∇ ·

(
ϕp(1− ϕp)

2

M0

T∇µ

)
+
Sp

γ
+∇ · kp,

µ =
∂Ψϕ

∂ϕ
− γ2

ϕ∆ϕ.

(8)

We now have to define the constitutive equation for the source terms in Eq.(8). Follow-

ing [19], we hypothesize that the damage diffuses in the neuronal net through a neuron-to-

neuron prion-like propagation mechanism and that monomeric form of the protein spreads

through the microscopic tortuousness of the brain tissue undergoing agglomeration. Even-

tually this leads to the formation of long, insoluble fibrils, accumulating in spherical de-

posits known as senile plaques that become toxic for neurons, creating a spreading brain

damage. Therefore, we introduce a variable n defining the neuronal damage in the brain,

and we assume that the non-convective mass flux is due to chemotactic motion of plaques

with respect to the gradient of the neuronal damage, such as:

kp = knϕpT∇n (9)

where kn is the chemotactic coefficient.

Similarly, we assume that the volumetric source of plaques is proportional to the local

concentration p of precursor proteins, such as amyloid precursor proteins, such that:

Sp = νpγϕp

(
p

ps
− δ

)
(1− ϕp), (10)

where νp is the plaque proliferation rate, ps is the physiological concentration of precursor

proteins in the brain tissue and δ is a threshold value, which sets the lower value over
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which there is an over accumulation of precursor proteins. The growth of plaques follows a

logistic law, with saturation when the plaques occupy all the available volume for ϕp = 1.

We assume that the precursor proteins undergo a reaction-diffusion dynamics, being:

∂p

∂t
= Dp∇ · (T∇p) + Sn((1− n)χC + n)(ps − p)− δpϕpp. (11)

Here, we are assuming that there is a region ΩC in which initially there is a hoarding of

precursor proteins and where the plaques formation begins, with χC its indicator function.

Outside of ΩC , damage propagation triggers the accumulation of precursor proteins, which

enhances the formation of plaques, thus modeling the pathogenic positive feedback loop

between amyloid production and synapse damage reported in literature [4] Hence, the

source term Snβ((1 − n)χC + n)(ps − p) describes the growth rate of precursor proteins

in ΩC and in regions where the neural damage propagates. δp is the consumption rate of

proteins by the plaques.

Moreover, assuming that n̂ propagates following the same pathway of the electrical

signal in the brain, we describe the neural damage dynamics as follows:

∂n

∂t
= ϵDn∇ · (D∇n)−ϵKnn(n− 1)(n− α)+

ϵCsχCn(K(ϕp)− δn)(1− n).

(12)

Indeed, Equation (12) is an Allen-Cahn type equation, often adopted to model the signal

propagation in presence of damage [25]. Here, the neural damage is taken into account

by the term ϵCsχCn(K(ϕp) − δn)(1 − n), where K(ϕp) is the fractional area occupied

by the plaques in ΩC and defined as K(ϕp) =

∫
ΩC

I(ϕp>0.3)∫
ΩC

dΩ
. Moreover, χCn represents a

gaussian supported over the circular damaged area, giving the maximum damage onset

in its center, δn is the threshold above which the plaques create neuronal damage and
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Cs is the neural damage proliferation rate. Moreover, we include a small dimensionless

parameter ϵ accounting for the fact that the spreading dynamics of the neural damage is

much slower than the dynamics of protein misfolding and agglomeration. On the other

hand, the bidimensional propagation is described from the first two terms at the right

hand side of Equation (12), where Dn is a diffusion coefficient, D is the tensor of the

preferential directions of the expansion of damage and Kn is a sink proliferation rate. We

further remark that the term α is required to belong to the range (0, 1
2
) in order to allow

the existence of a travelling wave solution.

3 Dimensional analysis

The partial differential model is made by eqs. (8, 11,12) equipped with no-flux conditions

for the variables ϕp, µ, n, p on the brain boundary. We first remark that the partial

differential system has multiple time-scales, namely:

• the phase separation and coarsening of ϕp, i.e. t1 ∼ ϵ
M0γ2

ϕ

F 2 ;

• the proliferation rate of ϕp, i.e. t2 ∼ ϵ
νp
;

• the interaction between the precursor protein and the plaques, i.e. t3 ∼ M0Dp

Fδp

• the diffusion of n, i.e. t4 ∼ F
ϵM0νpDn

;

• the proliferation rate of the neuronal damage, i.e. t5 ∼ 1
ϵCS

For the sake of simplicity, let us first introduce the following dimensionless variables:

p̂ =
p

ps
, n̂ = n, µ̂ =

µ

F
, t̂ = tνp, x̂ = x

√
δp
Dp

.
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After standard manipulations we obtain the following dimensionless system:



∂ϕp

∂t̂
= D̂∇̂ ·

(
ϕp(1− ϕp)

2T∇̂µ̂

)
+ϕp(p̂− δ)(1− ϕp) + k̂∇̂ · (ϕpT∇̂n̂)

µ̂ = f̂ − γ̂ϕ∆̂ϕp

∂p̂

∂t̂
= ν̂

(
∇̂ · (T∇̂p̂) + β̂((1− n̂)χC + n̂)(1− p̂)− ϕpp̂

)
∂n̂

∂t̂
= ϵD̂n∇̂ · (D∇̂n̂)−ϵK̂nn̂(n̂− 1)(n̂− α) + ϵĈsχCn(K(ϕp)− δn)(1− n̂)

(13)

that is governed by the following dimensionless parameters:

D̂ =
Fδp

νpDpM0

, k̂ =
δpkn
Dpνp

, γ̂ϕ =
γ2
ϕδp

DpF
, ν̂ =

δp
νp
,

f̂ =
1

F

∂Ψϕ

∂ϕ
, β =

Sp

δp
, D̂n =

Dnδp
νpDp

, K̂n =
Kn

νp
, Ĉs =

Cs

νp
, ϵ.

4 Numerical results

4.1 Finite element implementation

The dimensionless model in (13) is numerically solved using the library FreeFEM++ for

solving partial differential equations using finite element method [26]. The finite element

approximation of the model preserves the physical bounds for the variables representing

plaques and the neural damage, that are non-negative and smaller or equal to one. More-

over, the introduction of the degenerate mobility in the Cahn-Hilliard equation makes the

solution not unique. In the numerical formulation we go beyond the last issue introducing

a subdivision of the nodes of the mesh domain into active and passive nodes, following
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[27, 28]. The lumping approximation of the mass scalar products in the finite element

discretization is introduced in order for the discrete solution to be able to track compactly

supported solutions of Cahn-Hilliard equation with a free boundary which moves with a

finite speed. This method allows to select the physical solutions with compact support

and moving boundary. Moreover we have taken into account both for the dissipative

behaviour of the system, that is not preserved at the discrete level, by introducing a

splitting of the energy functional into a convex and a concave part, and for the positivity

of the ϕp by imposing a variational inequality following the algorithm proposed in [29].

The associated gradient projection algorithm is formulated in terms of a backtracking line

search method, in order to optimize the choice of the descent coefficient, using the Armijo

method [30], based on the Armijo-Goldstein condition as in algorithm proposed by [31].

Moreover we developed a time step adaptivity procedure for taking into account for all

the time scales of the system dynamics, from the phase separation of the plaques to the

spread of neural damage.

Finally, we performed numerical simulations on a two dimensional circular domain cen-

tred in the origin with a dimensionless diameter equal to 100. Since we set the character-

istic length to
√

(Dn/δn) = 0.1 mm, it corresponds to a physical domain whose diameter

is of 1 cm. We subdivided the domain in triangles, choosing 124 elements for each side in

order to evaluate the plaques formation and the neural damage propagation and we used

continuous linear elements. We fix the values of the dimensionless parameters as ϵ = 0.1,

D̂ = 4.48, γ̂ϕ = 0.03, ν̂ = 1000, β̂ = 0.045, K̂n = 10ϵ, Ĉs = 5.5, β = 0.045, α = 0.2,

δ = δn = 0.3, ϕe = 0.6, while we vary the values of D̂n and k̂ in the following test cases.

The time step is set to ∆t = 0.5 γ̂2
ϕ for the first iteration and then it is determined step by

step through the adaptive procedure. We choose the initial conditions n(x, 0) = n0(x) = 0,

p(x, 0) = p0(x) = χC and ϕp(x, 0) = ϕ0(x) = (0.18 + 0.018 · (1 − 2r))χC , where r is a
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random number sampled from the uniform distribution over [0, 1] and χC is the indica-

tor function of the subdomain ΩC , a circle centered at the middle of the domain with a

dimensionless diameter equal to 25.

4.2 Numerical simulations

We performed numerical simulations varying the dimensionless parameters k̂, D̂n in order

to investigate the effects on the dynamics of the chemotaxis and of the diffusion of the neu-

ral damage, respectively. We also simulated two different cases of material microstructure,

being:

• isotropic case, i.e. T = D = diag(1, 1);

• anisotropic case, i.e D = diag(1, 20) and T = diag(0.1, 1.9).

We performed the first set of simulations by imposing k̂ = 2.5, D̂n = 1, exploring both

the isotropic and anisotropic scenarios. The early stage dynamics is about the same for

both the two cases. As depicted in Figure 1, we first observe the phase separation of

the solution for ϕp, followed by a clustering dynamics without any formation of neuronal

damage. We observe no significant qualitative difference between the isotropic and the

anisotropic case.

The later stage dynamics for the isotropic case is depicted in Figure 2. Once the plaque

clusters are completely formed, the neural damage begins to expand. The plaques later

spread through the healthy tissue following the radial direction of the damage growth,

while the inner region becomes completely damaged.

Figure 3 displays the numerical results for the anisotropic case, simulated with the

same parameters values of the previous isotropic case, i.e. k̂n = 2.5, D̂n = 1. In this

latter case, the neural damage starts growing at about t̂ = 11.7 and it immediately
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Figure 1: Colormap of the spatial distribution of ϕp during the early stage dynamics,

shown at t̂ = 0, 3.6, 7.2, 11.5 setting k̂ = 2.5, D̂n = 1.
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t̂ ϕp n̂

11.7

16.2

20.7

28.9

Figure 2: Colormap of the spatial distribution of ϕp and n̂ during the later stages of

dynamics, shown at t̂ = 11.7, 16.2, 20.7, 28.9 setting k̂ = 2.5, D̂n = 1 for the isotropic
case.

14



t̂ ϕp n̂

11.7

16.2

20.7

28.8

Figure 3: Colormap of the spatial distribution of ϕp and n̂ during the later stages of

dynamics, shown at t̂ = 11.7, 16.2, 20.7, 28.9 setting k̂ = 2.5, D̂n = 1 for the anisotropic
case.
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follows the preferential direction of the mobility tensor T, followed by the plaques. At

the final step, we observe that both the damaged area and the plaque domain take an

elliptic shape, highlighting the pivotal importance of the microstructure on the invasion

dynamics.

We finally performed another set of simulations for both the isotropic and anisotropic

cases. In this case, we increased of an order of magnitude the values of both the chemo-

tactic and the damage diffusion parameters, thus setting k̂ = 25, D̂n = 10. We find

that the initial stage dynamics is qualitatively the same observed in the previous cases,

as expected, since n̂ has a slow dynamics and its onset is completely determined by the

phase separation dynamics of the Cahn-Hilliard equation without the chemotaxis term.

A considerable difference from the previous scenarios can be appreciated from the simu-

lation results collected in Figure 4 and Figure 5, for the isotropic and anisotropic cases

respectively. In particular, we remark that increasing D̂n makes the neural damage prop-

agating faster, whilst increasing k̂ makes the plaques moving faster towards the front of

the neural damage wave.

4.3 Biomarkers

In order to provide a biological interpretation of our numerical results, we present here

two biomarkers suitable for quantifying the accumulation of plaques and the extent of

neurodegeneration, to be compared to the well known Jack curves [32].

In a clinical setting, a first biomarker is sought to investigate the plaque accumula-

tion. For the Alzheimer Disease, such indicator can be identified with the CSF-Aβ42 and

the amyloid PET. On the other hand, a second biomarker is used to describe the neu-

rodegeneration since plaques can grow logistically reaching the saturation even decades
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t̂ ϕp n̂

11.7

20.7

28.8

37.8

Figure 4: Colormap of the spatial distribution of ϕp and n̂ during the later stages of

dynamics, shown at t̂ = 11.7, 20.7, 28.8, 37.8 setting k̂ = 25, D̂n = 10 for the isotropic
case.
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t̂ ϕ n̂

11.7

20.7

28.8

39.6

Figure 5: Colormap of the spatial distribution of ϕp and n̂ during the later stages of

dynamics, shown at t̂ = 11.7, 20.7, 28.8, 37.8 setting k̂ = 25, D̂n = 10 for the anisotropic
case.
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before the patient experiences the first symptoms and before MRI or PET detect neuronal

damage. Concerning this latter indicator, FDG-PET has been proven to be a promising

modality for detecting functional brain changes in AD [33]. The evolution curves of both

biomarkers are characterized by a sigmoidal shape with a large time shift.

Accordingly, here we propose two biomarkers for evaluation the simulated dynamics.

Firstly, we define the average neural damage as:

Bn =

∫
Ω
n̂(x, t)dx∫
Ω
dx

, (14)

that is a measure of brain atrophy. Secondly, we define the average concentration of

plaques over the whole computational domain as:

Bp =

∫
Ω
Iϕp>0.3dx∫
Ω
dx

, (15)

where Iϕp>0.3 is the indicator function introduced in Section 2.

In Figure 6, we report the evolution of the two biomarkers Bn and Bp, normalized

with respect to their maximum value, over the dimensional time t expressed in units of

years. We observe that for both the isotropic and the anisotropic case, Bp grows earlier

and faster than Bn, presenting the characteristic sigmoidal trend.

On the other hand, Bn starts growing over time as soon asBp saturates, thus presenting

a delay over time with respect to plaques deposition. Finally, we remark that the curves

for Bn are not sigmoidal as one should expect. This discrepancy from the clinical results

is due to the fact that, to avoid excessive computational costs, we observe Bn over a time

interval shorter than the characteristic time of brain atrophy complete development.
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Figure 6: Evolution of the normalised biomarkers Bp (green) and Bn (red) over the
dimensional time expressed in years for both the the isotropic (left) and anisotropic (right)
case, setting k̂ = 2.5, D̂n = 1.

5 Conclusion

In this work we developed a toy model for describing both the short-time dynamics of

misfolded protein aggregation in plaques and the long-term evolution of neural damage.

Using the theoretical framework of mixtures theory, we considered the brain as a

biphasic material made of misfolded protein aggregates, interacting with a local Lennard-

Jones potential and a nonlocal short-range term, and of healthy tissue behaving as a

perfect fluid. The resulting Cahn-Hilliard type equation for the misfolded proteins con-

tains a growth term depending on the local availability of precursor proteins, that follow

a reaction-diffusion equation. The misfolded proteins also posses a chemotactic mass flux

driven by gradients of neural damage, that is caused by local accumulation of misfolded

protein and that evolves slowly according to an Allen-Cahn equation.

The partial differential model made by Equations (8, 11,12) has been solved numeri-

cally using the finite element method in a simple two-dimensional domain, evaluating the

effects of the mobility of the misfolded protein and the diffusion of the neural damage.
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We considered both isotropic and anisotropic mobility coefficients, highlighting that the

spreading front of the neural damage follows the direction of the largest eigenvalue of the

mobility tensor. In both cases, we computed two biomarkers to quantify the aggregation

in plaques and the evolution of neural damage, that are in qualitative agreement with the

characteristic Jack curves for many NDs.

This toy model is a preliminary attempt to build a bridge between microscopic and

macroscopic descriptions of NDs covering both the short- and long-time dynamics. As

such, it suffers several limitations, as the lack of a realistic polymerization kinetics of

the misfolded proteins and of their neuron-to-neuron prion-like propagation mechanism.

This modeling aspect must be addressed in the future in order to the model relevant for

the biological research community. Notwithstanding, the possibility to integrate patient-

specific data of diffusion tensor imaging into the tensors of diffusion and mobility may pave

the way to identify the preferred spreading pathways of the neural damage depending on

the specific brain architecture, possibly leading to the creation of a predictive tool helping

the clinician in the early screening of the pathology.
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