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Abstract

In this paper we focus on the thermo-mechanical model proposed in [1, 2] which describes
crack genesis and propagation in brittle materials induced by a thermal shock. Our goal is to
provide an efficient numerical technique which employs a computational finite element mesh
finely customized to the problem at hand to simulate such phenomena. In particular, we generate
automatically adapted anisotropic grids able to closely follow the narrow bands of the damage,
driven by a theoretically sound mathematical tool. We carry out two numerical tests to assess the
computational performance of the proposed method.
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1. Introduction

We address the numerical simulation of crack propagation induced by a thermal shock in a
brittle slab. This issue characterizes, for instance, the shrinkage of materials induced by cooling
or drying, which may produce arrays of evenly spaced cracks. Several fields in engineering
applications can be affected by such phenomenon, such as thermal shock crack patterns on a
glass or ceramic slab [3, 4] or cracking in cement paste matrix upon drying [5].

The capability of accurately predicting the crack path is highly advisable in order to prevent
a possible weakness of the material and to preserve the safety of the structure.

Aim of this work is to extend the a posteriori analysis and the numerical procedure proposed
in [6, 7, 8], where both anti-plane and plane linear elasticity models are applied to notched brittle
plates, to the initiation and propagation of cracks by a thermal shock in an unnotched material [1,
2]. Actually, models including preexisting cracks are more recurrent in the specialized literature,
even though they skip the initiation phase. Both the pre-cracked and the new damage models are
based on the Ambrosio-Tortorelli variational formulation in a quasi-static setting, and include
irreversibility and energy balance principles [9, 10]. In particular, the damage is modeled through
an auxiliary variable, namely, a phase field, which introduces a form of viscous regularization to



track the crack path. Recent developments on this subject can be found, e.g., in the special issue
on phase field approaches to fracture [11].

To make effective the proposed theoretical analysis and the numerical approach, we enrich a
standard finite element discretization with a proper choice of the computational mesh. For this
purpose, we employ adapted grids, which distribute in a nonuniform way the mesh elements,
so that they are more concentrated close to the crack and coarser where the material is undam-
aged. Additionaly, we suitably orient and stretch the elements in order to match the intrinsic
directional features of the damage [12, 13, 14, 15, 16]. These meshes are known as anisotropic
adapted grids. We provide an automatic tool to generate these customized meshes, moving from
a rigorous theoretical analysis, cast in the framework of a posteriori discretization error con-
trol (see, e.g., [17]). In [6, 7, 8], we have already assessed the computational advantages led
by anisotropic mesh adaptation in terms of computational saving, with respect to both standard
(isotropic) adapted and uniform meshes [18]. The a posteriori error analysis in [8] is here ex-
tended to the thermo-mechanical process.

The paper is organized as follows. In Section 2, we detail the adopted energy-based mathe-
matical-physical model, formulated in a variational framework as the minimization of an energy
functional comprising the elastic and the fracture contributions. Section 3 steps to the discrete
counterpart of the variational setting and rigorously derives the anisotropic a posteriori error
estimator. In Section 4, the actual algorithm (MACProX = Mesh Adaptation for Crack Propagation
with thermal shocKS) assembling the minimization of the functional and the mesh adaptation
procedure is set, and numerically investigated in Section 5. Finally, some conclusions are drawn
in the last section.

2. An energy approach to crack modeling

The physical principle driving crack propagation is represented by Griffith’s criterion [19].
This consists of a quasi-static energy-based formulation, which minimizes the total energy of the
system, composed by a term modeling the elastic energy of the body, and a fracture term which
takes into account the dissipation due to the propagation of the fracture, Γ. The total energy is
analytically represented by

JG(t; u,Γ(t)) =

∫
Ω\Γ

W(ε)dx + Wext(t,u) +D(Γ(t)), (1)

where Ω ⊂ Rd, with d = 2, 3, is the volume occupied by the continuum in the reference configu-
ration, W(ε) is the elastic energy density out of the fracture, Wext(t,u) is the work of the external
forces, u being the displacement field and t the time, D(Γ(t)) represents the dissipation energy
released with the propagation of the fracture.

The following result is equivalent to Griffith’s criterion [20, 21]:

Proposition 1. The pair (Γ(t),u(t)) satisfies the equilibrium equation for an elastic continuum
and the conditions of Griffith’s criterion, if and only if

1. (Γ(t),u(t)) is a stationary point of JG(t; u,Γ);
2. dΓ(t)/dt ≥ 0 to guarantee the irreversible evolution of the fracture;
3. the total energy of the system is constant in time.
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In Griffith’s original formulation, the dissipation is proportional to the d-measure of the frac-
ture. Thus, following [20, 21], we replace contributionD(Γ(t)) in (1) with the Haussdorf measure
of Γ(t), which yields the new functional

JH(t; u,Γ(t)) =

∫
Ω\Γ

W(ε)dx + Wext(t,u) + GcH
d−1(Γ(t)), (2)

whereHd−1(Γ) is the Haussdorf measure of Γ, and Gc is the so-called body toughness.
Nevertheless, the minimization of JH is quite unpractical, at least in order to perform nu-

merical simulations due to the different geometric dimensionality of the terms involved in (2),
and to the evolutive nature of Γ(t). This justifies the introduction in the literature of Griffith-
like energy functionals, simpler to deal with from both an analytical and a computational view-
point [22, 23, 24, 25]. In particular, following [1, 2], the energy-like functional employed in this
work is based on the one proposed by L. Ambrosio and V.M. Tortorelli [9], enriched with a ther-
mal contribution, with a view to modeling the thermal shock effect. The temperature evolution
due to the shock is described by the heat equation for the temperature field T = T (x, t),

∂T
∂t
− ∇ · (kc∇T ) = 0 in Ω × (0, tF]

T = T0 − ∆T on γshock × (0, tF]
T (x, 0) = T0 on Ω,

(3)

with T0 the initial temperature (before cooling down the body), tF the final time, kc the thermal
diffusivity, ∆T the temperature drop applied to the boundary portion γshock.

The coupled thermo-mechanical model is based on the minimization of the functional

J(u, α) =
1
2

∫
Ω

(1 − α)2A(ε(u) − εth) : (ε(u) − εth) dx +

∫
Ω

Gc

4cw

(
α

l
+ l |∇α|2

)
dx, (4)

where ε(u) = 1/2(∇u+(∇u)T ) is the total strain tensor, cw =
∫ 1

0

√
sds is a normalization constant,

A is the stiffness tensor, εth = εth(T ) = µ(T0 − T )I is the inelastic strain due to a thermal shock, µ
being the thermal volumetric expansion coefficient, T0−T the temperature drop and I the identity
tensor, and α : Ω → [0, 1] is the phase field tracking the crack, with α = 0 where the material is
perfectly sound, α = 1 where the material is fully damaged. In practice, the phase field exhibits a
sharp variation on a spatial scale on the order of l, which represents the so-called internal length.
Notice that functional J involves only the pure elastic strain, ε(u) − εth.

In addition to the constraint 0 ≤ α ≤ 1, we still have to enforce the physical irreversibility of
crack propagation, i.e., no healing is allowed. This leads to add a further constraint on α, namely,
α(t) ≥ α(t̄) for any t ≥ t̄, t̄ being any time in (0, tF).

Finally, we emphasize that model (3)–(4), in contrast to Griffith’s model, does not necessarily
require a pre-existing notch in the domain, the thermal shock being responsible for both crack
initiation and propagation [1, 2]. In more detail, we may distinguish two main phases separated
by a characteristic time t∗, such that, for t ≤ t∗, the damage field α is uniformly distributed along
the boudary γshock, where it exhibits a sharp gradient; vice versa, for t > t∗, the damage field
bifurcates and band-like cracks form and propagate.

2.1. The minimization of the functional
We observe that the energy functional J in (4) is not convex with respect to the pair (u, α),

even though it is convex with respect to each variable, separately. This will represent an issue
with a view to the numerical optimization algorithm.
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Before dealing with the minimization of J , we provide the following result, whose proof is
straightforward:

Proposition 2. Functional J is Gâteaux differentiable in S = [H1(Ω)]d × [H1(Ω) ∩ L∞(Ω)]. In
particular, the Gâteaux derivative of J at (u, α) ∈ S in the direction (v, β) ∈ S is

J ′(u, α; v, β) =

∫
Ω

(1 − α)2A(ε(u) − εth) : ε(v) dx︸                                     ︷︷                                     ︸
a(α; u, v)

+

∫
Ω

[
(α − 1) β A(ε(u) − εth) : (ε(u) − εth) +

c β
l

+ 2c l∇α · ∇β
]

dx︸                                                                                 ︷︷                                                                                 ︸
b(u;α, β)

with c = Gc/(4cw).

For numerical purposes, we deal with a time discrete formulation based on the partition
0 = t0 < t1 < . . . < tN = tF , consisting of N uniform intervals. Then, we introduce the function
spaces U = [H1(Ω)]d and Wk = {w ∈ H1(Ω) : χ ≤ w(tk) ≤ 1 a.e. in Ω}, for a given function
χ ∈ H1(Ω; [0, 1]). To enforce the monotonicity condition associated with the irreversibility,
function χ will be always chosen as w(tk−1).

Thus, the minimization of functional J constrained by irreversibility can be stated as: Find
the pair (u, α) ∈ U ×Wk at time tk, for k = 1, . . . ,N, such that

(u, α) ∈ argmin
{
J(u∗, α∗) : u∗ ∈ U;α∗ ∈ Wk

}
. (5)

Equivalently, problem (5) can be recast as: Find the pair (u, α) ∈ U × Wk at time tk, for
k = 1, . . . ,N, such that {

a(α; u, v) = 0 ∀v ∈ U
b(u;α, α − β) ≤ 0 ∀β ∈ Wk

(6)

[26, 2, 27]. The pair (u, α) ∈ U ×Wk is a critical point of J if system (6) is satisfied.

Remark 1. If we replace the variational inequality in (6) by the correspoding equality constraint
b(u;α, β) = 0 for any β ∈ H1(Ω), we can prove a maximum principle on the phase field α, i.e.,
α ≤ 1. For this purpose, we apply the change of variable z = 1−α in b(u;α, β) = 0. This yields a
reaction-diffusion equation for z with a constant positive diffusion coefficient, 2cl, a non-negative
reaction term, A(ε(u) − εth) : (ε(u) − εth), and a positive source term, c/l, which implies z ≥ 0,
i.e., α ≤ 1. Notice that, the lower bound α ≥ 0 cannot be guaranteed, a priori, due to the linear
term α/l in the definition of J .

3. Anisotropic error analysis

With a view to the numerical simulation, first we discretize problems (3) and (6) via a classi-
cal finite element scheme; then, we derive an a posteriori error estimator in an anisotropic setting
to drive the mesh adaptation procedure. Hereafter, we assume d = 2.
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3.1. The discrete setting
Let {Th} be a family of conformal meshes of Ω, with h > 0 the characteristic mesh size

of Th [28]. We associate with Th = {K} the space Xh of the continuous piecewise linear finite
elements, with K the generic element of the triangulation Th.

We first consider the discretization of the mechanical problem. The discrete counterpart of
the energy functional J(u, α) is provided by

Jh(uh, αh) =
1
2

∫
Ω

Ph
(
(1−αh)2) A(ε(uh)−εth) : (ε(uh)−εth) dx+

∫
Ω

Gc

4cw

(
αh

l
+ l |∇αh|

2
)

dx, (7)

where uh ∈ Uh = [Xh]2 and αh ∈ Xh approximate the displacement and the phase field, respec-
tively while Ph : C0(Ω)→ Xh is the Lagrange interpolant onto the space Xh [28].

Analogously to the continuous case, we can compute the Gâteaux derivative ofJh at (uh, αh) ∈
S h = Uh × Xh in the direction (vh, βh) ∈ S h, given by J ′h(uh, αh; vh, βh) = ah(αh; uh, vh) +

bh(uh;αh, βh), with

ah(αh; uh, vh) =

∫
Ω

Ph
(
(1 − αh)2) A(ε(uh) − εth) : ε(vh) dx,

bh(uh;αh, βh) =

∫
Ω

(
Ph

(
(αh − 1)

)
βh A(ε(uh) − εth) : (ε(uh) − εth) +

c βh

l
+ 2c l∇αh · ∇βh

)
dx.

Thus, the discrete counterpart of (5) is: Find the pair (uh, αh) ∈ Uh × Wh
k at time tk, for

k = 1, . . . ,N, such that

(uh, αh) ∈ argmin
{
Jh(u∗h, α

∗
h) : u∗h ∈ Uh;α∗h ∈ Wh

k

}
, (8)

with Wh
k = {wh ∈ Xh : χh ≤ wh(tk) ≤ 1 a.e. in Ω}, χh being a finite element approximation to χ.

Problem (8) is actually a box-constrained optimization problem, i.e., we are led to solve the
coupled differential system {

ah(αh; uh, vh) = 0 ∀vh ∈ Uh

bh(uh;αh, αh − βh) ≤ 0 ∀βh ∈ Wh
k .

Nevertheless, for theoretical purposes, we consider only the case where the damage field αh is an
interior point of the box, namely, we deal with the two coupled equations{

ah(αh; uh, vh) = 0 ∀vh ∈ Uh

bh(uh;αh, βh) = 0 ∀βh ∈ Xh.
(9)

However, as addressed in Section 5, we actually include the irreversibility constraint in the nu-
merical algorithm.

Remark 2. Analogously to Remark 1, a discrete maximum principle holds also for αh, i.e.,
αh ≤ 1, under the condition ki j =

∫
Ω
∇ξi ·∇ξ j dx ≤ 0 for any i , j, where ξk is the k-th basis (hat)

function of space Xh (see also [18, 6]). Indeed, equation (9)2 amounts to a discretized diffusion-
reaction equation for the variable zh = 1 − αh, with a constant positive diffusion coefficient, 2cl,
a non-negative reaction term, A(ε(uh) − εth) : (ε(uh) − εth) weighting a diagonal mass matrix
lumped via the Ph operator, and a positive source term, c/l. The condition on ki j is the standard
constraint for the stiffness matrix to satisfy a discrete maximum principle [29].

Concerning the discretization of the heat equation (3), we still adopt the finite element space
Xh to discretize the spatial dependence, while we resort to a backward Euler scheme for time
advancing.

5



3.2. The anisotropic setting

We refer to the setting used in [6, 7, 8], according to which the anisotropic source of informa-
tion is provided by the affine map TK : K̂ → K between the reference triangle K̂ and the generic
triangle K ∈ Th, such that

x = [x1, x2]T = TK(x̂) = MK x̂ + bK ∀x̂ ∈ K̂,

where MK ∈ R2×2 is a matrix which deforms K̂ and bK ∈ R2 performs a shift. In particular,
we select as a reference element K̂ the equilateral triangle inscribed in the unit circle centered
at the origin. Map TK allows us to describe the geometric features of any triangle K ∈ Th by
exploiting the spectral properties of the Jacobian MK . For this purpose, we first introduce the
polar decomposition MK = BKZK of MK , with BK , ZK ∈ R2×2 a symmetric positive definite and
an orthogonal matrix, respectively; then, we compute the eigenvalue/eigenvector decomposition
of BK , BK = RT

KΛKRK , where ΛK = diag(λ1,K , λ2,K) with λ1,K ≥ λ2,K the eigenvalues of BK , and
RT

K = [r1,K , r2,K] the column matrix of the unit eigenvectors of BK . Geometrically, {λi,K , ri,K}, i =

1, 2, provide the half-length and the direction of the axes of the ellipse circumscribed to K, which
is the image of the unit circle through TK (see Figure 1). The aspect ratio sK = λ1,K/λ2,K ≥ 1
measures the deformation of K, being sK = 1 for equilateral triangles.

Figure 1: Map TK changes the reference triangle K̂ into the generic one K.

With a view to the a posteriori analysis, we introduce some anisotropic error estimates for
the quasi-interpolant Clément operator, Ch : L2(Ω)→ Xh [30].

Lemma 1. Let w ∈ H1(Ω). If card(Th) ≤ N ∈ N+, and diam(T−1
K (∆K)) ≤ C∆ ' diam(K̂), then

there exist constants Cs = Cs(N ,C∆), with s = 1, 2, 3, such that, for any K ∈ Th, it holds

‖w − Ch(w)‖L2(K) ≤ C1

[ 2∑
i=1

λ2
i,K(rT

i,KG∆K (w)ri,K)
] 1

2

,

|w − Ch(w)|H1(K) ≤ C2
1
λ2,K

[ 2∑
i=1

λ2
i,K(rT

i,KG∆K (w)ri,K)
] 1

2

,

‖w − Ch(w)‖L2(∂K) ≤ C3

(
hK

λ1,Kλ2,K

) 1
2 [ 2∑

i=1

λ2
i,K(rT

i,KG∆K (w)ri,K)
] 1

2

,

where ∆K = {T ∈ Th : T ∩ K , ∅} is the patch of the elements associated with K, hK = diam(K),
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G∆K is the symmetric positive semi-definite matrix given by

G∆K (w) =


∫

∆K

( ∂w
∂x1

)2
dx

∫
∆K

∂w
∂x1

∂w
∂x2

dx∫
∆K

∂w
∂x1

∂w
∂x2

dx
∫

∆K

( ∂w
∂x2

)2
dx

 .
For the proof of these estimates we refer to [31, 32].

We finally recall an equivalence result between the standard H1(∆K)-seminorm and its anisotropic
counterpart.

Lemma 2. Let w ∈ H1(Ω), and K ∈ Th. For any γ1, γ2 > 0, it holds that

min(γ1, γ2) ≤
γ1

(
rT

1,KG∆K (w) r1,K
)

+ γ2
(
rT

2,KG∆K (w) r2,K
)

|w|2H1(∆K )

≤ max(γ1, γ2).

For the proof we refer to [13].

3.3. The anisotropic a posteriori error estimator

The main result of this work is provided by the following

Proposition 3. Let (uh, αh) be a solution to (9). Then, for any (v, β) ∈ [H1(Ω)]2 × H1(Ω), we
have ∣∣∣J ′(uh, αh; v, β)

∣∣∣ ≤ C̃
∑
K∈Th

( 2∑
i=1

[
ρA

i,K(αh,uh)ωK(vi)
]
+ ρB

K(uh, αh)ωK(β)
)

(10)

with C̃ = C̃(N ,C∆) constant,

ρA
i,K(αh,uh) =

∥∥∥2(1 − αh)σth
i (uh) · ∇αh

∥∥∥
L2(K) +

1
2

∥∥∥Jσth
i (uh)K

∥∥∥
L∞(∂K)

∥∥∥(1 − αh)2
∥∥∥

L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+
∥∥∥(1 − αh)2 − Ph

(
(1 − αh)2)∥∥∥

L∞(K)

∥∥∥σth
i (uh)

∥∥∥
L2(K)

1
λ2,K

,

ρB
K(uh, αh) =

∥∥∥(αh − 1)σth(uh) : (ε(uh) − εth) +
c
l

∥∥∥
L2(K) + cl‖J∇αhK‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ‖σth(uh) : (ε(uh) − εth)‖L2(K)h2
K |αh|W1,∞(K)

1
λ2,K

,

ωK(ξ) =
[ 2∑

i=1

λ2
i,K(rT

i,KG∆K (ξ)ri,K)
] 1

2
, ∀ξ ∈ H1(Ω),

where

Jσth
i (uh)K =

{
[σth

i (uh) · n]e e ∈ Eh ∩Ω,
2σth

i (uh) · n|e e ∈ Eh ∩ ∂Ω
(11)
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and

J∇αhK =

{
[∇αh · n]e e ∈ Eh ∩Ω,
2∇αh · n|e e ∈ Eh ∩ ∂Ω

denote the generalized jump of the i-th component, σth
i (uh), of the normal thermal stress tensor

σth(uh) = A(ε(uh)−εth) and of the normal derivative of αh, respectively, [·]e is the standard jump
across the edge e ∈ Eh ∩Ω, Eh is the skeleton of Th, n is the unit outward normal vector to e.

Proof. Exploiting Proposition 2 with (u, α) = (uh, αh), we have∣∣∣J ′(uh, αh; v, β)
∣∣∣ ≤ |a(αh; uh, v)| + |b(uh;αh, β)| . (12)

We first address term |a(αh; uh, v)|. Thanks to (9), we have, for any vh ∈ [Xh]2

|a(αh; uh, v)| ≤ |a(αh; uh, v − vh)| + |a(αh; uh, vh) − ah(αh; uh, vh)| . (13)

We start by considering the first contribution on the right-hand side. Integrating by parts, we
have

a(αh; uh, v − vh) =
∑
K∈Th

{ ∫
K

(1 − αh)2σth(uh) : ε(v − vh) dx
}

=
∑
K∈Th

{ ∫
K

2(1 − αh)∇αh · σ
th(uh)(v − vh) dx +

∫
∂K

(1 − αh)2σth(uh)(v − vh) · n ds
}
.

To keep the directional information, we introduce the componentwise representation

a(αh; uh, v − vh) =

2∑
i=1

ai(αh; uh, vi − vh,i),

with v = [v1, v2]T , vh = [vh,1, vh,2]T , and

ai(αh; uh, vi − vh,i) =
∑
K∈Th

{ ∫
K

2(1 − αh)∇αh · σ
th
i (uh)(vi − vh,i) dx

+

∫
∂K

(1 − αh)2σth
i (uh) · n(vi − vh,i) ds

}
.

Thanks to Hölder and Cauchy-Schwarz inequalities and definition (11), we have, for i = 1, 2,

|ai(αh; uh, vi − vh,i)| ≤
∑
K∈Th

{ ∥∥∥2(1 − αh)σth
i (uh) · ∇αh

∥∥∥
L2(K)

∥∥∥vi − vh,i

∥∥∥
L2(K)

+
1
2

∥∥∥Jσth
i (uh)K

∥∥∥
L∞(∂K)

∥∥∥(1 − αh)2
∥∥∥

L2(∂K)

∥∥∥vi − vh,i

∥∥∥
L2(∂K)

}
.

We choose vh,i = Ch(vi) and use Lemma 1, to obtain

|ai(αh; uh, v − vh)| ≤ C4

∑
K∈Th

{ ∥∥∥2(1 − αh)σth
i (uh) · ∇αh

∥∥∥
L2(K)

+
1
2

∥∥∥Jσth
i (uh)K

∥∥∥
L∞(∂K)

∥∥∥(1 − αh)2
∥∥∥

L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2 }
ωK(vi), (14)
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with C4 = max(C1,C3).
Concerning the second contribution on the right-hand side of (13), we have

a(αh; uh, vh) − ah(αh; uh, vh) =

∫
Ω

(
(1 − αh)2 − Ph

(
(1 − αh)2))σth(uh) : ε(vh) dx.

Splitting this term componentwise, passing to a summation over the mesh elements, and using
Hölder and Cauchy-Schwarz inequalities, we get∣∣∣ai(αh; uh, vh) − ah,i(αh; uh, vh)

∣∣∣
≤

∑
K∈Th

{∥∥∥(1 − αh)2 − Ph
(
(1 − αh)2)∥∥∥

L∞(K)

∥∥∥σth
i (uh)

∥∥∥
L2(K)

( ∥∥∥∇vh,i − ∇vi

∥∥∥
L2(K) + ‖∇vi‖L2(K)

)}
.

Picking vh,i = Ch(vi), and exploiting Lemmas 1 and 2, with γ1 = λ2
1,K , γ2 = λ2

2,K , we have∣∣∣ai(αh; uh, vh) − ah,i(αh; uh, vh)
∣∣∣

≤ (1 + C2)
∑
K∈Th

{ ∥∥∥(1 − αh)2 − Ph
(
(1 − αh)2)∥∥∥

L∞(K)

∥∥∥σth
i (uh)

∥∥∥
L2(K)

1
λ2,K

ωK(vi)
}
. (15)

By collecting the estimates (14) and (15), we obtain the following estimate for the first term in
(12).

|a(αh; uh, v)| ≤ C5

∑
K∈Th

2∑
i=1

ρA
i,K(αh,uh)ωK(vi), (16)

with C5 = max(C4, 1 + C2).
Now we address the second term in (12). Using (9), for any βh ∈ Xh, we have

|b(uh;αh, β)| ≤ |b(uh;αh, β − βh)| + |b(uh;αh, βh) − bh(uh;αh, βh)| , (17)

and we consider the two terms on the right-hand side, separately. For the first one, by combining
integration by parts with Cauchy-Schwarz inequality, it follows that

|b(uh;αh, β − βh)| =

=
∣∣∣∣ ∫

Ω

[
(αh − 1)(β − βh)σth(uh) : (ε(uh) − εh

th) +
c
l
(β − βh) + 2cl∇αh · ∇(β − βh)

]
dx

∣∣∣∣
≤

∑
K∈Th

∣∣∣∣ ∫
K

(
(αh − 1)σth(uh) : (ε(uh) − εh

th) +
c
l

)
(β − βh) dx + 2cl

∫
∂K

(β − βh)∇αh · n ds
∣∣∣∣

≤
∑
K∈Th

{∥∥∥(αh − 1)σth(uh) : (ε(uh) − εh
th) +

c
l

∥∥∥
L2(K) ‖β − βh‖L2(K) + cl‖J∇αhK‖L2(∂K) ‖β − βh‖L2(∂K)

}
.

Now, we identify βh with Ch(β) and we exploit Lemma 1 to obtain

|b(uh;αh, β − βh)| ≤

≤ C4

∑
K∈Th

[∥∥∥(αh − 1)σth(uh) : (ε(uh) − εh
th) +

c
l

∥∥∥
L2(K) + cl‖J∇αhK

∥∥∥
L2(∂K)

( hK

λ1,Kλ2,K

) 1
2
]
ωK(β).

(18)
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For the second term on the right-hand side of (17), we apply successively Cauchy-Schwarz
inequality, the standard isotropic estimate for the L2-norm of the interpolation error associated
with Ph, and the auxiliary result |whϕh|H2(K) ≤ 2|wh|W1,∞(K)‖∇ϕh‖L2(K) for any wh, ϕh ∈ Xh and for
any K ∈ Th, to have

|b(uh, αh, βh) − bh(uh, αh, βh)| ≤
∑
K∈Th

‖αhβh − Ph(αhβh)‖L2(K) ‖σ
th(uh) : (ε(uh) − εh

th)‖L2(K)

≤ C6

∑
K∈Th

‖σth(uh) : (ε(uh) − εh
th)‖L2(K)h

2
K |αhβh|H2(K)

≤ 2C6

∑
K∈Th

‖σth(uh) : (ε(uh) − εh
th)‖L2(K)h2

K |αh|W1,∞(K) ‖∇βh‖L2(K)

≤ 2C6(1 + C2)
∑
K∈Th

‖σth(uh) : (ε(uh) − εh
th)‖L2(K)h

2
K |αh|W1,∞(K)

1
λ2,K

ωK(β), (19)

after adding and subtracting β in the last norm of the third line, and combining Lemma 1 and
Lemma 2 with γ1 = λ2

1,K and γ2 = λ2
2,K , and where C6 is the constant of the interpolation error

estimate in the L2-norm for Ph. Gathering (18) and (19) provides the final estimate

|b(uh;αh, β)| ≤ C7

∑
K∈Th

ρB
K(uh, αh)ωK(β), (20)

with C7 = max(C4, 2C6(1 + C2)).
The thesis (10) easily follows, recalling (12) and using (16) and (20), with C̃ = max(C5,C7).

In order to define a computable a posteriori error estimator, exploiting the arbitrariness of v
and β, we choose v = u − uh and β = α − αh. This leads us to identify the global error estimator
with

η =
∑
K∈Th

ηK(uh, αh),

where the local error estimator is given by

ηK(uh, αh) =

2∑
i=1

[
ρA

i,K(αh,uh)ωR
K(ui − uh,i)

]
+ ρB

K(uh, αh)ωR
K(α − αh), (21)

where

ωR
K(w − wh) =

[ 2∑
i=1

λ2
i,K(rT

i,KGR
∆K

(w − wh)ri,K)
] 1

2
, for w = ui, α,

with GR
∆K

(w − wh) the matrix whose generic entry is

[
GR

∆K
(w − wh)

]
i j =

∫
∆K

(
wZZ

i −
∂wh

∂xi

) (
wZZ

j −
∂wh

∂x j

)
dx,

where wZZ = [wZZ
1 ,wZZ

2 ]T is the well-known Zienkiewicz-Zhu recovered gradient [33, 34].
The choice made above for v and β can be justified on a more rigorous mathematical ground.

Indeed, according to Corollary 3.4 in [6], η estimates, up to a third-order remainder R, the energy
error, since it holds that

J(u, α) − J(uh, αh) =
1
2
J ′(uh, αh; u − uh, α − αh) + R.

10



4. The numerical procedure

We employ a metric-based mesh adaptation procedure driven by estimator η. In particular,
moving from the anisotropic information contained in the local estimators ηK , we derive a piece-
wise constant metric field, M̃K = R̃T

KΛ̃−2
K R̃K , with R̃T

K = [r̃1,K , r̃2,K] and Λ̃K = diag(λ̃1,K , λ̃2,K),
on the actual mesh and then we use it to build the new adapted mesh. In particular, the metric is
obtained by enforcing an error equidistribution criterion combined with the minimization of the
number of mesh elements under a constraint on the magnitude of η.

According to [6], we summarize the information identifying the new metric M̃K in the fol-
lowing

Proposition 4. Let {ti,K , gi,K} with i = 1, 2, be the eigenvector/eigenvalue pairs of

ΓK =

2∑
i=1

[
ρA

i,K(αh,uh)
]2G

R
∆K

(ui − uh,i) +
[
ρB

K(uh, αh)
]2G

R
∆K

(α − αh),

with g1,K ≥ g2,K > 0, and

ρA
i,K(αh,uh) =

ρA
i,K(αh,uh)

(|K̂| λ1,Kλ2,K)
1
2

, ρB
K(uh, αh) =

ρB
K(uh, αh)

(|K̂| λ1,Kλ2,K)
1
2

, G
R
∆K

(·) =
GR

∆K
(·)

(|K̂| λ1,Kλ2,K)
,

where |K̂| is the area of the reference element, and λi,K , i = 1, 2, are defined as in Section 3.2 on
the actual mesh. Then, the components of the metric M̃K are

r̃1,K = t2,K , λ1,K =

(
1

|K̂|
√

2

(g1,K

g2
2,K

) 1
2 ETOL

#Th

) 1
3

, λ2,K =

(
1

|K̂|
√

2

(g2,K

g2
1,K

) 1
2 ETOL

#Th

) 1
3

,

where ETOL is the accuracy required on the estimator η, and #Th denotes the cardinality of the
actual mesh Th.

For more details about the derivation of this result, we refer, e.g., to [12, 13, 14, 15, 16].
Metric M̃K is finally provided as an input to a metric-based mesh adaptation tool to build the new
adapted mesh. In the numerical assessment below, we employ the bidimensional anisotropic
mesh generator of FreeFem++ [35].

We now merge this mesh adaptation procedure with the minimization of the functional Jh in
(7). This miminization is not a trivial task since the functional is not convex, whereas it is strictly
convex with respect to each variable, separately.

In practice, we commute from mesh adaptation to minimization of Jh, until both the mesh
and the functional stagnate to within a given threshold, MTOL � 1 and FPTOL � 1, respectively.
The minimization phase relies on the alternate minimization algorithm proposed in [36], which
we have already employed as a backbone in [6, 7, 8] where it has been extended to deal with
mesh adaptation. Given an initial mesh, T (0)

h , the global algorithm is listed below.

11



Algorithm 1 MACProX: Mesh Adaptation for Crack Propagation with thermal shocKS
1: Set k = 1, m = 0, αh(t0) = 0;
2: Set α1

h = αh(tk−1)
3: Set m = 0; errM= 1; errFP= 1;
4: while errM ≥ MTOL | errFP ≥ FPTOL do
5: Solve (3) for Th(tk) and compute εth = µ(T0 − Th(tk))I;
6: Set i = 1; errFP=1;
7: while errFP ≥ FPTOL& i ≤ NMax do
8: ui

h = argmin
vh∈[X

(m)
h ]2

Jh(vh, α
i
h);

9: αi+1
h = argmin

βh∈X(m)
h , αh(tk−1)≤βh≤1

Jh(ui
h, βh);

10: errFP = ‖αi+1
h − αi

h‖L∞(Ω);
11: i← i + 1;
12: end while
13: Compute the new metricM(m+1) = {M̃K}K∈T (m)

h
, based on ui−1

h , αi
h and ETOL;

14: Build the adapted mesh T (m+1)
h ;

15: errM = |#T (m+1)
h − #T (m)

h |/#T
(m)
h ;

16: Set α1
h = Πm→m+1(αi

h);
17: m← m + 1;
18: end while
19: uh(tk) = Πm−1→m(ui−1

h ); αh(tk) = Πm−1→m(αi
h); Th(tk−1) = Πm−1→m(Th(tk−1)); T k

h = T
(m)
h ;

20: Set T (0)
h = T k

h ;
21: k ← k + 1;
22: if k > N, stop; else goto 2.

Some comments are in order. The minimization of the functional with respect to uh and
αh is performed by solving the corresponding Euler-Lagrange equations (9)1 for uh, namely, a
standard linear elliptic problem, whereas for αh we employ the function IPOPT, based on the
interior point method, and which deals with a general constrained minimization problem [37].
This allows us to explicitly enforce the irreversibility constraint, which has been omitted in the a
posteriori analysis.
A bound, NMax, on the maximum number of minimization steps is fixed before starting the mesh
adaptation phase.
Superscripts in the mesh, say T (m)

h , designate successive meshes during the adaptation loop, with
associated finite element space X(m)

h . Operator Πn→n+1(·) denotes the interpolant mapping the
finite element functions defined on T (n)

h onto the adapted mesh T (n+1)
h , before restarting any new

optimization or time loop.
Finally, the convergence of the mesh adaptivity is assessed by checking the relative variation of
the number of elements.
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5. Verification of MACProX algorithm

We apply algorithm MACProX to two geometric configurations1, a square slab and a quarter
of a simplified disc brake. In both cases, the specimen is homogeneous, free at the boundary,
non-prestressed in its initial configuration, and uniformly heated. Then, it is quenched in a cold
bath, which induces a thermal shock along the immersed surface. According to [2], three main
phases characterize the evolution of the phenomenon: during the very early stages, a uniform
strip propagates orthogonally to the immersed surface; then, at some critical time, a bifurcation
occurs and the damage exhibits periodically distributed bands of equal length and grows at the
center of these bands; later, a selective crack arrest takes place, where some bands stop while the
others keep on propagating.

A square slab. The specimen is the square slab Ω = (0, 50) [mm] ×(0, 50) [mm], with γshock =

(0, 50) × {0} [mm]. The parameters involved in the thermo-mechanical model are gathered in
Table 1, where E, ν are the Young modulus and the Poisson ratio, respectively, characterizing the
stiffness tensor A of a linear elastic homogeneous material. The initial mesh T (0)

h is a uniform

Model parameters
kc 1 [mm2/s]
tF 10 [s]
T0 0 [◦C]
∆T 380 [◦C]
µ 1.7 · 10−3 [K−1]
E 340 [GPa]
ν 0.22
Gc 42.47 [J/m2]
cw 2/3
l 10−6 [m]
N 50

Table 1: Parameters for the square slab and the quarter of a disc brake test cases.

unstructured grid consisting of 7400 triangles. The parameters fed to algorithm MACProX are
ETOL = 10−1, MTOL = 10−2, NMax = 50 and FPTOL = 10−3.

Figure 2, left, shows the phase field αh computed on the anisotropic adapted mesh at the
final time t = tF . On the right, three enlarged views of the bands at time step 10, 30 and
50 (top-bottom). In particular, the contour plot at the top corresponds to the second phase of
the evolution, while the other two are associated with the last phase. Colors range from blue
(undamaged material) to red (fully damaged slab). In Figure 5, two bird’s-eye views of the phase
field along with the adapted mesh at the final time are provided.

Figure 3 shows the temperature profile computed at x1 = 25 [mm] as a function of x2, for the
time steps 5, 15 and 45. It clearly emphasizes the strong boundary layer occurring at the bottom
edge where the shock develops. Qualitatively it is similar to Figure 3 in [4].

Figure 4, left, shows the output of the anisotropic mesh adaptation procedure at time step 30
(top) along with three successive zooms in on the bands. The anisotropic feature of the mesh

1The experiments have been performed using Freefem++ 3.36 64-bit on a Lenovo Ideapad Z510, equipped with a
2.20 GHz Intel Core i7 processor, and 8 GB of RAM.
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Figure 2: Square slab: phase field at t = tF (left) and enlarged views at time steps 10, 30 and 50 (right, top-bottom).

Figure 3: Square slab: temperature profile at x1 = 25 [mm] as a function of depth for three different time steps.

is evident. In particular, the maximum aspect ratio over the elements of this mesh is 933. This
figure emphasizes the strong anisotropy of the mesh along the crack path, whereas the triangles
closer to the tip are still rather isotropic. This should ensure that the crack advancing is not
affected by the directionality of the elements. A comparison with an isotropic mesh adaptation
is performed to check the advantages of the anisotropic counterpart. In particular, the isotropic
metric is obtained by enforcing sK = 1, for any K ∈ Th, in Proposition 4, i.e., M̃K = (1/λ2

K)I,
with I ∈ R2×2 the identity matrix and

λK =

(
1

|K̂|
√

2

( 2
g1,K + g2,K

) 1
2 ETOL

#Th

) 1
3

.
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Figure 4: Square lab: anisotropic (left) vs isotropic (right) mesh adaptation at time step 30, for increasing magnification
(top-bottom).

Figure 5: Square slab: 3D views of the phase field overlapped to the adapted mesh at time t = tF .

Figure 4 contrasts the two adaptive procedures, highliting the poor tracking of the bands in
the case of the isotropic approach. In Figure 6, left, we compare the evolution of the number
of elements for the isotropic and anisotropic mesh adaptation. The reduction provided by the
anisotropic procedure is remarkable for the whole time span, with greater extent during the last
steps. On average, about half the elements are required by the anisotropic meshes. Moreover,
in Figure 7, we compare the performance of the two approaches, in terms of total and average
(total time/# loops) time spent in the optimization phase, in correspondence with the last six time
steps. In particular, the large discrepancy in terms of the average time can be ascribed to the con-
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Figure 6: Square slab: evolution of the mesh cardinality (left) and of the energy contributions (right).

Figure 7: Square slab: total and average time for the optimization loop at the last six time steps, for the anisotropic (left
bars) and isotropic (right bars) procedures.

Figure 8: Square slab: total and average time for the adaptation at the last six time steps, for the anisotropic (left bars)
and isotropic (right bars) procedures.

siderably lower number of elements in the anisotropic grid. The total time are somewhat more
comparable, even though, when anisotropy outperforms, it is remarkably less costly. We carry
out the same comparison by considering just the adaptation phase. The total and average time
per iteration in corresponence with the last six time steps is shown in Figure 8, left and right, re-
spectively. As for the optimization loop, the anisotropic tool cuts down drastically the time when
it improves the isotropic procedure. Overall, the most expensive phase from a computational
viewpoint is optimization, which generally demands a time one order higher than adaptation.
This is confirmed by the values in Table 2, which show a total computational gain of about 23%
when employing an anisotropic approach.
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total time [s] optimization time [s] adaptation time [s]
Anisotropic 4434.91 4070.00 364.91

Isotropic 5754.69 5223.80 530.89

Table 2: Square slab: total, optimization, and adaptation time for the anisotropic and isotropic mesh adaptation.

To conclude, in Figure 6, right, we plot the trend of the two components, elastic and fracture,
of the energy functional in (7). The total energy is constantly increasing, and the dominant
contribution is due to the crack propagation.

A disc brake. In this second test case, we consider a more interesting configuration, consisting
of a quarter of a vehicle disc brake. Actually, these brakes are subject to high thermal stresses
during routine braking, with a strong increase while braking hard. The disc brake is modeled
as an annular region surrounded by an outer and an inner circular boundary of radius 50 [mm]
and 5 [mm], respectively, which identify γshock. To apply the thermo-mechanical model (4), we
suppose that crack genesis is stirred by two thermal shocks at both the curved boundaries. The
parameters are the same as in Table 1.

The initial mesh T (0)
h is a uniform unstructured grid consisting of 5234 elements. We use

the same parameters for algorithm MACProX as in the previous test. Figure 9 shows the elevated

Figure 9: Disc brake: 3D views of the phase field overlapped to the adapted mesh at time t = tF .

view from two perspectives of the phase field αh and of the corresponding anisotropic adapted
mesh at t = tF . In Figure 10, we provide the contour plot of the phase field at the final time,
left, and at the four intermediate time levels, t = 5, 15, 25, and 45, right. Notice that two groups
of cracks arise and propagate inwards, with the expected alternate pattern of propagating and
stopped bands. Figure 11 compares the final adapted meshes returned by algorithm MACProX, in
the anisotropic, left, and isotropic, right, setting. Macroscopically, the two grids are very similar,
since the anisotropic features are localized in the bands. Nevertheless, the anisotropic algorithm
detects an additional crack on the outer boundary at the very early stage of its formation. Three
successive zooms in on the south-east quadrant are gathered in Figure 12, in the anisotropic, top,
and isotropic, bottom, case. These highlights allow us to appreciate the very strong anisotropy
inside the bands, the maximum aspect ratio over the elements being equal to 505.35. The
advantages brought by the anisotropic approach are emphasized by the plot in Figure 13, left,
which shows the evolution of the cardinality of the mesh, in the anisotropic and isotropic cases.
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Figure 10: Disc brake: phase field at t = tF (left) and enlarged views at time steps 5, 15, 25, and 45 (right, top-bottom,
left-right).

Figure 11: Disc brake: anisotropic (left) vs isotropic (right) mesh adaptation at time step 30.

As for the square slab configuration, the maximum gain is reached quite early, where the isotropic
trend exhibits a peak, and in the final steps. At t = tF , a reduction of about 32% is obtained.
In Figures 14-15, we perform the same analysis as in Figures 7-8 to check the computational
improvement led by the anisotropic procedure in terms of total and average time required for
the optimization and the adaptation phases, by focusing on the last six time steps. The gain is
more evident in this test case. Globally, the total times are much favorable for the anisotropic
setting, whereas a less striking discrepancy characterizes the average times of the adaptation. In
particular, the brake configuration is more complex to simulate (see Table 3) as it turns out by the
high percentage of adaptation to total time. This ratio is about 23% and 27% for the anisotropic
and isotropic case, respectively, to be compared with 8% and 9% in the square slab specimen.
Finally, in Figure 13, right, we plot the time evolution of the elastic and fracture energy. The
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Figure 12: Disc brake: anisotropic (top) vs isotropic (bottom) mesh adaptation at time step 25, for increasing magnifica-
tion (top-bottom).

Figure 13: Disc brake: evolution of the mesh cardinality (left) and of the energy contributions (right).

trend confirms the constant increase of the fracture lengths throughout the time span.

total time [s] optimization time [s] adaptation time [s]
Anisotropic 6342.62 4886.20 1456.42

Isotropic 9326.64 6794.20 2532.44

Table 3: Disc brake: total, optimization, and adaptation time for the anisotropic and isotropic mesh adaptation.
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Figure 14: Disc brake: total and average time for the optimization loop at the last six time steps, for the anisotropic (left
bars) and isotropic (right bars) procedures.

Figure 15: Disc brake: total and average time for the adaptation at the last six time steps, for the anisotropic (left bars)
and isotropic (right bars) procedures.

6. Conclusions

We have extended the anisotropic approach provided in [6, 7, 8] for the anti-plane and plane
elasticity where crack genesis is biased by suitably notching the specimen and crack propagation
is driven by an applied external displacement field, to the more challenging framework where
both crack ignitation and propagation are driven by a thermal shock, which depends on the so-
lution of the heat equation. Overall, we are dealing with a one-way coupled thermo-mechanical
model, where only the mechanical part depends on the thermal setting, but not vice versa. From
a theoretical viewpoint, we have derived an anisotropic a posteriori estimator to control the dis-
cretization error on the total energy. This theoretical tool supports the MACProX algorithm which
alternates optimization and mesh adaptation to track the evolution of the damage field in an
efficient way. The numerical assessment confirms the good performance of this algorithm on
two reference test cases, with respect to a corresponding isotropic procedure. In future develop-
ments, we shall be concerned with the parallelization of the numerical code with a view to 3D
applications and, possibly, with a comparison with actual experimental tests.
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