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Abstract

In this paper we present a new technique based on two different phases,
here called offline and online stages, for the solution of the Riemann prob-
lem for one-dimensional hyperbolic systems of conservation laws. After
theoretically motivating our offline-online technique, we prove its effective-
ness by means of two numerical examples.
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1 Introduction and motivations

Let us consider the one-dimensional system of conservation laws:

ut +F(u)x = 0 (x, t) ∈ R × (0,∞) (1)

where u ∶ R × (0,∞) → R
m and F ∈ C2(Rm;Rm) for some integer m ≥ 2. We

assume that the flux F is strictly hyperbolic, i.e. the Jacobian matrix DF is
diagonizable with distinct real eigenvalues.

For the numerical solution to (1), a wide class of finite volume methods - e.g.,
Godunov method ([5]) and its high-order extensions - requires the approximation
of the solution to Riemann problems at cell interfaces between the neighboring
cell averages. Then, in practical computations the Riemann problem is solved
an extremely large number of time, representing therefore the single most bur-
densome task in the numerical method.

This is why since early sixties much effort has been devoted to develop effi-
cient Riemann solvers either exact or approximate. Exact Riemann solvers are
based on the solution of a certain number of algebraic nonlinear equations via an
iterative procedure; this computational effort depends therefore on the accuracy
of the initial guess we provide.

To alleviate the computational load, in this paper we propose and analyze a
strategy based on the decomposition of the computational work into two different
phases:

� offline stage: we build a polynomial initial guess for the nonlinear equa-
tions by solving a certain number of Riemann problems with random left
and right data;

� online stage: for each time step and for each cell interface we solve the
Riemann problem by using the previously computed polynomial guess to
initialize the iterative solver.

In this work we show that the polynomial initial guess built offline is particularly
accurate and determines a significant improvement in the performance of the it-
erative solver. Furthermore, while the offline stage is carried out only once, the
online stage is repeated many times. For these reasons we expect that the addi-
tional work required by the offline step can be rewarded by the computational
gain obtained during the online stage.

Of course, the idea of decoupling the computational effort into two different
stages is well-established in the context of Reduced Order Modelling for PDEs
(see, e.g., [8] and [2]). However, at the best of our knowledge this paper repre-
sents the first attempt to exploit this technique in the development of Riemann
solvers for systems of conservation laws.

The outline of the paper is as follows. In Section 2 we first introduce some
notation and the main classical results concerning the Riemann problem. Then
we present a new theorem which stands at the base of our strategy. In Section 3
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we introduce the offline online decomposition algorithm and finally in Sections 4
and 5 we apply our method to the numerical solution by finite volumes of both
the p-system and the Euler equations for ideal gases.

2 Problem setting: some theoretical results

This section deals with the analysis of the one dimensional Riemann problem:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ut +F(u)x = 0, (x, t) ∈ R × (0,∞)

u(x,0) = g(x) =
⎧⎪⎪
⎨
⎪⎪⎩

ul x < 0

ur x ≥ 0
x ∈ R

(2)

for two given vectors ul,ur ∈ Rm. With the purpose of analyzing the way u

depends on (ul,ur), we need some definitions and notable results. Our analysis
is largely inspired by [4].

For all z ∈ Rm and k = 1, . . . ,m, let us introduce the triplets (λk, rk, lk) such
that

DF(z)rk(z) = λk(z)rk(z), DF(z)T lk(z) = λk(z)lk(z),

λ1(z) < . . . < λm(z).

We suppose that, for each k = 1, . . . ,m, the eigenpair (λk, rk) satisfies one of the
following conditions:

⎧⎪⎪
⎨
⎪⎪⎩

∇λk(z) ⋅ rk(z) ≠ 0 ∀z ∈ Rm (genuinely nonlinear eigenpair),

∇λk(z) ⋅ rk(z) = 0 ∀z ∈ Rm (linearly degenerate eigenpair).
(3)

For a given u0 ∈ Rm, the k-th rarefaction curve Rk(u0) is defined as the path
in R

m of the solution of the ODE v′(s) = rk(v(s)) in a neighborhood of s = 0,
with initial condition v(0) = u0. Further, we define the shock set :

S(u0) = {z ∈ Rm ∶ F(z) −F(u0) = σ(z − u0) for a constant σ = σ(z,u0)} , (4)

which consists of the union of m differentiable curves Sk(u0), k = 1, . . . ,m, such
that each curve Sk(u0) passes through u0, with tangent rk(u0) (see [4, Th.2,
section 11.2.3]). It follows that the curves Rk(u0) and Sk(u0) agree at least to
first order at u0. In the linearly degenerate case these curves in fact coincide.

In order to avoid non-physical solutions of the Riemann problem we introduce
the sets ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R+k(u0) = {z ∈Rk(u0) ∶ λk(z) > λk(u0)} ,

R−k(u0) = {z ∈Rk(u0) ∶ λk(z) < λk(u0)} ;

S+k(u0) = {z ∈ Sk(u0) ∶ λk(u0) < σ(z,u0) < λk(z)} ,

S−k(u0) = {z ∈ Sk(u0) ∶ λk(z) < σ(z,u0) < λk(u0)} ;

(5)
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and the following curves

Tk(u0) ∶=R+k(u0) ∪ {u0} ∪ S−k(u0), (6)

for k = 1, . . . ,m. Thanks to the previous observations, if (λk, rk) is genuinely non-
linear, Tk(u0) admits a C1 parametrization ǫ→Υk(ǫ,u0) such that {Υk(ǫ,u0) ∶
ǫ > 0} = R+k(ul) and {Υk(ǫ,u0) ∶ ǫ < 0} = S−k(ul). On the other hand, if (λk, rk)
is linearly degenerate, Tk(u0) ∶= Rk(u0) = Sk(u0) and it is still possible to
parametrize the curve through a regular function ǫ → Υk(ǫ,u0). We observe
that each Tk(u0) glues together the physically relevant parts of the k-th rar-
efaction and k-th shock curve.

We now recall the definition of “physical” (entropic) solution to the Riemann
problem (2), ([4]).

Definition 2.1. u ∈ L∞(R×(0,∞);Rm) is said to be an integral solution to (2)
if it satisfies:

∫ ∞

0
∫
R

u ⋅ vt +F(u) ⋅ vx dxdt + ∫
R

g ⋅ v∣t=0 dx = 0 (7)

for all v ∈ C1

0
(R2;Rm). Furthermore1, u is said to be admissible (or entropic)

if for all (x, t) ∈ R × (0,∞) the left and right limits u±(x, t) ∶= limy→x± u(y, t)
do exist and, if u+(x, t) ≠ u−(x, t), then u+(x, t) ∈ S−k (u

−(x, t)) for some k ∈
{1, . . . ,m}.

On the ground of the previous properties and definitions, we can introduce
three special types of solutions to problem (2), ([4]).

Lemma 2.1. Let (λk, rk) be linearly degenerate and let ur ∈ Sk(ul), for some
k ∈ {1, . . . ,m}. Then,

u(x, t) =
⎧⎪⎪
⎨
⎪⎪⎩

ul x < σt

ur x > σt
σ = λk(ul) = λk(ur) (8)

is called k-contact discontinuity and it represents an admissible integral solution
to the Riemann problem (2).

Lemma 2.2. Let (λk, rk) be genuinely nonlinear and let ur ∈ S−k (ul). Then

u(x, t) =
⎧⎪⎪
⎨
⎪⎪⎩

ul x < σt

ur x > σt
σ = σ(ul,ur) (9)

is called k-shock wave and is an admissible integral solution to the Riemann
problem (2).

1This entropy condition is well suited for the solution to the Riemann problem. We refer to
[4, Section 11.4] for more general entropy criteria.
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Lemma 2.3. Let (λk, rk) be genuinely nonlinear and let ur ∈ R+k(ul). Then,
there exists a continuous admissible integral solution u of Riemann problem (2),
which is a k-simple wave constant along lines through the origin. More precisely,
the solution is

u(x, t) = v (Θ(x
t
)) where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(Θl) = ul, v(Θr) = ur;

v′(s) = rk(v(s));

Θ(s) ∶=
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Θl s < F ′k(Θl),

Gk(s) F ′k(Θl) ≤ s < F ′k(Θr),

Θr s ≥ F ′k(Θr),
Fk(s) = ∫ s

0
λk(v(t))dt, Gk = (F ′k)

−1
.

(10)

We refer to this solution as to k-th rarefaction wave.

Let us introduce the vector ǫ = (ǫ1, . . . , ǫm) ∈ R
m and the corresponding

states u1, . . . ,um−1 such that:

u1 =Υ1(ǫ1,ul), u2 =Υ2(ǫ2,u1), . . . ,um−1 =Υm−1(ǫm−1,um−2).

Finally, we introduce the map:

ǫ→Υ(ǫ,ul), Υ(ǫ,ul) =Υm(ǫm,um−1). (11)

Due to the fact that for each k ∈ {1, . . . ,m} Tk ∈ C1, the map Υ(⋅,ul) is
smooth with respect to the first argument. Next theorem guarantees that if
ul and ur are sufficiently close to each other, there exists only one admissible
solution to Riemann problem and it consists of a sequence of rarefaction waves,
shock waves, and/or contact discontinuities. We refer to [4, Th. 4, section 11.2.4]
for the proof.

Theorem 2.1. For each k = 1, . . . ,m assume that the pair (λk, rk) is either
genuinely nonlinear or else linearly degenerate. Suppose further the left state ul

is given.
Then, there exists a neighborhood N (ul) of the left state ul such that if

ur ∈ N (ul), there exists a unique admissible (entropic) integral solution u ∈
L∞(R×(0,∞); Rm) to the Riemann problem, which is constant on lines through
the origin. Furthermore, the solution consists of the (possibly coincident) states
ul,u1, . . . ,um−1,ur, which are separated by contact discontinuities, shock waves
or rarefaction waves, and there exists ǫ ∈ Rm such that u1 =Υ1(ǫ1,ul), . . . ,ur =
Υm(ǫm,um−1).

Thanks to Theorem 2.1 and to Lemmas 2.1, 2.2 and 2.3, we can obtain a
closed formula of the solution by computing the constant states u1, . . . ,um−1.
Therefore, the differential problem (2) can be reformulated as the problem of
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determining m − 1 states in R
m. While the solution to (2), as a function of the

parameters, the space and time, does not depend smoothly on the parameters
(i.e., u ∶ D ×R × (0,∞)→ R

m is not regular with respect to the first argument),
the vectors u1, . . . ,um−1 ∈ Rm depend smoothly on data as stated in the next
theorem.

Theorem 2.2. Assume the system (2) is strictly hyperbolic and let ul,ur ∈ Rm.
If ul,ur are sufficiently closed to each other, then there exists a neighborhoodN(ul,ur) ⊂ R

2m such that the constant states uj ∈ C1(N(ul,ur);Rm) for j =
1, . . . ,m − 1.

In view of the proof of Theorem 2.2, we recall the following result.

Theorem 2.3. (Dependence of eigenvalues and eigenvectors on param-

eters) Let B ∈ C1(Rp; Rm,m), m,p ∈ N. For a given z0 ∈ Rp, let B(z0) be di-
agonizable with distinct eigenvalues λ1(z0) < . . . < λm(z0). Then there exists a
neighborhood N(z0) of z0 such that the eigenvalues λk ∈ C1(N(z0);R) and the
left and right eigenvectors lk, rk ∈ C1(N(z0);Rp) and satisfy the normalization
∣rk(z)∣, ∣lk(z)∣ = 1 for each k ∈ {1, . . . ,m} and for all z ∈N (z0).

The proof is a straightforward application of the Implicit Function Theorem
to the equation Φ(r, λ,z) = (B(z)r − λr, ∣r∣2 − 1) = 0 (see [4, Th. 2, section
11.1.2]).

The first step consists in verifying the continuous dependence of Υ(ǫ,ul)
with respect to ul. By definition, it is straightforward that Rk(ul) depends
smoothly on ul. On the other hand, the continuous dependence of the shock set
is less evident and is addressed by the next Lemma.

Lemma 2.4. Let us consider the strictly hyperbolic system (1). Then, for each
k = 1, . . . ,m there exists Ψk ∶ I ×Rm → R

m such that for each u0 ∈ Rm Ψk(⋅,u0) ∶
I → R

m is a parametrization of Sk(u0) and Ψk(0,u0) = u0. Furthermore, there
exists a neighborhood N (0,u0) of (0,u0) such that Ψk ∈ C1(N (0,u0); Rm),
k = 1, . . . ,m.

Proof. Let us define2:

B(z,u) ∶= ∫ 1

0

DF(u + t(z − u))dt z,u ∈ Rm.

We first observe that B(z,u)(z −u) = F(z)−F(u). As a consequence, z ∈ S(u)
if and only if:

(B(z,u) − σI) (z − u) = 0. (12)

Since the system is strictly hyperbolic, B(u0,u0) =DF(u0) has distinct eigenval-
ues, thus (due to Theorem 2.3) there exist a neighborhoodN (u0,u0) and smooth

2This proof follows the same idea of the proof of [4, Th.2, section 11.2.3].
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functions λk ∶ N (u0,u0) → R, rk ∶ N (u0,u0) → R
m and lk ∶ N (u0,u0) → R

m

(k = 1, . . . ,m) such that:

⎧⎪⎪
⎨
⎪⎪⎩

B(z,u)rk(z,u) = λk(z,u)rk(z,u),

BT (z,u)lk(z,u) = λk(z,u)lk(z,u),

for all (z,u) ∈N (u0,u0). Furthermore, {rk(z,u)}k, {lk(z,v)}k are bases of Rm

and rl(z,v) ⋅ lk(z,v) = 0 if l ≠ k.
If we fix k ∈ {1, . . . ,m}, equation (12) holds if and only if (z − u) ∥ rk(z,u).

As a consequence of the previous discussion, this condition can be reformulated
as:

⎧⎪⎪
⎨
⎪⎪⎩

ll(z,u) ⋅ (z − u) = 0 if l ≠ k

lk(z,u) ⋅ (z − u) ≠ 0 if l = k.
(13)

In view of the application of the Implicit Function Theorem, we define

Φk ∶ R2m → R
m−1; Φk(z,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⋮
lk−1(z,u) ⋅ (z − u)
lk+1(z,u) ⋅ (z − u)

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Φk(z,v) = 0 is a system ofm−1 equations in 2m variables. Let z′ = [z1, . . . , zm−1]
and l̃j = [(lj)1, . . . , (lj)m−1]T , we observe that:

Φk(u0,u0) = 0, Dz′Φk(z,u) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮
l̃Tk−1(z,u)
l̃Tk+1(z,u)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮
(Dz′l

T
k−1(z,u)(z − u))T

(Dz′l
T
k+1(z,u)(z − u))T

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As {lk(z,u)}k is a basis of Rm, rank(Dz′Φk(u0,u0)) =m−1. Therefore, thanks
to the Implicit Function Theorem, there exists a neighborhood N ((u0)m, u0)
and a C1 function Ψ̃k ∶ N ((u0)m, u0)→ R

m such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φk(Ψ̃k(v),v) = 0⇔ Ψ̃k(v) ∈ Sk(u) ∀v = [ s

u
] ∈N ((u0)m, u0),

Ψ̃k((u0)m, u0) = u0.

The result follows by taking Ψk(t,u) = Ψ̃k((u0)m + t, u).
Thanks to the previous Lemma, the curves Tk(ul) = R+k(ul) ∪ {ul}∪S−k (ul)

are of class C1 with respect to ul.
We are now ready to prove our main result. We limit ourselves to the case

m = 2. The extension to the general case is not particularly complex.
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Proof. (Theorem 2.2) Given ul and ur, we consider the parametrizationsΥk ∶ I×
R
2 → R

2 for the curves Tk(⋅), k = 1,2. Let us introduce the function Φ ∶ R6 → R
2

such that: Φ(ǫ,ul,ur) = Υ2(ǫ2,Υ1(ǫ1,ul)) − ur. Due to Lemma 2.4, we have
that Φ(ǫ,ul,ur) is of class C1. Furthermore,

DǫΦ(ǫ,ul,ur) = [DuΥ2(ǫ2,Υ1(ǫ1,ul))∂ǫ1Υ1(ǫ1,ul), ∂ǫ2Υ2(ǫ2,Υ1(ǫ1,ul))]
= [r1(ul), r2(ul)] +O(ǫ),

where we used the fact that DuΥk(ǫ,u)∣ǫ=0 = I for k = 1,2.
Since {rk(ul)}k is a basis of R2, we have that, for sufficiently small ǫ1, ǫ2,

rank (DǫΦ(ǫ,ul,ur)) = 2.
The thesis follows by applying once more the Implicit Function Theorem.

Since uj is a regular function of ul, ur for j = 1, . . . ,m − 1, we expect that
uj = uj(ul,ur) can be well-approximated by a polynomial expansion. Therefore,
Theorem 2.2 justifies a possible strategy for the solution of problem (2) based on
an offline-online decomposition. In the offline stage the polynomial coefficients
are estimated by solving a number of Riemann problems, then in the online stage
the polynomial approximation is used to speed-up the solution of the Riemann
problem. We refer to Section 3 for the details.

3 An offline-online strategy for the resolution of the

Riemann problem

Motivated by the previous mathematical analysis, in this section we focus on
the development of an offline-online strategy for the resolution of the Riemann
problem (2). Let us define µ ∶= [ul,ur]T and the compact set D ⊂ R

2m. In
order to stress the dependence on the parameters, in the following we refer to
Riemann(µ) as to the Riemann problem (2) associated with µ ∈ D and we denote
by u1(µ), . . . ,um−1(µ), the constant states of the solution to Riemann(µ).

We assume that u1(µ), . . . ,um−1(µ) satisfy the algebraic nonlinear system

L(u1(µ), . . . ,um−1(µ);µ) = 0 (14)

where L ∶ R(m−1)m × R2m → R
(m−1)m is a given function associated with the

problem (1). As we will see in Sections 4 and 5 - where (14) corresponds to (19)
and (24), respectively-, this function can be defined explicitly for many relevant
problems.

We can now detail the procedure briefly sketched in the introduction.
In the offline stage, given the parameter space D ⊂ R

2m we first identify
a training set Ξtrain ∶= {µk}ntrain

k=1 ⊂ D of cardinality ntrain, which represents
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a suitable surrogate of D. Then, we compute u1(µk), . . . ,um−1(µk) yielding
the constant-state solutions to the Riemann problem (2) for all µ = µ

k, k =
1, . . . , ntrain. Finally, we use these values to compute a piecewise polynomial
approximation ΠN,ntrain

uj ∶ D → R
m for uj , j = 1, . . . ,m − 1, of order N .

In the online stage, for any new value of the parameter µ ∈ D we solve the
nonlinear system (14) by using ΠN,ntrain

u1(µ), . . . ,ΠN,ntrain
um−1(µ) as initial

guesses of the iterative solver.
Algorithm 1 summarizes the offline-online procedure.

Algorithm 1 Offline-online Riemann solver: general framework

Offline stage

Build the training set Ξtrain ⊂ D.
for k = 1, . . . , ntrain

Compute uk
j ∶= uj(µk) by solving the nonlinear system (14) for µ = µk.

end for

Use {(µk,uk
j ), k = 1, . . . , ntrain} to compute a N -order polynomial approxi-

mation ΠN,ntrain
uj ∶ D → R

m for uj , j = 1, . . . ,m − 1.
Online stage

Given µ = (ul,ur),
Compute uj(µ), j = 1, . . . ,m−1, using ΠN,ntrain

uj(µ) as initial guess of the
iterative solver for the nonlinear system (14).

In this work for the sake of simplicity the training set is generated through
a uniform sampling, while we use the Newton method (see, e.g., [7]) as iterative
solver for (14).

Some comments are in order.
In many situations, the system (14) can be deeply simplified, thus in prac-

tice one requires only a few nonlinear equations. Therefore, we can limit the
offline-online strategy here proposed to the independent variables of the nonlin-
ear equations to be solved.

It is well-known that, without a sufficiently accurate initial estimate, it is
necessary to combine a Newton-like high order and locally convergent method
with a more robust root finding method (e.g., bisection or secant methods). On
the other hand, if ΠN,ntrain

uj(µ) is reasonably accurate, we expect that Newton
method does not require to be coupled with other globally convergent techniques.
As a consequence, the speed-up is potentially relevant.

Before concluding, we recall that the idea of using an offline-online computa-
tional strategy to provide an accurate initial guess for the nonlinear Newton-like
solver has already been exploited in [3]. However, in our work the guess we
provide through the offline stage corresponds with a surrogate of the solution
u(µ) - the constant states u1(µ), . . . , um−1(µ) - instead than with the PDE
solution itself.

In the next two sections, we apply our technique to two different notable
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hyperbolic systems arising in Fluid Dynamics. The numerical experiments pre-
sented below have been realized in Matlab® ([6]).

4 Application to the p-system

In this section we apply our method to the p-system, which is a special case of
(1) characterized by

u ∶= [ w

v
] , F(w, v) = [ −v

p(w) ] (15)

and representing a model for isentropic gas dynamics in Lagrangian coordinates.
Let us introduce a ∶= −p′; in the following we assume that a(w) ∶= −p′(w),
a(w) > 0, a′(w) < 0 for all w and limw→0+ p(w) = +∞. We refer to [1, Section
5.5] for a thorough analysis of the Riemann problem for this system.

This section is organized as follows. First, we introduce the nonlinear equa-
tion to be solved that corresponds to (14). Then, we evaluate our technique
through a number of numerical results.

4.1 Explicit formula for the p-system

Fixed ul ∈ R2
+, by simple calculations we can deduce that in the case at hand

the sets introduced in Section 2 take the following form:

S−
1
(ul) ∶= {(w, v) ∈ R2

+ ∶ w < wl, v = Φ1(w,ul) = vl −√(p(w) − p(wl))(wl −w)}
S−
2
(ul) ∶= {(w, v) ∈ R2

+ ∶ w > wl, v = Φ2(w,ul) = vl −√(p(w) − p(wl))(wl −w)}
R+

1
(ul) ∶= {(w, v) ∈ R2

+ ∶ w > wl, v = Ψ1(w,ul) = vl + ∫ w
wl

√
a(s)ds}

R+
2
(ul) ∶= {(w, v) ∈ R2

+ ∶ w < wl, v = Ψ2(w,ul) = vl − ∫ w
wl

√
a(s)ds}

(16)
Furthermore, we introduce the curves Tk(ul) =R+k(ul) ∪ {ul} ∪S−k(ul), k = 1,2,
and their parametrizations w →Υk(w,ul) = [w,Υk(w,ul)] where

Υ1(w,ul) = ⎧⎪⎪⎨⎪⎪⎩
Φ1(w,ul) w < wl

Ψ1(w,ul) w ≥ wl

Υ2(w,ul) = ⎧⎪⎪⎨⎪⎪⎩
Ψ2(w,ul) w < wl

Φ2(w,ul) w ≥ wl

(17)

for k = 1,2. Finally, we introduce the partition {Ri(ul)}4i=1 induced by the
curves Tk(ul):R1(ul) = {(w, v) ∈ R2

+ ∶ w > wl, Υ2(w,ul) < v < Υ1(w,ul)};
R2(ul) = {(w, v) ∈ R2

+ ∶ v <min{Υ1(w,ul),Υ2(w,ul)}};
R3(ul) = {(w, v) ∈ R2

+ ∶ w < wl, Υ1(w,ul) < v < Υ2(w,ul)};
R2(ul) = {(w, v) ∈ R2

+ ∶ v >max{Υ1(w,ul),Υ2(w,ul)}}.
(18)
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Figure 1 shows the partition {Ri(ul)}4i=1

Figure 1: State space partition induced by the curves Tk(ul), k = 1,2.
Thanks to Lemmas 2.1, 2.2 and 2.3, it is possible to derive a closed formula

for the solution to the Riemann problem, which is based on the knowledge of the
intermediate state u1. Next Lemma provides the nonlinear equation (see (14))
to be solved for obtaining u1. We refer to [1] for the proof.

Lemma 4.1. Should it exists, the solution to the Riemann problem (2) for the
p-system (15) consists of three constant (possibly coincident) states, ul,u1,ur.
Furthermore, if ur ∈ Ri(ul) for some i ∈ {1, . . . ,4}, u1 = [w1, v1]T ∈ R2

+ is such
that w1 is the only solution to the nonlinear equation

f(w,µ) = vr − vl + h(w,wl) + h(w,wr) = 0 w ∈ Ii(µ), (19a)

and v1 = vl − h(w1,wl), where:
h(w,wK) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√(p(w) − p(wK))(wK −w) if w ≤ wK ,

−∫ w

wK

√
a(s)ds if w > wK ,

K = l, r (19b)

and

Ii(µ) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(wl,wr) if i = 1,

(0,min{wl,wr}) if i = 2,

(wr,wl) if i = 3,

(max{wr,wl},∞) if i = 4.

(19c)

4.2 Application of the offline-online strategy to the p-system

Thanks to Lemma 4.1, for each Riemann problem Riemann(µ), we need to solve
only one scalar nonlinear equation depending on the position of ur with respect
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to ul. More precisely, we first identify the region Ri associated with µ and then
we solve the nonlinear equation (19a).

As a result, we just need to provide an approximation of w1(µ) for µ ∈ D.
In all our numerical simulations we consider p(w) ∶= 0.75w−2.5, D ∶= [1,3]4 and
we propose a second order polynomial approximation, one for each region, that
we compute using the least squares method.

During the offline stage we consider a two-level iterative method based on
bisection and Newton methods ([7]). We set the tolerance tolcoarse = 10−2 for
bisection method and tolfine = 10−8 for Newton method. This polyalgorithm will
also be used online as benchmark to evaluate our method.

In order to present the results, we introduce the following two sets:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
DOFF

ntrain,h
∶= {(ul,ur) ∈ [1,3]4 ∶ ∣ul − ur ∣∞ ≤ h, 1, . . . , ntrain} ,

DON
n′
train

,h
∶= {(ul,ur) ∈ [1,3]4 ∶ ∣ul − ur ∣∞ ≤ h, 1, . . . , n′train} , (20)

where h > 0. DOFF
ntrain,h

is used to build the polynomial approximations during the

offline stage, while DON
n′
train

,h
is used to evaluate the performance of our method

during the online stage. Both sets are built through a uniform random sampling.
In view of the integration of our Riemann solver with the Godunov method,

we are also interested in evaluating whether the speed-up of our offline online
method depends on h. We expect indeed that, among the Riemann problems to
be solved at each time step, only a few of them show large values of the jump∣ul − ur ∣.

We first assess the quality of our polynomial approximation. Table 1 reports
the mean error

ǫmean ∶= 1

n′train

n′train∑
j=1

∣w1(µj) −Π2,ntrain
w(µj)∣ (21)

for the different regions Ri, i = 1, . . . ,4.

Table 1: Mean error ǫmean for the four polynomial approximations (ntrain = 2000,
n′train = 5000)

Region I Region II Region III Region IV

∣ul − ur ∣∞ ≤ 0.5 0.0029 0.0041 0.0041 0.0118

∣ul − ur ∣∞ ≤ 0.9 0.0061 0.0087 0.0115 0.0526

Note that it depends on h and on which region it is actually evaluated.
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We now proceed to quantify how many times the procedure fails; that is,
given DON

n′
train

,h
⊂ D, for how many µ ∈ DON

n′
train

,h
(failed points) the Newton al-

gorithm initialized with the precomputed polynomial approximation does not
converge. In addition, we compare our results with the ones obtained by using
another initial guess, wapriori

1
(µ), defined as follows:

w
apriori
1

(µ) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(wl +wr) if ur ∈R1(ul) ∪R3(ul)

1

2
min{wl,wr} if ur ∈R2(ul)

max{wl,wr} if ur ∈R4(ul)
(22)

Table 2: Number of failed points (ntrain = 2000, n′train = 5000) for different
maximum distances h in (20)

number of failed points

Π2,ntrain
w w

apriori
1∣ul − ur ∣∞ ≤ 0.5 29 (0.5%) 911 (18.22%)∣ul − ur ∣∞ ≤ 0.6 19 (0.38%) 916 (18.32%)∣ul − ur ∣∞ ≤ 0.7 36 (0.72%) 918 (18.36%)∣ul − ur ∣∞ ≤ 0.8 32 (0.64%) 903 (18.06%)∣ul − ur ∣∞ ≤ 0.9 21 (0.42%) 907 (18.14%)∣ul − ur ∣∞ ≤ 1 32 (0.64%) 869 (17.38%)

Table 2 shows that the number of failed points associated with the offline
guess does not depend on h and is significantly smaller than the one associated
with w

apriori
1

(µ).
Finally, we make a comparison between the performance of the standard

Riemann solver and that of the offline-online Riemann solver for two different
values of h. We specify that in the current implementation the standard Riemann
solver is called into play whenever the Riemann solver here proposed fails.

Tables 3 gathers the results.
For this particular case study, we have that the speed-up seems not to depend

on the parameter h.
Before concluding, we observe that for h = 0.9 and ntrain = 2000, the compu-

tational time3 associated with the offline stage is 9.75 seconds, 9.63 seconds for
the resolution of the ntrain nonlinear equations, 0.12 seconds for the allocation
of the data structures and the calculation of the polynomial terms. Based on
these results, we can draw two observations.

3The values here gathered are obtained by averaging the results of four independent simu-
lations.
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Table 3: Comparison between the offline-online Riemann solver and the standard
one (ntrain = 2000, n′train = 5000)

∣ul − ur ∣∞ ≤ 0.5 bisection it. Newton it. ave. time (speed-up)

Riemann Solver 6.9876 2.9808 0.0064 (1)
Offline-Online Riemann Solver - 3.0294 0.0029 (2.21)

∣ul − ur ∣∞ ≤ 0.9 bisection it. Newton it. ave. time (speed-up)

Riemann Solver 7.0940 2.9836 0.0069 (1)
Offline-Online Riemann Solver - 3.2720 0.0032 (2.16)

� For our particular simulation the offline-online strategy is convenient if the
number of Riemann problems to be solved is larger than 2714 (break even
point).

� In view of the application of this technique in combination with finite vol-
ume methods for the approximation of general nonlinear hyperbolic prob-
lems, we think that the main difficulty consists in the a priori definition
of the parameter set D. Indeed, given u0 ∶ R → R

m, it is hard to define
a set D = D′ × D′ such that {u(x, t) ∶ (x, t) ∈ R × (0,∞)} ⊂ D′. Since the
construction of the polynomial approximation is particularly fast, we ex-
pect that it is possible to efficiently integrate the offline and online stages
in order to correct the polynomial approximation at run-time. We refer to
a future work for further developments.

5 Application to the Euler equations for ideal gases

This section addresses the case of the Euler equations for ideal gases, a special
case of (1) with

U ∶=
⎡⎢⎢⎢⎢⎢⎣

ρ

ρu

E

⎤⎥⎥⎥⎥⎥⎦
, F(U) ∶=

⎡⎢⎢⎢⎢⎢⎣
ρu

ρu2 + p
u(E + p)

⎤⎥⎥⎥⎥⎥⎦
, E =

1

2
ρu2 + 1

γ − 1p. (23)
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ρ is the gas density, u is the particle velocity, p is the pressure and E is the
total energy per unit volume. We refer to U as to the vector of the conserved
variables. The vector of the primitive variables is W ∶= [ρ, u, p]T .

We refer to [9, Chap.4] for a detailed discussion about the solution to the
Riemann problem (2)-(23). In the following, we first present the nonlinear equa-
tion to be solved to compute the solution to the Riemann’s problem, then we
present some numerical results.

5.1 Explicit formula for Euler equations

According to the theory developed in Section 2, the solution (for the primitive
variables) consists of four constant states Wl,W1,W2,Wr. The first two states,
Wl,W1, are separated by a 1-shock or by a 1-rarefaction wave, while W1,W2

are connected through a 2-contact discontinuity. Finally, W2,Wr are pieced
together through a 3-shock or a 3-rarefaction wave. It is possible to show that
W1 = [ρ⋆,L, u⋆, p⋆]T and W2 = [ρ⋆,R, u⋆, p⋆]T where ρ⋆,L, ρ⋆,R, u⋆, p⋆ ∈ R. In
addition, there exists a closed formula for ρ⋆,L, ρ⋆,R, u⋆ depending only on p⋆

(see [9, Chap. 4] for all the details).
In conclusion, the solution to the Riemann problem (2)-(23) depends only on

the resolution of a scalar nonlinear equation for the pressure p⋆. The following
Lemma ([9, Prop.4.2.1, section 4.2]) completes the discussion.

Lemma 5.1. The pressure component p⋆ of the solution to the Riemann problem
(2) associated to the Euler equations (23) is given by the root of the algebraic
equation

f(p,µ) ∶= fl(p,Wl) + fl(p,Wr) + ur − ul, (24a)

where:

fK(p,WK) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p − pK) [ AK

p +BK

] 12 p > pK

2aR
γ − 1

⎡⎢⎢⎢⎢⎣(
p

pK
) γ−1

2γ − 1⎤⎥⎥⎥⎥⎦ p ≤ pK

where K = l, r (24b)

and the data-dependent constants are

AK ∶= 2(γ + 1)ρK , BK ∶= γ − 1
γ + 1pK , aK ∶=

√
γpK

ρK
. (24c)

Furthermore, if we define pmin ∶= min{pl, pr} and pmax ∶= max{pl, pr}, we can
distinguish the following three cases:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if f(pmin,µ) > 0, then p⋆ lies in (0, pmin);
if f(pmin,µ) ≤ 0, f(pmax,µ) ≥ 0 then p⋆ lies in (pmin, pmax);
if f(pmax,µ) < 0, then p⋆ lies in (pmax,∞).

(24d)
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5.2 Application of the offline-online strategy to the Euler equa-

tion

Following the same steps of Section 4.2, given the Riemann problem Riemann(µ), we identify the interval (24d) the solution belongs to and then we solve
appropriately the nonlinear equation (24) for p⋆. As a result, during the of-
fline stage we compute a piecewise second order polynomial approximation of
p⋆ ∶ D → R based on the domain partition induced by (24d). In our numer-
ical simulations we consider γ = 1.4 and D = ([1,5] × [1,5] × [1,5])2. Unlike
the previous example, during the offline stage we consider the Newton method
initialized through (see [9, (4.47) section 4.3]):

p0(µ) ∶=max{ǫtol, pPV (µ)}, pPV (µ) = 1

2
(pl + pr)− 1

8
(ur −ul)(ρr + ρl)(al +ar),

(25)
where al, ar are defined in (24c). In Tables 4 and 5 we compare the accuracy of
the piecewise polynomial Π2,ntrain

p(µ) with the accuracy of the a priori estimate
p0(µ).
Table 4: Mean error for the three polynomial approximations (Π(µ) =
Π2,ntrain

p(µ), ntrain = 2000, n′train = 5000), comparison with the mean error
for the a priori guess (25).

Region I Region II Region III

Π(µ) p0(µ) Π(µ) p0(µ) Π(µ) p0(µ)
∣Wl −Wr ∣∞ ≤ 0.7 0.0091 0.032 0.0040 0.0056 0.0103 0.0331

∣Wl −Wr ∣∞ ≤ 0.9 0.0128 0.0536 0.0074 0.0099 0.0137 0.0331

Unlike the previous example, our “empirical” guess is comparable with the
a priori guess (25). We observe that the choice of (25) is far from being self-
evident: as explained in [9] it results from the inspection of a linearised solution.
On the other hand, our “empirical” guess is computed automatically and it is
influenced by the equation only through the function p⋆(µ) and the parameter
space D. This is why we expect that for more involved problems, the derivation
of so accurate a priori guesses might be extremely complex. On the other hand,
the method here proposed is not influenced by the problem.
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Table 5: Mean number of Newton iteration and average time using the pre-
computed guess (Π(µ) = Π2,ntrain

p(µ), ntrain = 2000, n′train = 5000), comparison
with the Newton method with the a priori guess p0(µ) (25)

Newton its ave. time

Π(µ) p0(µ) Π(µ) p0(µ)
∣Wl −Wr ∣∞ ≤ 0.7 2.9938 3.1426 3.35 ⋅ 10−4 3.35 ⋅ 10−4
∣Wl −Wr ∣∞ ≤ 0.9 3.0238 3.2530 3.40 ⋅ 10−4 3.40 ⋅ 10−4

6 Conclusions

In this work we have proposed a new exact Riemann solver based on an of-
fline/online computational decomposition. Our approach has been theoretically
justified by Theorem 2.2, which guarantees the smooth dependence of the inter-
mediate states u1, . . . ,um−1 on initial left and right data.

The application of the method to the p-system and to the Euler equation
for ideal gases showed that the guesses provided by the offline stage are ex-
tremely accurate and guarantee the convergence of the Newton method, while
the availability of theoretical a priori guesses is limited to a very small number
of differential problems.

We refer to a future work the analysis and the numerical evaluation of the
application of this technique in combination in thee framework of finite volume
approximation of general nonlinear hyperbolic problems.
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