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Abstract

We introduce a preconditioner for the solution of the Bidomain system
governing the propagation of action potentials in the myocardial tissue,
represented by a degenerate parabolic set of nonlinear reaction-diffusion
equations. The nonlinear term describes the ion flux at the cellular level.
The degenerate nature of the problem results in a severe ill conditioning
of its discretization. Our preconditioning strategy is based on a suitable
adaptation of the Monodomain model, a simplified version of the Bidomain
one, which is by far simpler to solve, nevertheless is unable to capture sig-
nificant features of the action potential propagation. We prove optimality
for the preconditioner with respect to the mesh size, and corroborate our
results with 3D numerical simulations.

Keywords: Preconditioning; Computational Electrocardiology; Bidomain
and Monodomain models

AMS Subject Classification: 65F35, 35K65, 92C50, 65M12

1 Introduction

The Bidomain model is currently considered one of the most complete models for
the description of electrical potential in the cardiac tissue (see e.g. [21], [14]). It
consists of a system of nonlinear unsteady partial differential equations including
the dynamics of intra and extracellular potentials. The degenerate parabolic
nature of this system implies high computational costs in the numerical solution.
For this reason in many applications a simplified formulation of the problem,
called Monodomain model, has been preferred. Other studies have been devoted
to devise effective preconditioners for the algebraic system obtained after the
discretization of the Bidomain model (see e.g. [9], [24], [26], [19],[25]). In general,
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proposed strategies are based on a proper decomposition of the computational
domain for setting up parallel preconditioners, or on suitable multigrid schemes
still coupled with parallel architectures.

In this work, we present a different approach, that can be used on serial
and on parallel architectures as well and that, at some extent, can be coupled
with the techniques mentioned above. As a matter of fact, we propose to use
the Monodomain model, properly formulated, as a preconditioner in solving the
Bidomain system. The Monodomain simplification is based on the assumption of
proportionality between the intra- and extra-cellular conductivities tensors. This
assumption is in general quite unrealistic. However, in this work we show how
it succeeds in preconditioning the Bidomain system with optimal performances,
i.e. the number of preconditioned iterations results to be independent of the
mesh size. This feature is particularly significant in view of 3D simulations on
real geometries retrieved by medical data such as SPECT or MRI (see e.g. [6],
[3]). Even if resorting to parallel architectures is not mandatory for this strategy,
we expect that their adoption could induce a further strong reduction in CPU
times.

The outline of the paper is as follows. In Section 2 we introduce the Bido-
main and the Monodomain models. In Section 3 we introduce the preconditioned
problem and its relevant features. Moreover, we introduce the flexible GMRES
(right) preconditioned iterations of the problem at hand. In Section 4 we present
an analysis of the preconditioner based on a frequency analysis, similar to the
one carried out in [13] and [4] for advection diffusion and Maxwell problems
respectively. Our analysis, based on a linearized formulation of the problem
stemming from a classical semi-implicit time discretization, shows that the con-
ditioning of the preconditioned problem is bounded by a constant independent
of the mesh size h, so that the number of preconditioned iterations is expected
to be independent of h. Numerical results of Section 5 refer to 3D simulations,
carried out with LifeV [1], a finite element solver whose linear algebra solver
is based on Trilinos packages ([2]). More precisely, we present performance
comparison between our preconditioner and the algebraic ILU preconditioner.
Optimality of the preconditioner is confirmed, the number of iterations being
essentially independent of the mesh size. Comparison in terms of CPU time is
favorable too.

2 The Bidomain and Monodomain models

Bidomain model The myocardial tissue is composed of elongated cells, the
cardiac fibers, connected each other by gap junctions and surrounded by an
extracellular medium. From a mathematical point of view, this structure can
be modeled as a continuum in which the electrical variables are obtained as
the average of the single cell properties, after a homogenization process [11].
The cardiac tissue can be represented as a superposition of intra- and extra-
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cellular media connected by a cell membrane dislocated in the domain. The
Bidomain model stemming from this approach takes into account the direction
of the cardiac fibers. Anatomical studies show that the fibers direction rotates
counterclockwise from epicardium to endocardium and that they are arranged in
sheets, running across the membrane [9, 16]. We set the problem in a bounded
region Ω ⊂ R3, and we assume that the cardiac tissue is characterized at each
point by three directions: al along the fiber, at orthogonal to the fiber direction
and in the fiber sheet and an orthogonal to the sheet. The intra and extracellular
media present different conductivity values in each direction. We denote by
σli(x) (resp. σle(x)) the intracellular (resp. extracellular) conductivity in al(x)
direction at point x ∈ Ω, and similarly by σti(x) (σte(x)) and σni (x) (σne (x)) the
conductivities along at(x) and an(x). We will use the notation σli,e(x), σni,e(x),
σti,e(x) for indicating intra and extracellular conductivity in a compact form.

The intra and extracellular local anisotropic conductivity tensors read there-
fore

Di,e(x) = σli,e(x)al(x)aTl (x) + σti,e(x)at(x)aTt (x) + σni,e(x)an(x)aTn (x). (1)

If the myocardium shows the same conductivity in both the tangential and nor-
mal direction (axial isotropy), the tensors simplify in

Di,e(x) = σti,eI + (σli,e − σti,e)al(x)aTl (x). (2)

In the present work, we assume (2) to hold (see [9]). Moreover, we assume that
Di,e fulfill in Ω a uniform elliptic condition.

Let ui,e be the intra and extracellular potentials and u = ui − ue be the
transmembrane potential. The density current in each domain can be computed
as Ji,e = −Di,e∇ui,e. The net current flux between the intra and the extracellular
domain is assumed to be zero as a consequence of the charge conservation in an
arbitrary portion of tissue. Let us denote by Im the ingoing membrane current
flow and by χ the ratio of membrane area per tissue volume. We get therefore

∇ · (Di∇ui) = χIm = −∇ · (De∇ue) (3)

where Im = Cmdu/dt+ Iion being Cm a capacitance and Iion the ionic current.
The dependence of Iion on u has been described basically in two different ways in
the literature. One approach is based on a precise description of ionic channels
like in the models proposed in [5] and [27], and, in particular, the Luo-Rudy phase
I model [17]. The second approach is based on a phenomenological evidence. We
mention in particular the Fitzhugh-Nagumo [12] and the Rogers-McCulloch [20]
models. Our present proposal does not rely on a specific selection of ionic model,
so we do not dwell here upon this topic. Numerical results presented hereafter
will refer to both the Luo-Rudy phase I and the Rogers-McCulloch models as
well.
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The complete Bidomain model reads

χCm

[
1 −1
−1 1

]
∂

∂t

[
ui
ue

]
−
[
∇ ·Di∇ui
∇ ·De∇ue

]
+ χ

[
Iion(u)
−Iion(u)

]
=
[

Iapp
i

−Iapp
e

]
(4)

where Iion depends on the chosen ionic model, and Iapp
i,e are applied external

stimuli. The problem is completed by an initial condition

u(x, 0) = u0 (5)

and boundary conditions on ∂Ω. In particular we prescribe homogeneous Neu-
mann boundary conditions

nTDi∇ui(x, t) = 0 and nTDe∇ue(x, t) = 0, on ∂Ω× (0, T ) (6)

where n is the unit normal outward-pointing vector on the surface, corresponding
to an insulated myocardium. As a consequence of the Gauss theorem, the applied
external stimuli must fulfill the compatibility condition∫

Ω
Iapp
i dx =

∫
Ω
Iapp
e dx. (7)

System (4) consists of of two parabolic reaction diffusion equations for ui and
ue where the vector of time derivatives is multiplied by a singular matrix. The
system is thus said to be degenerate. The transmembrane potential u is uniquely
determined, while the intra and extracellular potentials ui and ue are determined
up to the same function of time, whose value is usually obtained by imposing that
ue has zero average on Ω. Let us define V = H1(Ω)×H1(Ω)/{(c, c) : c ∈ R} and
denote by (·, ·) the scalar product in L2. The variational form of the Bidomain
problem reads as follows: given Iapp

i,e and Iion, find (ui, ue) ∈ V such that

χCm(
∂u

∂t
, φ) + ai(ui, φi) + ae(ue, φe) + (Iion, φ) = (Iapp

i , φi) + (Iapp
e , φe) (8)

for each (φi, φe) ∈ V , where φ = φi − φe. The forms ai,e(v, φ) are defined
as ai,e(v, φ) =

∫
Ω∇v

TDi,e∇φdx. For well-posedness analysis of the Bidomain
problem coupled with the Fitzhugh-Nagumo ionic model, we refer to [11].

Monodomain model To overcome high computational costs associated with
the Bidomain problem a simplified model has been proposed, the so called Mon-
odomain problem. Its derivation can be obtained in two different ways. One way
consists in assuming De = λDi, where λ is a constant to be properly chosen.
For instance, under assumption (2), one can minimize the functional

J = (σel − λσil)2 + 2 (σet − λσti)2
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for given values of the conductivities. Another way of choosing λ has been
proposed in [18]. In general, if we define

λm = min
{
σle
σli
,
σte
σti

}
λM = max

{
σle
σli
,
σte
σti

}
, (9)

it is reasonable to choose λm ≤ λ ≤ λM . Thanks to this assumption, a lin-

ear combination of the Bidomain equations with coefficients
λ

1 + λ
and − 1

1 + λ
yields the Monodomain model

χCm
∂u

∂t
−∇ · (DM∇u) + χIion = Iapp in Ω× (0, T )

u(x, t = 0) = u0 in Ω
nTDM∇u = 0 on ∂Ω× (0, T ),

(10)

where DM =
λDi

1 + λ
e Iapp =

λIapp
i + Iapp

e

1 + λ
.

Another way to derive a Monodomain model, that we will not use in what
follows, can be found in [15] and [7], where the authors mediate the contribution
of the intra and extracellular medium. by choosing in (10)

DM := De (Di + De)−1 Di, (11)

In the sequel we will refer basically to (9), even if the preconditioner proposed
can be extended to the problem obtained with (11).

Using the notation introduced in the previous Section, the variational form
of the Monodomain problem reads: given Iapp and Iion, find u ∈ H1(Ω) such
that

χCm(
∂u

∂t
, φ) + aM (u, φ) + (Iion, φ) = (Iapp, φ) (12)

for each φ ∈ H1(Ω). The form aM (v, φ) :=
∫

Ω∇v
TDM∇φdx is bilinear, con-

tinuous and weakly coercive on H1(Ω)×H1(Ω). For well-posedness analysis of
this problem, we still refer to [11].

Monodomain model is a single parabolic reaction-diffusion PDE for the trans-
membrane potential, replacing the two equations of the original model. However,
this model is not able to capture some physiological and pathological patterns
of the action potential propagation (see [8]).

3 The preconditioned Bidomain model

As a consequence of the degenerate nature of the Bidomain model that entails
a severe ill conditioning of the matrix associated to its fully discrete approxi-
mation, the numerical solution of (4) requires a high computational effort. On
the contrary, though relying on assumptions that prove quite often to be un-
realistic, system (10) is by far more affordable. Our approach now is to use
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the Monodomain model as a preconditioner for the Bidomain system. To this
aim we properly reformulate both systems. More precisely, we consider the non-
symmetric form of the Bidomain problem in terms of the transmembrane and
the extracellular potentials u and ue χCm

∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u
)
−∇ ·

(
λDi −De

1 + λ
∇ue

)
+ χIion = Iapp

−∇ · [Di∇u+ (Di + De)∇ue] = Ĩapp.

(13)

This formulation stems from linear combinations of the two equations in (4),
with coefficients ( λ

1+λ ,−
1

1+λ) and (1, 1), respectively, where we have set Iapp =
λIapp

i + Iapp
e

1 + λ
and Ĩapp = Iapp

i − Iapp
e . In order to match the dimension of the

Bidomain problem, Monodomain model needs to be extended. The same linear
combination leading to (13), combined with the assumption De = λDi yields
the extended Monodomain formulation in terms of the variables u and ue χCm

∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u
)

+ χIion = Iapp

−∇ · [Di∇u+ (1 + λ)Di∇ue] = Ĩapp.

(14)

System (14) is lower triangular, where the first equation (the “genuine” Mon-
odomain model) is independent of ue. In view of its use as a preconditioner,
however, there is no reason for retaining the simplifying Monodomain assump-
tion λDi = De in the second equation so we finally resort to χCm

∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u
)

+ χIion = Iapp

−∇ · [Di∇u+ (Di + De)∇ue] = Ĩapp.

(15)

3.1 Numerical discretization

Let ∆t be the time step of the discretization, we denote with superscript n the
variables computed at time tn = n∆t. Moving from time step tn to tn+1 the
semi-implicit time discrete Bidomain problem 13 reads

χCm
un+1 − un

∆t
−∇ ·

(
λDi

1 + λ
∇un+1 +

λDi −De

1 + λ
∇un+1

e

)
= I(un)

−∇ ·
[
Di∇un+1 + (Di + De)∇un+1

e

]
= Ĩapp

u0(x) = u0(x)
nTDi(∇un+1 +∇un+1

e ) = 0 nTDe∇un+1
e = 0

(16)

where we have set I(un) = Iapp−χIion(un), the latter term including the selected
model for ionic current. Concerning the spatial approximation, we discretize
the domain Ω with a triangulation Th and we build a finite element space Vh
approximating V on Th, in which we will look for the approximate solution uh
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and uhe . In this work Vh is the space of piecewise linear continuous functions on
Th, and we denote by Φ = {ϕj}Nh

j=1 a basis for Vh. Well-posedness of the discrete
problem and convergence analysis for the Rogers-McCulloch model are carried
out in [23].
Let us denote byM the mass matrix with entriesMij =

∑
K∈Th

(ϕj , ϕi)|K , and
by Ki,e the stiffness matrices with Kiji,e =

∑
K∈Th

(Di,e∇ϕj ,∇ϕi)|K , ϕi, ϕj ∈ Φ.
The unknowns of the fully discrete problem are represented by vectors u and
ue, storing the nodal values of uh and uhe , respectively, we let f and g denote
the discretization of the forcing terms, and we set

Buu =
M
∆t

+
λKi

1 + λ
Bue =

λKi
1 + λ

− Ke
1 + λ

Beu = Ki Bee = Ki +Ke.

At step tn+1 we solve
BNSun+1

NS = fnNS, (17)

where

BNS =
[

Buu Bue

Beu Bee

]
, uNS =

[
u
ue

]
, fNS =

[
f
g

]
.

As a preconditioner for (17) we select

MNS =
[

Buu 0
Beu Bee

]
.

Notice that in this form model preconditioner based on the Monodomain model
can be interpreted at the discrete level as a Gauss-Seidel preconditioner on the
non symmetric formulation of the Bidomain problem in terms of u and ue.
The interpretation of the preconditioner as a consequence of extension of the
Monodomain model has however some advantages in view of devising a domain
decomposition multi-model solver for ui,e, that will be addressed in a forthcoming
paper.
In principle, the same approach based on the block-triangular preconditioning
could be applied also to the symmetric formulation of the Bidomain system in
terms of ui and ue. However, this choice proves to be uneffective, as we show in
Section 5.

Since matrix in (17) is not symmetric, system has to be solved by a Krylov
type method. If the linear system associated with the preconditioner is solved
once for all (for instance with an ILU factorization) one can use a preconditioned
GMRES (see [22]) to solve (17), without further considerations on the kind of
preconditioning (left or right). On the other hand, when the preconditioning
matrix is obtained at each time step by solving the Monodomain system via an
iterative method, the preconditioner changes at each iteration, and one has to
use a flexible GMRES (FGMRES), which demands right preconditioning ([22]).
The implementation of FGMRES requires to solve system MNSz = v, where
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z =
[
z1, z2

]T and v =
[
v1,v2

]T . To this aim, we exploit the lower triangular
structure of MNS, solving

Buuz1 = v1 b = v2 −Beuz1 Beez2 = b. (18)

Using FGMRES allows to solve systems (18) with a coarse tolerance, for the
sake of CPU time reduction, as we will illustrate later on.

4 Fourier analysis of the preconditioner

In this section we analyze the performances of the proposed preconditioner at
each time step by means of Fourier analysis. For the sake of clarity, we drop
hereafter the time index. We assume, without loss of generality, the reference
frame to have the first component aligned with the longitudinal axis of the fibers,
so that, owing to (2), the diffusion tensors are diagonal. We introduce the con-
tinuous opertors B : [H1(Ω)]2 → [H−1(Ω)]2 andM : [H1(Ω)]2 → [H−1(Ω)]2, as-
sociated with problems (16) and with the semi-discrete counterpart of (15). De-
noting by k1, k2 and k3 the dual variables, the Fourier transform of w(x, y, z) =
u(x, y, z), ue(x, y, z) reads

F : w(x, y, z) 7→ ŵ(k1, k2, k3) =
∫ ∫ ∫

R3

e−i(k1x+k2y+k3z)w(x, y, z) dxdydz,

and the action of the operators B andM can be expressed for any u ∈ [H1(Ω)]2

as
Bu = F−1 (Bû) Mu = F−1 (Mû)

where B and M represent the operators B and M, respectively. We denote
by (f, g)T the right hand side in (16), and, owing to assumption (2), we let
k2 = k2

2 + k2
3. The transformed (linearized) Bidomain problem reads

χCmû+
∆t

1 + λ

(
λ
[
σl

ik
2
1 + σt

ik
2
]
û+

[
(λσl

i − σl
e)k2

1 + (λσt
i − σt

e)k2
]
ûe

)
= f̂[

σl
ik

2
1 + σt

ik
2
]
û+

[
(σl

i + σl
e)k2

1 + (σt
i + σt

e)k2
]
ûe = ĝ.

(19)

The first equation of the expanded Monodomain problem reads

χCmû+ ∆t
λ

1 + λ

[
σlik

2
1 + σtik

2
]
û = f̂ ,

the second transformed equation coinciding with the second equation in (19).
We set ξ = σlik

2
1 + σtik

2, and η = σlek
2
1 + σtek

2. Bidomain and Monodomain
problems in the frequency domain can be rewritten in matrix form as

B(k1,k)
[
û
ûe

]
=
[
f̂
ĝ

]
M(k1,k)

[
û
ûe

]
=
[
f̂
ĝ

]

8



where

B(k1,k) =

 χCm + ∆t λ
1+λ ξ(k1,k) ∆t

[
λ

1+λ ξ(k1,k)− 1
1+λ η(k1,k)

]
ξ(k1,k) ξ(k1,k) + η(k1,k)


(20)

and

M(k1,k) =

 χCm + ∆t λ
1+λ ξ(k1,k) 0

η(k1,k) ξ(k1,k) + η(k1,k)

 . (21)

For (k1,k) 6= (0, 0) the matrix M(k1,k) is invertible and the preconditioned
problem in the frequency domain reads

[M(k1,k)]−1B(k1,k) (û, ûe)T = [M(k1,k)]−1 (f̂ , ĝ)T .

From now on we set χCm = 1, as this is the standard assumption in the appli-
cations (see [10]).
Considering |k1| < kM1 and |k| < kM , we analyze the effectiveness of the pre-
conditioned operator over the domain

T = {λMξ − c1 ≤ η ≤ λMξ, λmξ ≤ η ≤ λmξ + c2} \ {(0, 0)},

shown in Figure 1, where c1 and c2 are positive constants depending on kM1 ,kM

and on the conductivity values. As kM1 and kM tend to infinity, the domain T
covers the angular sector S = {λmξ ≤ η ≤ λMξ} \ {(0, 0)}.

Figure 1: The domains T and S.

With these notations, the preconditioned operator reads

[M(ξ, η)]−1B(ξ, η) =

 1 α(ξ, η)

0 1− ξ

ξ + η
α(ξ, η)

 , (22)
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where
α(ξ, η) =

∆t
1 + λ

[λ ξ − η]
1 + λ

1+λ ∆t ξ
. (23)

Notice that, for ∆t→ 0, the preconditioning tends to be exact, as the matrix in
(22) tends to the identity.
The eigenvalues of M−1B are clearly given by

γ1(ξ, η) = 1 γ2(ξ, η) = 1− ξ

ξ + η
α(ξ, η) =

1 + ∆tξ
1

ξ
η + 1

1 + ∆tξ
1

1
λ + 1

. (24)

Since they are both real and positive, the conditioning of the continuous pre-
conditioned problem is estimated by the ratio between their maximum and their
minimum. From (23), we have γ2(ξ, η) < 1 for η < λξ and γ2(ξ, η) > 1 for
η > λξ, thus, for any λm ≤ λ ≤ λM

K
(
M−1B

)
=

max
[
1, max

(ξ,η)∈T
γ2(ξ, η)

]
min

[
1, min

(ξ,η)∈T
γ2(ξ, η)

] =
max

(ξ,η)∈T
γ2(ξ, η)

min
(ξ,η)∈T

γ2(ξ, η)
. (25)

Since 1
λM
≤ ξ

η ≤
1
λm

, we have

Γm(ξ) =

1 + ∆tξ
1

1
λm

+ 1

1 + ∆tξ
1

1
λ + 1

≤ γ2(ξ, η) ≤
1 + ∆tξ

1
1
λM

+ 1

1 + ∆tξ
1

1
λ + 1

= ΓM (ξ), (26)

namely, γ2(ξ, η) is bounded independently of η. For any λm ≤ λ ≤ λM , Γm(ξ)
is nonincreasing and ΓM (ξ) is nondecreasing. Taking the limit for ξ, η →∞ in
(26), corresponding to h→ 0, domain T does coincide with S and we get

min
(ξ,η)∈T

γ2(ξ, η) ≥
1
λ + 1
1
λm

+ 1
max

(ξ,η)∈T
γ2(ξ, η) ≤

1
λ + 1
1
λM

+ 1
. (27)

Gathering together (25) and (27) we obtain that for all λm ≤ λ ≤ λM

K
(
M−1B

)
≤
(

1 +
1
λM

)−1(
1 +

1
λm

)
. (28)

We conclude that the preconditioner is optimal with respect to the mesh size,
since the stability of the continuous problem K

(
M−1B

)
is bounded by a con-

stant depending only on the anisotropy ratio in the coefficients of the Bidomain
problem.
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The previous analysis suggests some further considerations on λ. Beyond phys-
ical considerations, λ can be considered here as a parameter to be selected for
enhancing the convergence of the preconditioned iterations. We plot in Figure 2
the distribution of the generalized eigenvalues ω of the matrices BNS and MNS

(BNSv = ωMNSv), computed with Matlab R©, for two different mesh sizes and
for λ = λm, λ = λM , and λ = 1.3, which is the value used in the numerical simu-
lations of Sect. 5. As expected from the Fourier analysis, all the eigenvalues are
greater than 1 for λ = λm, and smaller than 1 for λ = λM indipendently of the
mesh size. Notice that the spectrum spreads out as the mesh parameter h de-
creases. The choice of λ = 1.3, empirically driven for minimizing computational
costs, leads to a good clustering of the spectrum around 1.

Figure 2: Spectra of the preconditioned problem for different mesh sizes: 5272
nodes (left) and 12586 nodes (right). The dashed-dotted lines highlight cluster-
ing of the eigenvalues around 1 for different values of λ.
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5 Numerical results

Numerical results presented hereafter refer to the 3D Bidomain problem set on
a truncated ellipsoid, representing a simplified ventricular geometry, and on a
slab. Both these geometries are completed with an analytical representation of
the fiber orientation as detailed in [9]. In the truncated ellipsoid simulation the
Bidomain model is coupled both with the Rogers-McCulloch and the Luo-Rudy
Phase I ionic models, while the simulation on the slab refers to the Luo-Rudy
Phase I model. In our numerical tests we consider the parameters listed in
[17] for the Luo-Rudy ionic model and the parameters in [9] to set the Rogers-
McCulloch model and the Bidomain one.
The performances of our preconditioner applied to the non symmetric formu-
lation of the Bidomain problem, and solved via a flexible GMRES algorithm
(FGMRES), are compared with a ILU preconditioned conjugate gradient (PCG)
applied to the symmetric Bidomain formulation. The latter at each time tn+1

reads
BS un+1

S = fnS (29)

where

BS =
[

BS
ii BS

ie

BS
ei BS

ee

]
, uS =

[
ui
ue

]
, fS =

[
fi
fe

]
and

BS
ii =

M
∆t

+Ki, BS
ie = BS

ei = −M
∆t

, BS
ee =

M
∆t

+Ke.

Entries of vectors ui and ue are the nodal values of uhi and uhe , while vectors fi
and fe represent the discretization of the forcing terms in the two equations.

Numerical simulation are carried out with LifeV ([1]), a finite element based
code that uses Trilinos packages ([2]) to solve the linear systems: system (29)
is solved by a Block-CG algorithm implemented in BELOS package, with an ILU
left preconditioner (with drop tolerance 10−9 and level of fill 1), implemented
in Ifpack package, while system (17) is solved by a Flexible Block-GMRES
implemented in BELOS. Finally, both linear systems in (18) are symmetric and
are solved by a Block-CG with an ILU left preconditioner. All the computations
are carried out on a workstation equipped with a 2.2 GHz AMD Dual-Core
Opteron processor and 4 GB RAM.

5.1 Influence of the inner tolerance

The first set of numerical experiments aims at investigating the robustness of
the preconditioner with respect to the accuracy in the solution of systems (18).
We performed numerical simulation over an idealized ventricular geometry rep-
resented by the truncated ellipsoid reported in Figure 3.

We set λ = 1.3, ∆t = 0.1 ms, and the simulation is run for 50 ms with
the Luo-Rudy phase I model. We solve here systems (18) with a tolerance
toll = 10−5, which is the same tolerance used as a stopping criterion in the outer

12



Figure 3: Truncated ellipsoidal geometry representing a left ventricle. White
arrows represent myocardial fiber orientation used in our numerical simulations
(see [9] for their analytical description).

iterations. Then we solved the same problem with a coarse tolerance tol = 0.12
for solving systems (18), which is the result of a fine tuning for finding a trade-
off between the number of outer iterations and CPU time to solve (18). The
stopping criterion for the solution of all the linear systems mentioned is based on
the control of 2-norm of the current residual, normalized respect to the 2-norm
of the initial residual.

In Table 1 we report the average CPU time and the average FGMRES it-
eration counts over the entire simulation with different mesh sizes. The two
solutions of the Bidomain systems are computed up to the fulfillment of the
same outer tolerance on the residual. Table 1 highlights the relevant CPU time
reduction with the use of a coarse inner tolerance, while the outer iteration
counts are almost insensitive to the different accuracy required to the solution
of the preconditioning systems.

tol = 10−5 tol = 0.12
# nodes avg. time # iter avg. time # iter

29560 3.89158 2.988 1.08365 3.068
62566 10.6337 3 3.82078 3.972
172878 53.0898 3.922 15.4344 3.99

Table 1: Comparison of the performances of the preconditioner with a fine vs
coarse inner resolution.

5.2 Long time simulation

In this test we analyze the effectiveness of the Monodomain preconditioner on
an entire action potential duration (APD), namely for 400 ms on a fine grid.
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In particular we choose h = 0.02 cm on a computational domain given by a
slab geometry of size 1x1x0.2 cm, that can be handled on a single processor
computer. The resulting tetrahedral grid counts 208848 points.

Bidomain system is coupled with the Luo-Rudy Phase I model. We set again
∆t = 0.1 ms, λ = 1.3, and we solve the systems in (18) with an inner tolerance
toll = 0.12, while the outer tolerance is 10−5. We plot in Figure 4 (top) the
evolution of the iteration counts for both the ILU preconditioned problem and
the Monodomain preconditioned problem (denoted MPrec). ILU preconditioner
simulation shows a remarkable variation in the iteration counts at the beginning
and at the end of the simulation, as already observed in [24]. Correspondingly,
CPU time at the beginning and at the end of simulation is increased. This is
likely a consequence of large variations in the ionic current (due to the upstroke
propagation and to the closing of gating channels), occurring at the beginning
and the end of APD, that are amplified by the ill conditioning of the Bidomain
problem. On the other hand the Monodomain preconditioner has a constant
performance along the whole simulation in terms of the number of iterations at
each time step, which is remarkably smaller than in the ILU preconditioner case.
CPU time plot (Figure 4, bottom) shows that, also for our preconditioner, the
CPU time slightly increases, as to be expected still for the large variations of the
ionic current. This effect is however by far less evident for our preconditioner
versus the ILU one.

5.3 Influence of the mesh size

In the last test we run the Bidomain simulation on the truncated ellipsoid for
50 ms. In the coupling with the Rogers-McCulloch model the time step used is
∆t = 0.5 ms, while with the Luo-Rudy Phase I model ∆t = 0.1 ms is required,
in order to solve the ionic current problem accurately enough. We set again
λ = 1.3. The tolerance for systems (18) is tol = 0.12, while the tolerance for
the outer iterations is set at 10−5 for both the Flexible GMRES and the PCG.
We compare the iteration counts and the execution time of the Bidomain linear
system solution, for both solvers. The first time step is by far the most expen-
sive, as the ILU factorizations are carried out at this stage. Thus, in Table 2
and 3 we give the execution time of the first time step, the average execution
time over the remaining time steps (499 for Luo-Rudy simulation and 99 for the
Rogers-McCulloch one), and the average iteration counts in the overall simula-
tion. Results in Table 2 refer to Rogers-McCulloch model, while results in Table
3 refer to Luo-Rudy phase I model. The iteration counts of the Monodomain
preconditioner appear to be essentially insensitive to the mesh size for both ionic
models. Execution time of the preconditioned system remains significantly lower
than the one of the symmetric Bidomain problem (see Tab. 5.4), the differences
becoming more difference when we get finer meshes. The noticeable is particu-
larly evident in the execution time of the first time step when the incomplete LU
factorization is carried out. This feature is likely relevant when the LU factor-
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Figure 4: Test of section 5.2: top: number of iterations at each time step.
In dashed line: conjugate gradient method with ILU preconditioner; in solid
line: flexible GMRES with Monodomain preconditioner. Bottom: CPU time for
the solution of the linear system at each time step. In dotted line: conjugate
gradient method with ILU preconditioner; in solid line: flexible GMRES with
Monodomain preconditioner.

ization needs to be frequently repeated during the simulations. This is the case
for instance when the movement of the cardiac tissue is included in the model.

5.4 A symmetric block Gauss-Seidel preconditioner

Another block-triangular preconditioner for system (29) stems from dropping
block Bei. Numerical results show that this choice is not effective. As a matter
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(CG+IfpackILU) (MPrec)
# nodes 1st step avg. time # iter 1st step avg. time # iter

12586 9.66 1.31869 22.75 2.77 0.885859 5.03
29560 25.53 4.32848 29.85 7.53 2.87768 6
62566 61.34 13.4555 37.32 18.12 7.76394 6.01
127401 137.03 40.6704 46.29 41.35 20.6259 6.01
172878 211.91 61.561 48.16 61.28 31.6269 6.02
508383 1043.32 392.806 78 295.95 181.893 7
841413 1939.73 779.183 92.56 514.2 329.209 7

Table 2: Rogers-McCulloch model: execution time (in s) and iteration counts.
Columns 2-4: symmetric Bidomain with PCG. Columns 5-7: non symmetric
Bidomain with Monodomain preconditioner. The execution time for the first
time step has been put in evidence.

(CG+IfpackILU) (MPrec)
# nodes 1st step avg. time # iter 1st step avg. time # iter

12586 9.27 0.659178 10.358 2.37 0.425992 3.006
29560 23.42 1.80633 11.268 5.96 1.08365 3.068
62566 53.49 4.8288 12.136 13.58 3.82078 3.972
127401 118.06 13.779 14.478 33.47 9.28469 3.992
172878 170.27 22.0005 16.076 46.55 15.4344 3.99
508383 767.96 134.46 26.894 198.45 58.1504 4.04
841413 1509.6 294.201 33.268 333.65 149.989 4.9

Table 3: Luo-Rudy phase I model: execution time (in s) and iteration counts.
Columns 2-4: symmetric Bidomain with PCG. Columns 5-7: non symmetric
Bidomain with Monodomain preconditioner. The execution time for the first
time step has been put in evidence.
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of fact, for a mesh of 29560 nodes (with the Luo-Rudy Phase I ionic model), for
instance, the execution time for the first time step is 31.02s, the average iteration
count is 87.114, and the average execution time is 24.4803s, showing that this
choice is more expensive with respect to both the Monodomain preconditioner
based on the non symmetric formulation and the ILU-CG preconditioner (see
Table 3). This can be explained by observing that dropping block Bei amounts
to neglect a significant part of the Bidomain problem (29), in particular when
∆t→ 0. On the other hand, in the non symmetric formulation (17) the effects of
dropping block Bue are less relevant since the neglected block has the structure
of the subtraction of two terms that is made “small” for a suitable choice of the
Monodomain parameter λ.

ILU / MPrec (RMC) ILU / MPrec (LR1)
# nodes 1st step avg. time # iter 1st step avg. time # iter

12586 3.4874 1.4886 4.5229 3.9114 1.5474 3.4458
29560 3.3904 1.5042 4.9750 3.9295 1.6669 3.6728
62566 3.3852 1.7331 6.2097 3.9389 1.2638 3.0554
127401 3.3139 1.9718 7.7022 3.5273 1.4841 3.6268
172878 3.4581 1.9465 8.0000 3.6578 1.4254 4.0291
508383 3.5253 2.1595 11.1428 3.8698 2.3123 6.6569
841413 3.7723 2.3668 13.2229 4.5245 1.9615 6.7894

Table 4: Ratio of the CPU times and ratio of iteration counts between conju-
gate gradient method with ILU preconditioner and flexible GMRES with Mon-
odomain preconditioner. Rogers-McCulloch model (columns 2-4) and Luo-Rudy
phase I model (columns 5-7).

6 Conclusions

We introduced a preconditioner for the Bidomain problem in electrocardiology,
based on a non symmetric formulation and on a suitable extension of the Mon-
odomain model. We proved its optimality, assessed both theoretically by Fourier
analysis and numerically by 3D numerical tests. The preconditioner seems to be
pretty insensitive to both the size of the system and the time interval considered.
As the size of the problem increases, the better performances of Monodomain
preconditioner applied to the non symmetric Bidomain with respect to ILU pre-
conditioner applied to the symmetric Bidomain become ever more evident. No
parallelism has been included in the preconditioner solution, and we expect that
their adoption could provide a strong improvement in terms of CPU times.

There are some aspects that deserve to be investigated. On one hand, it is
clear that parameter λ can play a relevant role in enhancing the performances of
the preconditioner. A fine analysis for the definition of the optimal value of this
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parameter is missing at the moment. On the other hand, many medical problems
could have a significant insight thanks to numerical simulation. In particular
the relations between electrical and mechanical dissynchrony in the left ventricle
will be investigated with this method (see Figure 5 for two screenshots from
a simulation performed on a realistic ventricular geometry reconstructed from
SPECT images ([3])).

Figure 5: Screenshots of the action potential propagation at t=70ms (left) and
t=400ms (right), computed on a real left ventricular geometry.
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