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Abstract

Earth Observation optical data are critical for agriculture, support-
ing tasks like vegetation health monitoring, crop classification, and
land use analysis. However, the large size of multispectral and hyper-
spectral datasets poses challenges for storage, transmission, and pro-
cessing, particularly in precision farming and resource-limited contexts.
This work presents the H2-PCA-AT (Hilbert and Huffman-encoded
Principal Component Analysis-Adaptive Triangular) format, a novel
lossy compression framework that combines PCA for spectral reduc-
tion with anisotropic mesh adaptation for spatial compression. Adap-
tive triangular meshes capture image features with fewer elements with
respect to a standard pixel grid, while efficient encoding with Hilbert
curves and Huffman coding ensures compact storage. Numerical evalu-
ations on data reconstruction, vegetation index computation, and land
cover classification demonstrate the H2-PCA-AT format effectiveness,
achieving superior compression compared to JPEG while preserving
essential agricultural insights.

Keywords: Earth observation, Optical satellite data, Precision Agri-
culture, Principal Component Analysis, Anisotropic Mesh Adaptation,
Support Vector Machine, Finite Elements

1 Introduction

Earth Observation (EO) data play a pivotal role in advancing environmental
monitoring related to sustainability [1, 2, 3], particularly in agriculture [4, 5].
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Optical satellite data have become indispensable tools for monitoring vege-
tation health, classifying crop types, and assessing land use through indices
like the Normalized Difference Vegetation Index (NDVI). These applications
support precision farming and resource optimization, enabling sustainable
practices that enhance productivity while minimizing environmental impact.
For instance, monitoring crop growth phases or detecting early signs of stress
caused by pests or droughts helps farmers take timely and targeted actions.
The utility of EO data has been extensively demonstrated by global EO
programmes such as Landsat [6] in the United States, ResourceSat [7] in In-
dia, and Gaofen [8] in China, which offer critical insights into environmental
and agricultural phenomena. In the European context, the EO programme
Copernicus [9] with Sentinel satellite constellations provide open-access data
that are widely used for several applications in agriculture, forestry, and
emergency management [1, 2, 4, 5].

Among the data sources available, Synthetic Aperture Radar (SAR) data
excels in capturing structural and geometric details irrespective of weather
or lighting conditions [10]. This complements optical imagery [11, 12], which
is particularly significant, as it captures the chemical and physical charac-
teristics of the Earth’s surface. Specifically, optical data, acquired in mul-
tispectral and hyperspectral bands [13], offer a detailed view of vegetation
health, soil conditions, and water properties. Multispectral data provide
broad spectral coverage, while hyperspectral imagery enhances detail by
recording hundreds of narrow spectral bands, allowing for advanced anal-
yses such as material identification and vegetation stress detection. These
properties make optical imagery indispensable in agriculture.

The sheer size of modern EO datasets—often tens of gigabytes or even
terabytes per image due to increasing spatial, spectral, and temporal reso-
lutions—poses significant challenges for storage, transmission, and process-
ing. Optical images, in particular, consist of millions of pixels per band
across dozens or hundreds of spectral bands, creating substantial bottle-
necks for applications. These challenges are especially acute in precision
farming, where timely access to data is crucial for informed decision-making
at the field level, and in contexts with limited computational and storage
resources, such as developing regions or small-scale agricultural operations.
Efficient compression methods are therefore essential to enable broader and
more practical use of EO data in agriculture and related fields. Compres-
sion algorithms for EO data fall into two main categories: lossless and lossy
methods [14, 15, 16]. Lossless compression preserves every detail of the orig-
inal data, making it ideal for scientific studies where accuracy is paramount.
However, the reduction in data size is modest, often insufficient for practical
purposes. In contrast, lossy compression allows for much higher compression
by discarding less critical information, making it more suitable for applica-
tions like agriculture, where qualitative insights are often more valuable than
pixel-level precision.
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Mathematical approaches have been extensively employed to tackle the
challenges of EO data compression. Principal Component Analysis (PCA)
is a prominent technique for dimensionality reduction, extracting the most
significant features from high-dimensional data while minimizing informa-
tion loss [17]. This has made PCA a popular choice for compressing optical
datasets, where it reduces the number of spectral bands required for effective
analysis [18, 19, 20, 21, 22].
In this paper, we propose an innovative PCA-based lossy compression method,
specifically tailored to large EO multiband optical datasets with a particular
interest agricultural applications. The approach combines PCA for spectral
dimensionality reduction with anisotropic mesh adaptation [23, 24] for spa-
tial compression. The key insight is to represent optical images on adap-
tive triangular meshes that closely follow the variations in image features,
thus replacing standard uniform pixel grids. This enables a drastic reduc-
tion in data size, while retaining sufficient detail for agricultural decision-
making [25, 26]. The proposed process performs a two-level compression
followed by an efficient encoding and storage procedure. First, the spectral
data are compressed through PCA and projected onto a lower-dimensional
space, while preserving the most informative features. Successively, a fur-
ther compression is carried out by constructing a triangular tessellation of
the image, with tiles concentrated in regions of high feature variation, such
as field boundaries or vegetation gradients. This results in a representa-
tion that uses far fewer elements than the original pixel grid. Finally, the
triangular mesh is encoded using Hilbert curves [27] for spatial indexing
and Huffman coding [28] for compact representation, minimizing storage
requirements. We will refer to the outcome of this compression process as
to H2-PCA-AT (Hilbert and Huffmann-encoded PCA-Adaptive Triangular)
format. This new format becomes effective in practice through a decoding
phase – based on a modified Delaunay algorithm – that recovers the original
optical observation.
The contribution of this work is twofold: first, it demonstrates the effective-
ness of combining PCA, anisotropic mesh adaptation and efficient encoding
algorithms for EO data compression; second, it validates the H2-PCA-AT
format when involved in applications that are directly relevant to agricul-
ture. Specifically, the new format is tested for reconstruction of optical
data, NDVI computation, and land cover classification. Comparisons with
standard JPEG compression [29] highlight the superior performance of our
approach in preserving information critical for these tasks.

The paper is organized as follows. Section 2 introduces the AT repre-
sentation for single-band images, highlighting the foundational principles.
Section 3 extends this approach to multiband optical data by sequentially
combining the encoding phase, relying on PCA and AT compression, Hilbert
and Huffman algorithms, with the decoding step. Numerical assessments for
data reconstruction, NDVI computation, and land cover classification are
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presented in Section 4. Finally, Section 5 discusses the pros and cons of the
H2-PCA-AT format and outlines potential future developments.

2 Adaptive Triangular representation of an image

Image representation refers to the method of converting a picture into a
digital format that can be processed by a computational system. There
is a wide range of image representation methods proposed in the past few
decades, with associated pros and cons [30]. In this paper, we refer to
raster images, which are commonly used for digital photographs, computer
graphics, and other types of complex images. A raster image consists of a
regular grid of square cells – called pixels (px) – with an associated numerical
value representing the brightness at a specific location of the object depicted
in the image.

From a mathematical point of view, an image I of dimensions m and n
can be encoded as a discontinuous function vI : [0,m] × [0, n] → R, such
that

vI(xj , yi) = Ii, j for xj ∈ [j − 1, j], yi ∈ [n− i, n− (i− 1)], (1)

where Ii, j denotes the value of the image at the pixel (i, j), with i = 1, . . . , n,
j = 1, . . . ,m. The uniform structure inherent in a raster image (i.e., the
equal size of pixels) may encounter certain limitations:

• superfluous pixels may be used to represent areas with few details,
resulting in redundant information being stored;

• not enough pixels may be employed to represent highly detailed areas.

These considerations prompted the idea of replacing the uniform pixel grid
underlying the raster format with an alternative tessellation adapted to the
image details, where large and small tiles are displaced in correspondence
with low- and high-detailed areas, respectively. For instance, in [31] the au-
thors resort to an image representation based on different resolution levels,
relying on a quadtree decomposition procedure. In [32], the utilization of
a non-uniform grid of triangular cells is employed in an image segmenta-
tion framework, demonstrating the high flexibility of simplicial elements in
tracing curvilinear contours, when compared with squares.

In this work, we introduce an automatic and handy procedure for a
triangular adaptive image representation that eliminates the tedious pa-
rameter tuning required in [32], by generalizing the approach in [33] used
for image segmentation. Throughout the paper, we categorize the pro-
posed image representation method as Adaptive Triangular (AT). In partic-
ular, we distinguish between an isotropic and an anisotropic AT representa-
tion. An isotropic one comprises primarily equilateral triangles, whereas an
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Figure 1: Comparison among the representation of an image (top) associ-
ated with different tessellations (bottom): standard pixel-wise grid – 6375
tiles (left); isotropic AT representation – 6360 tiles (center); anisotropic AT
representation – 6372 tiles (right).

anisotropic AT representation may also include highly stretched triangular
tiles.

Figure 1 highlights the advantages of using triangular tiles, by comparing
the visualization of a benchmark image on a standard pixel-wise tessellation
(left column) with an isotropic (center column) and an anisotropic (right
column) AT representation, when using about the same number of tiles.
From a qualitative perspective, both AT representations outperform the
pixel-wise description of the image. Indeed, the appropriately sized (center
and right), shaped, and oriented (right) triangular tiles enable the sharp
description of both the logo and the text contours. In the following sections,
we focus on the anisotropic AT tiling since it effectively eliminates the jagged
boundaries that are still present in the isotropic AT representation. This
ensures the desirable balance between image accuracy and storage space.

2.1 Constructing the anisotropic AT representation

AT representations rely on a well-consolidated mathematical tool for the nu-
merical approximation of a partial differential equation (PDE), for instance,
in a finite element (FE) setting. In fact, the tessellations discussed in the pre-
vious section mirror the computational meshes discretizing the domain of a
differential problem. For instance, with reference to Figure 1, the pixel-wise
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Figure 2: Sketch of the affine map TK and associated anisotropic quantities.

grid in the left column corresponds to a structured square mesh, whereas the
isotropic and anisotropic AT representations do coincide with an unstruc-
tured isotropic and anisotropic adapted triangular mesh, respectively. This
correspondence between an image tessellation and a computational mesh
leads us to employ well-established techniques for mesh adaptation in the
context of an AT representation, with a particular focus on an anisotropic
setting.

To generate an adapted mesh it is common practice to resort to a math-
ematical tool, such as an a priori/a posteriori error estimator, to identify
the regions requiring mesh modifications. Alongside this, an adaptive pro-
cedure is employed to adjust the grid based on this information. The error
estimation and the adaptive mesh generation procedures are detailed in the
following subsections.

2.1.1 Error estimation: the theoretical backbone

The procedure of mesh adaption we employ is based on the approach out-
lined in [24], which exploits an anisotropic a posteriori error estimator. As
an initial step, we select the source of information used to identify the
anisotropic characteristics of mesh elements. With reference to Figure 2, we
refer to the anisotropic framework proposed in [23]. Here, the size, shape,
and orientation of the generic element K of a mesh Th are recovered from
the spectral properties of the affine map TK : K̂ → K, which changes the
reference triangle K̂ into K (and analogously the circle CK into the ellipse
EK). The anisotropic features of element K are fully characterized by the
directions, ri,K , and the lengths, λi,K , of the semi-axes of EK , with i = 1, 2,
after assuming λ1,K ≥ λ2,K .

It is customary to measure the anisotropy of the element K through the
aspect ratio sK = λ1,K/λ2,K ≥ 1, where equality sK = 1 corresponds to the
isotropic case.

Concerning the function framework used to contextualize the a posteriori
analysis, we refer to the standard spaces C0(Ω), L2(Ω) andH1(Ω) associated
with a generic domain Ω ⊂ R2, and we introduce the FE spaces of piecewise
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constant and linear polynomials [34]

V 0
h (Th) =

{
v ∈ L2(Ω) : v

∣∣
K

∈ P0(K),∀K ∈ Th
}
,

V 1
h (Th) =

{
v ∈ C0(Ω) : v

∣∣
K

∈ P1(K),∀K ∈ Th
}
,

associated with a tessellation Th of Ω, with Pm(K) the set of polynomials of
degree m = 0, 1, defined on K. Functions vh in V m

h are univocally identified
by the so-called degrees of freedom, DOF[vh], coinciding with the values
taken by vh at the barycenter and at the vertices of the triangles for m = 0
and m = 1, respectively.

Now, we select the error estimator. With reference to the available
literature on a posteriori error analyses [35, 36, 37], we opt for a recovery-
based error estimator, in line with the approach by O.C. Zienkiewicz and
J.Z. Zhu [38]. In this context, the authors estimate the H1(Ω)-seminorm of
the discretization error linked to the FE approximation, vh, of the (weak)
solution, v, to a PDE problem. The idea presented in [38, 39, 40] is to
estimate the H1(Ω)-seminorm of the discretization error by replacing the
exact gradient, ∇v, with the so-called recovered gradient, ∇Rvh, so that

|v − vh|2H1(Ω) =
∑
K∈Th

∫
K
|∇v −∇vh|2 dK ≈∑

K∈Th

∫
K
|∇Rvh −∇vh|2 dK =

∑
K∈Th

ρ2K = ρ2,
(2)

with ρ and ρK the global and local error estimators. The quantity ρ proves
to be an effective tool for identifying strong gradients of v. Since anisotropic
meshes further enhance a sharp detection of the solution gradient, we adopt
the anisotropic variant of the estimator (2). Following [24], we pick vh ∈
V 1
h (Th) and we define the anisotropic counterpart of the squared error esti-

mator ρ in (2) as

η2 =
∑
K∈Th

η2K with η2K =
1

λ1,Kλ2,K

2∑
i=1

λ2
i,K

(
rTi,KG∆K

(ER) ri,K
)
, (3)

where ER = ∇Rvh−∇vh is the recovered gradient error, G∆K
: [L2(Ω)]2 →

R2×2 is the symmetric semi-definite positive matrix, with entries

[G∆K
(w)]rs =

∑
T∈∆K

∫
T
wrws dT r, s = 1, 2,

for any vector-valued function w = [w1, w2]
T ∈ [L2(Ω)]2, and ∆K = {T ∈

Th : T ∩ K ̸= ∅} is the patch of elements associated with K. According
to [24], we select the area-weighted average of the discrete gradient over ∆K

as recovered gradient, namely

∇Rvh

∣∣∣
K
(x) =

1∣∣∆K

∣∣ ∑
T∈∆K

∣∣T ∣∣∇vh

∣∣∣
T
(x) for x ∈ K.
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2.1.2 Mesh adaptation: a practical procedure

The information provided by the anisotropic estimator η is exploited to
update the computational mesh. Among the different techniques that can be
adopted, we employ a metric-based approach [41] that defines the spacing of
the adapted mesh through the piecewise constant symmetric positive tensor
field, M = M({λi,K , ri,K}) ∈ R2×2, such that, for any K ∈ Th,

M
∣∣∣
K

= RT
KΛ−2

K RK with RK = [r1,K , r2,K ]T , ΛK = diag(λ1,K , λ2,K),

(4)
where λi,K and ri,K do coincide with the anisotropic quantities in Figure 2.

Following [42], we generate the adapted mesh in order to ensure a cer-
tain accuracy, τ , on the discrete solution vh, while minimizing the mesh
cardinality, #Th, and equidistributing the error across the elements, i.e.,
η2K = τ2/#Th. These requirements lead to solve an elementwise constrained
minimization problem. The solution to this problem allows us to replace
metric M with a new tensor M∗ = M∗({λ∗

i,K , r∗i,K}), employed to update
Th with the adapted mesh T ∗

h .
In more detail, we rewrite the estimator ηK in (3) by collecting the area
information as

η2K = λ1,Kλ2,K

∣∣∆̂K

∣∣ [sK (rT1,KĜ∆K
(ER) r1,K

)
+ s−1

K

(
rT2,KĜ∆K

(ER) r2,K

)]
,

(5)
where Ĝ∆K

(·) is the scaled matrix G∆K
(·)/
∣∣∆K

∣∣, ∣∣∆K

∣∣ = λ1,Kλ2,K

∣∣∆̂K

∣∣,
with ∆̂K = T−1

K (∆K) the pullback of the patch ∆K through map TK . The
minimization of the mesh cardinality (or, likewise, the maximization of the
element area) combined with the error equidistribution leads us to solve the
constrained minimization problem

min
sK ,ri,K

J
(
sK , r1,K , r2,K

)
subject to sK ≥ 1, ri,K · rj,K = δi,j i, j = 1, 2,

with J
(
sK , r1,K , r2,K

)
the quantity in the square brackets in (5) and δi,j

the Kronecker symbol. The solution to this problem is provided by

s∗K =
√

g1/g2, r∗1,K = g2, r∗2,K = g1, (6)

with {gi, gi}i=1,2 the eigen-pairs associated with the matrix Ĝ∆K
(ER). Fi-

nally, the optimal values λ∗
i,K are derived by explicitly imposing the equidis-

tribution constraint, which yields

λ∗
1,K = g

−1/2
2

(
τ2

2#Th
∣∣∆̂K

∣∣
)1/2

, λ∗
2,K = g

−1/2
1

(
τ2

2#Th
∣∣∆̂K

∣∣
)1/2

. (7)

The quantities r∗i,K and λ∗
i,K in (6)-(7) identify the new metric M∗ (see [42]

for the details). Tensor M∗ represents the input for a metric-based mesh
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Figure 3: Portion of the SWIR-I channel of a multispectral optical satellite
observation: image visualization (top) and associated tessellations (bottom)
for the pixel image vI (first column) and the AT representation for τ = 1.35
(second column), τ = 0.90 (third column), τ = 0.50 (fourth column).

generator that returns the new adapted mesh T ∗
h .

For all the numerical tests of the paper, we use the grid generation environ-
ment available in the software FreeFEM [43].

2.2 The new AT representation in practice

The mesh adaptation procedure discussed in Sections 2.1.1-2.1.2 can be ex-
ploited to establish a novel image representation format aimed at efficiently
managing large datasets. This is particularly relevant for optical data, which
consist of multiple layered images or channels, each corresponding to a dis-
tinct range of wavelengths within the electromagnetic spectrum. As a result,
these data – referred to as multispectral or hyperspectral data – often en-
tail significant storage demands, 16 bits being, in general, allocated for the
brightness value of each pixel.
As an instance of the effectiveness of the AT representation, let us con-
sider the left panel in Figure 3 that shows a portion (400 × 400 px) of the
SWIR-I (Short-Wave InfraRed) channel of a multispectral optical satellite
observation, depicting an extensive agricultural landscape. By varying the
adaptation tolerance τ in (7), we can replace the original raster image con-
sisting of 160000 px with an anisotropic AT representation characterized by
8535 (τ = 1.35), 14490 (τ = 0.90), and 29607 (τ = 0.50) triangular tiles. As
expected, smaller values of τ yield finer meshes that exhibits a higher image
reconstruction accuracy.

The three examples of AT representation in Figure 3 are yielded by
particularizing the generic procedure in Sections 2.1.1-2.1.2. In particular,
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Figure 4: Construction of the initial mesh Th (right) for the AT represen-
tation, starting from a pixel grid (left). The red circles highlight the DOFs
associated with the two representations.

the following choices are made:

• Ω is the rectangular image domain (0,m)× (0, n);

• mesh Th is selected as a structured triangular tessellation of Ω induced
by the pixel-wise tiling of the image;

• function v in (2) coincides with vI in (1);

• function vh ∈ V 1
h (Th) in (2) is identified with the piecewise linear

interpolant of vI on Th;

• the adapted mesh T ∗
h is denoted by T v

h ;

The output of the AT representation of an image does coincide with the
anisotropic adapted mesh, T v

h , and with the projection, ṽh, of function vh
onto the space V 1

h (T v
h ).

Some comments are in order. The triangular mesh Th is generated from
the square partition induced by the pixel structure of I, with the aim to
preserve the number of data in the original image (see Figure 4). In partic-
ular, I contains m × n data, one value appended to each pixel barycenter,
whereas space V 1

h (Th) associates one value (i.e., DOF[vh]) with each triangle
vertex. Thus, we generate Th as a regular structured triangular mesh based
on m − 1 and n − 1 uniform subintervals along the horizontal and vertical
sides of Ω, respectively.
Finally, we observe that function v (i.e., vI) does not correspond to the so-
lution of any PDE problem, in contrast to the standard scenario discussed
in Section 2.1.1. This corroborates the property of the recovery-based error
estimators of being independent of the selected function v.
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3 The compression method

In this section we propose a pipeline implementing a novel method for the ef-
ficient compression of multispectral and hyperspectral optical images, which
exploits the effectiveness of the AT representation. As a first task, we com-
bine the Principal Component Analysis (PCA) with the AT method to re-
duce the amount of data characterizing a multiband optical image, this
leading to the PCA-AT representation (Section 3.1). Successively, an en-
coding procedure is used to efficiently store the information associated with
this new representation, yielding the H2-PCA-AT format (Section 3.2). Fi-
nally, a decoding step is carried out to recover the original satellite raster
data (Section 3.3).

3.1 The PCA-AT representation of a multiband optical ob-
servation

The AT representation presented in Section 2 might not always result in
storage efficiency. In fact, the proposed approach is generally competitive
in terms of storage of brightness values, as the number of DOFs associated
with an AT representation is lower compared to the pixel count. However,
a mesh information is also required to practically reconstruct the image
from the DOFs vector of the finite element function associated with the AT
representation. This is not the case of the standard pixel-wise format that
demands only the DOFs information, the mesh being structured and allow-
ing for direct memory access (i.e., only the image dimensions are requested).
Thus, the advantage of the AT representation in terms of storage efficiency
arises when the number of DOFs added to the mesh data is smaller than the
DOF cardinality of a pixel-wise image. The storage issue for the AT repre-
sentation becomes especially significant for multiband optical images, which
consist of numerous channels, each potentially associated with a different
tessellation.

The PCA-AT representation addresses this storage concern. Initially, we
extract the primary features of the channels pixel-by-pixel by employing a
standard PCA [17]. In particular, PCA may be employed to compress an
optical observation, Iopt, along the channel dimension, where Iopt collects
the brightness distribution of the c channels, {chi}i=1,...,c, with chi ∈ Rh×w,
h, w the dimension of each channel in terms of number of pixels. PCA
reduces the cross-correlation among the channels by introducing a reduced
basis B = {bj}kj=1, with bj ∈ Rh×w and k < c, so that each channel can be
surrogated as

chi − chi =

c∑
j=1

αj
i bj ≃

k∑
j=1

αj
i bj i = 1, . . . , c, (8)
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with chi the mean brightness of the i-th channel and αj
i suitable coefficients

to be determined. The greater the number k, the higher the percentage of
explained data variability. In the sequel, we refer to

R(bj) = [bj,min, bj,max] ⊂ R, (9)

as to the range of values taken by the j-th basis element, with bj,min = min bj
and bj,max = max bj .

To compute the reduced basis B, first we reshape the 3D array V ∈
Rh×w×c, collecting the whole optical data Iopt, with V [:, :, i] = chi, i =
1, . . . , c, into the 2D sample-feature (with sample = pixel, feature = chan-
nel) matrix X ∈ Rhw×c, such that X = S↓(V ), with S↓ : Rh×w×c → Rhw×c,
and

X[(r − 1)w + s, :] = V [r, q, :] r = 1, . . . , h, q = 1, . . . , w. (10)

Successively, we apply the (reduced) Singular Value Decomposition (SVD) [44]
to matrix X −X, so that

X −X = U ΣDT , (11)

with U ∈ Rhw×c, D = [dij ] ∈ Rc×c the matrices of the left and right singular
vectors, Σ = diag(σ1, . . . , σc) ∈ Rc×c the matrix of the singular values. We
collect the first k columns, {uj}kj=1, of U into the matrix Uk = [u1, ...,uk],

with uj ∈ Rhw. Then, we reshape Uk into the 3D volume VB ∈ Rh×w×k

such that VB = S↑(Uk), with S↑ : Rhw×k → Rh×w×k, and

VB[r, s, :] = Uk[(r − 1)w + q, :] r = 1, . . . , h, q = 1, . . . , w. (12)

Finally, the reduced basis B is identified by

bj = VB[:, :, j] j = 1, . . . , k,

while, from (11), coefficients αj
i in (8) can be computed as

αj
i = σjdij i = 1, . . . , c, j = 1, . . . , k. (13)

Figure 5, center panel, collects the first basis elements, b1, . . . , b4 , asso-
ciated with the original multispectral observation Iopt in the left panel. The
right panel in Fig. 5 applies the reconstruction in (8) to the input data Iopt.

The compression process using PCA is now smartly combined with the
AT representation to minimize the amount of data to be stored. Specifically,
in order to limit the mesh information, we construct the AT representation
only for b1, and we project the basis elements b2, . . . , bk onto the AT tes-
sellation T b1

h associated with b1. This choice is based on the notion that
b1 provides the most meaningful content in terms of explained variance (see
Table 1), so that the associated adapted mesh is expected to adequately cap-
ture also the features of the other basis elements. In practice, the PCA-AT
representation is constructed as follows:
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Figure 5: Instance of the PCA procedure performed along channel dimension
(red arrow): channels (793 × 1049 px) of a Sentinel-2 optical observation
covering an agricultural area (left panel); PCA basis elements b1, . . . , b4
(center panel, top-bottom, left-right); reconstruction of the original channels
(right panel).

Table 1: Percentage of explained data variability associated with the PCA
basis elements b1, . . . , bk corresponding to the Sentinel-2 optical data in Fig-
ure 5.

k 1 2 3 4 5 6

Explained variance [%] 61.4 88.4 94.9 97.8 98.7 99.1

• we normalize the b1 basis domain (0, h)×(0, w) to the reference square
Q = (0, 1)2, while maintaining the number of subdivisions along the
horizontal and vertical directions †;

• we apply the procedure in Section 2.2 to b1, after identifying Ω with Q;
Th with the structured triangular mesh associated with the pixel-wise
tessellation of b1; v with b1; vh with the piecewise linear interpolant of
b1 on Th. This step delivers the AT mesh T b1

h along with the associ-

ated representation b̃1 ∈ V 1
h (T

b1
h ) of b1 obtained by projecting b1 onto

V 1
h (T

b1
h );

• we characterize the basis elements bj , j = 2, . . . , k, as functions in
V 1
h (Th) and we define the corresponding projections b̃j onto the space

V 1
h (T

b1
h );

• we collect functions b̃j into the PCA-AT reduced basis B̃ = {b̃j}kj=1.

†This choice is motivated by computational reasons, as detailed in the subsequent
section. To simplify the notation, we preserve the same symbol b1 to denote the original
and the normalized basis element.
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In summary, the PCA-AT representation of the optical observation Iopt
comprises the mesh T b1

h and the reduced basis B̃. This requires the storing

of [(k + 2)nv] data – including the integer vectors DOF[b̃j ] of the k basis
elements and the floating point x- and y-coordinates of the nv vertices of
T b1
h – along with the mesh connectivity. This information is mandatory

when dealing with an unstructured grid and consists of triplets of integers
labeling the mesh vertices according to a global numbering.
In the following we show how to eliminate mesh connectivity and how to
efficiently store DOFs and vertex information, so that the PCA-AT repre-
sentation becomes competitive with respect to a standard pixel-wise format
(i.e., when (k + 2)nv < k hw).

3.2 H2-PCA-AT format: the encoding phase

We outline the approach for efficiently storing the information characterizing
the PCA-AT representation of the optical observation Iopt. The proposed
strategy involves encoding both the coordinates and the brightness informa-
tion associated with the vertices of T b1

h , while disregarding the mesh connec-
tivity. This decision will prompt the development of a specialized method
for reconstructing a mesh that surrogates T b1

h in the decoding phase.

3.2.1 Mesh vertices encoding

To encode the vertex information characterizing mesh T b1
h , we resort to

the so-called space-filling curves that allow mapping a one-dimensional set
into a higher-dimensional one (e.g., an interval into a square or a cube).
Space-filling curves find practical applications in several fields to optimize
data storage, such as data indexing, image compression, computer graph-
ics, geographic information systems and digital signal processing [45, 46].
Among the several options available in the literature, we adopt the Hilbert
curves [27], since they are regular, ordered, and easily implementable, for
instance, when compared to Peano [47] or Z-order curves [48].
With reference to a two-dimensional setting, the key idea is to iteratively
divide the set Q = [0, 1]2 into smaller squares and then recursively create a
path – the Hilbert curve – that entirely fills Q and that crosses these subdi-
visions, visiting a subset of points in the space exactly once. Hilbert curves
feature interesting properties, such as locality preservation (close points in
space tend to have nearby addresses along the curve, aiding algorithms like
spatial indexing and searching) and self-similarity like fractals (the curves
exhibit a similar pattern at different scales along the entire path).

The construction of a Hilbert curve is based on an iterative procedure,
whose generic p-th iteration yields the level-p Hilbert curve, Cp ⊂ Q. The
level p of the curve tunes the filling of Q by means of Cp (see Figure 6).
Formally, on varying p ∈ N, with p ≥ 2, we have Cp = Fp (Cp−1), with C1
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p = 1 p = 2 p = 3

p = 4 p = 5 p = 6

Figure 6: The level-p Hilbert curves Cp ⊂ Q, for p = 1, . . . , 6.

the U-curve in Figure 6 (top-left) and Fp : Q → Q a composite geometric
transformation, which properly combines scaling, rotation and translation
(we refer to [27] for technical details and to the Python Hilbert curve pack-
age [49] for a possible implementation). Each curve Cp is identified by the
set Hp of the associated breakpoints, which we refer to as Hilbert points
of order p (see Figure 7). The cardinality of Hp, namely |Hp|, increases
exponentially with the order p, being |Hp| = 4p. It is customary to in-
troduce a one-to-one correspondence between the so-called Hilbert indices
Ip = {1, . . . , 4p} and the Hilbert points to univocally identify the elements
in Hp with the integer labels 1, . . . , 4p.

The idea underlying the proposed encoding strategy for the vertices of
mesh T b1

h entails approximating the vertex list, V = {Vi}nvi=1, with a subset,
VHLB = {VHLB,i}nvi=1, of Hilbert points of a certain order p, whose value
depends on a desired accuracy τHLB. This approach leads to store the
Hilbert index instead of the vertex coordinates, (Vi,x, Vi,y), (i.e., an integer
rather than a pair of real numbers), for any vertex Vi ∈ V. Taking the vertex
list V as input, the encoding strategy encompasses two steps:

• Identification of Hilbert order and indices – We find the Hilbert curve
Cp of order p such that, for each mesh vertex Vi, there exists a Hilbert
point Hi within a distance equal to the tolerance τHLB (see Figure 8).
We build the array indHLB ⊂ Ip that gathers the indices of the Hilbert
points Hi.

• Sorting of the Hilbert indices and final encoding – We arrange the en-
tries of indHLB in ascending order, yielding the array indHLB,sort. We
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p = 1 p = 2 p = 3

Figure 7: The level-p Hilbert curves Cp ⊂ Q and associated Hilbert points
Hp, for p = 1, . . . , 3.

define vector Ienc containing the first Hilbert index and the differences
between two consecutive Hilbert indices.

Concerning the tolerance, τHLB can be either selected by the user or
set automatically as the largest possible value ensuring the preservation of
the cardinality of the original mesh T b1

h and avoiding vertex collapse. The
replacement of the array indHLB,sort with Ienc at the second step is meant to
further reduce the required memory storage, since index differences involve
less digits than the integer label, especially for | indHLB,sort | = nv ≫ 1. Fi-
nally, vertices VHLB coincide with the Hilbert points labeled in indHLB,sort,
thanks to the implicit bijection between Hilbert points and indices.

3.2.2 Brightness encoding

The mesh vertices encoding requires a rearrangement of the associated bright-
ness information. We remind that a generic finite element function vh ∈
V 1
h (T

b1
h ) is uniquely identified by the corresponding DOFs. In the context

of multiband image compression, we denote by DOF[b̃j ] ∈ Rnv the vec-

tor collecting the brightness values of b̃j at the vertices V of mesh T b1
h ,

with j = 1, . . . , k. Consequently, the vector DOFHLB[b̃j ] ∈ Rnv gathering
the brightness values of b̃j at the vertices in VHLB can be assembled in a

straightforward way by exploiting that b̃j belongs to V 1
h (T

b1
h ), being

DOFHLB[b̃j ](i) = b̃j(VHLB,i) i = 1, . . . , nv, j = 1, . . . , k. (14)

Typically, the brightness information is stored according to a 16-bit format.
However, for store needs, we map brightness values DOFHLB[b̃j ] into the
range [0, 255], and then we apply an integer rounding, reducing the origi-
nal 16-bit to an 8-bit data representation, DOFHLB−8[b̃j ]. This procedure
unavoidably leads to several repetitions in the new DOF vector. Such a
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Figure 8: Example of Hilbert points identification for the green-highlighted
triangular mesh (the circle radius coincide with τHLB).

redundancy is finally compressed by means of the Huffman encoding algo-
rithm [28] that assigns short codes to frequent characters and long codes to
less recurrent ones and provides a lossless data compression.

The information output of the brightness encoding does coincide with the
compressed vectors DOFHFF [b̃j ] for each PCA basis b̃j , with j = 1, . . . , k,
namely with the set Denc = {DOFHFF [b̃j ]}kj=1.

3.2.3 The encoding output and validation

The encoding phase delivers the array Ienc and the set Denc as the necessary
information to be stored, together with the averages chi from (8), values
bj,min and bj,max from (9), coefficients αj

i from (13), for i = 1, . . . , c, j =
1, . . . , k (see Figure 9 for a sketch). We refer to this information as to the
H2-PCA-AT (Hilbert and Huffman-encoded PCA-AT) format whose overall
storage weight is given by

stenc = bitIenc ·nv+bitDenc ·
k∑

j=1

|DOFHFF[b̃j ] |+(c+2k+ck) ·bitPCA, (15)

where bitIenc , bitDenc and bitPCA denote the number of bits required to mem-
orize the maximum integer of the list Ienc and of the entries in Denc, and to
store the parameters involved in the PCA. Notice that the last contribution
is negligible with respect to the other two terms.
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Figure 9: The encoding phase pipeline.

In order to evaluate the effectiveness of the encoding process, we com-
pare this approach with the baseline consisting of directly storing the DOF
integers and vertex coordinates floating point numbers without resorting to
Hilbert curves and Huffman encoding. A description of the baseline encod-
ing approach follows. Mesh vertices in V are stored using q digits, such that
q is as small as possible and avoids vertex collapse; brightness values are
subject to the same procedure as in Section 3.2.2, when skipping the final
Huffman encoding.
We carry out such a comparison on the optical observation shown in Fig-
ure 5 (left) when an accuracy τ = 8.0e−4 is set for the AT representation
of the first basis image b1. Table 2 shows the results of this comparison by
gathering the number k of the principal components, the file size associated
with the H2-PCA-AT format and the baseline encoding, and the storage
ratio between the two approaches.
As expected, the weight associated with the two formats increases with the
number of principal components. The advantage in using H2-PCA-AT for-
mat with respect to the baseline encoding is evident in terms of storage,
with an average ratio of 60%.

Table 2: Comparison between the H2-PCA-AT and the baseline format in
terms of storage size and ratio.

k H2-PCA-AT format [kB] Baseline encoding [kB] Storage ratio [%]

1 185320 308952 59.98
3 290560 446264 65.11
5 363856 583576 62.35
7 428253 720888 59.41
11 561402 995512 56.39
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3.3 H2-PCA-AT format: the decoding phase

This section is devoted to detail the decoding procedure exploited to recover
the information stored via the H2-PCA-AT. We aim to retrieve the mesh
together with the associated brightness values. The second task is straight-
forward when resorting to the Huffman decoding [50] that, starting from
Denc, restores the original redundancy of DOFHLB−8[b̃j ], for j = 1, . . . , k.
At this point, the brightness values in DOFHLB−8[b̃j ] are upgraded to the
original range R(bj) in (9), leading to the definition of the new DOF vector
DOFHLB−16[b̃j ].

Concerning the mesh information, first we transform vector Ienc into the
list of the Hilbert indices indHLB,sort, by adding the difference between two
consecutive Hilbert indices to the previous one. Successively, the vertices
in VHLB of Hilbert points labeled in indHLB,sort are identified, thanks to
the one-to-one mapping between Hilbert points and indices. However, ver-
tices do not provide a sufficient information to build a computational mesh,
since we have intentionally omitted the encoding of the associated connec-
tivity. Thus, starting from vertices VHLB, we employ a modified Delaunay
algorithm [51] to generate a tessellation of Q that surrogates the original
mesh T b1

h . To this aim, we build a Delaunay grid, T b1
h, DEL, with vertices

{VHLB,i}. Then, we modify mesh T b1
h, DEL, which is intrinsically isotropic,

into an anisotropic tessellation of Q, via the greedy error estimator-based
procedure detailed in Algorithm 1.

The input quantities are the Delaunay mesh T b1
h, DEL and the vector

DOFHLB−16[b̃1]. To settle the isotropic-to-anisotropic mesh modification
strategy, we first define the FE function b̃1,DEL ∈ V 1

h (T
b1
h, DEL), such that

(line 1)
b̃1,DEL(VHLB,i) = DOFHLB−16[b̃1](i) i = 1, . . . , nv.

As a criterion for the mesh modification, we compute the error estimator
in (3) applied to function b̃1,DEL, for each element in T b1

h, DEL (line 2). We
sort the values of ηK in a descending order and we assemble the list Ksort

of the associated elements K, identified by the triplet of the corresponding
vertex labels (line 3). Now, starting from the element K with the highest
error estimator, if K does not intersect the boundary ∂Q of the domain
(line 4), we identify the three triangles, Adj(K), adjacent to K. For any T ∈
Adj(K), we inspect the two area-equivalent configurations qKT = {K,T}
and qKT,swap = {Kswap, Tswap}, where Kswap and Tswap are the triangles
obtained by swapping the edge common to K and T in the quadrilateral
K ∪ T . This operation is performed under the condition that K ∪ T is
convex (line 5). The two configurations qKT and qKT,swap are compared
in terms of error estimator, by evaluating ηKT = ηK + ηT and ηKT,swap =
ηK,swap + ηT,swap (line 6). The algorithm retains the pair of triangles that
minimizes such an error estimator (lines 7-8) and consequently updates the
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mesh under construction. In particular, we remind that edge swapping may
strongly increase the anisotropic features of the grid [52] and this is in line
with the anisotropic nature of the original mesh.

Algorithm 1 Isotropic-to-Anisotropic Mesh Recovery Algorithm

Input: T b1
h,DEL, DOFHLB−16[b̃1]

1: Project the first PCA basis element on T b1
h,DEL;

2: Evaluate the local error estimator ηK based on b̃1,DEL, for any K ∈
T b1
h,DEL;

3: Sort estimators ηK in a descending order and create the list Ksort of the
corresponding elements;

4: for (K ∈ Ksort and K ∩ ∂Q = ∅) do
5: for (T ∈ Adj(K) and qKT convex) do
6: Compute ηKT and ηKT,swap;
7: if (ηKT,swap < ηKT ) then
8: Replace qKT with qKT,swap;
9: end if

10: end for
11: end for

Output: T b1
h,rec, b̃1,rec

The algorithm delivers as final output the new mesh T b1
h,rec together with

the function b̃1,rec ∈ V 1
h (T

b1
h,rec), such that

b̃1,rec(VHLB,i) = DOFHLB−16[b̃1](i) i = 1, . . . , nv.

Notice that, b̃1,rec differs from b̃1,DEL due to the different connectivity of

meshes T b1
h,rec and T b1

h, DEL, while preserving the brightness values. Also, we
observe that the greedy search in line 4 can be limited to a certain percentage
of the mesh cardinality for computational saving reasons.

3.3.1 An example of mesh recovery

To investigate the effectiveness of the mesh recovery process, we carry out
a comparative analysis in terms of image reconstruction error between an
optical observation of reference and the corresponding decoded H2-PCA-
AT format based on T b1

h , on the Delaunay tessellation T b1
h, DEL, and on the

recovered grid T b1
h,rec.

For comparison purposes, we project the AT representation of b̃1, b̃1,DEL,
and b̃1,rec onto the h×w-px grid characterizing b1, by defining the pixelwise
quantities

B1(i, j) = b̃1
(
bar(i, j)

)
, B1,DEL(i, j) = b̃1,DEL

(
bar(i, j)

)
,

B1,rec(i, j) = b̃1,rec
(
bar(i, j)

)
,
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Table 3: MSE associated with the pixel-wise format B1, B1,DEL, B1,rec for
different values of the accuracy τ ; MSE discrepancies; percentage of MSE
units gained by the mesh recovery procedure.

τ 1.5e-3 8.0e-4 5.0e-4
MSE(b1, B1) 1.049e-3 5.591e-4 3.597e-4
MSE(b1, B1,DEL) 1.224e-3 6.629e-4 4.307e-4
MSE(b1, B1,rec) 1.113e-3 5.912e-4 3.827e-4
∆1,DEL−1 1.750e-4 1.037e-4 7.108e-5
∆1,rec−1 0.6339e-4 3.1990e-5 2.3000e-5
%recovered 63.74 69.13 67.63

where bar(i, j) is the barycenter of the pixel (i, j), for i = 1, . . . , h, j =
1, . . . , w. This comparison is performed taking as reference the first basis
image b1 in Figure 5. Table 3 gathers the values of: the Mean Squared Error

MSE(b1, B∗) =

h∑
i=1

w∑
j=1

[b1(i, j)−B∗(i, j)]
2

hw
, (16)

with B∗ = B1, B1,DEL, B1,rec, respectively, for three different AT represen-
tation accuracy (i.e., values of τ); the discrepancies

∆1,DEL−1 = MSE(b1, B1,DEL)−MSE(b1, B1),

∆1,rec−1 = MSE(b1, B1,rec)−MSE(b1, B1);

the recovered percentage error %recovered = (∆1,DEL−1−∆1,rec−1)/∆1,DEL−1 ·
100. These statistics are selected in order to demonstrates that the mesh
recovery procedure greatly improves the accuracy of the first basis image
approximation based on the mesh T b1

h, rec with respect to simply considering

the isotropic mesh T b1
h, DEL.

A comparison of the three pixel-wise formats demonstrates the effective-
ness of Algorithm 1. It enhances the MSE linked with B1,DEL, producing
an approximation B1,rec more faithful to the original data b1. As AT ac-
curacy improves, both the MSE and related discrepancies decrease. For all
the three considered cases, the recovered error percentage remains similar,
highlighting the algorithm’s consistency in mesh recovery.

3.4 The optical observation reconstruction

The final step consists of reconstructing the original multiband optical ob-
servation by resorting to the approximations of the first k basis images bj
and reassembling them through the coefficients αj

i . To this aim, we first
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Figure 10: The decoding phase pipeline.

define the finite element functions b̃j,rec ∈ V 1
h (T

b1
h,rec), j = 1, . . . , k, such that

b̃j,rec(VHLB,i) = DOFHLB−16[b̃j ](i) i = 1, . . . , nv,

and the corresponding pixel-wise raster representation

Bj,rec(p, q) = b̃j,rec
(
bar(p, q)

)
,

with p = 1, . . . , h, q = 1, . . . , w. Thus, the 3D volume VB,rec ∈ Rh×w×k

associated with the reconstructed matrices Bj,rec, the corresponding score
matrix Urec and the reconstruction Xrec of the sample-feature matrix X =
S↓(V ) are given by

VB,rec[:, :, j] = Bj,rec j = 1, . . . , k, Urec = S↓(VB,rec), Xrec = UrecΣDT +X.
(17)

Successively, we utilize the PCA expansion in (8) to construct an approx-
imation, CHi, of the original optical channels chi, i = 1, . . . , c, computed
as

chi ≈ CHi =

k∑
j=1

αj
iBj,rec + chi.

In the sequel, we denote by Irec the collection of the reconstructed channels
{CHi}ci=1 and by Vrec the associated 3D dataset of dimension h×w×c. The
whole pipeline of the decoding is shown in Figure 10.

4 Performance Evaluation

For the performance analysis, we employ two sets of data. The first one is
the widely recognized Salinas dataset [53], which comprises hyperspectral
images, acquired by the Airborne Visible/Infrared Imaging Spectrometer
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(AVIRIS) over Salinas Valley, California, USA. This dataset comprises 204
channels (two of these are shown in Figure 11, first and four columns), each
consisting of 512 × 217 px, spanning the 400 − 2500 nm wavelength range,
encompassing visible to near-infrared light. As a second dataset, we con-

(a) (b)

Figure 11: Performance evaluation (reconstruction) on two channels of Sali-
nas dataset, for i = 10 (panel (a)) and i = 40 (panel (b)): original data chi
(left), reconstruction CHi (center) and associated absolute error (right).

sider the optical satellite observation by Sentinel-2 in Figure 5, consisting
of 13 channels with 793 × 1049 px, providing an extremely complex and
heterogeneous setting (we show two channels in Figure 12, top row).
We assess the effectiveness of the H2-PCA-AT format in terms of image
reconstruction, evaluation of a vegetation index, and classification for appli-
cations in agriculture and Earth monitoring. In particular, we are interested
in investigating the performance characterizing the new format when vary-
ing the number k of basis images, the accuracy parameter τ , and when
compared with the standard JPEG compression.

4.1 Reconstruction

We first investigate the reconstruction capabilities of the H2-PCA-AT format
from a qualitative viewpoint over the hyperspectral Salinas dataset in Figure
11 and the Sentinel-2 optical observation in Figure 12. In particular, Figure
11, presents two original Salinas channels (first and fourth columns), the
associated H2-PCA-AT reconstruction for k = 10 and τ = 7e−4 (second
and fifth columns), and the corresponding absolute error maps (third and
sixth columns). Figure 12 (center row) shows the reconstruction of the
Sentinel-2 channels in the top row, for k = 11, τ = 1.8e−3. On average, the
reconstruction quality is noticeable, especially in the first dataset where the
agriculture fields provide easily identifiable features. Such a good quality
is confirmed by the maps of the absolute error in both the analyzed cases
(third and sixth columns in Figure 11, bottom row in Figure 12).

To quantitatively corroborate these remarks, we refer to a commonly
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Figure 12: Performance evaluation (reconstruction) on two channels of
Sentinel-2 optical observation, for i = 5 (left) and i = 8 (right): original
data chi (top), reconstruction CHi (center) and associated absolute error
(bottom).

used performance measure for the lossy compression of an image, namely
the Peak Signal-to-Noise Ratio (PSNR). This index quantifies (in decibel)
the fidelity of a compressed image, Ĩ, with respect to the original data, I,
being

PSNR(I, Ĩ) = 20 · log10

 max I√
MSE(I, Ĩ)

 , (18)
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Figure 13: Performance evaluation (reconstruction) for the Salinas (left) and
the Sentinel-2 (right) datasets: PSNRc curves as function of the compression
ratio associated with the standard JPEG and the H2-PCA-AT format for
different values of k.

where max I is the maximum brightness value across the image pixels, and
MSE is defined as in (16). With reference to the channels in Figures 11-
12, we pick max I = 216 − 1, the number of bits required to represent the
brightness of each pixel being equal to 16. Moreover, since we deal with
multi-channel images, we generalize the definition (18) as

PSNRc(Iopt, Irec) =
1

c

c∑
i=1

PSNR(chi, CHi) (19)

to include the contribution of all the channels. We investigate the trend of
PSNRc(Iopt, Irec) as a function of the compression ratio, namely the ratio
between the storage weight in (15) and the size, stopt = 16 · hwc, of Iopt.

For the H2-PCA-AT format, the compression ratio depends on the num-
ber of the PCA basis components as well as on the tolerance τ set for the
mesh adaptation, in contrast to a standard JPEG format, which only de-
pends on the quality factor [29]. Figure 13 shows the PSNRc trend as a
function of the compression ratio for the Salinas (left) and the Sentinel-2
(right) optical datasets, by distinguishing different numbers of PCA basis
components and different tolerances τ . Table 4 collects the parameters used
for the H2-PCA-AT and JPEG formats.

For the Salinas dataset, the maximum PSNRc value remains comparable
(≃ 64) across all choices of k, with larger values of k corresponding to less
notable compression ratios. The second dataset leads to a more diversified
scenario, since a larger number of PCA components ensures a higher value
of the PSNRc, now ranging from 50 for k = 1 to 57 for k = 7. As expected,
for both the datasets, larger values of τ yield a smaller compression ratio.
For comparison, Figure 13 includes the PSNRc curve of the standard JPEG
format, where the compression ratio is adjusted based on the quality fac-
tor values in the bottom panel of Table 4. We observe that, for both the
datasets, JPEG allows reaching larger values of PSNRc when moderate com-
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(a) (b1) (b2) (b3) (c1) (c2) (c3)

Figure 14: Performance evaluation (reconstruction) on a channel of Salinas
dataset, for i = 40: original data chi (panel (a)); reconstruction for a com-
pression ratio about equal to 8.6e−3 (panels (b)) and 1.4e−2 (panels (c))
provided by the JPEG format (panels (b1), (c1)) and by the H2-PCA-AT
format (panels (b2), (b3) and (c2), (c3)).

pression ratios are required, exhibiting a 4-unit mismatch with respect to the
H2-PCA-AT format. On the contrary, when interested in a small compres-
sion ratio, it is advisable to resort to the proposed approach that guarantees
high compression while maintaining acceptable PSNRc values (see Figure 13,
where the optimal trade-off between compression ratio and PSNRc is high-
lighted in the yellow area).

We have also verified that the standard deviation of the PSNR across
channels is similar for both the JPEG and the H2-PCA-AT format, indepen-
dently of the number k of selected PCA components, the accuracy τ , and
the quality factor (≈ 7 for the Salinas, ≈ 10 for the Sentinel-2 observation).

Finally, Figure 14 highlights the two-parameter (k and τ) tunable recon-
struction capability of the H2-PCA-AT format, compared to JPEG, which
relies on a single parameter (quality factor) to control reconstruction accu-
racy. Panel (a) shows the original channel ch40 of Salinas dataset, while
panels (b) and (c) gather the image reconstruction associated with a com-
pression ratio value ≈ 8.6e−3 and ≈ 1.4e−2, respectively. Panels (b) and
(c) compare the JPEG format with the H2-PCA-AT reconstructions when
parameters k and τ are set as in Table 5 (reconstructions (b1)-(b3), (c1)-(c3)
correspond to the red markers in the left panel of Figure 13). A qualita-
tive comparison across panels in Figure 14 highlights that the H2-PCA-AT
limits the pixel-wise pattern recognizable in the JPEG format, and reduces
the presence of artifacts, as confirmed by the enlarged views in Figure 15.
From a quantitative perspective, the superiority of the H2-PCA-AT format
over standard JPEG is confirmed by the PSNRc values in Table 5, with a
more pronounced percentage quality improvement equal to 15.81% at the
smallest compression ratio in panel (b).
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Table 4: Performance evaluation (reconstruction): accuracy and quality
factor values associated with the different compression ratios in Figure 13.

τ Quality factor

Salinas Sentinel-2 Salinas Sentinel-2

6.0e-3 3.0e-3 1 1
4.0e-3 2.6e-3 2 2
3.0e-3 2.2e-3 3 3
2.5e-3 1.8e-3 4 4
2.0e-3 1.5e-3 5 5
1.5e-3 9.0e-4 10 10
1.0e-3 8.0e-4 15 15
9.0e-4 7.5e-4 20 20
7.0e-4 7.0e-4 30 30
5.0e-4 6.0e-4 40 40

– 5.0e-4 50 50

Table 5: Performance evaluation (reconstruction): parameter setting used
for the comparison in Figure 14.

Panel k τ Quality factor Compression ratio PSNRc

JPEG (b1) – – 3 8.40e-3 53.9701
H2-PCA-AT (b2) 100 2.5e-3 – 8.78e-3 60.9290
H2-PCA-AT (b3) 10 7.0e-4 – 8.52e-3 64.1055

JPEG (c1) – – 15 1.46e-2 61.3421
H2-PCA-AT (c2) 80 1.5e-3 – 1.39e-2 62.6662
H2-PCA-AT (c3) 20 7.0e-4 – 1.35e-2 64.3189

4.2 Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a key metric used
to assess the presence and health of vegetation on the Earth’s surface. It is
derived from multispectral optical imagery, typically captured by satellite
sensors or airborne drones equipped with specialized cameras. Its compu-
tation is based on the reflectance of light in the near-infrared (NIR) and
visible red (Red) bands, according to the formula

NDVI =
NIR− Red

NIR + Red
.

NDVI values range from −1 to +1, where values close to +1 indicate dense,
healthy green vegetation, while negative or near-zero values suggest the ab-
sence of vegetation, for instance, in correspondence with water bodies, snow,
clouds, urban areas. Indeed, NDVI plays a significant role in agricultural ap-
plications (see, e.g.,[54]), where it is used to monitor crop health, providing
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(a) (b1) (b2) (b3)

(a) (c1) (c2) (c3)

Figure 15: Performance evaluation (reconstruction) on a channel of Salinas
dataset, for i = 40: enlarged views of panels in Figure 14.

critical information on plant vigour and identifying areas affected by water
stress, nutrient deficiency, or disease. Such an index provides useful informa-
tion in other contexts, such as in forest management to detect deforestation,
in environmental science to understand the impact of climate change and
human activities on ecosystems, in ecology to study the distribution and
dynamics of vegetation.

In this section, we aim to evaluate the performance of H2-PCA-AT and
JPEG formats in terms of the computation of NDVI map. To this aim, we
consider the Sentinel-2 optical dataset in Figure 5. For this dataset, the
Red and NIR bands correspond to ch4 and ch8, respectively. As perfor-
mance measure, we use the PSNR in (18), after setting max I to the maxi-
mum possible NDVI value, i.e., 1. To compare the fidelity of the recovered
NDVI distribution, NDVIrec, with respect to the original optical NDVI map,
NDVIopt, in Figure 16, we show the trend of PSNR(NDVIopt,NDVIrec) as a
function of the compression ratio, for a different number k of principal com-
ponents and values for the adaptation tolerance τ (see Table 6). We observe
that the proposed approach guarantees high compression while maintaining
acceptable PSNR values. In particular, the H2-PCA-AT format allows for
a higher compression when compared with the JPEG, up to quality factor
equal to 60.
In Figure 17, we qualitatively compare the JPEG and the H2-PCA-AT for-
mats at similar compression ratios (i.e., 6.0e−3 (high compression), 1.1e−2
(moderate compression), 1.3e−2 (low compression)), for the values of k, τ ,
and for the quality factor in Table 7, corresponding to the red markers in
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Figure 16: Performance evaluation (NDVI) for the Sentinel-2 dataset: PSNR
curves as function of the compression ratio associated with the standard
JPEG and the H2-PCA-AT format for different values of k.

the figure. The PSNR values in Table 7 confirm the robustness of the H2-
PCA-AT format, also in the case of the highest compression in panels (b1)
and (b2). Indeed, the PSNR mismatch between JPEG and H2-PCA-AT
increases from 3 to 9 units, when moving towards the highest compression.
This feature is corroborated by comparing panels (b1)-(d1) with the corre-
sponding plots in (b2)-(d2).

4.3 Classification task

The H2-PCA-AT format has demonstrated to be a reliable tool in recon-
structing optical images as well as in the computation of vegetation indices
of interest in Environmental Sciences, in particular when dealing with a sig-
nificant compression. As a last check, we assess the performance of the new
format in application prioritizing the preservation of aggregated information
instead of the precise pixel values. The extraction of this kind of informa-
tion pertains several application fields analyzing satellite or aerial imagery,
such as environmental monitoring (deforestation[1], desertification[2]), agri-
culture (land cover[4], crop health[5]) and mineral exploration[3]. In general,
such a goal is pursued by using Machine Learning [55] (e.g., Support Vector
Machine [56]) or Deep Learning [57, 58] (e.g., Convolutional Neural Net-
works [59]) algorithms.

In the following, we focus on the land cover classification task [4], which
consists of categorizing different types of observed land surface by analyzing
the spectral signature of optical images, which reflects differences in vegeta-
tion, soil types, water, and man-made materials. As reference database, we
adopt the Salinas dataset, since it is widely utilized for classification tasks
in precision agriculture. This dataset comprises 204 channels, arranged in
the 3D array V , and the ground truth, represented by the 2D array GT.
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Table 6: Performance evaluation (NDVI): accuracy and quality factor values
associated with the different compression ratios in Figure 16.

τ Quality factor

3.0e-3 1
2.6e-3 5
2.2e-3 10
1.8e-3 15
1.5e-3 20
9.0e-4 30
8.0e-4 40
7.5e-4 50
7.0e-4 60
6.0e-4 75
5.0e-4 -

Table 7: Performance evaluation (NDVI): parameter setting used for the
comparison in Figure 17.

Panel k τ Quality factor Compression ratio PSNR

JPEG (b1) – – 1 6.55e-3 12.1263
H2-PCA-AT (b2) 3 1.5e-3 – 5.70e-3 21.8584

JPEG (c1) – – 15 1.13e-2 20.2771
H2-PCA-AT (c2) 3 9.0e-4 – 1.10e-2 24.0368

JPEG (d1) – – 20 1.35e-2 21.7125
H2-PCA-AT (d2) 3 8.0e-4 – 1.29e-2 24.5459

In particular, GT contains the land cover labels associated with 16 labeled
classes, including broccoli weeds, fallow, stubble, and lettuce, as depicted
by Figure 18, left panel.
We use a classification model built on the supervised learning algorithm Sup-
port Vector Machine (SVM). This algorithm identifies the decision bound-
ary, which is a hyperplane or curve in the feature space designed to separate
classes by maximizing the margin, or the distance between the boundary
and the nearest data points of each class. These critical points, called sup-
port vectors, determine the boundary’s position and orientation, ensuring
effective separation even in challenging or high-dimensional datasets. To
handle cases where the data is not linearly separable, the SVM uses the
kernel trick, which maps the data into a higher-dimensional space where it
becomes easier to classify. Specifically, we select the Radial Basis Function
(RBF) kernel[60] for this purpose.
To evaluate the performance of the H2-PCA-AT format in land cover clas-
sification, we apply a training-test split to the dataset V . In this regard,
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Figure 17: Performance evaluation (NDVI) on the Sentinel-2 dataset: orig-
inal data and enlarged view (panel (a)); reconstruction for a compression
ratio about equal to 6.0e−3 (panels (b)), 1.1e−2 (panels (c)) and 1.3e−2
(panels (d)) provided by the JPEG format (panels (b1), (c1), (d1)) and by
the H2-PCA-AT format (panels (b2), (c2), (d2)).

we cannot resort to the standard random split of the image pixels since the
AT representation works on the whole image (or on an associated rectan-
gular portion). Thus, we split the array V into two subsets, the left, V1,
and the right, V2, half. Figure 18, center panel, shows the corresponding 2-
dimensional ground truth subsets, GT1 and GT2. Furthermore, since some
land cover classes might be present only in one half, we focus on pixels
belonging to classes common to both halves. Pixels not meeting this con-
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Figure 18: Performance evaluation (classification) for the Salinas dataset:
ground truth GT (left panel); splitting of the data into two portions before
(center panel) and after (right panel) the post-processing.

dition are post-processed and assigned to the background class, thus being
excluded from the training process (see Figure 18, right). Table 8 catego-
rizes the 16 labeled classes together with the background in terms of pixel
count associated with GT, by distinguishing among the whole array, the
label subsets corresponding to V1 and V2 for the original (GT1 and GT2)
and for the post-processed (GT1,new and GT2,new) data.

In practice, we adopt the K-fold cross-validation method [61]. We define
the 2D sample-feature matrices X1 = S↓(V1) and X2 = S↓(V2), and the as-
sociated 1D ground truth vectors, Y1 = s↓(GT1,new) and Y2 = s↓(GT2,new),
with s↓ : Rh×w → Rhw, and

Yi[(r − 1)w + q] = GTi,new[r, q] r = 1, . . . , h, q = 1, . . . , w, i = 1, 2.

The 2 folds {X1, Y1} and {X2, Y2} are alternatively used to define the train-
ing, {Xtrn, Ytrn}, and the testing, {Xtst, Ytst}, sets. In particular, we select
the K-th fold as

{Xtrn, Ytrn} = {X1, Y1}, {Xtst, Ytst} = {X2,rec, Y2} for K = 1,
{Xtrn, Ytrn} = {X2, Y2}, {Xtst, Ytst} = {X1,rec, Y1} for K = 2,

(20)

where Xi,rec is the sample-feature matrix associated with the H2-PCA-AT
format of Vi, according to (17), for i = 1, 2. The testing phase on the single
fold evaluates the model performance in terms of the accuracy score, i.e.,
the number of correct classifications divided by the overall predictions. Con-
cerning the effectiveness of the whole model, it is quantified by averaging

32



Table 8: Pixel count for the 16 labeled classes and for the background in
GT and the split portions, before and after the post-processing.

Class Label GT GT1 GT2 GT1,new GT2,new

0 Background 56975 16887 40088 30966 45643
1 Broccoli green, weeds 1 2009 2009 0 0 0
2 Broccoli green, weeds 2 3726 272 3454 272 3454
3 Fallow 1976 0 1976 0 0
4 Fallow-rough plow 1394 905 489 905 489
5 Fallow smooth 2678 1110 1568 1110 1568
6 Stubble 3959 389 3570 389 3570
7 Celery 3579 0 3579 0 0
8 Grapes-untrained 11271 10636 635 10636 635
9 Soil-vineyard development 6203 6187 16 6187 16
10 Corn-senesced green weeds 3278 2931 347 2931 347
11 Lettuce-romaine, 4 weeks 1068 1068 0 0 0
12 Lettuce-romaine, 5 weeks 1927 1927 0 0 0
13 Lettuce-romaine, 6 weeks 916 883 33 883 33
14 Lettuce-romaine, 7 weeks 1070 1017 53 1017 53
15 Vineyard-untrained 7268 7268 0 0 0
16 Vineyard-vertical trellis 1807 1807 0 0 0

the accuracy scores across the two folds.
For comparison purpose, we apply the SVM algorithm to the JPEG format,
by exploiting the same training and testing splitting strategy and by select-
ing the K-th fold as in (20), after replacing Xi,rec with the corresponding
JPEG reconstruction, for i = 1, 2. Figure 19 shows the results of this
comparison in terms of classification accuracy as a function of the compres-
sion ratio, for different values of k and τ for the H2-PCA-AT format, and of
the quality factor when considering the standard JPEG (we refer to Table 9
and Figure 19 for all the details). Consistently with Figures 13 and 16, we
observe that the H2-PCA-AT format outperforms JPEG when dealing with
low compression ratio, without compromising the classification performance.
Table 10 and Figure 20 highlight this behavior from a quantitative and qual-
itative viewpoint, respectively by comparing the output of the H2-PCA-AT
and the JPEG formats for a similar accuracy. The new format ensures the
same classification quality while achieving 16 times more compression than
JPEG.

5 Conclusions and Perspectives

This paper introduces a novel compression framework for multiband optical
satellite imagery, addressing critical challenges in storage and transmission,
with a particular focus on agriculture. The proposed approach integrates
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Figure 19: Performance evaluation (classification) for the Salinas dataset:
classification accuracy curves as function of the compression ratio associated
with the standard JPEG and the H2-PCA-AT format for different values of
k.

(a) (b) (c) (d)

Figure 20: Performance evaluation (classification) for the Salinas dataset:
post-processed ground truth (panel (a)); classification for a similar accuracy
provided by the H2-PCA-AT format (panel (b)) and by the JPEG format
(panels (c), (d)).

PCA (Principal Component Analysis) with anisotropic mesh adaptation to
create the PCA-AT (PCA-Adaptive Triangular) representation. Succes-
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Table 9: Performance evaluation (classification): accuracy and quality factor
values associated with the different compression ratios in Figure 19.

τ Quality factor

1.0e-2 1
9.0e-3 2
8.0e-3 3
7.0e-3 4

– 5
– 10
– 15
– 20
– 30
– 40
– 50
– 60
– 75

Table 10: Performance evaluation (classification): parameter setting used
for the comparison in Figure 20.

Panel k τ Quality factor Compression ratio Classification accuracy

H2-PCA-AT (b) 10 8.0e-3 – 6.02e-4 79.2182
JPEG (c) – – 3 1.00e-2 79.1915
JPEG (d) – – 4 1.05e-2 80.5851

sively, Hilbert space-filling curves with Huffman encoding are applied to
this representation to optimize storage, eliminating mesh connectivity in-
formation. This stage leads to the H2-PCA-AT format. Finally, to ensure
a reliable restoration of the compressed data, we settle a decoding phase
with a particular care to recover the mesh data. To this aim, we propose
a Delaunay-based algorithm, which exploits an a posteriori error analysis,
properly customized to the anisotropic setting. The framework is validated
across agriculture applications such as full data reconstruction, NDVI (Nor-
malized Difference Vegetation Index) computation, land cover classification.

The method offers clear advantages. By replacing uniform pixel grids
with adaptive triangular meshes, it achieves high compression with respect
to traditional methods like JPEG, without compromising data fidelity. In
addition, the possibility to tune parameters k and τ allows the customiza-
tion of the H2-PCA-AT format to specific application needs, ensuring dif-
ferent compression efficiency-to-quality scenarios. Despite its advantages,
the H2-PCA-AT format has certain limitations. The lossy nature of the
compression introduces small inaccuracies that may not be acceptable when
precise quantitative analysis is required. However, for qualitative and semi-
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quantitative applications like those prevalent in agriculture, the trade-off
between compression ratio and accuracy is well justified.

Future research will focus on automating the selection of PCA compo-
nents and mesh adaptation tolerances to eliminate manual tuning. Addition-
ally, exploring alternative mesh metrics and metric intersection algorithms
could enhance the AT representation by capturing diverse image features.
Finally, leveraging the graph-like structure of the H2-PCA-AT format in
Graph Convolutional Networks (GCNs) [62] holds promise for efficient and
accurate classification, reducing computational costs and resource demands.
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[37] Verfürth R. A Review of A Posteriori Error Estimation and Adaptive
Mesh-Refinement Technique. Wiley-Teubner, 1996.

[38] Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive proce-
dure for practical engineering analysis. International Journal for Nu-
merical Methods in Engineering. 1987;24(2):337–357.

[39] Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and
a posteriori error estimates. I. The recovery technique. International
Journal for Numerical Methods in Engineering. 1992;33(7):1331–1364.

[40] Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a
posteriori error estimates. II. Error estimates and adaptivity. Interna-
tional Journal for Numerical Methods in Engineering. 1992;33(7):1365–
1382.

39



[41] Frey PJ, George PL. Mesh Generation. Application to Finite Elements.
John Wiley & Sons. second ed., 2008.

[42] Micheletti S, Perotto S. Reliability and efficiency of an anisotropic
Zienkiewicz-Zhu error estimator. Computer Methods in Applied Me-
chanics and Engineering. 2006;195(9-12):799–835.

[43] Hecht F. New development in FreeFem++. Journal of Numerical Math-
ematics. 2012;20(3-4):251–265.

[44] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learn-
ing. Springer, 2009.

[45] Bader M. Space-Filling Curves: an Introduction with Applications in
Scientific Computing. Springer, 2013.

[46] Lawder J, King P. Using space-filling curves for multi-dimensional in-
dexing. Advances in Databases. 2000;1832:20-35.

[47] Peano G. Sur une courbe, qui remplit toute une aire plane. Mathema-
tische Annalen. 1890;160:36-157.

[48] Morton GM. A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing. IBM Ltd., 1966.

[49] Hilbert curve Python package. https://pypi.org/project/

hilbertcurve/.

[50] Huffman encoding Python package. https://github.com/bhrigu123/
huffman-coding.

[51] Berg M, Cheong O, Kreveld M, Overmars M. Computational Geometry:
Algorithms and Applications. Springer, 2008.

[52] Borouchaki H, Laug P, George PL. Parametric surface mesh-
ing using a combined advancing-front generalized Delaunay ap-
proach. International Journal for Numerical Methods in Engineering.
2000;49(1–2):233–259.

[53] Indian Pines dataset. https://www.ehu.eus/ccwintco/index.php/

Hyperspectral_Remote_Sensing_Scenes.

[54] Pettorelli N. The Normalized Difference Vegetation Index. Oxford Uni-
versity Press, 2013.

[55] Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine
Learning. MIT Press, 2012.

40

https://pypi.org/project/hilbertcurve/
https://pypi.org/project/hilbertcurve/
https://github.com/bhrigu123/huffman-coding
https://github.com/bhrigu123/huffman-coding
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


[56] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge Univer-
sity Press, 2000.

[57] Chollet F. Deep Learning with Python. Manning Publications, 2017.

[58] Poonia RC, Nayak SR, Singh V. Deep Learning for Sustainable Agri-
culture. Academic Press, 2022.

[59] Venkatesan R, Li B. Convolutional Neural Networks in Visual Comput-
ing. CRC Press, 2017.

[60] Patle A, Chouhan DS. SVM kernel functions for classification. Interna-
tional Conference on Advances in Technology and Engineering. 2013:1-
9.

[61] Stone M. Cross-validatory choice and assessment of statistical predic-
tions. Journal of the Royal Statistical Society. 1974;36:111-133.

[62] Zhang S, Tong H, Xu J. Graph convolutional networks: a comprehen-
sive review. Computational Social Networks. 2019;6:11.

41



MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

108/2024 Arostica, R.; Nolte, D.; Brown, A.; Gebauer, A.; Karabelas, E.; Jilberto, J.; Salvador, M.; Bucelli,

M.; Piersanti, R.; Osouli, K.; Augustin, C.; Finsberg, H.; Shi, L.; Hirschvogel, M.; Pfaller, M.;

Africa, P.C.; Gsell, M.; Marsden, A.; Nordsletten, D.; Regazzoni, F.; Plank, G.; Sundnes, J.;

Dede’, L.; Peirlinck, M.; Vedula, V.; Wall, W.; Bertoglio, C.

A software benchmark for cardiac elastodynamics

107/2024 Chen, J.; Ballini, E.; Micheletti, S.

Active Flow Control for Bluff Body under High Reynolds Number Turbulent Flow Conditions

Using Deep Reinforcement Learning

106/2024 Brunati, S.; Bucelli, M.; Piersanti, R.; Dede', L.; Vergara, C.

Coupled Eikonal problems to model cardiac reentries in Purkinje network and myocardium

105/2024 Bartsch, J.; Barakat, A.A.; Buchwald, S.; Ciaramella, G.; Volkwein, S.; Weig, E.M.

Reconstructing the system coefficients for coupled harmonic oscillators

104/2024 Cerrone, D.; Riccobelli, D.; Vitullo, P.; Ballarin, F.; Falco, J.; Acerbi, F.; Manzoni, A.; Zunino,

P.; Ciarletta, P.

Patient-specific prediction of glioblastoma growth via reduced order modeling and neural

networks

103/2024 Fois, M.; Gatti, F.; de Falco, C.; Formaggia, L.

A comparative analysis of mesh-based and particle-based numerical methods for landslide

run-out simulations

101/2024 Bonetti, S.; Corti, M.

Unified discontinuous Galerkin analysis of a thermo/poro-viscoelasticity model

102/2024 Bucelli, M.

The lifex library version 2.0

100/2024 Farenga, N.; Fresca, S.; Brivio, S.; Manzoni, A.

On latent dynamics learning in nonlinear reduced order modeling

99/2024 Ragni, A.; Masci, C.; Paganoni, A. M.

Analysis of Higher Education Dropouts Dynamics through Multilevel Functional Decomposition

of Recurrent Events in Counting Processes


	qmox109-copertina
	mox-20241227115150
	Introduction
	Adaptive Triangular representation of an image
	Constructing the anisotropic AT representation
	Error estimation: the theoretical backbone
	Mesh adaptation: a practical procedure

	The new AT representation in practice

	The compression method
	The PCA-AT representation of a multiband optical observation
	H2-PCA-AT format: the encoding phase
	Mesh vertices encoding
	Brightness encoding
	The encoding output and validation

	H2-PCA-AT format: the decoding phase
	An example of mesh recovery

	The optical observation reconstruction

	Performance Evaluation
	Reconstruction
	Normalized Difference Vegetation Index
	Classification task

	Conclusions and Perspectives

	qmox109-terza_di_copertina

