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Abstract

In this work we introduce a family of methods for the analysis of data observed at locations
scattered in three-dimensional (3D) domains, with possibly complicated shapes. The proposed
family of methods includes smoothing, regression and functional principal component analysis
for functional signals defined over (possibly non-convex) 3D domains, appropriately complying
with the non-trivial shape of the domain. This constitutes an important advance with respect
to the literature, since the available methods to analyse data observed in 3D domains rely
on Euclidean distances, that are inappropriate when the shape of the domain influences the
phenomenon under study. The common building block of the proposed methods is a nonpara-
metric regression model with differential regularization. We derive the asymptotic properties
of the methods and show, through simulation studies, that they are superior to the available
alternatives for the analysis of data in 3D domains, even when considering domains with simple
shapes. We finally illustrate an application to a neurosciences study, with neuroimaging signals
from functional magnetic resonance imaging, measuring neural activity in the grey matter, a
non-convex volume with a highly complicated structure.
Keywords: Functional data analysis; Functional principal component analysis; Neuroimag-
ing; Smoothing.

1 Introduction
In this article we are interested in the analysis of data observed in 3D domains with complicated
shapes. Technological progress has made such data common in varied contexts, in both engineering
and sciences. Figure 1 illustrates an application from the neurosciences. The lower panels show a
connectivity map obtained from a functional Magnetic Resonance Imaging (fMRI) scan, concerning
neuronal activity in the grey matter. In should be noted that the fMRI scan returns a signal on a
cube; however, through appropriate processing of the data, this signal can be appropriately referred
to the grey matter, where the signal arises from, as represented in Figure 1. As highlighted
by the figure, the grey matter forms a volume with a very complicated shape, with complex
external boundaries and internal cavities. Analyzing these data using current techniques, that
rely on Euclidean distances between data locations, may lead to inaccurate estimates, erroneously
considering as close data locations that are instead far apart on the brain, as they are separated by
a sulcus. There currently is an increasing interest in the scientific community in setting up methods
that can account for the complex anatomy of the brain, with the common goal of advancing the
knowledge on cerebral functioning and diseases. It has indeed been shown that including the highly
complex brain anatomy in the data analysis is a necessary step in order to guarantee a reliable
investigation [Glasser et al., 2013]. Several techniques have for instance been proposed to analyse
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data observed on the cortical surface, a curved two-dimensional (2D) domain with an highly folded
geometry [see, e.g., Hagler et al., 2006, Chung et al., 2016, Lila et al., 2016, and references therein].

Here we propose a family of methods capable to analyse data observed at locations scattered in
complicated 3D domains, properly accounting for the shape of the domain. Such methods enable
for instance to accurately analyse fMRI signals referred to the grey matter, complying with the
highly complex morphology of the brain. The methods also permit to generalize, to the case of
complicated multidimensional domains, techniques and approaches from Functional Data Analysis
[Ramsay and Silverman, 2005, Ferraty and Vieu, 2006, Kokoszka and Reimherr, 2017], that have so
far been mostly restricted to functional data over one-dimensional domains or simple 2D domains.
The estimation problem at the core of the proposed family of methods is a least-square problem
with differential regularization, that can be seen as an extension to complicated multidimensional
domains of the nonparametric models with roughness penalties, classically considered over one-
dimensional domains or simple 2D domains [see, e.g., Wahba, 1990, Green and Silverman, 1994,
Wood, 2017, Wang, 2019].

In the simpler context of 2D domains, various techniques have been proposed to appropriately
account for the possibly non-convex shape of the domain. A non exhaustive list includes regularized
least-square and other smoothing methods such as those proposed by Ramsay [2002], Wood et al.
[2008], Lai and Schumaker [2007], Guillas and Lai [2010], Lai and Wang [2013], Wang et al. [2020],
Wang and Ranalli [2007], Scott-Hayward et al. [2014], Sangalli et al. [2013], Azzimonti et al. [2015],
Niu et al. [2019]. This as well encompasses techniques for curved 2D domains with non-trivial (e.g.,
non-spherical) shapes; see, e.g., Duchamp and Stuetzle [2003], Ettinger et al. [2016], Lila et al.
[2016], Wilhelm et al. [2016], Hagler et al. [2006], Chung et al. [2005], Niu et al. [2019].

The case of non-convex 3D domains instead appears still largely unexplored. This case poses
both methodological and computational challenges. On the one hand, considering domains with
non-convex shapes calls for a change of paradigm with respect to classical methods relying on the
Euclidean distance. On the other hand, the data analysis problems encountered in this context
typically have large dimensions, in terms of sample sizes, as well as in terms of complexity and
high variations displayed by the observed signals, as illustrated by the neuroimaging study here
considered. This hinders the applicability of standard data analysis methods and poses critical
computational issues.

To tackle these challenges, we here propose a family of methods that belong to the class of
Spatial Regression with Partial Differential Equation regularization (SR-PDE), that has so far only
been restricted to 2D domains [see, e.g., Sangalli et al., 2013, Azzimonti et al., 2015, Ettinger et al.,
2016, Lila et al., 2016]. In particular, the considered estimation problems feature a regularizing
term that includes a Partial Differential Equation (PDE) defined on the considered 3D domain.
Such regularizing term permits to incorporate in the statistical model the available problem-specific
information, encoded in the PDE, and to model general forms of anisotropy and non-stationarity,
complying with the non-trivial shape of the domain. This is also made possible by an innovative
use of finite element analysis methods, defined on tetrahedral meshes approximating the 3D domain
of interest. Numerical solution of spatial and functional data analysis problems, by finite element
analysis based on tetrahedral discretizations of 3D domains, has not been much explored in the
statistical literature; however, it has a number of advantages. Indeed, on the one hand, the ability of
the proposed methods to combine advanced statistical methodology, with state-of-the-art numerical
analysis techniques, permits to tackle the complexity of the considered problem, concerning the
physics of the underlying phenomenon and the geometry of the domain. On the other hand, it
permits to tackle large data problems, with dimensions that are prohibitive for standard methods.

In the present work, we first consider the case where we have one single functional signal, and
we are interested in smoothing problems or nonparametric and semiparametric regression problems
(the latter when also space-varying covariates are available in the 3D domain). In this setting, we
derive the asymptotic properties of the estimators, and specifically the asymptotic normality and
consistency of the estimators. We then move to the case where we have multiple functional signals
over the 3D domain, corresponding to different statistical units, as for instance multiple fMRI
scans, and we are here are interested in exploring the variability across the signals. We do so in the
framework of Functional Data Analysis, proposing a functional PCA method based on SR-PDE,
that exploits a low-rank approximation of PCA [Huang et al., 2008, 2009, Lila et al., 2016]. The
proposed methods are tested through simulation studies included in the supporting information,
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Figure 1: Top: different views of a tetrahedral mesh approximating the volume of the grey matter of an
healthy subject. The left and central panel shows two external views, from the top and from the back of the
brain, highlighting the complicated external boundaries of the organ. The right panel shows a mesial slice
of the grey matter (highlighted in yellow), showing that this volume is full of internal cavities. Bottom:
mean functional connectivity map obtained from fMRI scan. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.

that highlight their superiority to the available alternatives, both when the 3D domain has a non-
trivial shape as well as when the signal exhibits strong variations and localized features, as in the
case of fMRI data. The methods are implemented in the R package fdaPDE [Arnone et al., 2022].

The paper is organized as follows. Section 2 introduces the regularized least-square problem
at the core of the proposed SR-PDE for 3D domains: we prove that the estimation problem is
well-posed, describe its efficient discretization via finite elements, and finally derive the asymptotic
normality and consistency of the resulting estimators. Section 3 describes the proposed approach
for functional PCA based on SR-PDE. Section 4 illustrates the application to neuroimaging data.
Section 5 outlines possible extensions of the proposed class of methods.

2 Nonparametric and semiparametric regression with PDE
penalization

Let Ω be a bounded and possibly non-convex subset of R3, whose boundary ∂Ω has C2 regularity
(see Section A of the supporting information). Let {pi = (p1i, p2i, p3i) ∈ Ω; i = 1, . . . , n} be a
set of n points in the domain Ω, let zi be a real-valued variable observed at pi, and let wi =
(wi1, . . . , wiq)

⊤ ∈ Rq be q covariates observed at pi. We consider the following semiparametric
model for the data zi:

zi = w⊤
i β + f(pi) + ϵi i = 1, . . . , n (1)

where ϵ1, . . . , ϵn are random errors with zero mean and constant variance σ2, β ∈ Rq is the vector
of the unknown regression coefficients, and f : Ω → R is an unknown real-valued smooth function.
Extending the approach presented in Azzimonti et al. [2015] for data defined over 2D domains, we
estimate the vector β and the function f by minimizing a penalized sum-of-square-error functional,
that incorporates the available problem-specific information, encoded in the PDE Lf = u, defined
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in the domain Ω. This PDE involves a linear second order differential operator L, defined as
Lf = −div (K∇f)+b ·∇f+cf , with K ∈ R3×3 a symmetric and positive-definite diffusion tensor,
b ∈ R3 a transport vector, and c ≥ 0 a reaction term; the function u : Ω → R is the so-called
forcing term of the PDE. The functional to minimize is:

Jλ(β, f) =
n∑

i=1

{zi −w⊤
i β − f(pi)}2 + λ

∫
Ω

(Lf(p)− u(p))2dp, (2)

for β ∈ Rq and f in an appropriate space V of functions defined over the domain Ω. The functional
Jλ(β, f) is composed by two terms, weighted by the positive smoothness parameter λ > 0: the
first term pulls the estimate close to the data, while the second term pulls the estimate close to
the solution of the PDE. Observe that the diffusion, transport and reaction terms must satisfy
some mild regularity conditions (see Section A of the supporting information) and can vary over
Ω, i.e., K = K(p), b = b(p), c = c(p), u = u(p) for p ∈ Ω. The use of the operator L makes the
methodology very flexible, giving the possibility to model anisotropy and non-stationarity in f , as
illustrated in Section B of the supporting information.

When no problem-specific information on the phenomenon under study is available, but from
the geometry of the domain, the standard choice is to use a null forcing term, u = 0, and L = ∆,
where ∆ is the Laplace operator

∆f =
∂2f

∂p21
+
∂2f

∂p22
+
∂2f

∂p23
.

Regularization by
∫
Ω
(∆f)2 induces an isotropic smoothing, that is independent of the orientation

of the coordinate system, and avoids too rough solutions: large values of smoothness parameter
λ yields very smooth estimates, while small values of λ allow for more data-adapted estimates.
This generalizes to complicated 3D domains the roughness penalties extensively used in nonpara-
metric regression and functional data analysis [see, e.g., Green and Silverman, 1994, Ramsay and
Silverman, 2005].

Different kinds of conditions at the boundary ∂Ω of Ω can be considered, to appropriately
account for geometry of the domain in the estimation procedure. Let ν denote the outward unit
normal vector to ∂Ω and let ∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄R, where ΓD,ΓN ,ΓR are non-overlapping and Γ̄
indicates the closure of Γ. We consider Dirichlet, Neumann, Robin (or mixed) conditions, that can
be summarized in Bcf = γ with

Bcf =


f on ΓD

K∇f · ν on ΓN

K∇f · ν + χf on ΓR

γ =


γD on ΓD

γN on ΓN

γR on ΓR

where χ ∈ R is a positive constant. Let H2(Ω) denote the Sobolev space of functions f : Ω → R
which are in L2(Ω) and whose first and second weak derivatives are in L2(Ω). We define the
functional space V , where the estimate of f is searched for, as

V = {f ∈ H2(Ω) s.t. Bcf = γ}.

For simplicity of exposition, in this paper we set γ = 0, i.e., we consider the so-called homogeneous
case. In particular, homogeneous Neumann boundary conditions are the most natural choice of
when no problem-specific information on the boundary behaviour is available; these conditions
correspond to zero flux across the boundary of the domain, when using the Laplace operator. A
complete description on how to deal with non-homogeneous boundary conditions can be found in
Azzimonti et al. [2014], for the simpler case of 2D domains.

The use of the regularizing term
∫
Ω
(Lf−u)2, or of its special case

∫
Ω
(∆f)2, and the inclusion of

boundary conditions in the functional space V make the estimation method able to appropriately
comply with the possibly complicated geometry of Ω, differently from other classical regularized
least-square estimators such as multidimensional splines, tensor product splines and thin-plate
splines.
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The minimization problem is thus formalized as the one of finding β̂ and f̂ such that
(β̂, f̂) = argmin

(β,f)∈Rq×V

Jλ(β, f) (3)

with Jλ(β, f) defined by equation (2).
For all v ∈ V , denote by vn = (v(p1), . . . , v(pn))

⊤ ∈ Rn the corresponding vector of the
evaluations of v at the data locations. Moreover, denote by W the n× q matrix whose i-th row is
given by w⊤

i , and set Q = I −W (W⊤W )−1W⊤ where I is the identity matrix.

Proposition 1 The estimation problem (3) is well-posed. Moreover β̂ and f̂ are such that
β̂ = (W⊤W )−1W⊤(z− f̂n)

v⊤
nQf̂n + λ

∫
Ω

Lv(Lf̂ − u) = v⊤
nQz ∀v ∈ V. (4)

The proof of Proposition 1 is deferred to Section A of the supporting information.
When covariates are not present, equation (1) reduces to zi = f(pi) + ϵi, that is, a smoothing

model, and f can be estimated minimizing the functional

Jλ(f) =
n∑

i=1

{zi − f(pi)}2 + λ

∫
Ω

(Lf − u)2.

The minimization problem is equivalent to solving equation (4) where the matrix Q is replaced by
the identity matrix.

2.1 Discretization via Finite Elements
The variational problem (4) cannot be solved analytically, and the solution must hence be found
numerically. In particular, a convenient numerical technique to deal with spatial domains with
complex shapes and generic boundary conditions is the finite element method [see, e.g., Ciarlet,
2002].

Consider T a regular partition of the domain Ω made by tetrahedra, where adjacent tetrahedra
share either a vertex, a complete edge or a complete face. For simplicity of exposition, let us
consider the case of polygonal domains, so that Ω is the union of all the tetrahedra in T . When
Ω is not a polygon, we approximate it by a polygonal domain ΩT composed by the union of all
the tetrahedra in T . In many applications where the shape of the domain is important, the mesh
comes with the data. For instance, in biomedical applications, where we might be interested in
studying quantities of interest inside an organ, the mesh can be reconstructed using segmentation
tools. In other cases, such as for example in engineering applications, the shape of the volume is
typically described by parametric formulae, and therefore the mesh can be created using publicly
available software such as Gmsh [Geuzaine and Remacle, 2009]. Figure 1, top panels, shows a
tetrahedral mesh representing the volume of the grey matter of an healthy subject.

The space of finite element functions is the space of continuous functions that are polynomials
over each tetrahedron of the tessellation T ,

V r
h = {v ∈ C(Ω) : vτ ∈ Pr(τ)∀τ ∈ T },

where Pr(τ) indicates the space of polynomials of a fixed degree r over τ . For simplicity of expo-
sition, we concentrate on linear finite elements, that are linear polynomials over each tetrahedron,
and we write Vh instead of V 1

h . Call ξ1, . . . , ξNT the nodes of T , that is, in the linear case, the
vertices of the tetrahedra of T . A Lagrangian nodal basis ψ1, . . . , ψNT is hence associated with the
nodes ξ1, . . . , ξNT : each basis function is piecewise linear and is such that ψi(ξj) = 1 if i = j and
ψi(ξj) = 0 otherwise. Set ψ := (ψ1, . . . , ψNT )

⊤ and, for any given function f on Ω, denote by f the
NT -vector having as entries the evaluations of f at the NT nodes, i.e., f := (f(ξ1), . . . , f(ξNT ))

⊤.
Every function f in the finite element space is completely defined by its values at the NT nodes:

f(p) =

NT∑
k=1

f(ξk)ψk(p) = f⊤ψ(p)
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Figure 2: Two views of a linear finite element basis on a regular mesh of a cubic domain. Left: view from
the exterior of the cubic domain. Right: view on a slice of the cubic domain. This figure appears in color
in the electronic version of this article, and any mention of color refers to that version.

for each p ∈ Ω. Note that the nodes of the mesh, ξ1, . . . , ξNT , and the data locations, p1, . . . ,pn,
can be different. Figure 2 shows two views of a finite element basis function on a regular tetrahedral
mesh of a simple cubic domain.

Define the n×NT matrix Ψ = {Ψ}ik = ψk(pi) and the NT ×NT matrices R0 =
∫
Ω
(ψψ⊤) and

R1 =
∫
Ω

(
∇ψK∇ψ⊤ +∇ψ bψ⊤ + cψψ⊤).

Proposition 2 There exists a unique f̂ = f̂⊤ψ ∈ Vh that solves equation (4) for all v ∈ Vh.
Moreover, it satisfies: Ψ⊤QΨ λR⊤

1

λR1 −λR0

 f̂
ĝ

 =

Ψ⊤Qz

λu

 .
The proof of Proposition 2 is deferred to Section A of the supporting information. For general
meshes of dimension NT , the computational complexity for the resolution of the SR-PDE problem
(5) is O(N2

T ). However, if the mesh nodes are a superset of the data locations (i.e., {pi} ⊆ {ξi}) the
complexity is only O(NT ), thanks to the special structure of the matrix Ψ, which has at most one
non-zero entry per row. The latter case is indeed very common in real applications; for instance,
this is the natural setting for data obtained from medical imaging, such as the one considered in
this work.

Denote by P = R⊤
1 R

−1
0 R1 the matrix that discretizes the penalty term. From Proposition 2, it

follows that

f̂ = (Ψ⊤QΨ+ λP )−1(Ψ⊤Qz+ λR⊤
1 R

−1
0 u)

f̂(p) = ψ(p)⊤(Ψ⊤QΨ+ λP )−1(Ψ⊤Qz+ λR⊤
1 R

−1
0 u)

for any data location p ∈ Ω. Denote by S = Ψ(Ψ⊤QΨ+ λP )−1Ψ⊤Q the smoothing matrix. The
value of the smoothing parameter λ, which trades off the two terms in the functional Jλ(β, f), can
be chosen with generalized cross-validation, minimizing the quantity

GCV(λ) =
1

n(1− (q + tr(S))/n)2
(z− ẑ)⊤(z− ẑ).

Section C of the supporting information gives some simple finite sample properties of the esti-
mators. Next section discusses instead the good asymptotic properties of the estimators, proving
their consistency and asymptotic normality; analogous results, for the simpler case of 2D domains
and with regularizing terms involving the simple laplacian without forcing terms, are derived in
Ferraccioli et al. [2021]. Moreover, Section F of the supporting information reports simulation
studies that highlight the superiority of the proposed methods with respect to state-of-the-art
techniques, in the context of smoothing as well as of semiparametric regression.
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2.2 Asymptotic properties
We here study the infill asymptotic properties of the SR-PDE estimator, keeping fixed the dis-
cretization. In particular, we fix a partition T of the domain, rich enough to capture the features
of the signal and the geometry of the domain, and we let the number of observations n go to
infinity.

For convenience, we reparametrize the functional Jλ(β, f) as

Jλ(β, f) =
1

n

n∑
i=1

{zi −w⊤
i β − f(pi)}2 + λn

∫
Ω

(Lf − u)2, (5)

which is a more common formulation in nonparametric regression. We point out that the functional
is equivalent to the one in equation (2), setting λ = nλn. The estimators f̂n and β̂n minimizing
(5) are

f̂n =
(
Ψ⊤QΨ/n+ λnP

)−1 (
ΨTQz/n+ λnR

⊤
1 R

−1
0 u

)
β̂n =

(
WTW

)−1
WT (z−Ψf̂n).

We assume that, for sufficiently large n, the matrix Ψ⊤QΨ is nonsingular, so that we can define
the matrix An = (Ψ⊤QΨ/n)−1. Moreover, let Σn =W⊤W/n.

Theorem 1 Let {f̂n} be a sequence of ST-PDE estimators. Assume that a nonsingular limit A =

limnAn exists. If λn → 0, then f̂n is a consistent estimator for f . Moreover, for λn = o
(
n−1/2

)
√
n(f̂n − f)|W d→ NNT

(
0, σ2A

)
,

where d→ denotes convergence in distribution.

Theorem 2 Let {β̂n} be a sequence of ST-PDE estimators. Assume Σ = limn Σn exists and
is nonsingular. Then, under the hypothesis of Theorem 1, the estimator β̂n is consistent for β.
Moreover, for λn = o

(
n−1/2

)
√
n(β̂n − β)|W d→ Nq

(
0, σ2

{
Σ−1 + (1/n2)Σ−1W⊤ΨAΨ⊤WΣ−1

})
.

The proofs of Theorems 1 and 2 are deferred to Section D of the supporting information.

3 Smooth Functional Principal Component Analysis
We now consider the case where we have multiple functional signals observed over Ω and we would
like to explore the variability across these data. In the application to neuroimaging data presented
in the Introduction, this will for instance enable us to explore the variability across different fMRI
scans, as described in Section 4. We do so in the framework of Functional Principal Component
Analysis (FPCA), exploiting a low-rank approximation of principal component analysis [Huang
et al., 2008, 2009, Lila et al., 2016].

Consider a random field Z taking values in L2(Ω), with mean µ = E [Z] and a finite second
moment. Assume its covariance function Σ(p,q) = E [(Z(p)− µ(p)) (Z(q)− µ(q))] is square inte-
grable. Mercer’s Lemma ensures the existence of an orthonormal sequence {fj} of eigenfunctions
and a non increasing sequence {ζj} of eigenvalues such that∫

Ω

Σ(p,q)fj(p)dp = ζjfj(q) ∀q ∈ Ω. (6)

The covariance function can be represented as Σ(p,q) =
∑∞

j=1 ζjfj(p)fj(q) for all p,q ∈ Ω.
Thus, the random variable Z can be expanded as Z = µ+

∑∞
j=1 s

jfj , where the random variables
{s1, s2, . . .} are uncorrelated and given by sj =

∫
Ω
{Z(p)−µ(p)}fj(p)dp. This is named Karhunen-

Loève expansion of Z.
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The functions {fj(p)} are called Principal Component (PC) functions while the random vari-
ables {sj} are called PC scores. The first PC function is such that

f1 = argmax
f :∥f∥L2=1

∫
Ω

∫
Ω

f(p)Σ(p,q)f(q)dpdq

and define the strongest mode of variation in the random function Z. Subsequent PC functions
solve the same problem, but with the constraint that each component fd is orthogonal to the
previous d− 1 components f1 . . . fd−1

fd = argmax
f :∥f∥L2=1

<f,fj>L2=0 ∀j=1...d−1

∫
Ω

∫
Ω

f(p)Σ(p,q)f(q)dpdq.

This characterization constitutes the basis for the classical computation of functional PCs, along
the so-called presmoothing approach [see, e.g., Chapther 8 of Ramsay and Silverman, 2005].

In this work we instead rely on a different characterization of principal components, the best
M -basis approximation property: for any integer M , the first M PCs solve

{fi}Mi=1 = argmin∫
fifj=0, ∥fi∥=1

E

∫
Ω

Z − µ−
M∑
j=1

(∫
Ω

Zfi

)
fi


 . (7)

Consider m discrete and noisy realizations of the random field Z. In particular, for j = 1, . . .m and
i = 1, . . . , n, let zj(pi) denote the realization of Z in the location pi, for the j-th statistical unit.
The empirical counterpart of the functional in (7), when we take data already centered around the
mean, is given by

m∑
j=1

n∑
i=1

{zj(pi)− sjf(pi)}2 (8)

where s = {sj}, j = 1 . . .m is the m-dimensional scores vector. Following SR-PDE approach,
we promote regularity of the principal component by adding a penalization in functional (8). In
particular, we estimate the first PC f̂1 : Ω → R and the associated scores ŝ1 solving the minimization
problem

(ŝ1, f̂1) = argmin
s,f

Jm
λ (s, f) (9)

where

Jm
λ (s, f) =

m∑
j=1

n∑
i=1

{zj(pi)− sjf(pi)}2 + λs⊤s

∫
Ω

(∆f)2. (10)

The empirical term encourages f1 to capture the strongest mode of variation, while the second part
of the functional accounts for the regularity of f1. A normalization constraint is added to make the
representation unique, setting ∥s∥2 = 1.

The minimization problem (9) is solved following a two-step algorithm. In the first step, f is
kept fixed and a finite dimensional optimization in s is carried out. In the second step, s is kept
fixed and an infinite-dimensional optimization in f is performed.

Step 1. Estimation of s for a fixed f. The minimizer of the objective function is

s =
Zfn

∥fn∥22 + λ
∫
Ω
∆f2

and the unitary-norm vector s that solve the optimization problem above is

s =
Zfn

∥Zfn∥2

Step 2. Estimation of f for a fixed s. Finding the minimizing f of the objective function (10) is an
equivalent problem to finding the f that minimizes

Jλ,s(f) = f⊤n fn + λ

∫
Ω

(∆f)2 − 2fnZ
⊤s (11)
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The problem in Step 1 is equivalent to that of finding the scores vector given the loadings vector in
standard multivariate PCA. The problem in Step 2 can instead be represented as an appropriate
smoothing problem, special case of those described in Sections 2. Indeed, let yi denote the i-th
element of the vector Z⊤s, then minimizing (11) is equivalent to minimizing

n∑
j=1

{yj − f(pj)}2 + λ

∫
Ω

(∆f)2

that can be solved with SR-PDE (purely nonpametric model).
The subsequent PCs are estimated one at a time, sequentially, after subtracting the previous

PCs from the data matrix Z, the m-by-n matrix whose j-ht row is given by (zj(p1), . . . , zj(pn)).
Note that orthogonality is not imposed in the estimation algorithm. However, when the same value
of λ is chosen for all components, the minimization problem is analogous to the one proposed by
Silverman [1996] for unidimensional functions, and therefore the estimated PCs are uncorrelated.
Nevertheless, as show in the simpler univariate context by Huang et al. [2008], there are many
advantages in imposing different levels of smoothing on different components; thus, we do not
suggest to use the same λ for all the components. The simulation study reported in Section F.5
of the supporting information compares the proposed FPCA to state-of-the-art techniques based
on presmoothing approaches, and shows that the proposed method is superior to the alternatives,
both in terms of goodness of fit and in term of computational cost. In particular, the method
returns very good estimates of the true PCs, which are orthogonal. We can hence still consider the
usual interpretation of PCs as yielding modes of variability of the data.

4 Data Analysis
MyConnectome project is a collection of brain Magnetic Resonance Imaging scans, both structural
MRI and functional MRI (fMRI), of a single healthy individual, taken over the course of 18 months.
The leader of the project is doctor Russel Alan Poldrack, Professor of Psychology at Stanford
University. A complete and detailed description of the project, from the motivations that led the
data collection to the goals of the analyses, is given in Poldrack et al. [2015]. In particular, we here
aim at exploring the main modes of variation of the cerebral connectivity for the healthy individual
under study, based on a dataset of 92 sessions of resting state fMRI.

The raw data consist of the images resulting from each session of fMRI, that must be processed
in order to obtain comparable and analyzable quantities. Data of different sessions are de-noised,
realigned to correct for head motion, segmented and registered to the MNI 152 template space, a
reference map built from the average of the MRI scan of 152 healthy individuals [see, Fonov et al.,
2011, 2009]. In particular, the registration of the different fMRI sessions of the considered healthy
individual to a common template, the MNI 152 template, permits to make analyses across the
sessions. The entire pipeline of data preprocessing is detailed in Esteban et al. [2018]. A further
preprocessing step consists in creating a precise 3D tetrahedral mesh of the brain, starting from
a segmentation of anatomical images, as detailed in Section 4.1. Then, starting from the fMRI
signals, evaluated at the mesh nodes, we compute a functional connectivity map, for each fMRI
session, as detailed in Section 4.2. We hence apply the FPCA in Section 3, to explore the main
modes of variation of the functional connectivity for the considered individual. Note that, although
the 92 connectivity maps may not be independent, corresponding to repeated scans over time, this
does not prevent the use of PCA for descriptive purposes [see, e.g., Jolliffe, 2002].

4.1 Mesh creation
The mesh is created starting from the preprocessed T1-weighted structural scan of the patient. In
particular, using the MATLAB toolbox SPM12 [Friston et al., 2007], the brain is segmented in grey
matter, white matter and cortical surface. The MATLAB toolbox Brain2Mesh [Tran and Fang, 2017,
Fang and Boas, 2009] provides a streamlined MATLAB function to convert a segmented MRI scan
into a high-quality multi-layered tetrahedral brain/full head mesh, and it is used for the creation of
the tetrahedral mesh starting from the segmented MRI-scan image. For the purpose of the analysis
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Figure 3: The selected Region Of Interest (ROI), corresponding to the left superior frontal gyrus. On the
left, a view from the top; on the right, a sliced view of the left hemisphere. This figure appears in color in
the electronic version of this article, and any mention of color refers to that version.

we are interested in studying the signal over the grey matter, therefore we employ only that part
of the segmentation to create the mesh. The resulting mesh is shown in the first row of Figure
1, and is composed of 45677 nodes and 165953 tetrahedra. The mesh shows a great accuracy in
capturing all the complex anatomy of the brain.

4.2 Computation of the connectivity maps
Each fMRI scan consists of a spatio-temporal signal, the Blood Oxygen Level Dependent (BOLD)
signal, evaluated at each node of the mesh. This means that, for each location pi, we observe a
function of time. Since cell activity requires oxygen consumption, the BOLD signal can be seen as
a proxy for neural activity.

A standard approach to explore the behavior of the brain, during a resting state fMRI, is to
consider a Region Of Interest (ROI) in the brain, and hence compute for each location pi the
correlation between the temporal signal observed in pi and the mean temporal signal in the ROI.
As a result, we obtain, for each location, the correlation between the signal at that location and
the signal in the ROI. The idea behind this procedure is to analyse the behaviour of the brain
with respect to a ROI, to understand which regions are positively or negatively correlated with it.
The functional connectivity map is then obtained from the correlation map by application of the
Fisher’s r-to-z transformation [Fisher, 1915]. The procedure is repeated for each of the 92 sessions,
giving as a result a 92-by-45677 data matrix Z of the functional connectivity maps. As ROI we
here consider the left superior frontal gyrus, that is shown in Figure 3. This region is involved in
self-awareness, in coordination and episodic memory.

The bottom row of Figure 1 shows the mean functional connectivity map over the 92 sessions.
We observe that the mean signal is quite noisy. In the ROI and the nearby areas the correlation
is high, as expected. In the mesial part of the cerebellum a positive correlation is observed. Mild
negative correlations are observed in the occipital lobes.

4.3 Results
After subtracting the global mean, the FPCA in Section 3, implemented in the R package fdaPDE
[Arnone et al., 2022], is employed to compute the first three principal components. The obtained
components are represented in Figure 4. We observe that the principal components estimated
with FPCA-PDE are smooth functions over the brain. The first principal component assumes low
negative values in the ROI, in the right superior frontal gyrus, in the right parietal lobule and in
the mesial region of the cerebellum. In the rest of the brain it takes values near to zero, and mildly
positive values in the posterior part of the cortical surface. The second principal component shows
a contrast between the ROI, the right superior frontal gyrus, the mesial region of the cerebellum
(where it takes negative values) and the rest of the brain. In particular, it assumes high positive
values in the visual cortex, that is the area of the cerebral cortex, in the occipital lobe. The
third principal component has high positive values in two localized areas of the visual cortex.
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It takes values near to zero in the rest of the volume, with mild negative values on the frontal
and parietal regions. The fronto-occipital network is well-known to be implicated in higher-order
visual processing. Moreover, it has been suggested that the higher-order process of motor ideation
operates through a neural network involving also the visual mental imagery areas [Gardini et al.,
2016, Raffin et al., 2012]. Therefore, the positive correlation between the left superior frontal gyrus
and occipital areas highlighted by the principal components may be ascribed to ideation processes
performed by the subject during the fMRI sessions.

5 Discussion
The simulation studies reported in Section F of the supporting information and the application to
fMRI data detailed in Section 4 show that the proposed SR-PDE and FPCA are able to analyse
complicated functional signals observed in 3D domains with highly nontrivial geometries. As
detailed in Section E of the supporting information, the data could as well be referred to volumetric
subdomains, instead of to pointwise locations. Moreover, the methods can be extended in various
directions. A first interesting extension is to consider generalized linear models over complicated
3D domains, when the response variable has some continuous or discrete distribution within the
exponential family. This could be done suitably extending the model presented in Wilhelm and
Sangalli [2016] for 2D domains. Another interesting direction concerns the extension to temporally
dependent data. The BOLD signal itself, for example, is indeed a temporal series observed at
locations in the brain volume. Such extension can be formulated considering two penalty terms,
regularizing the estimate over space and over time, similarly to what done by Ugarte et al. [2010],
Marra et al. [2012], Aguilera-Morillo et al. [2017], Bernardi et al. [2017], Arnone et al. [2021], in the
case of 2D planar domains, or a single penalty involving a time-dependent PDE, as done for 2D
planar domains by Arnone et al. [2019]. Concerning the asymptotic properties, we have here derived
the consistency and asymptotic asymptotic normality of the estimators setting λ = o(n−1/2). In
future research we shall rigorously investigate whether the selection of λ by GCV guarantees such
convergences.

In this work we have focused on an application to neuroimaging data and considered regular-
ization with the simple Laplace operator. However, life sciences present several other challenging
problems where the proposed methods could be profitably applied, to study biological signals
within organs, complying with the morphology of the organs. Moreover, the possibility to include
in the regularizing term general forms of PDEs, further permits to include the available problem-
specific information about the complex physics of the underlying phenomena. As an example, the
study of heart malfunctioning requires the analysis of complex electrical signals within the cardiac
muscle, which governs its contractions, and extensive knowledge is available on the physics of the
problem [see, e.g., Quarteroni et al., 2017, Salvador et al., 2021]. Many other sciences and engineer-
ing problems present data distributed in volumes with complicated shapes and a problem-specific
knowledge that can suggest a regularizing PDE. In Engineering design processes, for instance, it
is crucial to study quantities of interest observed within the volume of a 3D prototype, in order to
optimize its design, e.g., the aerodynamic forces exerted on an airfoil, when considering the design
of an airplane. In environmental and geo sciences, it is of paramount importance to accurate model
data distributed in regions characterized by a complex orography. These examples highlight the
broad applicability of the proposed methods.

Data Availability Statement
The data that support the findings of this paper are openly available in OpenNeuro at https:
//openneuro.org/datasets/ds000031, reference number ds000031.
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(a) First principal component

(b) Second principal component

(c) Third principal component

Figure 4: First, second and third principal components. On the left, a view from the top; in the center,
the posterior view; on the right, a sliced view of the left hemisphere. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version.
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