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Abstract
This study employs Deep Reinforcement Learning (DRL) for active flow

control in a turbulent flow field of high Reynolds numbers at Re = 274000.
That is, an agent is trained to obtain a control strategy that can reduce the
drag of a cylinder while also minimizing the oscillations of the lift. Probes
are placed only around the surface of the cylinder, and a Proximal Policy
Optimization (PPO) agent controls nine zero-net mass flux jets on the down-
stream side of the cylinder. The trained PPO agent effectively reduces drag
by 29% and decreases lift oscillations by 18% of amplitude, with the control
effect demonstrating good repeatability. Control tests of this agent within
the Reynolds number range of Re = 260000 to 288000 show the agent’s
control strategy possesses a certain degree of robustness, with very similar
drag reduction effects under different Reynolds numbers. Analysis using
power spectral energy reveals that the agent learns specific flow frequen-
cies in the flow field and effectively suppresses low-frequency, large-scale
structures. Graphically visualizing the policy, combined with pressure, vor-
ticity, and turbulent kinetic energy contours, reveals the mechanism by which
jets achieve drag reduction by influencing reattachment vortices. This study
successfully implements robust active flow control in realistically signifi-
cant high Reynolds number turbulent flows, minimizing time costs (using
two-dimensional geometrical models and turbulence models) and maximally
considering the feasibility of future experimental implementation.

1 Introduction

In aircraft, navigation, and related industries, we often encounter the technical task
of minimizing drag. To address these challenges, we usually depend on passive
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control or active control [18]. An approach to reducing drag in specific cases is
by modifying the aerodynamic shape of an object[49], for example, the dimpled
design of golf balls [10].

For items such as large trucks, trains, wind turbines and aircrafts that have
geometric shapes set and where reducing drag leads to a decrease in energy con-
sumption [3, 30, 51, 8], active control is required after aerodynamic optimization
has already been completed.

Active control can be categorized as open-loop active control [43] and closed-
loop active control. Open-loop active control is easier to set up, but is very unstable
when dealing with external disruptions or internal parameter variations. Closed-
loop active control is frequently utilized in intricate situations for flow control [9,
11, 1, 19, 24], particularly in the context of Active Flow Control (AFC) [40].

In AFC, the input consists of physical measurements collected by probes within
the flow field, while the output involves altering the flow field using actuators. Es-
tablishing a reliable transfer function between input and output is difficult, partic-
ularly for turbulent flow fields, and the stability of the transfer function is weak
due to several disruptions in real-world settings [5]. Therefore, it is crucial to
integrate machine learning (ML) for active closed-loop control of the flow field
[28, 25, 35, 37, 31, 17, 26, 46, 53, 5, 16]. The integration of machine learning
with fluid dynamics is closely linked and has been applied in research areas such
as flow field reconstruction and prediction [42], turbulence modeling [15, 47], and
flow control [36, 34, 48, 54]. Yunfei Li [27] and Steven L. Brunton [6] offer in-
sightful overviews of recent advances in the field. Reinforcement Learning (RL)
[45, 12] or Deep Reinforcement Learning (DRL) [2] approaches are frequently
selected to attain control. DRL utilizes Neural Networks (NN) to address compli-
cated, high-dimensional problems within the subject of ML, whereas RL utilizes
tabular approaches and Q-Learning to develop strategies. Reinforcement learning
is not feasible for complex control issues that involve continuous high-dimensional
action spaces. Hence, we opt to utilize DRL with Deep Neural Networks (DNN)
to address intricate control challenges [38, 14, 8, 7, 29, 33, 32].

Deep Neural Networks in DRL acts as transfer functions in control theory,
serving as a black-box model to accurately represent the relationships between in-
puts and outputs. DNN is well-suited for modeling complicated nonlinear systems,
like those needing turbulence control, which are difficult to model using traditional
methods. Therefore, substantial computational effort is required for proper fitting
of the nonlinear function between inputs and outputs, along with a suitable up-
date approach to update the weights of DNN. Recent research focuses on machine
learning-based active flow control at low Reynolds numbers [35, 31, 46, 53]. Re-
searchers such as Feng Ren [35] and Hongwei Tang [46] have successfully reduced
the drag on bluff bodies under weakly turbulent laminar and turbulent conditions,
achieving effective control across various Reynolds numbers. Active flow con-
trol at high Reynolds numbers is important in various engineering applications,
including reducing drag for cars [41, 20, 22], high-speed trains and wings [21], as
well as attitude control for aircraft without rudders. Studies such as those of Zhi-
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jie Zhao have utilized synthetic jets for attitude control of such aircraft [52] and
Enrico Ballini successfully implemented flow control over bluff bodies at higher
Reynolds numbers using the PPO algorithm [4].

Optimizing control for high Reynolds number flow configurations using DRL
encounters numerous hurdles. Fluid mechanics simulations are time-intensive, and
training the network requires detailed flow field data like velocity and pressure, re-
sulting in a huge number of network inputs. The significant time cost for training
the agent is related to the high non-linearity between inputs and outputs. When
computational resources are limited, it is practical to begin by utilizing simplified
models to investigate efficient flow field control. This can involve employing two-
dimensional geometric models or a range of turbulence models during the early
stages of study. Efficiently exploiting samples is key in DNN’s update process.
This is because a large amount of samples requires significant data processing,
and the majority of deep-reinforcement learning agents use the Gradient Descent
Method (GDM) for updates. Increasing the number of samples improves the accu-
racy of gradient computation, but also leads to a substantial increase in computa-
tional workload, requiring a trade-off. It is crucial to reduce the total time cost of
agent training in turbulent flow circumstances by examining the agent’s ability to
learn flow field properties and optimizing control based on features. The stability
of the training results can be assessed by examining the reproducibility of the train-
ing and the robustness and reaction speed of the selected policy control mechanism
after training, focusing on control aspects.

Previous research on flow control with DRL has mainly used the PPO algo-
rithm [35, 31, 46, 39]. This label-free learning technique streamlines data process-
ing and is commonly employed in flow control for many reasons. Flow control is
a challenge due to the continuous action space, and the PPO algorithm excels at
addressing such complexities, playing a vital role in improving decision-making.
Furthermore, PPO includes a clipping mechanism that inhibits sudden changes in
actions. PPO has an exploratory tendency that helps prevent getting stuck in local
optima, although this can lead to slower convergence rates. Defining the reward
function enables the optimization of many objectives at the same time.

In view of these PPO algorithmic features, this article also employs PPO as
the basis for its investigation of flow control-based drag reduction. Virtual probes
are positioned only on the cylinder surface to prevent interference from upstream
probes in the wake from impacting downstream probes, considering practicality
in real experimental settings and engineering uses, as well as the significance
of experimental-simulation comparisons. Given these limitations, the maximum
amount of flow field data is collected, and the flow field is managed using jetting.
Xinhui Dong et al. placed sensors around the cylinder to monitor pressure and
trained an agent for suction control, experimentally achieving a reduction in the
adverse effects of vortex shedding at the rear of the cylinder and suppressing lift
fluctuations [13].

The policy developed in this study significantly reduced the drag on the cylin-
der by 29% in a flow field at Re= 274000 and exhibited a very high response speed.
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(a) (b)

Figure 1: Geometrical configuration of the circular cylinder and the computational
domain: (a) The relative position of the cylinder in the computational domain. (b)
Schematic of the jets on the cylinder with geometrical dimensions and boundary
conditions with the profile of velocity inlet and the profile of jets.

This control strategy is also robust and capable of handling variations in Reynolds
numbers within a certain range without excessively increasing the oscillation of
vortex shedding. The paper is framed as follows. Section 2 introduces the numer-
ical methods and the PPO algorithm, as well as the methodology for coupling the
agent with the simulation environment. Section 3 discusses the trained agent based
on the repeatability of the training results, analyzing the impact of control on the
flow field through velocity, pressure, and vorticity contour plots. The effectiveness
of the control is further examined by comparing and analyzing data and graphs.
Section 4 summarizes the work presented in this paper and describes directions for
future research.

2 Methodology

2.1 Flow Configuration

The configuration in this investigation is a turbulence flow past a circular cylin-
der in a two-dimensional setting with a Reynolds number (Re) of 274000 where
Re= ŪD/ν . Ū is the mean velocity of inflow from infinity, D is the diameter of the
cylinder, and ν is the kinematic viscosity of the fluid. The diameter of the cylin-
der is 100mm and the domain of the numerical simulation is 2000mm(length)×
1000mm(height), the center of the cylinder is placed 500mm away from the inlet
boundary and 500mm away from the far field boundary (see Fig. 1(a)).

For flow control, we use jets to influence the flow field around a cylinder to
achieve the control objective. Figure 1(b) shows the configuration of nine con-
trol jets which are installed symmetrically on the surface of the cylinder with
different angular positions relative to the x-axis. We can define the position of
the jets through θ , θi( jetupper) = 90◦,67.5◦,45◦,22.5◦ with i = 1,2,3,4 and
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θi( jetlower) = −90◦,−67.5◦,−45◦,−22.5◦ with i = 1,2,3,4 and finally the cen-
tral jet at 0◦. The dimension of the jet outlet is limited by the angle ω and the angle
ω is always equal to 5◦. To avoid the discontinuity of velocity when we define
the boundary condition of the jets and no-slip wall on the surfaces of the cylinder,
we choose the velocity profile at each jet outlet following the expression defined
below [46]:

u = umax cos
(

π

ω
(θ −θ0)

)
,

where umax is limited between−2m/s and 2m/s and because it is an incompressible
flow, the density of the fluid is constant, which means that the Artificial Neural
Network (ANN) delivers the velocities, so the agent controls the velocity of nine
jets directly: when the jet velocity is positive, it means blowing; otherwise it means
suction. The nine jets are zero net mass flux jets, implying that at any given moment
the total flux through the boundaries of these nine jets is zero, eliminating the need
for additional mass injection into the flow field.

2.2 Problem description

In the present study, the flow is considered viscous and incompressible. The sta-
tionary no-slip wall is applied to the cylinder. The governing equations are the
two-dimensional Reynolds-averaged Navier-Stokes equations (RANS).

The continuity equation for incompressible flow reads:

∂ui

∂xi
= 0.

The momentum equation for incompressible flow reads:

ρ

(
∂ui

∂ t
+u j

∂ui

∂x j

)
=− ∂ p

∂xi
+µ

∂ 2ui

∂x2
j
−ρ

∂u′iu
′
j

∂x j
.

To close the system, we need to model the Reynolds stresses u′iu
′
j. In this regard,

we adopt the k−ω SST turbolence model, which can calculate flow separation rel-
atively accurately, according to the research of Wen and Qiu [50, 23]. The use of
the Large Eddy Simulation (LES) method, which directly resolves large-scale ed-
dies, imposes severe requirements on the mesh and demands more computational
resources. The 2D and 3D RANS models still exhibit shortcomings in capturing
the drag crisis phenomenon [44], but the calculated drag coefficients remain within
a reasonable range [50]. Given the already substantial expense of carrying out nu-
merical simulations in three dimensions, combined with the extensive time needed
for training the agent, the task becomes exceedingly challenging. Therefore, we
chose to simplify this model to a two-dimensional problem and apply the RANS
model. In the present work, we use the SIMPLE scheme to solve the incompress-
ible RANS model problem. The numerical simulation is based on the commercial
software ANSYS-Fluent. Drag, FD, and lift, FL, can be calculated by integrating
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the viscous stress and pressure acting on the surface of the cylinder, and in this
case, the reaction force contributed by jet propulsion should be considered. The
drag force and lift force, the drag coefficient, CD, and the lift coefficient, CL, are
defined below.

FD =
∫
(σ ·nc) · ex dS,

FL =
∫
(σ ·nc) · ey dS,

CD =
2FD

ρŪ2D
,

CL =
2FL

ρŪ2D
.

The stress tensor is denoted by σ , nc represents the unit outward normal vector to
the outer surface of the cylinder, and ex = (1,0) and ey = (0,1). The Strouhal num-
ber, St, is a dimensionless number used to represent the frequency of the dominant
oscillation of the flow, and is defined as follows:

St =
fs D
Ū

.

The quantity fs is a natural frequency, representing the vortex shedding frequency
that can be calculated from the periodic oscillation of the lift coefficient, CL.

2.3 Mesh independence

The unstructured mesh used in the simulation is made up of 182612 triangular grids
(Fig. 2). To further reduce the computational load without compromising the accu-
racy of the numerical simulations, we divide the computational domain into three
nested regions with increasing grid density. In addition, the grid around the cylin-
drical wall is much more refined because of the boundary layer. Table 1 illustrates
that convergence is reasonably assumed with respect to the mesh size and time
step. The mean values of CD for meshes of 182612 and 283061 elements at a time
step of δt = 0.00025s vary by just 0.5%. Therefore, considering computational
efficiency, we opted for the mesh with 182612 elements for this study.

2.4 Deep Reinforcement Learning

The basic framework of PPO is illustrated in Fig. 3, and the details of the PPO
algorithm are presented in Appendix A, while the employed hyper parameters are
listed in Appendix B. It is essentially a closed-loop control system where obser-
vations and rewards are input variables, and actions are output variables during
neural network training. For a pre-trained neural network, inputting an observation
allows the agent to quickly select the corresponding policy, which is the action.
The training process can be viewed as constructing a transfer function or, more
precisely, approximating a transfer function. In general, the agent interacts with
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Figure 2: Computational mesh: the innermost mesh is refined and the mesh around
the cylinder is highly refined considering the accuracy of the simulation in the
boundary layer.

Table 1: Mesh convergence with mesh resolution and time step size referring drag
coefficient for the flow around the circular cylinder at Re = 274000.

N. elements 28874 85849 182612 283061
δt = 0.001
CD_mean 0.52522 0.78816 0.79094
δt = 0.0005
CD_mean 0.87778 0.84921
δt = 0.00025
CD_mean 0.84996 0.89337 0.89754

the environment, which in our study is a virtual environment corresponding to the
simulation of a flow field. The data generated from the flow field simulation is
transmitted across a channel to the agent as an observation input. This corresponds
to the velocity and pressure information obtained from the probes. Additionally,
the lift coefficient and drag coefficient are calculated by simulation to compute the
reward input for the PPO agent:

Reward =−|CD|−0.2 |CL| .

A specific weighting for drag and lift is used to minimize drag without significantly
boosting lift, emphasizing the importance of this optimization target in relation
to the research objectives. The agent uses observations and rewards to train the
DNN and computes actions. This study examines the maximum values of nine
jet vectors. The values are used as input for the velocity profile function of the
jets, and the equations act as boundary conditions for the numerical simulations.
Executing the action in the environment completes a full interaction cycle between

7



PPO agent

Simulation
environment

Action
(Jet velocities)Reward

Observations
(Measured velocities
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Figure 3: Schematic of the PPO agent closed-loop control.

the PPO agent and the environment.

Figure 4: Schematic diagram of three layers of sensors placed around the surface
of the cylinder, ensuring that the first layer of sensors is placed within the boundary
layer.

Zooming in on the figure reveals that we have placed three layers of probes
around the cylinder, marked with red dots, as shown in Fig. 4. The first layer is
placed at a height of 0.1mm from the cylinder surface and can be used to measure
airflow data over the surface of the cylinder; the second and third layers are placed
at 1mm and 2.5mm, respectively. It is crucial to ensure that the first layer of probes
is within the boundary layer, enabling us to gather information about the flow sep-
aration points. The second and third layers of the probes aim to obtain information
on pressure and velocity gradients, as well as information on the effects of flow
separation on the wall surface, allowing the agent to learn and determine whether
flow separation is exacerbated under the influence of the jets. In simpler terms, we
wish the fluid to flow closely along the surface of the cylinder. Each layer con-
sists of 128 probes, each probe capable of simultaneously capturing two types of
information: velocity and pressure.

To facilitate the interaction between the agent and the environment, we estab-
lish a framework as shown in Fig. 5. Using a Text User Interface (TUI), a dialogue
is established between Matlab and Fluent, with Matlab constructing the PPO agent.
Matlab outputs the control variable, which is the maximum value of jet velocity,
and this is fed into Fluent via the TUI, followed by the complete input of veloc-
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Figure 5: Flow chart of the Matlab-Fluent coupling with training process and
agent-environment interactions.

ity inlet through the velocity profile equation. Once all boundary conditions have
been entered, Fluent runs a simulation for one time step, which includes n iterative
steps. A complete interaction between Matlab and Fluent of N1 times constitutes
one episode, with N2 being the total number of episodes in a training session. In
our study, rather than resetting the flow field to its initial state at the end of an
episode, the flow field is simulated for several time steps in an environment with
only an inlet and no jets, allowing the flow field to return to an uncontrolled state,
effectively conducting a random initialization.

3 Results and Discussions

As discussed previously, training an agent for control in high Reynolds-number
flows is a time-consuming and uncertain endeavor. Each complete training ses-
sion encompasses 100 episodes, with each episode containing 100 interactions,
and each training session takes approximately 120 hours (hardware:i7-12700H
@2,3GHz RAM 64GB). The return for each episode is the result of the weighted
summation of the rewards over an entire trajectory. To demonstrate the repro-
ducibility of the training, three independent training sessions were conducted, as
shown in Fig. 6, and the returns of these sessions were averaged to obtain the mean
return. It can be seen from the graph that the fluctuation in rewards during each
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Figure 6: Training curve of PPO agent with three independent trainings.

training session is significant. Given the high time cost and the complexity of the
environment, it is undesirable for the agent to remain in a local optimum during
training. The agent should be more exploratory, since staying in a local optimum
would result in a more stable and convergent return curve, but achieving a similarly
effective control outcome would require exponentially more time. Thus, balanc-
ing training costs while obtaining a reliable control strategy becomes a challenging
dilemma. We found that the mean return stabilizes around −81 after some fluc-
tuations, indicating that individual training sessions are repeatable. Although we
cannot conclude that this is the optimal control strategy (as there is no definitive
criterion for determining an optimal control strategy), it suggests that finding a bet-
ter control strategy than the current training results is extremely difficult. In this
case, we need to verify the repeatability of the control strategy of the trained agent,
in other words, whether agents with similar return values obtained from different
trainings have similar control effects. We also need to assess whether the agent’s
control strategy meets the requirements at the control level, such as quick response
speed and robustness. These aspects will be discussed further.

In the coefficient of drag graph, we disregard the data from the flow field tran-
sition phase and focus solely on the fully developed flow field starting from 0.05s
onward, as shown in Fig. 7(a). This graph compares the drag coefficient of the
cylinder without control to that under agent control after training completion. The
control transition area, highlighted in a darker shade of gray, represents the pro-
cess through which the flow field transitions from an uncontrolled state to a stable
controlled state. The control strategy is observed to respond in approximately 0.03
seconds, as shown in Fig. 7(a), quickly transitioning the flow field to a controlled
state with a significant reduction of 29% in the drag coefficient, demonstrating the
practical importance of this control strategy. In the coefficient of lift graph, it is
evident that the amplitude of the oscillation is reduced. However, an asymmet-
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Figure 7: Comparison of the drag coefficient and lift coefficient of the cylinder
under agent control versus uncontrolled conditions.

ric phenomenon in the vertical resultant force is also noticeable compared to the
uncontrolled condition, as shown in Fig. 7(b). This implies that the symmetry of
the agent’s policy under this flow characteristic can be further improved based on
specific requirements. When comparing the drag and lift curve graphs, it is not
difficult to notice that the oscillation amplitude of the lift predominates.

From a statistical perspective, the flow field data are averaged over time to ob-
tain the result of the difference between the flow field without control and the flow
field under the control of a trained agent. In particular, the average is performed
after simulating 100 periods of oscillation. By calculating the difference, we can
more intuitively observe the changes in the flow field caused by the jet, as the max-
imum speed of the jet is only 2m/s, while the maximum speed around the cylinder
can reach 70m/s. The wake of the flow field is observed to be relatively symmetric,
indicating that the flow field is statistically stable under control. However, slight
asymmetry can be noticed around the cylinder through the mean streamwise ve-
locity, the mean transverse velocity, and the mean static pressure, with a velocity
difference of approximately 2m/s. It is important to note that the maximum speed
of the jet is also controlled at 2m/s, with the inlet flow speed at 40m/s. This slight
asymmetry is understandable compared to the results achieved by the control. Pos-
sibly, this asymmetry is due to the uncertainties in the flow and the training, which
prevent the agent from quickly mastering the macroscopic periodic patterns of the
flow. For future work, it could be considered to integrate algorithms that can rec-
ognize signal features to explore whether agents can quickly learn the macroscopic
periodic patterns of the fluid, and to investigate whether this method could accel-
erate agent training or stabilize the training at a better control effect. Additionally,
the symmetry in the mean vorticity diagram is relatively good, indicating that the
jet has a minimal impact on vorticity.

To verify the repeatability of the control strategy, we selected an agent trained
from one of the three independent training sessions conducted after the mean re-
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Figure 8: Contour of averaged difference of streamwise velocity (a), averaged
difference of transverse velocity (b), averaged difference of static pressure (e) and
averaged difference of vorticity (g) over 100 oscillation periods; the contours on
the right column (b), (d), (f), (h) are enlarged views.
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Figure 9: Comparison of the coefficient of drag before and after control under a
range of Reynolds number. The blue line is the baseline without control and the
black line is the coefficient of drag averaged by five independent repeated control
tests. The error bars denote the difference between the maximum and minimum
coefficient of drag among these five tests. The orange area represents the standard
deviation range.

ward curve stabilized. This agent was subjected to five repeated control tests, each
lasting 100 periods of oscillation, during which the drag coefficient was calculated.
This process was also repeated with variations in Reynolds numbers to assess the
robustness of the control strategy, as shown in Fig. 9. The blue curve represents the
variation in the drag coefficient under different Reynolds numbers without control.
The orange area indicates the range of variance in the drag coefficient after five
tests, while the black curve represents the average drag coefficient under different
Reynolds numbers after testing. The error bars show the difference between the
maximum and minimum drag coefficients obtained in five tests at each Reynolds
number. The results of five tests with different Reynolds numbers show that the
drag under agent control varies within a small range, proving that the control strat-
egy is repeatable and stable. Comparison of drag coefficients before and after con-
trol under different Reynolds numbers shows that the control strategy possesses a
certain degree of robustness.

In tests carried out in various Reynolds numbers using an agent trained in Re =
244000, the robustness of the procedure was established. The study delved into the
impact of the same agent on flow field structures under different flow conditions
from a frequency domain perspective. The blue and orange curves in the graph
represent the lift coefficient curves without control and under agent control, respec-
tively, post Fast Fourier Transform (FFT). These curves illustrate the distribution
of energy at different frequencies due to vertical oscillations acting on the cylinder,
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Figure 10: Diagram of the comparison of Power Spectral Density (PSD) before
and after control at different Reynolds number, marked with Strouhal number.

as shown in Fig. 10. The low-frequency portion of the graph indicates large-scale
structures within the flow, while the high-frequency portion indicates smaller-scale
oscillations. The vertical dashed lines in green and purple, respectively, denote the
Strouhal numbers without control and under agent control, corresponding to the
peaks of the two curves at the vortex-shedding frequency on the horizontal axis.
This frequency is characteristic of the von Kármán vortex streak. Post-control,
the vortex-shedding frequency exhibits varying degrees of change across different
Reynolds numbers. In particular, only at Re = 274000 is there a significant suppres-
sion of low-frequency energy, indicating an effective mitigation of lift oscillations
caused by large-scale vortices formed as the fluid passes the cylinder. However,
this phenomenon was not as effectively observed under the control of this agent
at other Reynolds numbers, suggesting that the agent’s learning was specifically
tuned to the frequency characteristics of the flow conditions at training. Due to the
use of the RANS model, the impact of turbulent fluctuations across different scales
in the frequency domain was not very pronounced, leading to relatively smoother
curves. Nevertheless, a comparison of the orange curves across different Reynolds
numbers reveals significant fluctuations in the energy in the high-frequency region
post-control, primarily showing an increase. This suggests that a significant portion
of the flow control impact targets small-scale flow structures. Within the studied
range of Reynolds numbers, it is evident that high-frequency, small-scale structures
in the flow field carry less energy. The blue curve further illustrates that as the scale
of flow decreases, energy is transferred from large-scale to small-scale structures.
The slope of the curve to the right of the vortex shedding frequency indicates that
the control strategy does not significantly alter the distribution of energy across
different scales or the inherent energy at the vortex shedding frequency.

The series of velocity contours at time levels t0 + 0.001n (n = 0,1,2,3,4,5),
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Figure 11: Visualization of the agent policy: Contour of velocity magnitude with
zoomed in views on the left column: (a), (c), (e), (g), (i), (k). The comparison of
the velocity and pressure detected by three layers of sensors on the right half of the
cylinder corresponding the velocity of nine jets on the right column.

16



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

17



(p) (q) (r)

Figure 12: Comparison of the static pressure, vorticity and turbulent kinetic energy
(TKE) at different times with time interval 0.001s.

as shown in Fig. 11, along with the velocity and pressure data extracted from three
layers of sensors on the right-hand surface of the cylinder and the jet velocities
of nine jets, visualize the control strategy or policy employed by the agent. The
changes in velocity contour across different times and the fluctuations of pressure
on the cylinder’s surface elucidate the oscillatory process of vortex shedding. The
enlarged images reveal the variations in the flow separation zone on the cylinder
surface and how the shedding vortices reattach to the cylinder’s back, impacting
the pressure there. In Fig. 11(b), it is evident that under the influence of the central
jet, the pressure at the back of the cylinder increases, resulting in a peak in the
pressure curve.

The velocity diagram of the nine jets indicates that the central jet predomi-
nantly employs a jetting strategy, which results in the jet’s reactive force directly
propelling the cylinder and elevating the static pressure at its back, thereby reduc-
ing pressure drag. The velocities of jet upper1 and jet lower1 are minimal and
exhibit little change, as increasing the velocity of these two jets would lead to pre-
mature flow separation and a larger separation zone, further decreasing the pres-
sure at the cylinder’s back and consequently increasing pressure drag. Therefore,
the agent avoids employing a high-speed jetting strategy for these two jets. The
other jets adjust their strategy periodically in response to the pulsations of the flow
separation zone and the changes in the reattachment vortices, adopting a periodic
strategy to optimize the control effect.

This series of contours reflect the dynamic changes in the flow field at time lev-
els t0+0.001n (n = 0,1,2,3,4,5), as shown in Fig. 12. By examining the zoomed-
in views, the characteristics of the local flow can be observed. However, it is crucial
to reiterate that, due to the use of the RANS model to simplify turbulence by time
averaging for computational efficiency, not all details within the flow field are cap-
tured with high precision. However, by comparing the interaction between jets
and vortex systems at different times across these three figures, we can reveal how
jets achieve control objectives by influencing the flow field. The development of
shedding vortices behind the cylinder can be seen through the changes in six sets of
vorticity and turbulent kinetic energy contours, with alternating vortex streets form-
ing above and below the cylinder. Zoomed-in views reveal a reattachment zone of
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shedding vortices on the cylinder’s right-hand side (downstream), characterized by
a lower static pressure and higher turbulent kinetic energy, indicating more disor-
derly flow. The vorticity contours also show that the flow in the reattachment zone
exhibits periodicity, with these small structural vortex systems corresponding to the
high-frequency portion mentioned previously in the power spectral density graph.
Notably, a region near the central jet’s position exhibits significantly low turbulent
kinetic energy (identified in the vorticity contour between the red and blue vortices
in the white area on the right zoomed-in view), resulting from small vortex systems
generated around the jet. This is indicative of the control strategy employed by the
agent, which reduces turbulent kinetic energy near the surface at the rear of the
cylinder, thus increasing static pressure at the back, reducing pressure drag, and
achieving drag reduction. However, given the limited output power of the jets, a
further improvement is needed to modify the flow in the reattachment zone. From
the perspective of the dynamic development of shedding vortices, it is clear that
when vortices of opposite rotation directions meet, the turbulent kinetic energy in
the region decreases, the energy is dissipated, and the vorticity is reduced. For fu-
ture research, it is essential to delve deeper into the flow mechanisms, particularly
under high Reynolds number conditions, to elucidate the interactions between jets
and vortices of various scales. To this end, transitioning to a three-dimensional
model for the geometry is necessary.

4 Conclusions

The study used the Proximal Policy Optimization (PPO) method from Deep Re-
inforcement Learning (DRL) as a flow control model and simulations were per-
formed using the k−ω SST turbulence model. The trained agent successfully
reduced drag for a bluff body in high Reynolds number turbulence by periodically
controlling the flow field. The results consist of the following.

• This study introduces Deep Reinforcement Learning (DRL) and establishes
a zero net flow active flow control (AFC) model to reduce drag for bluff
bodies under complex flow conditions at high Reynolds numbers.

• Training with random initialization of the flow field for each episode resulted
in three distinct training sessions producing stabilized curves within a certain
range, demonstrating that the training is reproducible.

• Under high Reynolds number conditions, the flow field is very intricate and
displays significant nonlinearity. The agent gathered restricted data from the
flow field due to potential interference between upstream and downstream
probes; therefore, only data regarding velocity and pressure near the cylin-
der walls was obtained. The trained agent can achieve a fast response and
control with a certain degree of robustness. The agent control method suc-
cessfully decreased the drag on the cylinder by around 30% and showed
reliable robustness within a specific range of Reynolds numbers.
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• The agent, trained using Active Flow Control (AFC), mainly influenced the
high-frequency small-scale structures of the flow field under the current con-
ditions, with little effect on the frequency and energy of vortex shedding. It
successfully dampened the low-frequency longitudinal oscillations affecting
the cylinder, leading to a decrease in the fluctuating lift forces.

Based on this research, the primary goal for the future is to further explore the
use of temporal algorithms such as LSTM (Long-Short Term Memory) to enable
the agent to better and more quickly learn the periodic characteristics of the flow,
thereby reducing training time costs. On this basis, our aim is to train the agent
using simulation data within a ±10%−15% range of Reynolds numbers to further
enhance the control robustness at high Reynolds numbers. Considering the practi-
cal conditions in the experiments, further studies are needed on the limitations with
regard to the number of probes and their placement positions.
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A Deep Reinforcement Learning - Proximal Policy Opti-
mization

A Markov Decision Process (MDP) is built based on a set of interactive objects,
as shown in Fig. 13, called an agent and environment[45]. Its elements include
states, actions, and rewards. The agent will perceive the current state of the system,
implement actions on the environment according to the policy, thus changing the
state of the environment, and receiving a reward. In general, the time steps of the
MDP can be finite or infinite; for the finite MDP there exists a terminal state which
can be defined by episode; in this circumstance, the space of state and action are
finite, so is the return. If there is no terminal state, in correspondence with the state,
the action and return are infinite. Based on this process, the trajectory is given:

S0,A0,R0,S1,A1,R1,S2,A2,R2 . . .St ,At ,Rt .
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Env Actor Env Actor Env
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r1 r2
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Figure 13: Markov decision process. The agent starts at St , the actor takes action
At according to the state St , then, the environment generates a new state St+1.

This trajectory describes the problem in a discrete time sequence, so the subscript
t means the discrete time or time step.

We introduce the return Gt , which is the sum of the rewards R of each discrete
time t for an episode;

Gt = Rt+1 +Rt+2 + · · ·+RT .

When modeling real problems, according to the definition above, unless Gt tends
to converge, it is inappropriate to consider infinite reward. To change this situation,
we need to introduce the discounted return for episodic tasks,

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + · · ·=

∞

∑
k=0

γ
kRt+k+1 = Rt+1 + γGt+1.

The discount factor γ is a hyperparameter, in the range [0,1] and indicates impor-
tance of future rewards at the current time. If γ = 0, the agent is focused only
on the current reward without looking at the future. If γ = 1, it recovers to the
undiscounted return. So, using the discounted return, it seems to appear an infinite
return in an infinite MDP task and makes the solution of MDP feasible.

The policy is specifically the action in each state, defined by the function π ,

π(a|s) = P(At = a|St = s).

Mathematically, the function π is the density of probability. We also define π(a|s, θ)
as the policy network, which aims to approximate the policy π(a|s) by using the
policy network π(a|s, θ). The property of the policy network satisfies:

∑
a∈A

π(a|s, θ) = 1.

The value function, also called state-value function, mathematically is an expecta-
tion of the reward for subsequent actions determined by the policies, which is used
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to evaluate the quality of the state:

Vπ(s) = Eπ [Gt | St = s] = Eπ [
∞

∑
k=0

γ
kRt+k+1 | St = s].

When the agent starts to train, we want the value function to be maximized by
the critic network, and we hope to get as much reward as possible in the shortest
possible time, and the value function only depends on the current state. We have
another kind of value function, the Q-function, also called action-value function,
and differently it depends on the current state and the current action. It is the
expectation of the reward that can be obtained in each subsequent state in a given
state s, after taking an action a,

Qπ(s,a) = Eπ [Gt | St = s, At = a] = Eπ [
∞

∑
k=0

γ
kRt+k+1 | St = s,At = a].

We can relate the state-value function and the action-value function by following:

Vπ(s) = ∑
a
(Eπ [

∞

∑
k=0

γ
kRt+k+1 | St = s,At = a]) π(a|s) = ∑

a
π(a|s)Qπ(s,a).

We can also use v(s) and q(s,a) to represent the approximated state-value function
and the approximated action-value function.

If we consider a situation where all the rewards are positive, in this case, what-
ever the action the agent takes, to increase the expectation of the value faction, we
need to increase the probability of this token action. Thus, it is extremely necessary
to introduce the advantage function:

Aπ(s,a) = Qπ(s,a) − Vπ(s).

The advantage function provides a standard for evaluating the policy. If the advan-
tage function is positive, it means that in state s, taking a new action a is better than
the action given by the current policy, then we need to increase the probability of
this new action in the RL algorithm by maximizing the expectation of the advan-
tage function in the critic network. The critic network in Fig. 14 is used to approx-
imate the advantage function of appendix A. In this scenario, the network’s input
is made up of 768 neurons (each of the 3 layers utilizes 128 probes to measure two
parameters-pressure and velocity-for gathering the necessary information). The
actor and critic networks both feature four hidden layers, each matching the size of
the network’s input. The critic network’s output includes a single neuron, whereas
the actor network’s two paths produce outputs corresponding to the number of jets,
which is nine for the mean and nine for the standard deviation in appendix A. For
updating the policy network (actor network), generally we choose a type of gradi-
ent descent method to find the parameter θ for the network, and it is necessary to
calculate the gradient of the objective function,

∇θ J(θ) = ∇θ{ES∼η , A∼π [logπ(A|S,θt)qπ(S,A)]}
= ES∼η , A∼π [∇θ logπ(A|S,θt)qπ(S,A)].
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Figure 14: Schematic diagram of actor-critic network used in the PPO algorithm.

Here we introduce a baseline b(S), which is a scalar function of the state space S.

∇θ J(θ) = ES∼η , A∼π {∇θ logπ(A|S,θt)[qπ(S,A)−b(S)]}.

Then we need to demonstrate that the introduction of b(S) does not change the
gradient value.

∇θ J(θ) = ES∼η , A∼π [∇θ logπ(A|S,θt)b(S)]

= ∑
s∈S

η(s) ∑
a∈A

π(a|s,θt)∇θ logπ(a|s,θt)b(s)

= ∑
s∈S

η(s) ∑
a∈A

∇θ π(a|s,θt)b(s)

= ∑
s∈S

η(s)b(s) ∑
a∈A

∇θ π(a|s,θt)

= ∑
s∈S

η(s)b(s)∇θ ∑
a∈A

π(a|s,θt)

= ∑
s∈S

η(s)b(s)∇θ 1 = 0.

In this case, we choose the value function:

b(S) = EA∼π [q(s,A)] = v(s).

It is difficult or maybe impossible to calculate the expectation as we said before, so
we need to resort to a Monte Carlo estimation, but particularly, in this case, as an
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off-line method, the data set we sample from can be changed.

Ex∼p0 [x]≈ f̄ =
1
n

n

∑
i=1

f (xi) =
1
n

n

∑
i=1

p0(xi)

p1(xi)
xi.

Usually, for the PPO algorithm, we sample from the old policy, combined with the
advantage function, and we have the policy gradient:

∇θ J(θ) = E[
πnew(A|S,θ)
πold(A|S,θ)

∇θ logπnew(A|S,θ)(qπ(S,A)− vπ(S))].

The update of the parameter θ is:

θt+1 = θt + αθ

πnew(at |st ,θt)

πold(at |st ,θt)
∇θ logπnew(at |st ,θt)(qt(st ,at)− vt(st)).

After updating the parameter, we can get the action distribution at the current ob-
servation (states) from the actor network. The distribution of the action can be
written as:

p(a) =
1

ξ
√

2π
e
− (α−µ)2

2ξ 2 ,

where ξ is the standard deviation, and µ is the mean value; these two parameters
are the outputs of the actor network. Having this distribution, the agent chooses an
action as an input into environment.

For avoiding a destructive large weight update, we introduce the PPO clip func-
tion:

LCLIP(θ) = E[min{r(θ)âπ ,clip(r(θ),1− ε,1+ ε)âπ}],

âπ = qπ(S,A)− vπ(S),

r (θ) =
πnew(at |st ,θt)

πold(at |st ,θt)
,

where âπ is the approximate advantage function. There are two possible cases de-
pending on the positivity of the advantage function. The first is when the advantage
function is positive, when LCLIP turns to:

LCLIP (θ) = E[min{r (θ) , (1+ ε)}âπ ].

In this case, the object is to maximize LCLIP (θ), giving the approximate advantage
function, thus we need to maximize the ratio r (θ) between the new policy and the
old policy, but if the difference is large, it makes no sense to the physical envi-
ronment. So, with this limiting function, the ratio will reach a ceiling (1+ ε)âπ .
The second case is when the advantage function is negative, where the PPO clip
function becomes:

LCLIP (θ) = E[max{r (θ) , (1− ε)}âπ ].
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B Hyperparameters PPO

The following are the hyperparameters used for training the PPO agent in this
study:

Minibatch size 64
Experience horizon 64

Discount factor 0.97
Clip factor 0.5

Entropy loss weight 0.03
Number of epochs 3

Learning rate 0.001

Table 2: PPO hyperparameters.
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