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Abstract Physical models often contain unknown functions and relations. In order to gain more insights
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our proposed strategy, we demonstrate a significant reduction in the number of laboratory experiments
required.

Keywords inverse problems ¨ system identification ¨ interior-point method ¨ coupled oscillators

Mathematics Subject Classification (2020) 34A30 ¨ 34A55 ¨ 34C15 ¨ 93B30

Jan Bartsch
Department of Mathematics, University of Konstanz
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1 Introduction

The modeling of physical phenomena is crucial for understanding natural processes, allowing to pre-
dict behaviors and outcomes under various conditions. These models often rely on a set of coefficients
that describe interactions and dynamics within the physical model. The accurate identification of these
coefficients is essential for constructing reliable models that can simulate real-world behavior.

However, physical models often contain unknown functions and relations, posing significant challenges.
These unknowns can stem from complex interactions within the model that are not directly observable.
In order to gain more insights into the nature of physical processes, these unknown functions must
be identified. This identification procedure involves adjusting the model parameters to ensure that the
predictions of the model align with experimental observations. Consistency between these predictions and
laboratory experiments is critical for validating both the accuracy of the reconstructed coefficients and
the overall model.

Mathematically, we can formulate this research question within the framework of inverse problems;
see, e.g., [17]. Inverse problems involve determining the causal factors from observed effects, and are
often ill-posed, meaning that solutions may not exist, be unique, or depend continuously on the data.
Regularization techniques, such as Tikhonov regularization, are employed to stabilize the solution of these
problems by incorporating prior knowledge or additional constraints [17].

In this work, we apply this framework to a laboratory experiment and work with data generated in
this experiment. We investigate a system of coupled linear driven and damped oscillators in which the
damping and coupling coefficients are unknown. The linear oscillators correspond to the two fundamental
vibrational modes of a nanomechanical resonator visualized in Figure 2.1(a). It consists of a long and
thin nanostring which is a few hundred nanometers wide and thick and several tens of micrometers
long and which vibrates at megahertz frequencies. The coupling between the modes is mediated by an
electrical control field. Such nanoelectromechanical systems are employed, e.g., for sensing applications [2,
6,13], such that a detailed understanding and modeling of its parameters is of crucial interest. Moreover,
since the approach in this work is essentially mathematical, it can certainly be adjusted and extended to
investigate the coupling interaction in other two-mode, or two-level, physical systems. In addition, similar
signatures can be found, e.g., in cavity optomechanical systems or in circuit quantum electrodynamics
[1,10].

While the uncoupled system is very well understood [12,23,24], this is not the case for the coupled
one. The identification of coefficients in the coupled oscillator and similar problems have been addressed
in the literature [18,25]. Our approach leverages both simulation and experimental data to enhance the
accuracy of the coefficient reconstruction. It serves as a proof-of-principle demonstration and allows to
be applied to more complex situations, where a conventional identification of coefficients via calibration
measurements is no longer feasible.

Notice that the data from our experiments inherently include the effects of coupling. Therefore,
we cannot measure the eigenfrequencies of the system and the coupling coefficient separately. On the
contrary, through our experiments, we have only access to a hybridized quantity that contains both the
eigenfrequencies and coupling coefficient. Therefore, these parameters and coefficients must be inferred
through indirect methods that reconstruct them from measurement data while accounting for the coupling
coefficient and eigenfrequency separately.

Our proposed strategy involves an iterative optimization technique using Tikhonov regularization to
solve the inverse problem [14,19]. To generate measurement data, we perform several experiments in the
laboratory with different external excitation forces.

An important new contribution of our work is that the presented approach allows us to decrease
the number of required laboratory experiments, reducing experimental costs and time. In particular, our
approach needs fewer experiments than the one described in [3]. Furthermore, our experiments can be
conducted easily and fast. Additionally, after fixing the physical model in which parameters should be
identified, no additional physical concepts need to be taken into account. We compare our results to
those obtained from a purely experimental approach that needs a larger number of experiments that are
also more difficult to conduct [3]. By this comparison, we demonstrate the effectiveness of our method in
reconstructing the system coefficients for coupled harmonic oscillators.

Moreover, our approach can be extended to different (also nonlinear) physical systems as long as they
can be sufficiently well described by ordinary differential equations and the corresponding experiments
can be conducted quickly. Also in view of this extension, our current work serves as a proof-of-principle.

The article is organized as follows. In Section 2, we introduce our specific framework and provide
details on the transformation between the measurable model to which we have access in the experiments
and the inaccessible one to which we want to identify the coefficients. We describe the physical background
and laboratory setup in Section 3 before we explain in Section 4 how we scale the simulation data in order
to compare them with the experimentally measured ones. In Section 5, we formulate the (regularized)
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inverse problem and explain how we solve it. Afterward, we explain in Section 6 how we solve the system
of equations numerically. Finally, in Section 7, we perform the final identification of the system coefficients
by presenting our results and shortly compare it to a purely experimental approach in Section 8. A section
of conclusions completes this work.

Notation. For a vector p P Rn, we denote by }p}2 the standard Euclidean norm: }p}2 “
a

řn
i“1 p

2
i .

For a vector p or a matrix A, we denote by ’pJ’ or ’AJ’ their transpose. Whenever a vector or matrix
is compared or divided by a vector or matrix, respectively, these operations have to be understood
componentwise.

2 System of coupled oscillators

In this section, we introduce the setting of the considered parameter estimation problem that will be
formulated in detail in Section 5. We consider a vibrating nanostring that is modeled by a two-dimensional
damped and driven harmonic oscillator. First, in Section 2.1, the model is formulated in its standard form
in which the coupling appears explicitly. However, the observation during measurement considers the
system in transformed coordinates, where the pure mechanical eigenmodes of the oscillator are hybridized,
or in a mathematical sense, where the stiffness matrix is diagonalized. Because of the hybridization of the
physical coordinates, we need to transform the physical coordinates into hybridized modal coordinates,
where the coupling remains only implicitly effective. We present the transformation of coordinates in
detail in Section 2.2. The structure of the driving forces that we use in the experiments is explained in
Section 2.3.

2.1 Standard model

We consider a coupled system of linear second-order ordinary differential equations (ODEs) in the physical
coordinates q1 and q2. The evolution of q :“ pq1, q2qJ over a finite-time horizon Ttot ą 0 is then given by
the coupled linear second-order system

ˆ

:q1ptq

:q2ptq

˙

`

ˆ

2πd1 0
0 2πd2

˙

looooooomooooooon

“:D

ˆ

9q1ptq

9q2ptq

˙

`

ˆ

p2πf1q2 ´p2πλq2

´p2πλq2 p2πf2q2

˙

loooooooooooomoooooooooooon

“:C

ˆ

q1ptq

q2ptq

˙

“

ˆ

b1ptq

b2ptq

˙

looomooon

“:b

, t P r0, Ttots, (2.1)

with initial condition q1p0q “ 0 “ q2p0q and 9q1p0q “ 0 “ 9q2p0q. Since the driving b is assumed to be
smooth, the solution q to (2.1) is unique and smooth. For further analysis of such systems, see, e.g., [7,
27]. As the observation of the system, we consider its Fourier transformation. To avoid transient effects
within the Fourier transform, we will discard the transient phase r0, Ttranss, 0 ! Ttrans ! Ttot, and only
consider the system in equilibrium for a fixed amount of time T , i.e., in the interval rTtrans, Ttrans ` T s,
where we have defined T :“ Ttot ´ Ttrans. Hence, the initial condition for (2.1) is just given for the sake
of completeness and the fact that we need to specify it for the numerical simulations.

Notice that the constants d1 and d2 in the diagonal matrix D are given in the unit [rad/s] and are
related to frequencies f1 and f2 by d1 “ f1{Q1 and d2 “ f2{Q2, where Q1 and Q2 are the unitless so-
called quality factors; cf. [27, (3.38)]. We refer to d1 and d2 also as damping coefficients. These damping
coefficients give the energy decay constant of the harmonic oscillator. Moreover, we denote with λ ą 0
the coupling constant of the system.

2.2 Transformation of the system

The model in the form of (2.1) is used in theory to describe a system of coupled oscillators. However,
it is not the observable system to which we have access in our laboratory experiments. In particular, we
cannot measure the coupling coefficient λ or the frequencies f1 and f2 directly. We can only measure
the hybridized modal coordinates rq1 and rq2 of the nanostring that result from a hybridization of q1 and
q2. They do not coincide with the physical coordinates q for λ ą 0. To derive the ODEs describing the
behavior of the hybridized modal coordinates, we have to perform a coordinate transformation through
a matrix T from the original physical coordinates to the hybridized ones. The resulting system of ODEs
has a diagonal stiffness matrix and therefore does not explicitly include the coupling coefficient.

To determine the transformation matrix T, we follow a method similar to the one described in [11].
Since C in (2.1) is real and symmetric, its eigenvalues are real and we can diagonalize it using an orthogonal
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matrix [26, Section 5.4]. The eigenvalues are given by

η2˘ :“
1

2

ˆ

p2πf1q2 ` p2πf2q2 ¯

b

4 p2πλq
4

` pp2πf1q2 ´ p2πf2q2q
2

˙

(2.2)

with corresponding orthogonal eigenvectors v` “ pv1`, v
2
`q and v´ “ pv1´, v

2
´q. Since T is orthogonal, it

holds that T´1 “ TJ. We remark that the matrix T can be assembled if one knows exactly the values
of f1, f2 and λ. However, these values are unknown in the current case and we aim to estimate them by
finding the correct transformation T.

We introduce now the coordinate transformation between the hybridized modal coordinates rq :“
prq1, rq2q and the physical coordinates q:

rqptq “ pTqqptq. (2.3)

The system describing the evolution of the hybridized modal coordinates, to which we have access in the
experiments, has the following structure:

:
rqptq ` rD 9

rqptq ` rC rqptq “ rbptq, t P r0, Ttots (2.4a)

z “ Fprq|rTtrans,Ttotsq. (2.4b)

The observation z is given as the Fourier transform F of the time-dependent function rq in the time
interval rTtrans, Ttots. In (2.4a), the matrices containing the damping and eigenfrequency, and the vector
containing the external driving are given by

rD :“ TDTJ “

˜

rD11
rD12

rD21
rD22

¸

, rC :“ TCTJ “

ˆ

p2πη`q2 0
0 p2πη´q2

˙

, rbptq “

ˆ

rbptq

rbptq

˙

,

where rb will be specified in Section 2.3. Furthermore, the matrix rD has the following structure

rD “ T

ˆ

2πd1 0
0 2πd2

˙

TJ “
2π

v1` ` v1´

ˆ

d1 v
1
` ` d2 v

1
´ p´d1 ` d2q v1´v

1
`

p´d1 ` d2q d1 v
1
´ ` d2 v

1
`

˙

. (2.5)

Notice that rD is not diagonal. The off-diagonal elements can get small if the damping constants d1 and
d2 get close to each other. Furthermore, we see that the diagonal elements in rD are a (weighted) average
of the damping constants d1 and d2.

In our physical application, we can measure the eigenvalues η˘ and the quality factors Q˘ (cf. Sec-

tion 4). Furthermore, we suppose that the diagonal elements of rD are given by

rD11 “ d` “ η`{Q`, rD22 “ d´ “ η´{Q´. (2.6)

To regain the mathematical model (2.1) with explicitly including the coupling, we apply TJ from the
left to (2.4a) and use (2.3) which results in

:qptq ` TJ
rDT 9qptq ` TJ

rCTqptq “ TJ
rbptq, t P r0, Ttots. (2.7)

For the right-hand side of (2.7) it holds that

TJ
rbptq “ bptq “

ˆ

b1ptq

b2ptq

˙

“ rbptq

ˆ

v1´ ` v1`
v2´ ` v2`

˙

.

Furthermore, recall that any orthogonal transformation matrix is an element of the orthogonal group
Op2q and hence of one of the following forms for θ P p´π, πq:

ˆ

cospθq ´ sinpθq

sinpθq cospθq

˙

,

ˆ

´ cospθq sinpθq

sinpθq cospθq

˙

. (2.8)

Thus, we aim to find the correct parameter θ P p´π, πq to calculate the correct transformation T. To
indicate this fact, we write Tθ for the transformation matrix given the parameter θ. In the numerical
experiments, we use both forms and choose the one that leads to better results.

Notice that we do not have access to the elements in D through the measurements. Hence, we include
this in our parameter estimation problem. In summary, we search for the transformation matrix Tθ and
for the correct damping constants d1, d2 in (2.1). From the structure of rD, we know that rDii contains
information about di, i “ 1, 2 (cf. (2.5)).

The unknowns in this setting are now the transformation parameter θ for Tθ and the scalars d1, d2
constituting D. To shorten the notation, we introduce the parameter vector containing the parameters
we want to estimate as

p :“ pθ, d1, d2q P R3. (2.9)
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(a)
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Fig. 2.1: (a) Vibration modes of the nanostring. ; (b) Form of external driving (cf. (2.13))

2.3 External driving forces

Motivated by [12,15], we choose the following structure of the time-dependent driving forces (also called
external excitation or controls).

rbptq “

ˆ

rbptq

rbptq

˙

, rbptq “ A cosp2πu1tq ` A cosp2πu2tq, t P r0, Ttots. (2.10)

We consider a control vector rb with two identical components. This reflects the fact that both modes are
exposed to the same excitation signal, assuming that both modes couple equally to the drive.

Here, A ą 0 is the driving amplitude and u1, u2 ą 0 are driving frequencies. We choose a fixed driving
amplitude A and consider the driving frequencies u1 and u2 as input parameters.

In this setting, we know by trigonometric identities that for our controls it holds that

A cosp2πu1tq ` A cosp2πu1tq “ 2A cos

ˆ

2πpu1 ` u2qt

2

˙

cos

ˆ

2πpu1 ´ u2qt

2

˙

. (2.11)

This phenomenon is also known as beating [27, Section 3.3.2]; see also Figure 2.1(b).

Notice that the frequency of one of the Cosine functions on the right-hand side is the difference
between the two frequencies u1 and u2. Since they are close to each other in our case, this results in a
slow mode. Therefore, our time interval in the experiments and simulations should be long enough in
order to catch both modes.

We choose to have nc P N of such driving forces with driving frequency pairs um
1 , um

2 for m “ 1, . . . , nc.
To shorten the notation, we introduce the vectors u P R2 representing the input parameters:

um “ pum
1 , um

2 qJ, m “ 1, . . . , nc. (2.12)

Furthermore, we define

rb
m

ptq “ prbmptq,rbmptqqJ, where rbmptq “ A cosp2πum
1 tq ` A cosp2πum

2 tq. (2.13)

2.4 Drifting eigenfrequencies

An important observation that we made during our work is that the eigenfrequencies η` and η´ encounter
drifts during the execution of the laboratory experiments, e.g., from slow temperature fluctuations. To
include this in our model, we assume to know nc eigenfrequencies that result from linear interpolation
between the eigenfrequencies measured at the beginning and the end of our experiments. For this reason,
we define rCm and Cm as

rCm :“

ˆ

p2πηm` q2 0
0 p2πηm´ q2

˙

, Cm :“

ˆ

p2πfm
1 q2 ´p2πλmq2

´p2πλmq2 p2πfm
2 q2

˙

for m P t1, . . . , ncu. (2.14)

We assume that D and rD do not depend on m. This is, an approximation, but we observe in our
experiments that this assumption is suitable for the scope of this work.
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3 Physical system and experimental setup

As described above, the reconstruction method presented in this work aims in particular to identify the
coupling parameter λ between two orthogonal vibration modes of a nanomechanical string resonator.
The resonator is made of a thin film of amorphous, stoichiometric silicon nitride (Si3N4) deposited on a
fused silica wafer, and fabricated using top-down nanofabrication techniques. It has a length of 60µm,
a thickness of 100 nm and a width of 250 nm, approximately. The experiment is performed at room
temperature. In order to avoid damping of the nanostring’s vibrations from the surrounding medium, it
is placed in a vacuum chamber at a pressure below 10´4 mbar (see Figure 3.1(b)).

The vibrational modes of the nanostring exhibit two orthogonal “polarizations” which are associated
with a vibration along the out-of-plane and in-plane direction; cf. q1 and q2 in Figure 2.1(a). In principle,
the nanostring, being a continuous system, exhibits an infinite number of vibrational modes in each of
these polarization direction. In the context of this work, we will only be interested in its two fundamental
modes. This is justified as the two fundamental modes exhibit similar eigenfrequencies which are spectrally
well separated from all other higher-order harmonics. The lowest-lying out-of-plane and in-plane flexural
mode q1 and q2, schematically depicted in Figure 2.1(a), are hybridized into rq1 and rq2 by the coupling
λ, where these vibration coordinates are rotated, but also orthogonal to each other [21]. The model
describing the evolution in time of the two vibrational modes is given in (2.4).

Let us now describe the methods used for the vibrational excitation and measurement of the nanos-
tring, which are illustrated in Figure 3.1 and Figure 3.2. The vibration is excited by means of an electric
field surrounding the nanostring, induced by voltages applied between two electrodes positioned on either
side as shown in Figure 3.1(a) and Figure 3.2(b). Since the nanostring is made of a dielectric material, the
surrounding electric field will cause an electric polarization within, forming a collective electric dipole,
which then follows the known dynamics of a dipole in an inhomogeneous electric field. The inhomoge-
neous electric field is engineered by placing the string out of the field’s axes of symmetry. In this way, a
net dipole force is created in both vibrational coordinates, which then allows to induce the mechanical
motion by combining a static (DC) with a dynamic (AC) voltage as depicted in Figure 3.1; see [28]. In
this experiment, the dynamic voltage VAC consists of the sum of two excitation signals with two fre-
quencies u1 and u2 close to each other (within the mode’s linewidth) according to (2.10). Notice that
VDC further determines the eigenfrequencies as well as other parameters of the system such as the linear
coupling between the two modes and their damping rates, and is chosen according to the desired coupling
strength.

The measurement of the string’s vibrations relies on the detection of the modulation in the capacitance
between the two electrodes, which is caused by the vibration of the dielectric string in the inhomogeneous
electric field. To resolve the resulting minute capacitance modulation, a microwave-cavity assisted hetero-
dyne detection scheme is employed (see [20] for more detail). We employ a three-dimensional quarter-wave
coaxial cavity that couples to the electric field between the electrodes via a loop antenna (see Figure 3.1(a)
and Figure 3.2(a)). The cavity output signal (RF) is mixed with a reference signal (LO), amplified and
filtered, before being recorded using a spectrum analyzer (see Figure 3.1).

A salient feature of our experimental setup is the tunability of the system with VDC. In this work, we
fixed the system’s parameters by selecting a specific bias voltage, VDC “ ´12V. At this operating point,
the two modes exhibit a sizable coupling strength [3]. In addition, their eigenfrequencies have been tuned
to a situation where the transformation matrix T is clearly distinct from the identity matrix, such that
the coupling takes effect on the vibrational dynamics. It is in fact one advantage of our strategy that we
can estimate the coupling parameter λ for a single VDC voltage without the need to acquire information
about the system at other VDC voltages; see also Sections 8 and 9.

4 Scaling of simulation and experiment

To ensure that the observations of the simulation and experimental setup are comparable, we need to
scale the output of the simulations. The reason why we need this is that the physical quantities in the
laboratory experiments are all measured in the unit [V] (volt). To determine the scaling factor, we measure
the frequency response function (FRF) in the laboratory and compare it with the result of the computer
simulations. Experimentally, the FRF for a specific mode is obtained by exciting the nanostring with
several frequencies close to the eigenfrequency of the mode. At each excitation frequency, the amplitude
response of the nanostring is recorded. This procedure is also known as sweeping. Then we use a software
to determine the resonance frequency η˘, the amplitude A˘ of the peak, and the quality factor Q˘. To
compute the scaling, the shape of the squared FRF is important. This should have a Lorentzian shape
with a maximum peak A˘ at the resonant frequency η˘; this shape is also called Cauchy distribution in
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(a) (b)

Fig. 3.1: Experimental measurement setup. (a) Schematic of the measurement setup used to drive and
detect the vibration of the nanostring. (b) Photograph of the measurement setup, depicting major elec-
tronic components from Figure 3.1(a) as well as the vacuum chamber hosting the microwave cavity and
the nanostring chip.

(a) (b)

Fig. 3.2: Microwave cavity and nanostring chip. (a) Photograph of the coaxial quarter-wave microwave
cavity. The loop antenna coupling the cavity mode to the electrical field surrounding the nanostring as
well as the (transparent) nanostring chip can be discerned above and next to the center stub, respectively.
(b) Scanning electron micrograph of a representative device depicting a partial view of several nanostrings
(blue) between pairs of electrodes (yellow).

the realm of probability density functions; see, e.g., [16]. The scaling factor is now the ratio between the
peak amplitudes of the displacements in equilibrium in the laboratory experiment and the simulations.

This Lorentzian shape is defined by the following formula

ρLpf ; η˘, d˘, A˘q :“
A˘ ´ ξ

1 `

´

2πf´2πη˘

d˘

¯2 for f ą 0, (4.1)

where d˘ is a scale parameter that specifies the full-width at half-maximum (FWHM) and equals the
damping parameter. As introduced in (2.6), we have the relation Q˘ “ η˘{d˘. Furthermore, 0 ă ξ ! 1 is
the noise level of the lab data.



8 Jan Bartsch et al.

Remark 4.1 An important observation is that the scaling also depends on the unknown damping coeffi-
cients d1, d2 and transformation matrix Tθ; see also Algorithm 5.1 below. ♢

We summarize our procedure to get our p-dependent scaling factor χp in Algorithm 4.1.

Algorithm 4.1 (FRF Calibration Laboratory/Simulation)

Require: parameter vector p P R3, FRF data set from laboratory experiment CL P RNFRF,L , frequency discretization

tf1
S , . . . , f

NFRF,S

S u for simulation of sweeping
1: Initialize empty list CS Ð tu;
2: for j “ 1, . . . , NFRF,S do

3: Simulate the system (2.4a) using p and cosp2πfj
Stq as input;

4: Append the maximum amplitude maxtPrTtrans,Ttots |rq1ptq| of rq1 to CS ;
5: end for
6: Set χp Ð max1ďiďNFRF,L

pCLqi{max1ďiďNFRF,S
pCSqi;

7: return χp

5 Parameter identification problem

Recall that we aim at estimating the damping coefficients d1, d2 in D and transformation matrix Tθ. The
latter one will lead to estimates of the matrices Cm “ TJ

θ
rCm Tθ for m “ 1, . . . , nc, where rCm is known

(cf. Section 2). To stress the dependence of D and Tθ on the unknown parameter vector

p “ pθ, d1, d2q

defined in (2.9), we use the notation Tp :“ Tθ and

Dp :“

ˆ

2πd1 0
0 2πd2

˙

, rDp :“ TpDpT
J
p .

We have the following structure of the ODEs in the final identification:

:qm
ptq ` Dp 9qm

ptq ` TJ
p
rCm Tp q

mptq “ TJ
p
rb
m

ptq, t P r0, Ttots, m P t1, . . . , ncu (5.1)

with known rCm,rb
m

and unknown Tp, Dp.

Notice that in (5.1) the untransformed matrix Dp and the transformed matrix rCm appear. The reason
for this is given by the limitations and possibilities of the measurements. More specifically, we can measure
all entries of the diagonal matrix rCm but only the diagonal elements of rDp. However, rDp is not diagonal
(cf. (2.5)). Hence, we reconstruct the untransformed matrix Dp.

Next, we denote by zum

p :“ FpTp q
m|rTtrans,Ttotsq, m “ 1, . . . , nc, the Fourier transformations within

the time interval rTtrans, Ttots of the solutions of (5.1) with transformation Tp of the structure (2.8)
generated with θ, using d1, d2 as damping coefficients, and applying the control parameters tumu

nc
m“1 (cf.

(2.12)). Moreover, we define tzum

‹ u
nc
m“1 as the experimental data generated in the laboratory using the

same control parameters tumu
nc
m“1.

Our goal is to minimize the difference between the two peaks of the Fourier transformation. The
reason that there appear exactly two peaks is that we are in the linear setting. Here, our solution is the
superposition of harmonic oscillators under a periodic force for which the behavior is well-known and
given as the sum of periodic functions; see, e.g., [27, Chapter 4]. Within our linear setting, we cannot
change the locations of the peaks in equilibrium since they are fixed by the control/driving frequency [27,
Chapter 4]. Hence, with our parameter vector p, we can only influence the amplitude.

Furthermore, we need to scale the simulation in order to be able to compare the amplitudes of the
simulations with the ones of the laboratory experiments; see Section 4 above. The procedure to get the
scaling factor χp is described in Algorithm 4.1. Notice that χp depends on p. Therefore, we need to
execute Algorithm 4.1 each time the coefficient vector p is changed.

We consider the following definition of the deviation between simulation and experiment.

Definition 5.1 Let zup be the amplitude in the Fourier transform of the simulations using the parameter
vector p and the driving frequency u ą 0. Furthermore, let zu‹ be the corresponding amplitude in the
experiments. Then, we define the relative deviation as

epzup , z
u
‹ q :“

|zup ´ zu‹ |

zu‹
, (5.2)
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where | ¨ | denotes the absolute value. Furthermore, we define the vector containing all relative deviations

Encpzu
p , z

u
‹ q :“

˜

epz
um
1

p , z
um
1

‹ q

epz
um
2

p , z
um
2

‹ q

¸nc

m“1

P R2nc . (5.3)

This definition of the deviation is used in the objective J below. We introduce the set of admissible
parameters Pad as

Pad :“
␣

p P R3 | pmin ď p ď pmax

(

, (5.4)

with fixed parameter vectors pmin ď pmax (componentwise). Notice that Pad is non-empty, convex, and
compact in R3. Incorporating the admissible set Pad is mainly due to being able to apply standard
methods from optimization theory.

Our objective is given by the sum of the two following functions

Jfitpp, zp, χpq :“
nc
ÿ

m“1

epχp z
um
1

p , z
um
1

‹ q ` epχp z
um
2

p , z
um
2

‹ q, Jνregppq :“
ν

2
}p ´ pref}

2

2. (5.5)

Now the identification (or parameter estimation) problem is given by

min Jppq :“Jfitpp, zp, χpq ` Jνregppq subject to p P Pad, (5.6)

where zp “ FpTp qp|rTtrans,Ttotsq, qp fulfills (5.1) and χp is the scaling factor (cf. Section 4) for p “

pθ, d1, d2q. Problem (5.6) is a nonconvex inverse problem with a Tikhonov regularization parameter ν ě 0
[14]. Furthermore, we choose some references for the parameters in the vicinity of where we expect the
optimal solution to be located. In particular, we take pref

1 “ θref “ π{2 ` π{8 since we expect from
experimental results that the correct coupling has the corresponding order of magnitude. Furthermore,
we choose pref

2 “ dref1 “ rD11{2π, and pref
3 “ dref2 “ rD22{2π, since we do not expect too much change in the

damping constants compared to measurements rD11 and rD22. We remark, that there exists a solution to
(5.6) by standard arguments; see, e.g., [5,9,17,19].

To solve (5.6), we apply an iterative strategy commonly used to tackle inverse problems. First, we
choose an initial guess p0 P Pad for the parameter vector and an initial Tikhonov regularization pa-
rameter ν0. Then, we solve (5.6) with these quantities, shrink the regularization parameter, and check
a termination criterion. If it is not fulfilled, we start again solving (5.6) with the updated parameter
vector as the initial guess and with the updated regularization parameter. We summarize the procedure
in Algorithm 5.1.

Algorithm 5.1 (Iterative reconstruction procedure)

Require: Laboratory data tzum

‹ u
nc
m“1, ℓmax P N, tolerance tol ą 0, regularization parameter update β P p0, 1q;

1: Initial guess p0 P Pad, ℓ Ð 0, initialize E " tol, initialize regularization parameter ν0 " 0;
2: while E ą tol and ℓ ă ℓmax do
3: Solve (5.6) with fmincon using initial guess pℓ and ν “ νℓ to get pℓ`1; Ź needs run of Algorithm 4.1
4: Set νℓ`1 “ β νℓ; Ź update regularization parameter

5: Set E Ð }pℓ`1 ´ pℓ}2 ` |Jfit ´ Jν
ℓ`1

reg |;
6: Set ℓ Ð ℓ ` 1;
7: end while
8: return pℓ

A schematic visualization of our whole strategy to estimate the coupling and damping coefficients in
a system of oscillators is given in Figure 5.1. Starting from our model (5.1), we apply the same drive
signals in the experiment and in simulations. Finally, the results are used in Algorithm 5.1 in order to
solve the parameter estimation problem (5.6).

6 Numerical implementation

In this section, we describe our strategy to numerically solve (5.1) over the long time horizon Ttot. This is
needed for two reasons: First, we have to integrate over the transient phase Ttrans since we need to reach
a steady state; second, we need a sufficiently long signal to detect the correct frequencies numerically in
the Fourier transformation; third, we have to deal with the beating phenomenon described in Section 2.3
and hence need a sufficiently large T to correctly resolve all frequencies in the signal.
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Drive Signals
(2.10)

Model
(5.1)

Reconstruction
Algorithm 5.1

Solution of parameter
estimation problem (5.6)

um
1 , um

2

Fig. 5.1: Schematic visualization of the proposed strategy.

∆t 10´6 T 3 ¨ 104 Ttrans 2 ¨ 103

β 0.1 ν0 10´1

Table 6.1: Simulation parameters and hyperparameters.
.

Since we consider a system of linear ODEs, we can apply the Laplace transformation L in order to get
its analytical solution. For fixed m P t1, . . . , ncu, the Laplace transformation pqmi psq “ Ltqmi upsq (i “ 1, 2)
is given as the solution of

ˆ

s2 ` pDpq11 s ` pCm
p q11 pDpq12 s ` pCm

p q12

pDpq21 s ` pCm
p q21 s2 ` pDpq22 s ` pCm

p q22

˙ˆ

pq1psq

pq2psq

˙

“

˜

`

pTpq11 ` pTpq21
˘

pbmpsq
`

pTpq12 ` pTpq22
˘

pbmpsq

¸

, (6.1)

with coordinate transformation matrix Tp, C
m
p :“ TJ

p
rCmTp and

pbmpsq :“ Ltrbmupsq “ A

ˆ

2πum
1

p2πum
1 q2 ` s2

`
2πum

2

p2πum
2 q2 ` s2

˙

.

After solving (6.1), we utilize the built-in Matlab function ilaplace to compute q and the function
rectangularPulse in the time interval rTtrans, Ttrans `T s to have a signal of finite length and discarding
the transient phase.

The last step is to apply the built-in Matlab function fourier in order to get the Fourier transfor-
mation of the function. We then evaluate the Fourier transformation at the frequencies at which we also
have experimental data. For the generation of the frequency interval in which we want to evaluate the
Fourier transformation, we split the time interval rTtrans, Ttrans ` T s into Nt equidistant cells of length
∆t “ T{Nt. The frequency interval is then given by rfa, fbs “ 1

∆tT r0, T{2s, where T is the length of the
time interval. In Table 6.1, we present the parameters that we use for the simulation. Moreover, we use
pmin “ r´2π,´0.1,´0.1s and pmax “ r2π, 0.1, 0.1s.

7 Identification using the proposed framework

In this section, we present the results of our proposed framework obtained with laboratory data to validate
its effectiveness. For our main example, we use nc “ 5 control pairs with driving frequencies tum

i u
2,nc

i“1,m“1

in (2.10) as they are given in Table 7.1. These frequencies are fixed manually within the linewidth (that
is 2d1) of the resonance mode in order to gain a sufficiently large signal-to-noise ratio. Moreover, they
should not be too close together to be able to distinguish the response signals by the spectrum analyzer.
Applying the driving frequencies to the real-world experiment, we obtain the laboratory data tzum

‹ u
nc
m“1.



Reconstructing the system coefficients for coupled harmonic oscillators 11

u1
1 6.94016 u1

2 6.94036

u2
1 6.94018 u2

2 6.94034

u3
1 6.94020 u3

2 6.94032

u4
1 6.94024 u4

2 6.94028

u5
1 6.94025 u5

2 6.94027

Table 7.1: Driving frequencies for the rq1 mode in MHz.

To use this data in our numerical optimization, we first subtract the noise ξ ą 0 (defined as the average
of the data). The actual average noise level ξ of the experiment is between 0.2 µV and 0.3 µV.

We solve the constrained minimization problem (5.6) for a fixed ν using the Matlab built-in function
fmincon which uses the interior-point method; see, e.g., [22]. Choosing an initial guess p0 ” 0 we rely
for pref on our experience as described in Section 5. In Table 7.2 we report the transformation parameter
θ and the differences d̄1, d̄2 calculated from the reference parameter vector pref ; i.e. d̄1 “ d1 ´ pref

1 ,
d̄2 “ d2 ´ pref

2 . As tolerance tol, we use machine precision, the algorithm considered nine iterations, and
the final regularization ν9 was 106.

With the optimal parameter θ, we compute the matrices Cm (cf. (2.14)), calculate the averaged
quantities xλy :“ 1{nc

řnc

m“1 λ
m, and analogously xf1y, xf2y, and present the average together with the

uncertainty interval in Table 7.2.

The most interesting one for this work is the coupling parameter λ. See also the discussion in Section 8.

f1 6.9522 ˘ 0.0001 MHz f2 7.0156 ˘ 0.0001 MHz λ 0.6474 ˘ 0.0002 MHz

θ 1.9498 [-] d̄1 1.5828 µHz d̄2 6.4871 µHz

Table 7.2: Optimal estimated coefficients.
.

The comparison of the laboratory measurements and the simulation results using the initial parameters
p0 and the optimal ones popt resulting from Algorithm 5.1 are presented in Figure 7.1. The vertical lines
show the driving frequencies. In Figure 7.1(a), we plot the experimental data (solid, orange) and the
simulated data (dashed, blue) for the unreconstructed parameters p0. As expected, we observe the two
peaks that correspond to the excitation frequencies in all plots. The peaks have in theory a delta shape
since they are Fourier transformations of an essentially sinusoidal signal. However, since we work with a
finite resolution in simulation and experiment, this approximation results in a small non-zero width of
the peak.

With our optimization procedure, a better agreement of the amplitude of the peaks for simulation
and experiment is obtained. In Figure 7.1(b), we plot the experimental data and the simulated data with
the reconstructed popt provided by Algorithm 5.1. In fact, in Figure 7.1(b) we see that the agreement
of the simulated and the experimental data is significantly enhanced when using the optimal parameters
popt. This can be observed in particular by the length of the errorbars. They demonstrate the difference
between the maxima of the peaks in the experimental and simulation data.

To quantify the improvement, we plot in Figure 7.2(a) the deviation introduced in Definition 5.1
for the initial guess (black) and the reconstructed parameter (red) over the driving frequencies. The
gray area visualizes the range of the drift of the eigenfrequencies during the execution of the laboratory
experiment (cf. Section 2.4). The initial eigenfrequency is denoted by η1` and the final one η5`. The
deviations corresponding to the specific control pair are tagged with a distinct marker shape (from
m “ 1, . . . , 5: bullet, triangle, pentagon, diamond, square). These shapes stay the same throughout the
paper. We observe that we can decrease the relative deviation for each control pair. More in detail,
the average relative deviation decreases from 0.7 to 0.17 (dashed lines). In Figure 7.2(b), we plot the
relative improvement of the deviation between experimental and simulated data, this is Epopt{Ep0 (cf.
Definition 5.1), over the driving frequencies. We see that the deviation between the experimental data
and the simulations using popt is, on average, only 20% of the deviation between the experimental data
and the simulation using p0.

In Figure 7.3, we visualize the convergence behavior of Algorithm 5.1. As expected, we see in Fig-
ure 7.3(a) that at the first iterations, the value of θ is close to θref and then converges to a value different
from θref . In all three panels, we observe that after the third iteration, the algorithm seems to have
converged and only small improvements are made afterwards.



12 Jan Bartsch et al.

(a)

(b)

Fig. 7.1: Experimental data (solid, orange) and simulated data (dashed, blue) applying the driving fre-
quencies given in Table 7.1. The red errorbars indicate the difference between the amplitudes of the peaks
of experimental and simulation data. The vertical lines depict the control frequencies; (a) before the re-
construction (using p0 ” 0); (b) after the reconstruction using popt; for the reconstructed parameters see
Table 7.2 and for simulation parameters see Table 6.1.
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Fig. 7.2: Deviation plots of the result of Algorithm 5.1. The different marker shapes depict the different
control pairs (cf. Table 7.1); (a) Relative deviation for driving frequencies (cf. Definition 5.1) before (Ep0 ,
black) and after (Epopt , red) the reconstruction process; (b) Deviation improvement Epopt{Ep0 in percent
(cf. Definition 5.1).

In Figure 7.4(a), we plot the λm,m “ 1, . . . , nc and the average xλy. We observe that the difference
between the λm and xλy is quite small and in the order of magnitude of the drifting eigenfrequencies.
In Figure 7.4(b), we plot the deviation introduced in Definition 5.1 over the control frequency pairs. We
observe that the deviation is higher than the average for the third control pair and the least for the fourth
control pair.

To validate the optimal parameters found by Algorithm 5.1, we perform a second test. For this, we
choose control frequencies located around the eigenfrequency η´ of the mode rq2. Then, we solve (5.6)
once with fixed (small) regularization parameter ν and use the controls given in Table 7.3.



Reconstructing the system coefficients for coupled harmonic oscillators 13

1 3 5 7 91.948

1.952

1.956

1.960

1.964

Optimization iterations

Tr
an

sf
or

m
at

io
n

pa
ra

m
et

er

θ
θref

(a)

1 3 5 7 9

0.648

0.651

0.654

Optimization iterations

C
ou

pl
in

g
pa

ra
m

et
er

(M
H

z)

average ⟨λ⟩

(b)

1 3 5 7 91

3

5

7

9

Optimization iterations

D
iff

er
en

ce
(µ

H
z)

d̄1
d̄2

(c)

Fig. 7.3: Convergence history of Algorithm 5.1. (a) Convergence of θ; (b) Convergence of averaged xλy;
(c) Convergence of corrections d̄1, d̄2 to the damping parameters.
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Fig. 7.4: Results of final identification for rq1 mode. The different marker shapes depict the different control
pairs given in Table 7.1; (a) Coupling constant λm for controls pairs and average xλy; (b) Deviation for the
initial guess (Ep0 , black) and in the final iteration (Epopt , red) ordered by control pairs (cf. Figure 7.2(a)).

u1
1 7.02750 u1

2 7.02770

u2
1 7.02752 u2

2 7.02768

u3
1 7.02754 u3

2 7.02766

u4
1 7.02758 u4

2 7.02762

u5
1 7.02759 u5

2 7.02761

Table 7.3: Driving frequencies around the eigenfrequency η´ in MHz.

In Figures 7.5 and 7.6, we show the results of this optimization. In Figure 7.5, we plot similar to
Figure 7.1 the experimental data (solid, orange) and the simulated data (dashed, blue) for the unre-
constructed parameters p0. The vertical lines show the driving frequencies. In Figure 7.5(a) present the
Fourier transform for the rq2 mode given the initial guess p0 and in Figure 7.5(b) for the optimized pa-
rameters popt. In all plots, the lengths of the error indicate the difference in the amplitude of the peaks
in the experimental and simulation data.
In Figure 7.6(a), we plot the relative deviation defined in Definition 5.1 for the initial guess (black) and
the optimized parameters (red). Furthermore, the gray area depicts the region of the drift of the eigen-
frequencies. Notice that in this experiment, the drift is larger than for the rq1 mode. In Figure 7.6(b), we
plot the improvement of the deviation similar to Figure 7.2(b). Also here we see that we can improve
the parameters of the model but not as well as for the rq1 mode. More specifically, the relative deviation
decreases from 0.74 to 0.27 (dashed lines). Further, we observe that the reconstructed parameters also
slightly differ from the ones of the rq1 mode. Notice that the driving frequencies are farther away from the
(shifted) eigenfrequency η5´ as in the previous experiment. Hence, we cannot expect a similar or better
behavior.

In Table 7.4, we present the resulting estimated parameters analogous to Table 7.2.
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(a)

(b)

Fig. 7.5: Experimental data (solid, orange) and simulated data (dashed, blue) applying the driving fre-
quencies given in Table 7.3. The red errorbars indicate the difference between the amplitudes of the peaks
of experimental and simulation data. The vertical lines depict the control frequencies; (a) before the re-
construction (using p0 ” 0); (b) after the reconstruction using popt; for the reconstructed coefficients see
Table 7.4 and for simulation parameters Table 6.1.
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Fig. 7.6: Deviation plots and coupling for rq2 mode. The different marker shapes depict the different
control pairs (cf. Table 7.3); (a) Relative deviation Ep (cf. Definition 5.1); (b) Deviation improvement in
percent Epopt{Ep0 ;

f1 6.9582 ˘ 0.0001 MHz f2 7.009 ˘ 0.0001 MHz λ 0.7016 ˘ 0.0002 MHz

θ 2.0406 [-] d̄1 6.247 mHz d̄2 2.906 mHz

Table 7.4: Reconstructed coefficients for rq2 mode.
.

8 Comparison with another independent experiment

In this section, we compare our results of Section 7 with those of another experimental approach in [3]. In
this cited work, the authors use the same string (see Supp. Mat. of [3]) as well as the same experimental
setup, thus ensuring the measurement of the same system dynamics. While in the current work, we use a
lock-in amplifier to generate the two excitation signals, the authors in [3] used a noise drive that allows
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to excite all frequencies within a certain band at the same time. Furthermore, another harmonic signal is
added for a parametric excitation in that experiment, which was required for that experimental approach.
All other setup details are exactly the same including, in the first place, the investigated sample and the
coupled actuation and read-out systems. Furthermore, the work in [3] ranges over an interval of DC
voltages VDC from ´32 to 32 V, where the coupling coefficient λ is deduced by a thorough measurement
and analysis of PNMS based on a mathematical model.

This parallel between both contributions elevates the certainty in both results since the two approaches
are intrinsically different. While the cited approach relies on the physical modeling of the system as well
as on the use of a coupling-dependent physical phenomenon, called the parametric normal mode splitting
(PNMS), to estimate the coupling coefficient [3], we rely here on a purely mathematical approach, that
is, no physical modeling is added in the presented work except for the consideration of a linearly coupled
two-mode oscillating system.

Regarding the results, the deduced coupling coefficient from the experiment in [3] yielded 0.8604 MHz
while that of the work presented here gives 0.6474 MHz and 0.7016 MHz for rq1 and rq2, respectively,
nevertheless representing the same coupling coefficient. The values deduced from the current work and
that of [3] are found to be of the same order of magnitude with a difference of about 20%, which is near to
the tolerance given for the numerical experiments inside the current work (see Figure 7.4(a)). Arriving at
these relatively near results despite using two totally different methodologies, and remarkably despite the
usual drifts in experimental results across non-simultaneously performed experiments, supports our find-
ings in this work and thus provides an important asset in extending our methodology to the investigation
of other system parameters.

In addition, the work in [3] required a thorough mathematical modeling for the underlying physics,
and an additional experiment ranging over a range of bias voltages to determine the implicit parameters
of the system. However, in the presented work, we solely require a fast executable experiment at a given
bias voltage, without any need for modeling the physical nature of the coupling itself.

In summary, we can state that our approach greatly reduces the experimental overhead in terms of
complexity of the experiment, measurement time, number of measurements required, and therefore also
the cost of the experiments.

9 Conclusion/Discussion

This work presents an efficient approach for reconstructing system coefficients in coupled harmonic os-
cillators through an iterative optimization method based on Tikhonov regularization and considering
actual data from laboratory experiments. The success of our method lies in its ability to automatically
combine simulation and experimental data, leveraging the structure of the inverse problem. By utilizing
this approach, our method achieved estimates of the coupling and damping coefficients that coincide very
well with a completely different physical approach.

Our reconstructed parameters are within the correct order of magnitude, indicating that our method
reliably captures the system’s underlying behavior. Given the inherent noise and complexity of real-
world experiments, we cannot expect to achieve absolute precision. However, the results show a high
level of consistency and alignment with theoretical expectations, which is sufficient for many practical
applications.

Another significant achievement of this method is the reduction of laboratory time. By employing
a combined approach of simulations and minimal experiments, we drastically cut down the number
of physical tests required. This not only saves time but also reduces the cost associated with running
numerous experiments in a laboratory setting.

Importantly, one of the strengths of our method is that it does not require deep knowledge of the
underlying physics of the system. Instead, the method focuses on reconstructing the system coefficients
from observed data, making it broadly applicable to other similar systems. This versatility, combined
with its efficiency, makes it a valuable tool for system identification and optimization tasks in various
scientific and engineering contexts.

One possible improvement of our method is to find optimized driving frequencies selected in a greedy
manner. This approach has been discussed and applied to small problems in [8]. By choosing these
frequencies carefully, it is possible to capture the necessary dynamics with even less experimentation.
However, given the current setup, the constraints on the driving frequencies are so stringent that further
optimization is unlikely to yield significantly different results.

Furthermore, this approach can also be applied to models in which an unknown nonlinearity has to
be reconstructed. In this case, one can for example choose a set of basis functions that can be used
to approximate the nonlinearity. The optimization problem is then to find the coefficients in a linear
combination of the basis elements that lead to the best agreement of simulation and experimental data;
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see, e.g., [4] for further information on this procedure applied to a semilinear elliptic partial differential
equation.
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