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Abstract

Glioblastoma (GBL) is one of the deadliest brain cancers in adults. The GBL cells invade the physical structures within the
brain extracellular environment with patient-specific features. In this work, we propose a proof-of-concept for mathematical
framework of precision oncology enabling rapid parameter estimation from neuroimaging data in clinical settings. The
proposed diffuse interface model of GBL growth is informed by neuroimaging data, periodically collected in a clinical study
from diagnosis to surgery and adjuvant treatment. We build a robust and efficient computational pipeline to aid clinical
decision-making based on integrating model reduction techniques and neural networks. Patient specificity is captured
through the segmentation of the magnetic resonance imaging into a computational replica of the patient brain, mimicking the
brain microstructure by incorporating also the diffusion tensor imaging data. The full order model (FOM) is first discretized
using the finite element method and later approximated by a reduced order model (ROM) adopting proper orthogonal
decomposition (POD). Trained by clinical data, we finally use neural networks to map the parameter space of GBL evolution
over time and to predict the patient-specific model parameters from the observed clinical evolution of the tumor mass.

1 Introduction

Glioblastoma (GBL) is one of the deadliest types of
brain cancer in adults [1]. Peculiar histological fea-
tures consist of prominent cellular and nuclear atypia,
numerous mitotic figures, necrosis, and microvascu-
lar proliferation. The 2021 WHO classification of
central nervous system (CNS) tumors updated the
diagnostic criteria introducing relevant innovations
in tumor’s definition, underlining the preponder-
ant role of genetic elements compared to morpho-
logical ones [2]. GBL diagnosis is appropriate for
each IDH wild-type astrocytic tumor presenting with
concurrent +7/-10, EGFR amplification, or a TERT
promoter mutation, even in the absence of classical
high-grade histopathologic features. As the most
aggressive malignant glioma, GBL has a high invas-
ive potential and grows along white matter fibres or
vessels, imitating the physical structures of the brain
extracellular environment [3]. The most relevant
consequence of this capability of extensive infiltra-
tion is that, despite aggressive multimodal therapy
consistent in surgical resection, radiotherapy, and
chemotherapy (Stupp protocol, as described in 2005),
GBL invariably recurs, usually growing at the margin
of the surgical cavity [4]; accordingly, prognosis re-
mains poor with a median progression-free and over-
all survival times approximately of 7 and 15 months,
respectively, and the five-year survival rate is approx-
imately 5% [5]. Maximal tumor safe resection is the

therapeutic cornerstone [6]: intraoperatively, GBL
appears as an infiltrative mass, poorly delineated,
bleeding, of increased consistency with peripheral
grayish aspect and a central area of yellowish nec-
rosis due to myelin breakdown. The ambiguous
delimitation of tumor margins is one of the causes
of difficult and rarely occurring complete tumor re-
section [7]. The recent development of technological
tools such as neuronavigation, optical fluorescence
imaging, intraoperative brain MRI, confocal laser en-
domicroscopy, and ultrasound have improved the
intraoperative guidance, even they seem to be not
enough to guarantee a radical resection [8, 9]. Radi-
ologically, GBL appears as a bulky mass with hetero-
geneous enhancement and central necrosis; concom-
itantly surrounding T2/FLAIR abnormality indicates
areas of vasogenic edematous, infiltrating, and non-
enhancing neoplastic tissue: more than 90% of tu-
mor recurrences will occur within this T2/FLAIR
envelope and there is limited research focused on
the assessment of this region and its microenviron-
ment. The development of MR spectroscopy allowed
to measure the levels of specific brain metabolites
which correlate with neoplastic aggressive prolifera-
tion. PET with specific traced amino acids can further
improve the radiological diagnostic accuracy, increas-
ing the visualization of highly metabolically active
tissue and differentiating these regions from edemat-
ous tissue and post-treatment tissue [10]. Artificial
Intelligence (AI) has recently emerged as a prom-
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ising tool to further improve the neuroradiological
power of tumor detection: in particular, radiomics
treats images as numerical data and extracts intricate
features, eluding human observation; AI’s impact
could consequently extend to treatment planning for
clinicians [11]. The only way forward is interdis-
ciplinary collaboration to define the best decision-
making algorithms. As stated above, the complex
intratumoral heterogeneity at the genetic, biological,
and functional levels, together with the tumor mi-
croenvironment is a crucial factor in making GBL
extremely resistant to treatments [12, 13]. In addition,
GML cells show a bursting tendency to infiltrate into
the surrounding normal brain tissues of the tumor
with a high complexity in tailoring surgical resection
and adjuvant therapies [14]. In this context, the de-
velopment of a precision in silico medicine by means
of the release of increasingly updated mathematical
models could play a fundamental role in describing
GBL development and proliferation with a pivotal
therapeutic importance [15].

The remainder of this article is organized as fol-
lows. In Section 2, we introduce the mathematical
model for GBL growth based on a diffuse-interface
approach, followed by the finite element formulation
and the reduced order model using Proper Ortho-
gonal Decomposition. Section 3 presents the res-
ults of the numerical simulations, including patient-
specific parameter estimation through neural net-
works. In Section 4, we discuss a proof-of-concept
application on clinical data, demonstrating the poten-
tial of our framework. Finally, Section 5 concludes
the paper with a summary of the key findings and
directions for future research.

2 Model

In this section, we introduce a diffuse interface model
and a numerical framework designed for predicting
the patient-specific GBL growth from neuroimaging
data. Although certain information, such as the geo-
metry of the patient’s brain and local brain fiber
orientation and physiological brain data, can be de-
rived from imaging techniques as discussed in the
Appendix A.2, the cancer phenotype exhibits consid-
erable variability and the prediction of its evolution
is difficult and requires a patient-specific approach.
Hence, we put forward a mathematical model along-
side a machine learning-based approach to estimate
the parameters pertaining to the patient’s tumor.

2.1 Diffuse interface model of GBL
growth

The brain tissue is modeled as a mixture of a cel-
lular phase, representing the tumor, and a liquid
phase, which describes the healthy host tissue. In
the framework of mixture theory, at the mesoscopic
level, every material point of the mixture represents
a reference volume occupied by volume fractions
of the interacting phases [16]. Let Ω ⊂ R3 be the
domain representing the brain. We can define the
spatial concentration of each constituent at the in-
stant of time t at each point x ∈ Ω. Specifically, we
introduce the volume fraction of the tumor ϕc(x, t)
and the volume fraction of the healthy tissue ϕl(x, t),
such that ϕc(x, t), ϕl(x, t) ∈ [0, 1]. We assume that
the mixture is fully saturated, so that ϕc + ϕl = 1 at
each point of the mixture and at any time t ∈ [0, T].
From this, it is possible to define a new variable
ϕ := ϕc − ϕl that assumes value 1 where there are
only tumor cells and −1 on healthy areas.

We also assume that the two phases have a density
roughly equal to the one of water γ. Let vc and vl be
the velocities of the cellular and the healthy phase,
respectively. The following form of the mass balance
holds true

∂ϕi
∂t

+∇ · (ϕivi) =
Γi
γ

i ∈ {c, l}, (1)

where Γc and Γl denote the mass source terms per
unit volume of the two fractions. The average velocity
of the mixture can be defined as v = ϕcvc + ϕlvl .

To enforce the incompressibility of the whole mix-
ture, we prescribe that Γc = −Γl . Indeed, if we sum
the two continuity equations in (1), we obtain

∇ · (ϕcvc + ϕlvl) = ∇ · v = 0.

By subtracting the two continuity equations (1) we
obtain

∂(ϕc − ϕl)

∂t
+∇ · (ϕcvc − ϕlvl) =

Γc − Γl
γ

(2)

Let Jc and Jl be the mass fluxes of the two phases
with respect to the mixture velocity v, defined as

Jc = γϕc(vc − v), (3)

Jl = γϕl(vl − v). (4)

By introducing J = 1
γ (Jc − Jl) and subtracting

Eqs. (3)-(4), we get

ϕcvc − ϕlvl = ϕv + J . (5)

We can use Eq. (5) to rewrite Eq. (2) as follows

∂ϕ

∂t
+∇ · (ϕv) +∇ · J =

Γ
γ

with Γ = Γc − Γl .
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We assume that the mixture is very viscous and
free of external forces. We use an approach based
on non-equilibrium thermodynamics to determine
a constitutive law for the mass fluxes. We take the
following expression of the Landau free energy:

F(ϕ) =
∫
Bt

(
κΨ(ϕ) +

ϵ2

2
|∇ϕ|2

)
dBt, (6)

κ is the brain Young modulus, ϵ defines the inter-
facial tension, and Bt, i.e. the region occupied by
the brain, is assumed to be with fixed boundaries
over time. Therefore, from now on we omit the time
specification and we refer to the domain with the
symbol B. The two addends inside the integral in
Eq. (6) represent the mixing energy density and the
interface energy arising from the interaction between
the two different phases, respectively [17].

In this specific case, we take as cell-cell interaction
potential Ψ(ϕ) a function with a double-well shape,
such that its minima are attained in ϕ = 1 and ϕ =
−1, corresponding to the two pure phases. A simple
admissible choice is given by

Ψ(ϕ) =
1
4
(1 − ϕ2)2. (7)

By following Fick’s law, we postulate J to be
proportional to the gradient of a chemical poten-
tial µ = δF(ϕ)

δϕ , where δ is the Gâteaux functional
derivative [18]. Thus, we assume that

J = − 1
M0

T∇µ

where M0 is a friction coefficient, while T represents
the preferential motility tensor [19].

To close the model, we prescribe that Γ depends
on the local oxygen concentration by setting

Γ = Γ(ϕ, n) = νγ
( n

ns
− δ
)

h(ϕ). (8)

Here, ν is the tumor cell proliferation rate, n rep-
resents the local concentration of oxygen, ns is a
physiological value for the oxygen concentration in
brain tissue, δ is the hypoxia threshold, and h(ϕ) is a
function that allows the proliferation in the natural
range of ϕ.

The function h should be constitutively prescribed.
It should suppress the proliferation of tumor cells
when ϕ = −1, i.e. when we are in the correspond-
ence of the absence of the tumor. A possible choice
for h is given by

h(ϕ) = max
(

min
(

1,
1
2
(1 + ϕ)

)
, 0
)

The dynamics of oxygen concentration are
modeled by means of a reaction-diffusion equation,

where D is the diffusivity tensor of the nutrient, Sn is
the oxygen supply rate and δn is the oxygen consumption
rate. Accordingly, following [18, 20], the system of
partial differential equations describing the dynam-
ics of GBL growth is composed of a Cahn-Hilliard
equation and a reaction-diffusion equation for the
nutrient concentration



∂ϕ

∂t
= ∇ ·

( 1
M0

T∇µ
)
+ ν (n̂ − δ) h(ϕ),

µ = κΨ′(ϕ)− ϵ2∆ϕ,
∂n̂
∂t

=
Sn

3
(1 − n̂) (2 − ϕ)

+∇ · (D∇n̂)− δnn̂h(ϕ).

(9)

where the auxiliary variable µ represents the chem-
ical potential, while n̂ = n/ns. The parameters are
the tumor cells proliferation rate ν, the tumor inter-
phase friction M0, the brain Young modulus κ, the
diffuse interfacial energy ϵ, the oxygen concentration
in vessels ns, the hypoxia threshold δ, the oxygen
consumption rate δn and the oxygen supply rate Sn.
Their biological range is collected in Table 1. The
tensors D and T can be extracted from patient’s ima-
ging data following the procedure detailed in Ap-
pendix A.2. Finally, we enforce a homogeneous Neu-
mann boundary condition for each physical variable
at the brain boundary. We refer to the task of finding
the solution to Eq. (9) as the direct problem, in what
follows we propose a strategy to construct a reduced
order model which allows for a faster computation
of the numerical solution.

2.2 Finite element formulation of the full
order model

First, we computationally solve Eq. (9) using the finite
element method. In such a way, we obtain a discrete
counterpart of the model proposed in Eq. (9). We
refer to such a discrete problem as the full order model
(FOM) on a discrete partition Th. Then, we divide the
temporal interval [0, T] into N discrete subintervals
∆t = T/N. The j-th simulation time-point tj = j∆t
with j = 0, ..., N. Next, we introduce the finite ele-

ment space Vh =
{

χ ∈ C0(Ω) : χ|K ∈ P1(K) ∀K ∈

Th

}
⊂ H1(Ω), which is the space of continuous poly-

nomial functions of degree 1 (P1) when restricted
on each element K. Vh is a subset of the Hilbert
space H1(Ω) that contains L2(Ω) functions whose
first weak derivative is in L2(Ω) too.

Thus, given the initial data (ϕ0
h, n̂0

h) ∈ Vh × Vh we
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Symbol Range of values Ref.
M0 1.38 × 103 − 5.03 × 103 Pa d mm−2 [21]
ν 1.2 × 10−2 − 0.5 d−1 [22, 23]

Sn 1 × 103 −1 × 105 d−1 [24]
δn 1 × 103 −1 × 105 d−1 [23]
κ 1.06 × 102 − 1.53 × 103 Pa [25]
δ 0.1 − 0.33 [26]

Table 1: Biological range found in literature for the parameters of the model.

obtain the following discrete problem:

(
ϕ

j+1
h − ϕ

j
h

∆t
, φh

)
=− 1

M0

(
T∇µ

j+1
h ,∇φh

)
+

+ ν
((

n̂j+1
h − δ

)
h
(

ϕ
j
h

)
, φh

)
(

µ
j+1
h , vh

)
=ϵ2

(
∇ϕ

j+1
h ,∇vh

)
+ κ

(
Ψ′

c

(
ϕ

j+1
h

)
, vh

)
+

+ κ
(

Ψ′
e

(
ϕ

j
h

)
, vh

)
(

n̂j+1
h − n̂j

h
∆t

, qh

)
=−

(
D∇n̂j+1

h ,∇qh

)
+

+ Sn

((
1 − n̂j+1

h

) 1
3

(
2 − ϕ

j
h

)
, qh

)
+

− δn

(
n̂j+1

h h
(

ϕ
j
h

)
, qh

)
where (·, ·) denotes the standard L2 inner product
over Ω. As suggested in [27] we prescribe the follow-
ing splitting for the Cahn-Hilliard potential to ensure
the gradient stability of the scheme:

Ψc

(
ϕ

j+1
h

)
=

(
ϕ

j+1
h

)4
+ 1

4
, Ψe

(
ϕ

j
h

)
= −

(
ϕ

j
h

)2

2
.

Decomposing the potential in such a way, i.e. in a
convex term Ψc that we can treat with an implicit
scheme and a concave term Ψe that is treated with
an explicit scheme, ensures the solution to be stable
over time [28].

2.3 Reduced order model

Solving the FOM requires a huge amount of com-
putational resources and time. Aiming at construct-
ing an effective procedure to solve the inverse prob-
lem of patient-specific parameter identification from
neuroimaging data, we resort to a reduced order model
(ROM) based on linear projections as a robust and
more efficient solution strategy. The basic idea is to
construct a reduced basis (RB) space for the approx-
imation of the discrete solution manifold. Starting
from the system Eq. (9), we perform a Proper Ortho-
gonal Decomposition (POD) [29, 30] on a set of FOM
solutions, named snapshots.

The construction of a basis for the final reduced
order space consists of two similar steps. We first
perform a Singular Value Decomposition (SVD) over
the snapshot matrix associated with the variable f =
{ϕ , µ , n} associated with a particular choice of the
parameters Pk = [νk, M0l , κk, δk, δnk, Snk] at a given
instant of time. Specifically, the matrix columns are
the nodal values of the solution at a specific time-step

F1
f = [ f 0

k , ..., f N
k ],

where N + 1 is the number of time-steps. By applying

SVD on F1
f , we obtain a basis

{
ξ

f
kl

}
l=1,...,Nk

POD

from

each set of parameters Pk, where NPODk is chosen
such that information that the POD basis should
cover, indicated as ic ∈ (0, 1], is about ic = 0.95 for
each variable. We denote by M the cardinality of the
set of parameters, so that k = 1, . . . , M. Until this
point, the bases contain most of the information on
the evolution of the tumor through time for a specific
set of parameters. Then, we perform another SVD,
this time starting from the matrix collecting the M
bases obtained in the previous step, i.e.

F2
f =

[
ξ

f
11, ..., ξ

f
1N1

POD
, ..., ξ

f
M1, ..., ξ

f
MNM

POD

]
.

The final result is a basis
{

ξ
f
l

}
l=1,...,NPOD

of the re-

duced order space for each variable f = {ϕ , µ , n}.
A similar strategy has been used e.g. in [31–34] to
generate the POD basis for models depending on
both time and parameters.

Let ξ
f
i be the generic element of the reduced basis

of the physical variable f , we can write

ϕt
h =

NPOD

∑
i=1

at
ϕiξ

ϕ
i , µt

h =
NPOD

∑
i=1

at
µiξ

µ
i , n̂t

h =
NPOD

∑
i=1

at
niξ

n
i ,

where NPOD is the cardinality of the reduced basis.
NPOD is chosen such that information that the POD
basis should cover ic ∈ (0, 1] is about ic = 0.95 for
each variable.

To sum up, the steps that we perform for each
phase are [35]:

• prescribe the amount of required information
that the POD basis should cover ic ∈ (0, 1];
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• compute the trace tr(Ft
f Ff ) of the correlation mat-

rix Ft
f Ff = ( f m, f l)ml ;

• evaluate the pair eigenvalues-eigenvectors

{λ f i, νi
f }i=1,...,NPOD

f

of Ft
f Ff ;

• NPOD
f = min

{
m,
(
∑i≤m λi

)
/tr(FtF) ≤ ic

}
, that

is the number of elements in the basis, is set;
• NPOD = max

{
NPOD

ϕ , NPOD
µ , NPOD

n

}
• set ξ

f
s = 1√

λ f s
∑j(ν

s
f )j f j where (1 ≤ s ≤ NPOD).

Since the model in Eq. (9) is non-linear, a classical
POD-Galerkin method requires the projection of the
non-linear operators. When a general non-linearity
is present, the cost to evaluate the projected nonlin-
ear function still depends on the dimension of the
original system, resulting in simulation times that
hardly improve over the original system. A pos-
sible approach to overcome this issue is the usage of
hyper-reduction techniques, such as those based on
a greedy algorithm using DEIM interpolation, as pro-
posed in [36]. In this work, an alternative approach,
exploiting neural networks, is preferred to approxim-
ate the RB coefficients in a non-intrusive framework,
resorting only on the simulation data and without
manipulating directly the governing equations with
Galerkin projections as with the classical intrusive
hyper-reduction techniques.

The reduction of the problem to a few degrees of
freedom, equal to the dimensionality of the reduced
space NPOD and corresponding to the coefficients of
the RB, makes it possible to train a simple neural
network that maps the parameter space onto the
space of the RB coefficients, a method usally referred
to as the POD-NN approach [37]. Given a set of
parameters P = [ν, M0, κ, δ, δn, Sn] of cardinality NP,
along with a temporal step t, we train the neural
network NNϕ : RNP+1 → RNPOD to compute the
coefficients {aϕ

t,i} ∈ RNPOD for the RB of the tumor
concentration variable ϕ. Following the procedure
presented in [37], NNϕ is an approximation of the
function that map points [ν, M0, κ, δ, δn, Sn, t], which
corresponds to a tumor distribution at a given instant
t, to the space of coefficients {aϕ

t,i}i=1,...,NPOD of the
projected solution in the ROM space at the same
time instant. We choose not to make ε vary since it
is related to the thickness of the diffusive interface
that is fixed a priori, while the tensors T and D are
extracted from neuroimaging data, as described in
the Appendix.

3 Results

3.1 Surrogate approach to estimate
patient-specific parameters from
neuroimaging data

We propose in the following a numerical pipeline to
infer the patient-specific parameters of GBL growth
from the observed tumor distribution at two differ-
ent instants of time, given by the clinical follow-up
protocol summarized in the Appendix A.1. In the
following, we refer to the identification of the patient-
specific parameters given the observed distributions
of the tumor as the inverse problem. Also for this
purpose, we exploit surrogate neural network tech-
niques to approximate the solutions. An illustration
of the proposed computational pipeline is presented
in Fig. 1
In order to solve the inverse problem of estimating
the patient-specific parameters from the observed tu-
mor distribution given by two instants of time from
clinical follow-up, we construct a second neural net-
work. In this case, the trained neural network is a
map NNinv : R2NPOD → RNP that takes as inputs two
tumor distributions, identified with their projection
coefficients over the reduced basis, and gives the set
of parameters as the output, i.e.

(ν, M0, κ, δ, δn, Sn) = NNinv

(
at0

ϕ1, ..., at0
ϕNPOD

, at1
ϕ1, ..., at1

ϕNPOD

)
where t0 and t1 = t0 + (20 days) represent the time
interval that elapses from the first and second MRI.
We choose the weighted sum as the propagation func-
tion, the LeakyReLU as the activation function and
just the identity for the output function. Moreover,
the loss function used is the mean squared error.

3.2 Proof-of-concept

We finally build a proof-of-concept by image seg-
mentation of the MRI and DTI data from a clinical
case, as shown in Fig. 2. The details of the clinical
and radiological protocols are summarized in the
Appendix A.1. This realistic brain-shaped mesh has
32293 vertices and 196778 tetrahedral elements. A
mesh refinement is performed in the neighborhood
of the initial placement of the tumor. For each sim-
ulation, a piecewise linear basis function is chosen,
so that the degrees of freedom of the solution corres-
pond to the number of vertices. For the numerical
solution of the FOM, we rely on a HPC cluster (Intel®

Xeon® Processor E5-2640 v4, 20 cores, 64 GB RAM).
The overall implementation framework exploits the
functionalities given by the platform FEniCSx, a pop-
ular open-source environment for solving partial dif-
ferential equations.
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Figure 1: Representation of the computational pipeline. The geometry and the distribution of the tumor is known at for t = t0. From
this datum, we perform the POD and get the reduced order solution estimation for the direct problem (POD-NN procedure).
Given the distribution of the grown tumor at t = t1 = t0 + 20 days, we train a neural network to solve the inverse problem
estimating the patient-specific parameters.

The implementation of the used code heavily relies
on two of its components: dolfinx, a C++/Python
library providing data structures and algorithms for
finite element meshes, automated finite element as-
sembly, and numerical linear algebra, and the Unified
Form Language UFL which is a domain-specific lan-
guage for declaration of finite element discretization
of variational forms. The construction of the ROM
basis is obtained through RBniCSx, a library useful
to implement reduced order modeling techniques.
The neural network is implemented in Python using
PyTorch. As a minimization procedure for the loss
function we have used the L-BFGS algorithm [38].

For training the neural network of the direct prob-
lem, we draw parameters out of the biological range
exhibited in Tab. 1.

To obtain adequate accuracy the training for the
direct POD-NN, we construct a data set from nu-
merical simulations obtained by 750 different sets of
parameters. Using 60 temporal steps, each of them
representing 0.5 days, we finally get Ndir

Data = 45000
input-output pairs. This data set is split into a train-
ing set with Ndir

train = 33000 elements and a test set
with Ndir

test = 12000 elements.
We perform FOM computations with M = 64 dif-

ferent sets of parameters, to build up a representative
basis that can retain most of the energy present in

Figure 2: A representation of the computational domain (left)
and of a component of the diffusion tensor D (in
mm2 d−1) extracted from the DTI data (right).

all of the original variables. In this case, a basis with
NPOD = 40 elements was big enough to have an ac-
ceptable error between the FOM solution and the
POD-Galerkin one, as shown in Fig. 3.

From this, it is possible to create a data set for the
neural networks for the map of the direct problem
NNϕ that relies on 750 different possible evolutions
of the tumor starting from the same initial condi-

tion ϕ0(x, y, z) = 2e−100((x−193)2+(y−308)2+(z−30)2)
2
−

1 where spatial quantities are measured in mm. The
results of the training in terms of mean squared error
over epochs are shown in Fig. 4.

Since the POD-Galerkin solution is computa-
tionally demanding due to the absence of hyper-
reduction techniques (see Section 2.3), as illustrated
in Fig. 5, we opt to simulate the FOM first and
subsequently project onto the reduced basis. Once
training is complete, the POD-NN achieves a compu-
tational speed-up of approximately 200 times com-
pared to the FOM solver, see Fig. 5.

Given the distributions of the tumor at two suffi-
ciently distant instants of time, in order to discrim-
inate between different possible evolutive scenarios
with more accuracy, we can produce a data set whose
input-output pairs are formed by the vector contain-
ing the coefficients of the projections of the tumor
distribution over the RB and the patient-specific para-
meters. To train the inverse neural network, denoted
by NNinv, we extract twenty pairs of tumor distribu-
tions, each separated by a distance of twenty days,
for each of the 750 parameter sets. This results in a
total of Ninv

data = 15000 input-output pairs. These are
then split into a training set containing Ninv

train = 11000
elements and a test set with Ninv

test = 4000 elements.
The mean squared errors over epochs for the neural
network NNinv, computed for normalized over the
biological range parameters, are shown in Fig. 4. Al-
though this result appears to be non-optimal in order
to catch the exact parameter of a patient (the com-
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Figure 3: Plot of the solution ϕ within a fixed sagittal plane intersecting the tumor centroid at t= 0 (left), 15 (center), 30 days (right).
Solid lines indicate the FOM solution (black), the POD-Galerkin solution (orange), the POD-NN solution (red), and the
FOM solution obtained using the parameter obtained in the inverse problem (blue).

Figure 4: Absolute (top) and relative (bottom) mean squared
error e over the epochs in the training of the direct
(top) and the inverse (bottom) neural networks. The
solid lines indicate the errors over the training set
(blue) and over the test sets (orange).

puted error is about 15%, see the bottom panel of
Fig. 4), the simulations performed show that the spe-
cific behaviour is actually well captured.

Giving as input the distribution of the tumor start-
ing from the parameters

M0 = 3860.7 Pa d mm−2, δn = 21 041 d−1,

ν = 0.356 d−1, κ = 700.4 Pa,

Sn = 41 978 d−1, δ = 0.24.

(10)

we obtain the following result

M0 = 3950.4 Pa d mm−2, δn = 25 142 d−1,

ν = 0.369 d−1, κ = 776.8 Pa,

Sn = 36 982 d−1, δ = 0.25.

(11)

In Fig. 5 (top) the evolution of the tumor with the
actual set of parameters and the evolution with the
predicted set is exhibited. As we can see in Fig. 5
(right, bottom), the volume fraction is well-tracked
over time entailing a good estimation both in terms
of tumor morphology. The elapsed time for the es-
timation of the parameters is of the order of seconds
(Fig. 5) since it only requires the evaluation of the
trained map at a specific point given by the projected
tumor distributions onto the reduced basis.

4 Conclusions

In this work, we presented a patient-specific pre-
dictive framework for GBL growth using a ROM
constructed via POD and coupled with neural net-
works. By integrating medical imaging data with a
diffuse-interface mathematical model, we introduced
a robust computational approach for estimating key
patient-specific parameters and predicting tumor
growth with a reduction of the computational time
by the 99%. The proposed methodology efficiently
reduces computational costs while maintaining high
accuracy in the predictions of the tumor growth evol-
ution (96% in forecasting the final volume, see Fig. 5),
making it a viable tool for clinical applications.

Our results show that this framework can ef-
fectively solve both the direct and inverse prob-
lems of GBL growth. Once the neural network is
trained, patient-specific predictions can be made
within seconds, underscoring the relevance of this ap-
proach for real-time therapeutic planning in clinical
settings.

Nonetheless, there are still some limitations to be
addressed. Future developments will aim at refin-
ing the mathematical model to incorporate crucial
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t=0 d t=15 d t=30 d
Full Order Model

POD-Galerkin

POD-NN

Parameter Estimation

Method Elapsed Time
FOM 920 s

POD-Galerkin 5190 s
POD-NN 5 s

Tumor volume

Figure 5: FOM, POD-Galerkin, POD-NN, and patient-specific FOM solutions of a GBL concentration ϕ at t= 0, 15, 30 days (top)
and corresponding computational times (bottom,left). Volume fraction of tumor over time (bottom, right). The parameters
used in the FOM and POD-Galerkin models are given by Eq. (10), while the results obtained with the parameters estimated
by the inverse neural network are given by (11). The FOM evolution is given in orange, and the predicted one in blue.

features such as phenotype variability and treatment
responses [39], the coupling between tumor solid
mechanics and growth [40–42], as well as enhancing
the model’s generalization to different initial con-
ditions and mesh geometries without the need for

retraining the networks for each patient [43–45].

In conclusion, this study represents a promising
step towards the development of a precision medicine
tool for GBL management, with significant potential
to improve clinical outcomes by enabling faster and
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more personalized computational predictions in real-
world settings.

A Details of the medical protocol
and neuroimaging techniques

A.1 Clinical protocol

This study is part of a collaboration program between
Foundation IRCCS Neurological Institute Carlo Besta,
Department of Neurosurgery and Neuroradiology,
and Politecnico di Milano, MOX – Modeling and
Scientific Computing, Department of Mathematics.
At a hospital stage, we started a prospective obser-
vational trial, named GLIOMATH (GLIOblastoma
MATHematics), enrolling patient with GBL submit-
ted to surgical removal or biopsy, adjuvant therapy
and follow-up based on normal clinical practice, in
which specific MRI data for each patient were used
as input data building a personalized virtual envir-
onment. The study was conducted according to
the guidelines of the Declaration of Helsinki, and
approved by the Ethics Committee of Fondazione
Istituto Neurologico Carlo Besta (protocol code Glio-
Math, nr. 49/2016; date of approval: 13 July 2016). Pa-
tients older than 18 years old with suspected, newly
diagnosed, untreated GBL and eligible for surgical
removal or biopsy of their lesion were considered
for participating in our trial; exclusion criteria were
inability to give consent due to cognitive deficits or
language disorders, or, for women, pregnancy or
lactation. The patients were enrolled in a prospective
observational study; the evaluation was based on the
normal clinical practice [46]. All patients underwent
neurological examination, preoperative volumetric
MRI including DTI (3 Tesla MRI scan – Philips), and
recording of concomitant medications. Patients were
scheduled for surgical removal or biopsy as judged by
the surgeon; in both cases, the procedures were per-
formed in a standard manner, with any surgical tools
as preferred by the operating surgeon, and neuro-
physiological monitoring when necessary. The his-
topathological and molecular analysis of the tumor
samples were performed according to the 2016 or
2021 WHO classification of CNS tumors [47]. Clinical
and radiological post-operative examination were car-
ried out the usual institutional practice. The early
clinical evaluation included neurological examination
and volumetric contrast-enhanced MRI for estima-
tion of extent of resection, within 72 hours from the
surgical intervention. The protocol for early post-
operative MRI was the same as performed in preop-
erative setting without the DTI, that was excluded
due to the possibility of artifacts caused by the pres-
ence of air in the surgical cavity; the following radi-

ological exams, performed every two months, were
performed according to the same protocol of preoper-
ative MRI with DTI. All patients, upon confirmation
of histologic diagnosis of GBL, were offered adjuvant
radio- and chemotherapy, according to the Stupp
protocol and tailored on the basis of patient age, per-
formance status and methylation status of MGMT
gene promoter, according to the EANO guideline
[48]. The surgical and trial databases of the above
mentioned study have been collected anonymously
for the scientific purposes; written informed consent
was obtained for each case. Exclusively anonymized
neuroradiological data were employed for the sec-
ondary phase of the study consisting in developing
of a multi-scale mathematical model and simulating
GBL invasion from the patient-specific data collected
from MRI studies.

A.2 Neuroimaging acquisition and
segmentation

The radiological protocol included volumetric axial
whole brain T1-weighted MRI at 1 mm × 1 mm ×
1 mm spatial resolution and volumetric axial whole
brain T1-weighted MRI at same spatial resolution
after paramagnetic contrast administration, useful
for illustrating the structural anatomy of the patient’s
brain and to calculate the total volume of tumor ex-
tension after segmentation procedure; axial whole
brain 3D-FLAIR image at 1 mm × 1 mm × 1 mm
spatial resolution, useful to delineate the outline of
the tumor and peri-tumor rim by suppressing sig-
nal from cerebrospinal fluid. A set of 147 diffusion-
weighted images DTI at 2 mm × 2 mm × 2 mm spatial
resolution with anterior–posterior phase encoding
direction with different b-value was finally acquired;
all diffusion-sensitising directions were sampled uni-
formly on the hemisphere and an additional B0 im-
age was acquired with reversed phase encoding dir-
ection, as posterior-anterior encoding, for helping in
geometric distortion correction. The images obtained
through MRI are segmented using the software 3D
Slicer and the mesh is generated using the VMTK
library. Finally, the DTI data are then analyzed using
the library ANIMA1 to reconstruct the tensors D and
T.
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