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Robust Preconditioning of Mixed-Dimensional
PDEs on 3𝒅-1𝒅 domains coupled with Lagrange
Multipliers

Nunzio Dimola, Miroslav Kuchta and Kent-Andre Mardal and Paolo Zunino

Abstract In the context of micro-circulation, the coexistence of two distinct length
scales - the vascular radius and the tissue/organ scale - with a substantial difference in
magnitude, poses significant challenges. To handle slender inclusions and simplify
the geometry involved, a technique called topological dimensionality reduction is
used, which suppresses the manifold dimensions associated with the smaller charac-
teristic length. However, the algebraic structure of the resulting discretized system
presents a challenge in constructing efficient solution algorithms. This chapter ad-
dresses this challenge by developing a robust preconditioner for the 3𝑑-1𝑑 problem
using the operator preconditioning technique. The robustness of the preconditioner is
demonstrated with respect to the problem parameters, except for the vascular radius.
The vascular radius, as demonstrated, plays a fundamental role in the mathematical
well-posedness of the problem and the effectiveness of the preconditioner.

1 Introduction

The human cardiovascular system displays a diverse range of scales and charac-
teristics, encompassing the major blood vessels, arterioles, and capillaries, with
diameters ranging from several cm to a few `m. In particular, when examining the
microcirculation, the challenge intensifies due to the substantial disparity in scale
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between the diameter of small vessels (`m) and the size of the corresponding system
or organ they supply (dm). To deal with this disparity, intricate vascular networks
that occupy space are needed, leading to complex geometric structures.

Due to the inherent complexities involved, simulating flow throughout the car-
diovascular system is not practical or applicable. However, it is crucial to adopt
a comprehensive approach that incorporates interactions between different system
components by integrating models operating at various levels of detail. This ap-
proach is commonly referred to as geometrical multi-scale or hybrid-dimensional
modeling.

Two types of hybrid-dimensional models can be considered: sequential and em-
bedded. In an embedded multiscale model, components of varying levels of detail
are integrated within the same domain. A prime example is the microcirculation,
where a complex vascular network comprising arterioles, capillaries, and small veins
exists within the biological tissue.

From a modeling point of view, such ideas have appeared in the last three decades
(at least) for modeling wells in subsurface reservoirs in [39, 40] and for modeling
microcirculation in [3, 13, 14, 45, 19]. A similar approach has recently been used to
model soil/root interactions [22]. However, these application-driven seminal ideas
were not followed by a systematic theory and rigorous mathematical analysis. At the
same time, the models introduce additional mathematical complexity, in particular
concerning the functional setting for the solution as it involves coupling PDEs on
domains with high dimensionality gap. This mathematical challenge has recently
attracted the attention of many researchers. The sequence of works by [10, 11,
12], followed by [31, 30, 27], has remedied the well-posedness by weakening the
regularity assumptions that define a solution.

However, the mathematical understanding of mixed-dimensional embedded prob-
lems is not sufficient to successfully apply these models to realistic problems. An
essential difficulty to overcome is the development of efficient numerical solvers
that can handle the large separation of spatial scales between the domains of the
equations and the subsequent geometrical complexity of the vascular network.

Actually, the study of the interplay between the mathematical structure of the
problem and solvers, as well as preconditioners for its discretization, is still in its
infancy. The results presented in [29] for the solution of the 1𝑑 differential equations
embedded in 2𝑑, and more recently extended to the 3𝑑-1𝑑 case in [28], have paved
the way, but much more must be understood. This work proceeds in this direction,
with the aim of discussing the main mathematical challenges at the basis of the
development of optimal solvers of mixed-dimensional 3𝑑-1𝑑 problems coupled by
Lagrange multipliers.

We model the case of one single small vessel by the domain Ω ⊂ R3 that is
an open, connected, and convex set that can be subdivided in two parts, Ω⊖ and
Ω⊕ = Ω \ Ω⊖ representing respectively the vessel and the tissue. Let Ω⊖ be a
generalized cylinder that is the swept volume of a two-dimensional set, 𝜕D, moved
along a curve, Λ, in the three-dimensional domain, Ω, see Figure 1 for an illustration.
For dimensional reduction of the vessel domain we finally assume that |D| ≪ |Ω|.
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With the purpose of developing robust preconditioners for the 3d-1d problem
arising from microcirculation, let us consider a prototype problem that originates
from coupling of two 3𝑑 second order elliptic equations:

−^⊕Δ𝑢⊕ = 𝑓 in Ω⊕ ,

−^⊖Δ𝑢⊖ = 𝑓 in Ω⊖ ,

𝑢⊕ − 𝑢⊖ = 𝑔 on ΓY ,

^⊕∇𝑢⊕ · aΓY
− ^⊖∇𝑢⊖ · aΓY

= 0 on ΓY ,

𝑢⊕ , 𝑢⊖ = 0 on 𝜕Ω.

(1)

Here, 𝑢⊕ and 𝑢⊖ are the unknowns, and ^⊕ > 0 and ^⊖ > 0 are the diffusivities in
the two different domains that we shall assume in the following to be constant for
simplicity. Furthermore, ΓY = 𝜕Ω⊕ ∩ 𝜕Ω⊖ where Y = diamD denotes the diameter
of the 2𝑑 transverse cross sections of Ω⊖ . Finally, 𝑓 is a forcing term defined in
whole Ω and aΓY

denotes the unit normal vector to the surface. The model presented
in Equation (1) is a simple template for the interaction of an interior and an exterior
domain across the interface ΓY . In the context of microcirculation, it appears in
many scenarios. For example, it can be used to describe the interaction between
blood pressure in small vessels and interstitial fluid pressure. In this case, the vari-
ables [𝑢⊕ , 𝑢⊖] represent the hydrostatic pressures of a fluid. It can also be adopted
to describe the diffusion of chemical species with a small molecular weight (such
as oxygen) from the vascular to the extravascular domains. In all cases, we point
out that it represents a simplification of more complex phenomena. In the context
of oxygen transport, which will be taken as a reference application throughout this
work, it is well known that a diffusion-dominated model is not enough to capture the
multiphysics nature of blood circulation; indeed, oxygen and hematocrit transport
play a significant role in describing the phenomenology. Nevertheless, many numer-
ical approaches for microcirculation tend to solve the equations for oxygen diffusion,
convection, and hematocrit separately and in a segregated fashion, see, for example,
[18]. In this prospective, the model presented has to be considered as a compo-
nent of a more comprehensive model. Model (1) also deserves some consideration
about the formulation of the coupling conditions. From a physical point of view,
𝑢⊕ − 𝑢⊖ = 𝑔 on ΓY imposes that the oxygen concentration (or partial pressure) is
discontinuous throughout the vascular wall. These are the well-known Dirichlet cou-
pling conditions that enforce the value of the solution on some defined portion of the
boundary/interface. They are complemented by Neumann-type interface conditions
that prescribe the continuity of normal fluxes, that is, ^⊕∇𝑢⊕ · aΓY

− ^⊖∇𝑢⊖ · aΓY
= 0.

Dirichlet-Neumann interface conditions are the most fundamental coupling con-
ditions of second-order elliptic PDEs. For this reason, they are our choice here.
However, for transport across the wall of small vessels, the model most commonly
studied is the Robin coupling [12], which describes the flux at the vessel interface be-
tween the vascular and extravascular domains Ω⊖ , Ω⊕ , respectively, by the following
conditions defined at the interface Γ:
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−∇𝑢⊕ · aΓY
= ^(𝑢⊕ − 𝑢⊖),

−∇𝑢⊖ · (−aΓY
) = ^(𝑢⊖ − 𝑢⊕).

Normal oxygen flux at the interface is regulated by the parameter ^, which modulates
the permeability of the vessel wall and the relative difference in oxygen concentration
between the tissue and the interior of the vessel. However, as it is possible to interpret
Robin conditions as a perturbation of the Dirichlet ones, our setting is also relevant
for the Robin coupling; see [4].

Imposing Dirichlet boundary conditions via the Lagrange multiplier method can
be thought of as imposing boundary conditions on ΓY weakly. With reference to
Figure 1, and considering the full-dimensional problem (1) for more clarity, the
Dirichlet boundary terms coming from the weak formulation of the PDE are replaced
by Lagrange multipliers 𝑝⊕ , 𝑝⊖ ∈ 𝐻−1/2 (ΓY) such that∫

ΓY

𝑝⊕ T 𝑣⊕ 𝑑𝜎 :=
∫
ΓY

(^⊕∇𝑢⊕ · aΓY
) T 𝑣⊕ 𝑑𝜎 ∀𝑣⊕ ∈ 𝐻1

0 (Ω⊕),∫
ΓY

𝑝⊖ T 𝑣⊖ 𝑑𝜎 :=
∫
ΓY

(^⊖∇𝑢⊖ · aΓY
) T 𝑣⊖ 𝑑𝜎 ∀𝑣⊖ ∈ 𝐻1 (Ω⊖).

(2)

At this point, introducing the notation (·, ·)Σ and ⟨·, ·⟩Σ for the 𝐿2 product and duality
pairing in domain Σ, the variational formulation of (1) reads:

(^⊕∇𝑢⊕ ,∇𝑣⊕)Ω⊕ + (^⊖∇𝑢⊖ ,∇𝑣⊖)Ω⊖+
+ ⟨𝑝⊕ ,T 𝑣⊕⟩ΓY

− ⟨𝑝⊖ ,T 𝑣⊖⟩ΓY
= ( 𝑓 , 𝑣⊕)Ω⊕ + ( 𝑓 , 𝑣⊖)Ω⊖ .

By considering that on ΓY we have,

^⊕∇𝑢⊕ · aΓY
− ^⊖∇𝑢⊖ · aΓY

= 0 ⇐⇒ 𝑝⊕ = 𝑝⊖ := 𝑝,

and introducing the weakly imposed Dirichlet boundary constraint

⟨T (𝑢⊕ − 𝑢⊖), 𝑞⟩ΓY
= ⟨𝑔, 𝑞⟩ΓY

∀𝑞 ∈ 𝐻−1/2 (ΓY), (3)

we obtain the following saddle-point problem

𝑎( [𝑢⊕ , 𝑢⊖], [𝑣⊖ , 𝑣⊖])Ω + 𝑏( [𝑣⊕ , 𝑣⊖], 𝑝)ΓY
= ⟨ 𝑓 , [𝑣⊕ , 𝑣⊖]⟩Ω

𝑏( [𝑢⊕ , 𝑢⊖], 𝑞)ΓY
= ⟨𝑔, 𝑞⊙⟩ΓY

(4)

for all [𝑣⊕ , 𝑣⊖] ∈ [𝐻1
0 (Ω⊕), 𝐻1 (Ω⊖)], 𝑞 ∈ 𝐻−1/2 (ΓY), where

𝑎( [𝑢⊕ , 𝑢⊖], [𝑣⊕ , 𝑣⊖]) = ^⊕ (∇𝑢⊕ ,∇𝑢⊖)Ω⊕ + ^⊖ (∇𝑢⊖ ,∇𝑣⊖)Ω⊖ ,

𝑏( [𝑣⊕ , 𝑣⊖], 𝑞) = ⟨T (𝑣⊕ − 𝑣⊖), 𝑞⟩ΓY
.

From the above analysis, we have recovered the saddle-point structure that is inherited
by the reduced-dimensionality weak problem (6) from the full-dimensional one. In
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this context, the Lagrange multiplier 𝑝 represents the weighted normal flux ^∇𝑢 · aΓY

of the variable 𝑢. The formulation with the Lagrange multiplier as an auxiliary
unknown that enforces the coupling is not the only option when dealing with Dirichlet
conditions on the interface. The problem could be addressed, for example, by variants
of the penalty method [35] or Nitsche’s method [38]. We note that these methods
introduce additional (stabilization) parameters into the variational problem.

By applying a suitable model reduction strategy to (1), which exploits the follow-
ing transverse averages as already described in [31],

𝑤(𝑠) = |𝜕D(𝑠) |−1
∫
𝜕D(𝑠)

𝑤𝑑𝛾 and 𝑤(𝑠) = |D(𝑠) |−1
∫
D(𝑠)

𝑤𝑑𝜎,

we obtain the 3d-1d coupled problem of the form

−^Δ𝑢 + Y𝑝⊙𝛿Λ = 𝑓 in Ω,

−Y2^⊙𝑑
2
𝑠𝑢⊙ − Y𝑝⊙ = Y2 𝑓 on Λ,

Y(TΛ𝑢 − 𝑢⊙) = 𝑔 on Λ,

𝑢 = 0 on 𝜕Ω,

𝑢⊙ = 0 on 𝜕Λ.

(5)

Here ^ = ^⊕ in Ω⊕ and ^⊙ = ^⊖ in Λ being the centerline of Ω⊖ . Throughout the
paper we will use the subscript ⊙, e.g. 𝑢⊙ , for functions on Λ (and, in general, on
domains with topological dimension smaller than that of the ambient space), while
functions on Ω are denoted, as usual, by italic lowercase letters. Here, the primal
unknowns are 𝑢 and 𝑢⊙ , while the unknown 𝑝⊙ is the Lagrange multiplier used to
enforce the coupling of 𝑢 and 𝑢⊙ . As a consequence of the dimensionality reduction
technique, the Lagrange multiplier 𝑝⊙ represents the cross-sectional (perimeter)
average of the normal flux of 𝑢 normal to the vessel interface. Furthermore, 𝛿Λ is
a Dirac delta function. The operator obtained from a combination of the average
operator (·) with the trace in ΓY will be denoted by TΛ = (·) ◦ TΓ, since it maps
functions in Ω to functions in Λ. Note that TΛ thus implicitly depends on Y.

Due to the high-dimensional gap between 3𝑑 and 1𝑑, and the presence of singu-
larities in the solution 𝑢 due to the 1𝑑 coupling, the well-posedness of the problem
(5) is challenging [12, 11]. In the context of Robin coupling conditions at the 3𝑑-1𝑑
interface, the singularity is addressed in a number of works, e.g. by proposing a
splitting strategy where the singularity is captured by Green’s functions [17], regu-
larizing the problem by distributing the singular source term on the coupling surface
or in the bulk [24, 23] or deriving error estimates in tailored norms [25, 11]. For these
formulations, efficient solution algorithms have been developed utilizing algebraic
multigrid [21, 9] or a fast Fourier transform for preconditioning [47].

Although the Robin coupling typically leads to elliptic problems, enforcing the
Dirichlet coupling in (5) by Lagrange multiplier yields a saddle point system. Here,
as recently shown in [27], the high 3𝑑-1𝑑 dimensional gap requires the multiplier
to reside in fractional order Sobolev spaces on Λ in order to obtain well-posedness.
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Fig. 1 Geometrical setting considered in this paper, and the associated notation. Domain Ω⊖ is
assumed to be a slender generalized cylinder characterized by the centerline Λ parameterized by
the arclength coordinate 𝑠 and 2𝑑 transversal cross section D(𝑠) .

However, scalable solvers for the resulting linear systems are currently lacking.
Here, our objective is to address this issue by constructing robust block-diagonal
preconditioners for (5) within the framework of operator preconditioning [34]. In
particular, to obtain robust estimates we establish the well-posedness of the coupled
problem in weighted, fractional Hilbert spaces.

The structure of the chapter is described below. We start with the analysis of the
coupled problem in Section 2. Next, we investigate the performance of the resulting
preconditioner in Section 3, leading us to the observation that the parameter Y in
(5) assumes a distinctive role beyond that of a standard material parameter. This
unique role is further examined in Section 4, where we establish a close connection
between Y and the well-posedness of the coupled problem. Finally, we provide our
conclusions in Section 5.

2 Mathematical formulation of the 3d-1d coupled problem

Before delving into the precise mathematical formulation of problem (5), we will
introduce some fundamental notation. Let 𝐷 represent a bounded domain in R𝑑 ,
where 𝑑 = 1, 2, 3. In this context, 𝐿2 (𝐷) denotes the space of functions that are
square integrable in 𝐷, while 𝐻𝑘 (𝐷) refers to the space of functions that possess
𝑘 derivatives in 𝐿2. We denote the closure of 𝐶∞

0 (𝐷) in 𝐻𝑘 (𝐷) as 𝐻𝑘
0 (𝐷). When

the context is clear, we may simplify the notation using 𝐻𝑘 instead of 𝐻𝑘 (𝐷). For
a Hilbert space 𝑋 = 𝑋 (𝐷) with its corresponding dual space 𝑋 ′, the norm and the
associated inner products are denoted as ∥·∥𝑋 and (·, ·)𝑋, respectively. The duality
pairing is represented by ⟨·, ·⟩𝑋, and if necessary, we will explicitly indicate the
underlying domain using (·, ·)𝐷 and ⟨·, ·⟩𝐷 . With slight abuse of notation, the dual
of 𝐻𝑘 is 𝐻−𝑘 for 𝑘 ∈ R. Similarly, 𝐻−𝑘

0 is the dual of 𝐻𝑘
0 . We will use scaled and

intersected inner products, norms, and Hilbert spaces for our analysis of robustness.
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For example Y𝐻1
0 (𝐷) is defined in terms of the inner product

(𝑢, 𝑣)Y𝐻1
0 (𝐷) = Y2 (∇𝑢,∇𝑣)𝐿2 (𝐷) .

Notice that with this definition, the norm scales linearly in Y, that is, ∥𝑢∥Y𝐻10 =

Y∥𝑢∥𝐻1
0
.

The intersection of two Hilbert spaces 𝑋 and 𝑌 is denoted 𝑋 ∩𝑌 and has an inner
product

(𝑥, 𝑦)𝑋∩𝑌 = (𝑥, 𝑦)𝑋 + (𝑥, 𝑦)𝑌 .

We can now precisely formulate the weak formulation of the problem (5) that
will be considered in this paper. The problem reads as follows: Find 𝑢 ∈ 𝑉, 𝑢⊙ ∈
𝑉⊙ , 𝑝⊙ ∈ 𝑄⊙ such that

𝑎( [𝑢, 𝑢⊙], [𝑣, 𝑣⊙]) + 𝑏( [𝑣, 𝑣⊙], 𝑝⊙) = ⟨ 𝑓 , [𝑣, 𝑣⊙]⟩Ω ∀[𝑣, 𝑣⊙] ∈ [𝑉,𝑉⊙]
𝑏( [𝑢, 𝑢⊙], 𝑞⊙) = ⟨𝑔, 𝑞⊙⟩Λ ∀𝑞⊙ ∈ 𝑄⊙ .

(6)

with

𝑎( [𝑢, 𝑢⊙], [𝑣, 𝑣⊙]) = ^(∇𝑢,∇𝑢⊙)𝐿2 (Ω) + ^⊙Y
2 (𝑑𝑠𝑢⊙ , 𝑑𝑠𝑣⊙)𝐿2 (Λ) ,

𝑏( [𝑣, 𝑣⊙], 𝑞⊙) = Y⟨TΛ𝑣 − 𝑣⊙ , 𝑞⊙⟩Λ

and 𝑉 = ^1/2𝐻1
0 (Ω), 𝑉⊙ = ^

1/2
⊙ Y𝐻1

0 (Λ), and 𝑄⊙ = ^−1/2Y𝐻− 1
2 (Λ) ∩ ^

−1/2
⊙ 𝐻−1 (Λ).

We remark that a main difference between [27] and the functional setting considered
here is that the Lagrange multiplier space 𝑄⊙ is a weighted intersection space
^−1/2Y𝐻− 1

2 (Λ) ∩ ^
−1/2
⊙ 𝐻−1 (Λ) rather than 𝐻− 1

2 (Λ). This choice is fundamental for
the development of robust preconditioners, as will be discussed later on.

2.1 The stability of the continuous problem

We show well-posedness of the variational problem (6) in space 𝑋 = 𝑉 × 𝑉⊙ × 𝑄⊙
considered with its canonical norms by applying the abstract Brezzi theory [6]. To
this end, we let

𝐴 : (𝑉 ×𝑉⊙) → (𝑉 ×𝑉⊙)′, ⟨𝐴[𝑢, 𝑢⊙], [𝑣, 𝑣⊙]⟩𝑉×𝑉⊙ = 𝑎( [𝑢, 𝑢⊙], [𝑣, 𝑣⊙]),
𝐵 : (𝑉 ×𝑉⊙) → 𝑄′

⊙ , ⟨𝐵[𝑢, 𝑢⊙], 𝑞⊙⟩𝑄⊙ = 𝑏( [𝑢, 𝑢⊙], 𝑞⊙),

such that (6) can be equivalently stated as: Find 𝑥 = [𝑢, 𝑢⊙ , 𝑝⊙] ∈ 𝑋 such that

A𝑥 = 𝑓 in 𝑋 ′, A =

(
𝐴 𝐵′

𝐵 0

)
.
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The operator A : 𝑋 → 𝑋 ′ is then an isomorphism (equivalently, (6) is well posed)
provided that it satisfies the four Brezzi conditions, that is, the operators 𝐴 and 𝐵 are
bounded, 𝐴 is coercive on ker𝐵 ⊂ 𝑉 ×𝑉⊙ and 𝐵 satisfies the inf-sup condition.

Of the four Brezzi conditions required for the problem (6), the coercivity and
boundedness of 𝐴 were established in [27] in the setting required here (𝑉 × 𝑉⊙ are
the same and only 𝑄⊙ has changed) and will therefore not be repeated. Therefore,
we only need to verify the properties of the 𝐵 operator.

Theorem 1 𝑏(·, ·) : [𝑉,𝑉⊙] ×𝑄⊙ → R satisfies the following conditions:

𝑏( [𝑢, 𝑢⊙], 𝑞⊙) ≤ 𝐶𝐵∥ [𝑢, 𝑢⊙] ∥ [𝑉,𝑉⊙ ] ∥𝑞⊙ ∥𝑄⊙ , 𝑢 ∈ 𝑉, 𝑢⊙ ∈ 𝑉⊙ , 𝑞⊙ ∈ 𝑄⊙ , (7)

sup
[𝑢,𝑢⊙ ]∈ [𝑉,𝑉⊙ ]

𝑏( [𝑢, 𝑢⊙], 𝑞⊙)
∥ [𝑢, 𝑢⊙] ∥ [𝑉,𝑉⊙ ]

≥ 𝛽∥𝑞⊙ ∥𝑄⊙ , 𝑞⊙ ∈ 𝑄⊙ (8)

with positive constants 𝐶𝐵, 𝛽.

Proof We recall that owing to Dirichlet boundary conditions for 𝑢, 𝑢⊙ we have the
equivalence between the seminorms (induced by 𝐴) and the full 𝐻1 norms. In [27]
the following was established:

Y∥TΛ𝑢∥𝐻1/2 (Λ) ≤ 𝐶T ∥TΓY
𝑢∥𝐻1/2 (ΓY ) ≤ 𝐶∥𝑢∥𝐻1 (Ω) , ∀𝑢 ∈ 𝐻1 (Ω),

where constants𝐶T and𝐶 are independent from Y. Hence, the boundedness of 𝑏(·, ·)
can be obtained in a direct way as:

𝑏( [𝑢,𝑢⊙], 𝑞⊙) = Y⟨TΛ𝑢 − 𝑢⊙ , 𝑞⊙⟩Λ
≤ Y |⟨TΛ𝑢, 𝑞⊙⟩Λ | + Y |⟨𝑢⊙ , 𝑞⊙⟩Λ |
≤ ∥TΛ𝑢∥𝐻1/2 (Λ)Y∥𝑞⊙ ∥𝐻−1/2 (Λ) + Y∥𝑢⊙ ∥𝐻1 (Λ) ∥𝑞⊙ ∥𝐻−1 (Λ)

= ^1/2Y∥TΛ𝑢∥𝐻1/2 (Λ) ^
−1/2∥𝑞⊙ ∥𝐻−1/2 (Λ) + Y^

1/2
⊙ ∥𝑢⊙ ∥𝐻1 (Λ) ^

−1/2
⊙ ∥𝑞⊙ ∥𝐻−1 (Λ)

≤ ^1/2𝐶∥𝑢∥𝐻1 (Ω) ^
−1/2∥𝑞⊙ ∥𝐻−1/2 (Λ) + Y^

1/2
⊙ ∥𝑢⊙ ∥𝐻1 (Λ) ^

−1/2
⊙ ∥𝑞⊙ ∥𝐻−1 (Λ)

≤ 𝐶𝐵 (∥𝑢∥2
𝑉 + ∥𝑢⊙ ∥2

𝑉⊙
)1/2∥𝑞⊙ ∥𝑄⊙ .

Next, the inf-sup condition reads

sup
[𝑢,𝑢⊙ ]∈ [𝑉,𝑉⊙ ]

Y⟨TΛ𝑢 − 𝑢⊙ , 𝑞⊙⟩Λ
(∥𝑢∥2√

^𝐻1 (Ω) + Y2∥𝑢⊙ ∥2√
^⊙𝐻

1 (Λ) )
1/2

≥ 𝛽∥𝑞⊙ ∥𝑄⊙ .

We first note that (𝛼𝑋)′ = 𝛼−1𝑋 ′ holds for the dual of weighted Hilbert space.
In turn, let 𝑅1 be the Riesz map from ^

−1/2
⊙ 𝐻−1 to ^

1/2
⊙ 𝐻1 and 𝑅1/2 be the Riesz

map from ^−1/2𝐻−1/2 to ^1/2𝐻1/2. Then �̂�⊙ = − 1
Y
𝑅1𝑞⊙ implies that Y∥�̂�⊙ ∥√^⊙𝐻1 =

∥𝑞⊙ ∥^−1/2
⊙ 𝐻−1 . From [27], we also see that there exists a harmonic extension operator

𝐻 such that for �̂� = 𝐻𝑞⊙ , 𝑞⊙ ∈ 𝐻1/2. Letting 𝑞⊙ = 𝑅1/2𝑞⊙ we obtain 𝑞⊙ = TΛ�̂�

where ∥𝑞⊙ ∥√^𝐻1/2 = ∥𝑞⊙ ∥^−1/2𝐻−1/2 and
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∥�̂�∥𝐻1 (Ω) ≤ 𝐶𝐼𝑇Y∥𝑞⊙ ∥
𝐻

1
2 (ΓY )

= Y𝐶𝐼𝑇 ∥𝑞⊙ ∥
𝐻

− 1
2 (ΓY )

.

We note that the latter inequality, generally named the inverse trace inequality,
involves the generic constant 𝐶𝐼𝑇 that may possibly depend on the domain ΓY and
precisely on its cross section quantified by the (small) parameter Y. Hence, we obtain

sup
[𝑢,𝑢⊙ ]∈ [𝑉,𝑉⊙ ]

Y⟨TΛ𝑢 − 𝑢⊙ , 𝑞⊙⟩Λ
(∥𝑢∥2√

^𝐻1 (Ω) + Y2∥𝑢⊙ ∥2√
^⊙𝐻

1 (Λ) )
1/2

≥ Y⟨TΛ�̂� − �̂�⊙ , 𝑞⊙⟩Λ
(∥�̂�∥2√

^𝐻1 (Ω) + Y2∥�̂�⊙ ∥2√
^⊙𝐻

1 (Λ) )
1/2

≥
Y(⟨𝑅1/2𝑞⊙ , 𝑞⊙⟩ + ⟨ 1

Y
𝑅1𝑞⊙ , 𝑞⊙⟩)

(𝐶𝐼𝑇Y
2∥𝑞⊙ ∥2

^−1/2𝐻−1/2 (Λ) + ∥𝑞⊙ ∥2
^
−1/2
⊙ 𝐻−1 (Λ)

)1/2
≥ 𝛽∥𝑞⊙ ∥𝑄⊙ .

□

It should be noted that a proper choice of weighted-intersected Sobolev spaces
has led to the removal of any explicit dependence of the inf-sup constant 𝛽 on ^, ^⊙
and Y. On the other hand, caution is needed as, through the possible dependence of
𝐶𝐼𝑇 on Y, the radius may influence 𝛽, and in turn the robustness of the estimates in
Y.

2.2 Numerical evidence about preconditioning the mixed-dimensional
problems

The exploitation of iterative solvers, such as Krylov methods, is crucial to obtain fast
solution algorithms for the discretized problems, yet, their performance essentially
depends on the existence of a (practical) preconditioner which improves the spectral
properties of the linear systems [44]. In constructing preconditioners for the 3d-1d-
problems, a main objective is to establish a parameter robustness preconditioner,
i.e. a preconditioner with performance that does not deteriorate with respect to
discretization parameters (mesh and element sizes), variations in material parameters
(^ > 0, ^⊙ > 0) as well as the geometrical parameter Y, crucial for 3d-1d problems.
As an example, in the context of 3d-1d microcirculation model (5), the radius of
the vessel appears explicitly and implicitly in the 3d-1d problem formulation, as the
residue of the link between the three-dimensional topology and the one-dimensional
one. Then it must be taken into account.

Here we wish to construct robust preconditioners for the coupled 3𝑑-1𝑑 problem
(6) which induces an operator equation: Find 𝑥 = [𝑢, 𝑢⊙ , 𝑝⊙] ∈ 𝑋 such that

A𝑥 = 𝑓 in 𝑋 ′, A :=
©«
−^Δ YTΛ

′

−^⊙Y2ΔΛ −Y𝐼
YTΛ −Y𝐼 0

ª®®¬ , (9)
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where, for a one-dimensional manifold as Λ, the operator ΔΛ is equivalent to the
second derivative in the direction tangent to Λ, previously denoted as 𝑑2

𝑠 .
To establish preconditioners, we follow the framework of operator precondition-

ing [34]. That is, having shown stability of (6) we define the preconditioner as a
Riesz map B : 𝑋 ′ → 𝑋 with respect to inner products/norms in which the problem
was shown to be well-posed. In turn, the framework relates the conditioning of the
(preconditioned) operator BA : 𝑋 → 𝑋 to the stability constants of the Brezzi
theory. More precisely, independence of the constants with respect to a particular
problem parameter translates to robustness of the preconditioner (in the said pa-
rameter variations). Note that in case of (6), the critical Brezzi constants are 𝐶𝐵

and 𝛽 related to the boundedness and inf-sup condition of the bilinear form 𝑏, cf.
Theorem 1. We remark that to obtain a robust discrete preconditioner, stable dis-
cretization is required in addition to well-posedness of the continuous problem. In
particular, the Brezzi constants of the discretized problem must be independent of
the discretization parameter.

Applying operator preconditioning, the analysis of well-posedness in [27] and
Theorem 1 yields two different preconditioners for (9). Here, a key difference is the
construction of the multiplier space, as [27] considers 𝐻−1/2 (Λ). However, this space
does not lead to robust algorithms as we shall demonstrate next. In fact, intersection
spaces of Theorem 1 will be needed to obtain robustness in the material parameters.
At the same time, at the end of this work it will become clear that the radius Y, as
a parameter, plays a special and critical role in the robustness of a preconditioner
originating from Theorem 1.

2d-1d preconditioning example

Let us illustrate the challenges of developing a robust preconditioner for mixed-
dimensional equations using a 2𝑑 analogue of (9) where we let Λ = ΛY be a closed
curved contained in the interior of Ω ⊂ R2, cf. Figure 2. Here, the coupling between
the problem unknowns defined on Ω and Λ shall be realized by the standard 2𝑑-1𝑑
trace operator leading to the coupled problem: Find 𝑦 = [𝑢, 𝑢⊙ , 𝑝⊙] ∈ 𝑌 such that

A𝑦 = 𝑓 in 𝑌 ′, A =
©«
−Δ TΛ′

−^⊙ΔΛ −𝐼
TΛ −𝐼 0

ª®¬ . (10)

Note that (10) is structurally similar to the 3𝑑-1𝑑 coupled problem (9). However,
for simplicity, the model 2𝑑-1𝑑 problem contains only a single parameter, ^⊙ > 0,
whose value can be (arbitrarily) large or small. We also recall that Λ is closed,
and thus, in order to have an invertible operator on the whole of 𝐻1 (Λ), we set
−ΔΛ = −ΔΛ + 𝐼 in this section. We finally remark that in (9) the Laplacian on Λ is
invertible due to boundary conditions imposed on 𝜕Ω⊖ outside the coupling surface.

Following [29] where (10) has been shown to be well-posed with 𝑌 = 𝐻1
0 (Ω) ×

𝐻1 (Λ) × 𝐻−1/2 (Λ) we shall construct preconditioners as Riesz maps with respect
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Fig. 2 (Left) Geometrical setting of the 2d-1d problem (13). Domain Λ𝜖 plays similar role to the
centerline in 3d-1d system (5). (Right) In the experiments triangulation of Ω conforms to Λ.

to two different inner products on 𝑌 leading to operators

B0 =
©«
−Δ

−^⊙ΔΛ

−Δ−1/2
Λ

ª®¬
−1

, B1 =
©«
−Δ

−^⊙ΔΛ

−Δ−1/2
Λ

− ^−1
⊙ Δ−1

Λ

ª®¬
−1

. (11)

Here B0 stems from the analysis in [29] and can be seen to be analogous to the
Riesz map preconditioner established in [27] for the coupled 3𝑑-1𝑑 problem (9). In
particular, the multiplier block of the preconditioner is a Riesz map of 𝐻−1/2 (Λ)
and is independent of the parameter ^⊙ . On the other hand, with B1 the multiplier is
sought in the intersection space 𝐻−1/2 (Λ) ∩ ^

−1/2
⊙ 𝐻−1 (Λ), cf. Theorem 1.

We shall compare the two preconditioners in terms of their spectral condition
numbers defined as the ratio between the largest and smallest in magnitude eigen-
values of the problem: Find 𝑦 ∈ 𝑌 , _ ∈ R

A𝑦 = _B−1
𝑖 𝑦 in 𝑌 ′. (12)

To assess robustness of the preconditioners we consider the generalized eigenvalue
problem (12) for different values of 10−8 ≤ ^⊙ ≤ 108 and refinements of the domain
Ω = (−1, 1)2 with ΓY = {𝑥 ∈ Ω, |𝑥 | = 0.1}. We then discretize the problem by
continuous linear Lagrange elements (P1) where the finite element mesh of Ω always
conforms to Λ, cf. Figure 2.

Before addressing the preconditioners, let us briefly comment on the approxima-
tion property of the chosen discretization. To this end we note that (10) is associated
with a system

−Δ𝑢 = 𝑓 in Ω,

−^⊙ΔΛ𝑢⊙ − [[∇𝑢]] · a = 𝑓⊙ on Λ,

𝑢 − 𝑢⊙ = 𝑔 on Λ

(13)

which is here supplied with homogeneous Dirichlet boundary conditions for 𝑢, 𝑢⊙
on 𝜕Ω and 𝜕Λ respectively. Here, [[·]] is the jump operator on Λ, [[𝑣]] = 𝑣+ − 𝑣− ,
defined with respect to the normal vector on the curve which points from the positive
to the negative side.
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Using (13) we measure the convergence of the discrete approximations 𝑢ℎ, 𝑢⊙,ℎ,
𝑝⊙,ℎ in the norms induced by the (symmetric and positive definite) operator B−1

1 .
Here, the linear systems stemming from discretization1 by P1 are solved with a
preconditioned MinRes solver using the relative tolerance of 10−10, see also Figure 6.

The approximation errors obtained are plotted in Figure 3, which, for all the
values of ^⊙ , shows linear convergence in the respective 𝐻1-norms for the error
in 𝑢 and 𝑢⊙ . Quadratic convergence can be seen for the multiplier in the norm of
the intersection space 𝐻−1/2 (Λ) ∩ ^

−1/2
⊙ 𝐻−1 (Λ). Without including the results, we

remark that the intersection norm is essential for obtaining robust approximation. In
particular, we observed that measuring convergence in only the 𝐻−1/2-norm yields
quadratic convergence for large values of ^⊙ while for small values the rate drops to
linear.

2−10 2−9 2−8 2−7 2−6 2−5

10−1

100

h

h

∥u
−
u
h
∥ H

1
(Ω

h
)

−8

−4

−2

0

2

4

8
log10 κ⊙

2−10 2−9 2−8 2−7 2−6 2−5

10−2

10−1

h

h

∥u
⊙
−
u
⊙
,h
∥ H

1
(Λ

h
)

−8

−4

−2

0

2

4

8
log10 κ⊙

2−10 2−9 2−8 2−7 2−6 2−5

10−8

10−6

10−4

10−2
h2

h2

h

∥p
⊙
−
p ⊙

,h
∥ H

−
1
/
2
(Λ

h
)∩

κ
−
1
/
2

⊙
H

−
1
(Λ

h
)

−8

−4

−2

0

2

4

8
log10 κ⊙

Fig. 3 Approximation errors of P1 discretization of (10) for different values of ^⊙ .

Having verified the discretization scheme (and our implementation), we return
to preconditioning and stability of the eigenvalue problem (12). We summarize the
results in Figure 4 and Figure 5 that show the extrema, that is, the minimum and
maximum absolute values of the eigenvalues _ℎ of the discretized problem (12).
We note that the bounds are plotted together with their sign which carries relevant
information related e.g. to the discrete inf-sup or coercivity conditions.

Using B0, the extremal eigenvalues of (12) are displayed in Figure 4. We observe
that for each ^⊙ the quantities are bounded in ℎ verifying the stability of the discrete
problem with P1 elements and the norm induced on 𝑌 by B−1

0 , see [29]. However,
there is an apparent growth of the largest eigenvalue in magnitude as ^⊙ becomes
small. As such, B0 does not produce a robust parameter solver. On the other hand, the
preconditioner B1 yields spectral bounds that are stable in ^⊙ and mesh refinement.
We note that for small ^⊙ the observed upper and lower bounds are close to their
theoretical values [36, 43] of (1 +

√
5)/2 and (1 −

√
5)/2 respectively. This is due

to the multiplier norm being then dominated by the matrix of the 𝐻−1-inner product
such that the discrete preconditioner (which computes −Δ−1

Λ
by LU decomposition)

is close to being the exact Schur complement preconditioner.
To illustrate how conditioning translates into performance of iterative solvers,

Figure 6 reports the iteration counts of the MinRes solver using the two precondi-
tioners (11). Here, we reuse the setup of the previous eigenvalue experiments while

1 In all the presented numerical examples FEniCS[33]-based module FEniCSii[26] was used to
discretize the coupled problems.
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Fig. 4 Performance of preconditioner B0 from (11) for problem (10) with varying ^⊙ . Here
Ω = (−1, 1)2, ΓY is a circle of radius Y = 0.1. All finite element spaces are discretized by P1
elements. The preconditioner does not produce ^⊙-bounded condition numbers.

103 104 105

−0.6

−0.5

−0.4

−0.3

−0.2

System size

si
gn

ed
m
in
|λ

h
|

−8

−4

−2

0

2

4

8
log10 κ⊙

103 104 105

1.4

1.5

1.6

System size

si
gn

ed
m
ax

|λ
h
|

−8

−4

−2

0

2

4

8
log10 κ⊙

Fig. 5 Performance of preconditioner B1 from (11) for 2𝑑-1𝑑 coupled problem (10) with varying
^⊙ . Setup as in Figure 4. The preconditioner is robust in ^⊙ and in mesh size.

the right-hand side 𝑓 in (10) is based on the manufactured solution setup described
above. For each value of ^⊙ and the mesh size, the solver starts from 0 initial guess
and ends once the preconditioned residual norm is reduced by factor 1010. Both
preconditioners are computed exactly using LU for the two leading blocks, while
the multiplier block, in particular the fractional term −Δ−1/2

Λ
is realized via spectral

decomposition2, see [29] for a precise definition.
In Figure 6 it can be seen that for large values of ^⊙ both preconditioners yield

iterations which are stable in mesh refinement. However, for small values, that is,
when the term ^−1

⊙ Δ−1
Λ

becomes large, B0 shows a dependence on the parameter. We
conclude that the intersection space exploited in the definition of B1 is crucial for
parameter robustness.

2 Spectral decomposition is not suitable for practical applications because of its cubic scaling.
However, Riesz maps at intersections of fractional-order Sobolev spaces can be approximated with
optimal complexity by rational approximations [7].
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Fig. 6 Convergence of (11)-preconditioned MinRes solver for the problem (10) with varying ^⊙ .
Only the preconditioner B1 (right) reflecting 𝑝⊙ ∈ 𝐻−1/2 ∩ ^

−1/2
⊙ 𝐻−1 is parameter robust. Setup

as in Figure 4.

3 Definition of a preconditioner for the 3d-1d problem:
performances and drawbacks

At this point let us return to the original coupled 3𝑑-1𝑑 problem (9) that we shall
now consider with a preconditioner

B =
©«
−^Δ

−^⊙Y2ΔΛ

− Y2

^
Δ
−1/2
Λ

− ^−1
⊙ Δ−1

Λ

ª®¬
−1

, (14)

i.e. the Riesz operator associated to the inner product of the space in which well-
posedness of (9) was shown in Theorem 1. We note that for the approximate inversion
of the diagonal blocks of (14), optimal algorithms are widely recognized in numerous
instances, such as multigrid, domain decomposition, and Fast Fourier Transform
(FFT) methods, particularly for standard Riesz maps in 𝐻1, 𝐻 (div), 𝐻 (curl), etc.
Given the widespread recognition of these methods in the field, providing references
might be superfluous as these concepts are generally well established and well known.
Moreover, recent developments have extended optimal algorithms to encompass
fractional operators, broadening the applicability and efficiency of these numerical
strategies [2, 16, 5, 8].

In order to test (14) we consider cylindrical domains Ω⊕ , Ω⊖ each with height 1
and radii of 0.5 and Y respectively. Following [27] we discretize Ω = Ω⊕ ∪ Ω⊖ so
that the mesh conforms both to the interface ΓY and the centerline Λ, see Figure 7.
We remark that the conformity assumption was used in [27] to show stability of the
discrete problem with P1 elements (used below). At the same time, the assumption
leads to greatly refined meshes in the vicinity of ΓY . It also increases the cost of
mesh generation and, due to the size of the resulting system, restricts3 the type of

3 As an example, for radius Y = 1 · 10−2 the finest mesh considered contained roughly 11 million
tetrahedra. Using P1 elements, the number of 3𝑑 unknowns is then ∼2 million, while the multiplier
space has ∼2 thousand degrees of freedom.
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experiments we can perform (on our serial computational setup). In the following we
shall thus limit the computational study only to robustness of iterative methods. We
note that stable discretization of (14) is also possible if the mesh of Ω is independent
of Λ and Γ, cf. [27]. However, we argue that the conforming setup is simpler and
more transparent.

Fig. 7 Computational mesh considered in experiments for the coupled 3𝑑-1𝑑 problem (14). Here
Y = 2 · 10−3. The mesh of Ω conforms to the centerline Λ and to the coupling surface ΓY leading to
high refinement near Λ (the edges of the mesh elements are colored light blue). (Right) The virtual
surface used to calculate TΛ is rendered in dark blue color.

In Figure 8 we report on the convergence of the MinRes solver using the pre-
conditioner (14) for the 2 · 10−3 ≤ Y ≤ 10−1 and two-parameter regimes. Here,
the action of the leading block −^Δ−1 of (14) is approximated in terms of (i) a
single V-cycle of algebraic multigrid (AMG) and (ii) 10 steps of the preconditioned
conjugate gradient (PCG) method using AMG as preconditioner. The remaining two
blocks of (14) are computed by LU factorization. We remark that choice (i) is more
practical, while with (ii) the preconditioner is almost exact as the absolute residual
norm after the 10 PCG steps is typically < 10−15 in our case. With the case (ii) we
thus aim to ensure that the effects of parameter variations on MinRes convergence
are (mostly) due to the construction of the multiplier preconditioner. In both cases,
the convergence criterion for the MinRes solver requires reducing the preconditioned
residual norm by a factor 1010. Finally, the coupling operator TΛ is approximated
using a Legendre quadrature of degree 20.

Taking into account the results in Figure 8 we observe that the performance of
the preconditioner differs dramatically between the two regimes. When ^ = 108,
^⊙ = 10−8, such that the 𝐻−1-term can dominate the multiplier block in B, the
iteration counts are practically independent of Y. Note that here only the construction
(i) for the leading block is considered, as it already yields low enough iterations.
On the other hand, with ^ = 10−8, ^⊙ = 108 the solver performance deteriorates
for small radii. This is true for the construction (i) which, for the different radii
Y ∈

{
1 · 10−1, 5 · 10−2, 1 · 10−2, 5 · 10−3, 2 · 10−3} and the finest refinement levels,
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yields the iteration counts of 37, 44, 58, 71, 100 as well as for (ii) where convergence
is reached respectively after 28, 31, 40, 46, 68 iterations.

The unbounded iterations, in particular with preconditioner (ii), bring into ques-
tion the stability of the coupled 3𝑑-1𝑑 problem (9) with preconditioner (14) and
in particular the intersection space 𝑄⊙ for the multiplier. The lack of robustness
is surprising, as it suggests that radius Y in (9) does not behave as a standard ma-
terial parameter in the sense that the corresponding weighting in the (appropriate)
intersection space does not yield robustness with respect to its variations. However,
this result may be qualitatively justified on the basis of stability analysis, where we
noticed the influence of the constant𝐶𝐼𝑇 on the inf-sup condition. In the next section,
we will show that 𝐶𝐼𝑇 may depend on Y, which may explain the findings in Figure 8.
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Fig. 8 Performance of preconditioner (14) for the coupled 3𝑑-1𝑑 problem (9) and varying radius.
(Left) We set ^ = 108, ^⊙ = 10−8. (Right) We set ^ = 10−8, ^⊙ = 108. The leading block
of the preconditioner uses single AMG V-cycle (◦ markers) or 10 PCG iterations with AMG
preconditioner (× markers). The remaining blocks are realized by LU.

Varying radius in 2d-1d preconditioning example

In order to gain more insight into the observation that in the 3𝑑-1𝑑 setting of (9) the
multiplier preconditioner reflecting the intersection space ^−1/2Y𝐻−1/2 ∩ ^

−1/2
⊙ 𝐻−1

did not lead to robustness, let us return to the 2𝑑-1𝑑 operator (10). Next, we investigate
the properties of the preconditioner B1 when Y varies. We recall that B1 was found
to be robust with respect to the material parameters.

Using the previous experimental setup, Figure 9 shows the performance of the
preconditioner when ^⊙ = 1010 and Y ≤ 10−1. Here, by choosing a large ^⊙ we
wish to put emphasis on the fractional part of the multiplier preconditioner, which,
analogously to Theorem 1, brings the inverse trace constant into the Brezzi estimates.
In Figure 9 we observe that while the largest eigenvalues are bounded in Y, the
smallest in magnitude eigenvalue approaches 0 as ΛY shrinks. We note that for all
Y the two eigenvalue bounds are stable in mesh size ℎ. In the figure, we further
report convergence history of the MinRes solver (run with the same settings as in
the previous experiments). We observe that for small radii the iteration counts grow
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rapidly with initial mesh refinement before decreasing back on finest meshes, cf.
bounded iterations with mesh refinement in Figure 6. However, the limit Y → 0 does
not seem to affect the iterative solver as clearly as blow-up of the condition number,
cf. min|_ℎ | in Figure 9. We attribute this behavior to the specific choice of the right-
hand side and 0 initial guess in our numerical setup. However, the sensitivity to the
radius furthers our claim of the special role of Y in understanding the robustness of
the preconditioner.
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Fig. 9 Performance of preconditioner B1 in (11) for problem (10) with ^⊙ = 1010, Ω = (−1, 1)2,
ΓY is a circle of radius 10−5 ≤ Y ≤ 10−1. All finite element spaces are discretized by P1 elements.
(Left, center) The conditioning deteriorates with Y as the largest in magnitude eigenvalue (12) is
bounded in the parameter while the smallest in magnitude eigenvalue decreases with Y. (Right) For
small radii the iterations are not stable (the maximum number of allowed iterations is set to 400).

4 The role of the inner radius on mixed-dimensional problems

As discussed in the previous sections, it has been observed that the robustness of
the preconditioner (14) decreases as the inner radius of the inclusion approaches
zero. This behavior is not limited to the 3𝑑-1𝑑 preconditioner formulation but is also
evident in the 2𝑑-1𝑑 examples. Consequently, it suggests that the detrimental effect
of Y is not the result of the dimensional reduction technique itself, but rather inherent
in the mathematical structure of the problem.

Specifically, the dependence on Y is manifested in the constant of the inf-sup
stability property. The analysis in Theorem 1 reveals that the boundedness constant
𝐶𝐵 of the bilinear form 𝑏 remains independent of the inner diameter. However, the inf-
sup constant 𝛽 is not guaranteed to be independent of Y as the presence of the inverse
trace constant 𝐶𝐼𝑇 introduces questions regarding its independence from the inner
radius. The inverse trace theorem, a well-established result in functional analysis,
provides insight into this matter (see, for example, [46], [37], [32]). However, deriving
an accurate bound for 𝐶𝐼𝑇 is a challenging task, particularly when considering a
parameterized domain.

In this section, our objective is to investigate the relationship between the inf-sup
constant 𝛽 and the parameter Y, which is closely associated with the inverse trace
constant 𝐶𝐼𝑇 . To accomplish this, we analyze a simplified yet significant scenario
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that allows us to elucidate the connection between the inf-sup constant and the inner
radius.

4.1 The 2𝒅-1𝒅 formulation for the perforated domain problem

Consider a generalized cylindrical vessel immersed in a three-dimensional domain
Ω. The surface of the vessel is indicated by ΓY , where Y indicates the radius of
the cylinder. We are interested in studying how the mathematical structure of the
problem behaves when Y → 0. A straightforward approach can be to select a slice
of Ω, here denoted by the superscript ”∗”, such that we obtain a domain Ω∗, where
the curve Γ∗

Y is the restriction of ΓY on the slice, see Figure 10. Clearly, diamΓ∗
Y

depends on Y. In turn, studying the effects of shrinking diamΓ∗
Y in Ω∗ (a 2𝑑-1𝑑

system) is representative of the effects of the decreasing vessel / inner radius. The
underlying assumption is the complete decoupling of the radius influence from
the axial direction, which seems reasonable when considering a cylindrical setting.
Indeed, inspecting the expression of the Laplacian in cylindrical coordinates

Δ =
1
𝜌

𝜕

𝜕𝜌

(
𝜌
𝜕

𝜕𝜌

)
+ 1
𝜌2

𝜕2

𝜕𝜙2 + 𝜕2

𝜕𝑧2

corroborates the assumption: 𝜌 (and in turn Y) does not appear in the axial derivative
part. From now until the end of this section, the superscript ”∗” will be omitted, so

Fig. 10 (Left) Pictorial representation of a vessel with radius Y, centerline Λ and boundary ΓY

immersed in a three-dimensional domain Ω. By cutting a slice of Ω, we obtain the two-dimensional
domain Ω∗ with boundary 𝜕Ω∗ and circular inclusion in one-dimensional Γ∗

Y . (Right) Pictorial
representation of the slice domain Ω∗.
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that Ω and 𝜕Ω will refer respectively to the 2𝑑 sliced domain and its outer boundary.
Moreover, ΓY will denote the closed one-dimensional curve embedded in Ω∗.

Let us consider the following Y-dependent Poisson problem defined in Ω:

−Δ𝑢 = 0 on Ω,

𝑢 |ΓY
= 𝑔 on ΓY ,

𝑢 = 0 on 𝜕Ω,

(15)

where ΓY ∩ 𝜕Ω = ∅ and 𝑢 is a two-dimensional scalar field defined on Ω. Now
consider a mixed weak formulation of (15), where the boundary condition on ΓY

is weakly enforced by a Lagrange multiplier to allow the mathematical structure of
(15) to mirror the 3𝑑-1𝑑 problem. The variational problem reads:

(∇𝑢,∇𝑣)Ω + (𝑝⊙ ,T 𝑣)ΓY
= 0 ∀𝑢, 𝑣 ∈ 𝐻1

0 (Ω)
(T𝑢, 𝑞⊙)ΓY

= (𝑔, 𝑞⊙)ΓY
∀𝑝⊙ , 𝑞⊙ ∈ 𝐻−1/2 (ΓY)

. (16)

Note that the solution operator A of (16) has the following block structure

A =

(
𝐴 𝐵′

𝐵 0

)
, ⟨𝐴𝑢, 𝑣⟩Ω =

∫
Ω

∇𝑢 · ∇𝑣, ⟨𝐵𝑢, 𝑞⊙⟩ΓY
=

∫
ΓY

𝑝⊙𝑣.

The question we will address next is that of the well-posedness of the variational
formulation (16) when Y → 0. In the framework of saddle-point problems, the
boundedness of the bilinear forms 𝑎, 𝑏 in the case of (16) can be easily established
with the respective constants equal to 1. Regarding the existence of the Brezzi inf-sup
constant 𝛽, a straightforward proof will make use of the following theorem [46]:

Theorem 2 (Inverse Trace Theorem) Given the necessary smoothness assumption
for Ω, the trace operator T : 𝐻1 (Ω) → 𝐻1/2 (ΓY) has a continuous right inverse
operator

E : 𝐻1/2 (ΓY) → 𝐻1 (Ω)

satisfying TE𝑤⊙ = 𝑤⊙ for all 𝑤⊙ ∈ 𝐻1/2 (ΓY) as well as

∥E𝑤⊙ ∥𝐻1 (Ω) ≤ 𝐶𝐼𝑇 ∥𝑤⊙ ∥𝐻1/2 (ΓY ) ∀𝑤⊙ ∈ 𝐻1/2 (ΓY).

Then, by taking 𝑣 = E𝑣𝑞⊙ , where, by 𝑣𝑞⊙ , we intend an element of 𝐻1/2 (ΓY) such
that the following Riesz mapping properties hold

⟨𝑣𝑞⊙ , 𝑤⊙⟩𝐻1/2 (ΓY ) = (𝑞⊙ , 𝑤⊙)ΓY
and ∥𝑣𝑞⊙ ∥𝐻1/2 (ΓY ) = ∥𝑞⊙ ∥𝐻−1/2 (ΓY ) ,

we obtain that

sup
𝑣∈𝐻1

0 (Ω) ,𝑣≠0

(T 𝑣, 𝑞⊙)ΓY

∥𝑣∥𝐻1
0 (Ω)

≥
(𝑣𝑞⊙ , 𝑞⊙)ΓY

∥E𝑣𝑞⊙ ∥𝐻1
0 (Ω)

=
⟨𝑣𝑞⊙ , 𝑣𝑞⊙ ⟩𝐻1/2 (ΓY )
∥E𝑣𝑞⊙ ∥𝐻1

0 (Ω)
≥ 1

𝐶𝐼𝑇

∥𝑣𝑞⊙ ∥𝐻1/2 (ΓY ) .
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What is apparent from the above calculation is, again, the structural relationship
between the existence of the inf-sup constant 𝛽, and the inverse trace inequality
constant 𝐶𝐼𝑇 i.e 𝛽 = 1/𝐶𝐼𝑇 . This suggests (and is what we want to uncover) a tight
relationship between 𝛽 and the inner radius using the trace inequality constant 𝐶𝑇 .
Indeed, from Lemma 2.2 in [24], the influence of Y is made clear:

Lemma 1 (Lemma 2.2 in [24]) Let 𝐵Y ⊂ R2 be a circle with a sufficiently small
radius Y and 𝑣 ∈ 𝐻1

0 (Ω). Then we have:

∥T 𝑣∥𝐿2 (𝜕𝐵Y ) ≤ 𝐶𝑇 ∥𝑣∥𝐻1
0 (Ω) = 𝐶

√︁
Y | log Y | ∥𝑣∥𝐻1

0 (Ω) (17)

with 𝐶 positive and independent of Y.

Considering that the extension operator, E, is the right inverse of the trace, T ,
the following claim is proposed: the radius of the vessel Y directly affects the inf-
sup constant 𝛽 through the constant of the inequality of the trace 𝐶𝑇 . This claim
sounds reasonable if one considers that 𝛽 directly characterizes the lower bound of
the bilinear form 𝑏, which strongly depends on the trace operator; moreover, it is
corroborated by the fact that 𝛽 = 1/𝐶𝐼𝑇 so that, assuming a relation between the
trace inequality and the inverse trace one, we find that Y directly affects 𝛽. However,
to prove the claim, it would be required to track in detail the exact expression of
𝐶𝐼𝑇 , thus obtaining a direct link between 𝛽 and Y. Establishing such an analytical
expression for 𝐶𝐼𝑇 can be a very intricate task, especially when the domain size
needs to be considered as a parameter. Nevertheless, we can rely on numerical anal-
ysis and employ the computability of the constants in a discretized setting, as follows.

Brezzi inf-sup constant evaluation. Let 𝑉 = 𝐻1
0 (Ω), 𝑄 = 𝐻−1/2 (ΓY) and ∥·∥𝑉

be the 𝐻1
0-norm (induced by the operator 𝐴) while ∥ · ∥𝑄 shall be the 𝐻

−1/2
Γ

-norm
induced by the fractional operator 𝑁 := (−Δ + 𝐼)−1/2 (where both terms are un-
derstood to be defined in ΓY). Consider now a family (𝑉ℎ, 𝑄ℎ) of discretization of
(𝑉, 𝑄) characterized by the following discrete Brezzi inf-sup constant.

sup
𝑣∈𝑉ℎ ,𝑣≠0

𝑏(𝑣, 𝑞⊙)
∥𝑣∥𝑉ℎ

≥ 𝛽ℎ∥𝑞⊙ ∥𝑄ℎ
∀𝑞⊙ ∈ 𝑄ℎ . (18)

If (𝑉ℎ, 𝑄ℎ) is a stable discretization i.e. both the discrete Brezzi inf-sup and coer-
civity constants are bounded from below by a constant which is independent from ℎ

[1], [42]:
{𝛽ℎ}ℎ→0 ≥ 𝛽 > 0, (19)

then an approximation of 𝛽 can be obtained by considering the truncated limit
{𝛽ℎ}ℎ→𝛿 , for 𝛿 sufficiently small. For the purpose of computing 𝛽ℎ, we recall the
following lemma of Qin [41]:

Lemma 2 (Qin [41]) Given a stable discretization (𝑉ℎ, 𝑄ℎ) for the saddle point
problem (16), consider the following generalized eigenvalue problem: Find _ ∈ R,
0 ≠ (𝑢, 𝑝⊙) ∈ 𝑉ℎ ×𝑄ℎ such that
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⟨𝑢ℎ, 𝑣⟩𝑉 + 𝑏 (𝑣, 𝑝⊙) + 𝑏 (𝑢ℎ, 𝑞⊙) = −_ ⟨𝑝⊙ , 𝑞⊙⟩𝑄 ∀(𝑣, 𝑞⊙) ∈ 𝑉ℎ ×𝑄ℎ . (20)

Then, _ ≥ 0 and 𝛽 ≈ 𝛽ℎ =
√
_min .

In the framework of the problem (16), the eigenvalue problem can be resolved in the
following form involving the Schur complement of A: Find 𝑝⊙ ∈ 𝑄ℎ, _𝐵 > 0 such
that4

𝐵𝐴−1𝐵′𝑝⊙ = _2
𝐵𝑁𝑝⊙ in 𝑄′

ℎ . (21)

Here, the subscript 𝐵, which stands for “Brezzi”, has been introduced for clarity of
notation, as will become clear soon. In particular, for stability of the discrete problem
(16), _min

𝐵
= min_𝐵, _max

𝐵
= max_𝐵 shall be independent of the mesh size ℎ. We

remark that in this framework _min
𝐵

≈ 𝛽.

Trace constant evaluation. Let us consider the eigenvalue problem defined on the
domain in Figure 10, which reads as follows:

−Δ𝑢 = 0 in Ω ⊂ R2,

∇𝑢 · a = _−2
𝑆 𝑢 on ΓY ,

𝑢 = 0 on 𝜕Ω,

(22)

where a is the unit normal to ΓY . We remark that (22) is a variant of the Steklov
eigenvalue problem. For rigorous mathematical treatment of (22) we refer to e.g.
[20] and references therein.

The weak formulation of (22), leads to the generalized eigenvalue problem: Find
𝑢 ∈ 𝐻1

0 (Ω), _𝑆 > 0 satisfying∫
ΓY

𝑢𝑣 = _2
𝑆

∫
Ω

∇𝑢 · ∇𝑣 ∀𝑣 ∈ 𝐻1
0 (23)

so that, _max
𝑆

allows for estimates of the 𝐿2 (ΓY)-norm of 𝑢 in terms of the 𝐻1
0 (Ω)-

norm. Indeed, we have ∥𝑢∥𝐿2 (ΓY ) ≤ _max
𝑆

∥𝑢∥𝐻1
0
(Ω) for all 𝑢 ∈ 𝐻1

0 (Ω).
Once the eigenvalue problems (20), (22) are properly discretized (from now on,

the subscript ℎ will denote the discretized analogues of a given quantity; subscript
Y𝑖 will denote a quantity evaluated on a domain with inner/inclusion radius equal
to Y𝑖), the numerical tools for the evaluation of the inf-sup constant 𝛽 and the trace
inequality constant 𝐶𝑇 are readily established. Therefore, we can proceed with the
investigation of the influence of Y in the mathematical framework considered.

The research path is summarized in Figure 11. Due to the analytical difficulty in
the evaluation of the role of the inner radius in the inverse trace constant 𝐶𝐼𝑇 , and

4 Though it is _2
𝐵

that is the eigenvalue of (21) we shall in the following, with a slight abuse of
notation, refer to max_𝐵 = _max

𝐵
, min_𝐵 = _min

𝐵
as the eigenvalue bounds, extremal eigenvalues

or simply eigenvalues. This choice is intended to simplify the notation and avoid proliferation of √
in the text. A similar convention will be applied also to the Steklov eigenvalue problems (22) and
(26).
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its relationship with the trace constant, we shift our inquiry to a discretized setting
and the discrete eigenvalue problems. What will be done is a concomitant evaluation
of {𝛽ℎ,Y𝑖 }Y𝑖∈𝐼 and {𝐶𝑇ℎ,Y𝑖

}Y𝑖∈𝐼 , where 𝐼 = {Y0, Y1, ..., Y𝑛} and Y0 > Y1 > ... > Y𝑛

with Y𝑛 ≪ 1. Then, if there is some noticeable correlation between _min
𝐵

and _max
𝑆

exists, then it also holds for {𝛽ℎ,Y𝑖 } and {𝐶𝑇ℎ,Y𝑖
} (by means of (20), (21)) so that we

can find numerical evidence to support our claim.

Fig. 11 Pictorial representation of the path followed in the analysis of the role of Y on 𝛽. Thanks to
the evaluation of the eigenvalues of problems (21) and (22), a relation can be established between
_min
𝐵

and _max
𝑆

. Then, by virtue of equations (17) (23) (represented by the purple arrows) bridging
the discrete setting to the continuous one, we can close the loop and determine a relation between
the Brezzi inf-sup constant 𝛽 and the inner radius Y.

4.2 Numerical results about the 2𝒅-1𝒅 formulation

Here we summarize the numerical experiments concerning the evaluation of {𝛽ℎ,Y𝑖 }
and {𝐶𝑇ℎ,Y𝑖

} with varying Y𝑖 ∈ 𝐼 = {10−1, ..., 10−5}. For simplicity we shall
first limit the investigations to Ω = {𝑥 ∈ R2, |𝑥 | < 1}, a circular inclusion
ΓY = {𝑥 ∈ Ω, |𝑥 | = Y} and P1 discretization.

In Figure 12 we demonstrate that our choice of norms and finite element spaces
yields a stable problem. More precisely, we observe that both the upper and lower
bounds on the Schur complement spectra are stable in mesh refinement for each
fixed Y. Moreover, _max

𝐵
appears to be bounded in the radius of ΓY , cf. Theorem 1.

On the other hand, _min
𝐵

seems to decrease together with Y.
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Fig. 12 (Left) Mesh convergence of the extremal eigenvalues of Schur complement (21) for Ω =

{𝑥 ∈ R2, |𝑥 | < 1}, ΓY = {𝑥 ∈ Ω, |𝑥 | = Y}. Both spaces 𝑉 and 𝑄 are discretized by P1 elements.
For each Y a sequence of problems is considered on uniformly refined meshes starting from size
ℎ0 ≥ ℎ𝑙 ≥ ℎmin leading to eigenvalues _𝐵,ℎ𝑙

.

We now propose that _min
𝐵

is closely related to the Steklov eigenvalue problem
(23). To investigate the relation between _max

𝑆
and _min

𝐵
, Figure 13 plots the relative

error between the two quantities5 for varying values of Y. With the relative error
∼10−4 it appears that _max

𝑆
= _min

𝐵
. In Figure 13 we finally plot the dependence

of _max
𝑆

, _min
𝐵

on the radius of ΓY . The observed dependence agrees well with the
theoretical bound [24].
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Fig. 13 (Left) Error between the smallest eigenvalue _min
𝐵

of the Schur complement problem (21)
and the largest eigenvalue _max

𝑆
of the Steklov problem (23). In both cases, values from the finest

level of refinement are considered, i.e._𝑋 := _𝑋,ℎmin . (Right) Dependence of the Schur complement
eigenvalues on the radius of coupling curve ΓY = {𝑥 ∈ Ω, |𝑥 | = Y}. Value 𝐶 ≈ 0.999 is obtained
by fitting values _min

𝐵
for Y < 10−1.

To corroborate the independence of the established relation between _min
𝐵

and
_max
𝑆

from geometrical factors, we carry out the above analysis for a square-shaped
inclusion, i.e. ΓY = 𝜕 (−Y, Y)2 in a squared domain Ω = (−1, 1)2. A comparison

5 For each Y we consider a sequence of eigenvalues _ℎ𝑙
computed on meshes with sizes ℎ𝑙 . We

terminate the sequence once the relative error between subsequent eigenvalues, |_ℎ𝑙
− _ℎ𝑙+1 |/_ℎ𝑙

,
is less than 10−4.
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Fig. 14 (Left) Error between the smallest eigenvalue _min
𝐵

of the Schur complement problem (21)
and the largest eigenvalue _max

𝑆
of the Steklov problem (23) on squared domain Ω = (−1, 1)2. In

both cases, values from the finest level of refinement are considered, i.e. _𝑋 := _𝑋,ℎmin . (Right)
Dependence of the Schur complement eigenvalues on the radius of coupling curve ΓY = 𝜕(−Y, Y)2.
Value 𝐶 ≈ 1.116 is obtained by fitting values _min

𝐵
for Y < 10−1.

between the obtained values of _max
𝑆

(Y) and _min
𝐵

(Y), is depicted in Figure 14 (see
also the Appendix for additional results). No significant differences are reported.
The relative error between the eigenvalues remains well below the percentage point,
and the expression 𝐶

√︁
Y | log Y | retraces _min

𝐵
(Y) with a constant 𝐶 ≈ 1.116.

Having shown independence of our observations from the shape of the inclu-
sion/coupling surface, the effect of the meshing strategy and the discretization of
finite elements will be investigated using a circular embedded domain ΓY . To exclude
any relevant influence of the mesh on the obtained results, the same analysis has been
repeated on a specific type of mesh, which we shall refer to as layered, and which
has the peculiarity of being ΓY𝑖 -conformal (Ω vertices and edges are consistent with
ΓY𝑖 ones) for every value of Y𝑖 ∈ 𝐼 simultaneously; cf. Figure 15. In such a way, the

Fig. 15 (Left) Pictorial representation of the inner-radius shrinking process. (Right) Partial repre-
sentation (zoomed toward the Ω center) of the layered mesh. The mesh has the property of being
simultaneously conforming to every ΓY𝑖 , Y𝑖 ∈ 𝐼 (purple circles).

mesh configuration, which is the same for every value of the inner radius, cannot be
held responsible for any effects on _-Y relations. The results are plotted in Figure 16
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(left). The relative difference between the values of _max
𝐵

(Y), _min
𝐵

(Y) and _max
𝑆

(Y)
obtained on different meshes (each conformal to a specific ΓY𝑖 ) and those obtained
on the layered mesh differs by less than one percentage point. Consequently, the
same relation as plotted in Figure 13 between _max

𝑆
(Y) and _min

𝐵
(Y) also holds for

the values obtained on the layered mesh. In conclusion, the results do not undergo
significant grid influence. Additional numerical results in support of this conclusion
can be found in Appendix.

In addition to the geometrical factors (shape, mesh), our aim is to exclude possible
effects of different polynomial order between the spaces 2𝑑 and 1𝑑. The results of
the comparison between the discretization P1 −P1 and P2 −P1 (continuous elements
P2 for Ω and P1 for ΓY𝑖 ) are plotted in Figure 16. No noticeable difference can be
attributed to the change of polynomial order, except for the effects on _max

𝐵
(Y), which

differ more than 1%, but still remain independent of Y𝑖 . From this, we can deduce
that also for the P2 − P1 discretization, _min

𝐵
≈ _max

𝑆
∼
√︁
Y | log Y |. Thus, no relevant

role of the polynomial degree on the results can be experienced (for detailed results
see the Appendix).
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Fig. 16 Relative error |_∗ − _ |/|_ |, where _ spans {_max
𝐵

, _min
𝐵

, _max
𝑆

} eigenvalues obtained with
standard meshing procedure (each grid conforming to a specific ΓY𝑖 ; see Figure 13). (Left) _∗ ≡ _𝑂

spans {_max
𝐵,𝑂

, _min
𝐵,𝑂

, _max
𝑆,𝑂

} obtained on the layered mesh in Figure 15 and denoted by the subscript
”𝑂”. (right) _∗ ≡ _2,1 spans {_max

𝐵, 2,1, _
min
𝐵, 2,1, _

max
𝑆, 2,1} obtained with a P2 − P1 discretization and

denoted by subscript ”2, 1”.

4.3 The 2𝒅-0𝒅 formulation for the perforated domain problem

The link between stability of (15) and inner radius Y via the constant of the inverse
trace inequality, which we demonstrated above for 2𝑑-1𝑑 trace problem, naturally
extends to 3𝑑-2𝑑 coupling as well. In connection with the 3𝑑-1𝑑 problem (6) we
may ask if the dimensional reduction removes the observed effect of Y. To address
this question we continue our investigations by applying model reduction to (15)
leading (formally) to the system
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−Δ𝑢 = 0 in Ω ⊂ R2,

�̄� = 𝑔 on Γ,

𝑢 = 0 on 𝜕Ω.

(24)

We recall that �̄� computes a mean of function 𝑢 : Ω → R over the curve Γ = ΓY ,
i.e. �̄� = |Γ |−1

∫
Γ
𝑢. Note that through 𝑢 and �̄� the coupled problem (24) includes a

dimensional gap of 2 (as in the case of the 3𝑑-1𝑑 problem (6)).
Letting 𝑉 = 𝐻1

0 (Ω) and 𝑄 = R the weak form of (24) read: Find 𝑢 ∈ 𝑉 , 𝑝⊙ ∈ 𝑄

such that ∫
Ω

∇𝑢 · ∇𝑣 −
∫
Γ

𝑝⊙ �̄� = 0 ∀𝑣 ∈ 𝑉,

−
∫
Γ

𝑞⊙ �̄� = 0 ∀𝑞⊙ ∈ 𝑄.

(25)

For well-posedness of (25) when Γ ⊂ 𝜕Ω we refer to [15]. Here we shall
consider 𝑄 with an inner product (𝑝⊙ , 𝑞⊙)𝑄 =

∫
Γ
𝑝⊙𝑞⊙ inducing the norm

∥𝑝⊙ ∥𝑄 = (𝑝⊙ , 𝑝⊙)1/2
𝑄

. On 𝑉 , the norm is given by the 𝐻1-seminorm. From the
point of Brezzi theory, a convenient property of the reduced problem is the fact that
𝑄 is one-dimensional. Thus, the Schur complement spectrum (21) contains only a
single eigenvalue _𝐵. Then, Figure 17 shows computational evidence for the stability
of (25) in 𝑉 ×𝑄 with the chosen norms. Specifically, taking Ω = {𝑥 ∈ R2 : |𝑥 | < 1}
such that the triangulation of the domain always conforms to ΓY , and using P1 el-
ements, it can be seen that the Brezzi constant(s) related to the coupling operator6
are bounded in the mesh size. However, similar to the full problem (15) we observe
that the numerical inf-sup/𝐵-boundedness constant _𝐵 decreases with radius Y, that
is, _𝐵 = _𝐵 (Y).

As with the 2𝑑-1𝑑 problem, we claim that _𝐵 is closely linked to a Steklov
eigenvalue. In this case, we consider: Find 𝑢 ∈ 𝑉 , _𝑆 > 0 satisfying∫

Γ

�̄��̄� = _2
𝑆

∫
Ω

∇𝑢 · ∇𝑣 ∀𝑣 ∈ 𝑉. (26)

From (26) it follows that the maximal eigenvalue _𝑆 relates to the estimates of the
mean value of 𝑢 in ΓY , that is,

∥�̄�∥𝑄 ≤ _𝑆 ∥𝑢∥𝑉 ∀𝑢 ∈ 𝑉.

The relation between the two eigenvalues is demonstrated in Figure 17 which
shows the relative error between the eigenvalues _𝐵 of the Schur complement of
(25) and _𝑆 . Here, only the values obtained on the finest meshes for each Y are
considered, that is, _𝑆 = _𝑆,ℎmin and analogously for _𝐵. In all cases, the observed
error is ∼10−3.

Finally, in Figure 18 we measure the dependence of _𝑆 (and _𝐵) on the radius Y.
It can be seen that the relation is practically identical to that of the unreduced 2𝑑-1𝑑

6 The Brezzi conditions for the bilinear form 𝑎 stemming from (25) are easily verified and the
related constants take the value 1.
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Fig. 17 (Left, center) Mesh convergence of the Schur complement eigenvalue of (25) for Ω = {𝑥 ∈
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. (Right)
Error between the Schur complement eigenvalues and the eigenvalues of the Steklov problem (26).
In both cases, results for ℎ𝑙 = ℎmin are shown.

problem (15), see also [24]. In particular, _𝐵 goes to 0 together with Y, and the affect
of the inner radius on stability is not removed by model reduction.

10−5 10−4 10−3 10−2 10−12−7

2−6

2−5

2−4

2−3

2−2

2−1

ε

λS√
ε|log ε|

C
√

ε|log ε|
10−5 10−4 10−3 10−2 10−1

2−7

2−6

2−5

2−4

2−3

2−2

2−1

ε

λ
m
ax

S

Reduced
Full

−1

−0.5

0

0.5

1

|λ
S
−
λ
m
a
x

S
|/λ

m
ax

S
·1
05

Fig. 18 (Left) Dependence of the Steklov eigenvalue _𝑆,ℎmin (black ◦ markers) in (26) on the radius
of coupling curve ΓY = {𝑥 ∈ Ω, |𝑥 | = 𝜖 }. The constant 𝐶 ≈ 0.999 was optimized for the best
fit of the data. (Right) Comparison of the largest eigenvalues of the Steklov problems. The 2𝑑-1𝑑
problem (16) is related to (23) with eigenvalues _max

𝑆
= _max

𝑆,ℎmin
(blue × markers), cf. Figure 13,

while _𝑆 (red ◦ markers) denotes eigenvalues of (26) related to 2𝑑-0𝑑 problem (25), see Figure 17.
The relative error between the values of the full and reduced models is plotted against the right
vertical axis in black markers ◦.

In summary, we have established, through both numerical experiments and ana-
lytical expressions about the inf-sup and trace constant, a clear relationship between
𝛽 and Y

𝛽 = 𝐶
√︁
Y | log Y | as Y → 0 (27)

with 𝐶 a constant independent from Y. The result appears independent from the
discretization parameters of the considered numerical framework, so that we can
assert with reasonable confidence that such behavior is inherent in the trace/extension
operator structure of the interface problem.
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5 Conclusion

The solvability of mixed-dimensional problems plays a crucial role in effectively
applying these models to real-world scenarios, such as microcirculation. In our re-
search, we have focused on operator preconditioning as a means to address this issue.
We have shown that by employing suitable weighted norms, the operator precondi-
tioning framework can successfully handle material parameters such as diffusivity in
both the 3𝑑 and 1𝑑 domains. However, when dealing with interface-coupled systems,
these norms alone are insufficient to ensure robustness regarding geometric param-
eters, such as the inner radius. Through extensive numerical experiments, we have
highlighted the significant impact of the parameter Y on the mathematical structure
of the problem and its adverse effect on the well-posedness through the trace opera-
tor. It is worth noting that this behavior persists even in a non-topologically reduced
framework. Therefore, the reduction of dimensionality and the use of appropriately
scaled Sobolev spaces currently do not guarantee the robustness of precondition-
ers as Y approaches zero. In our view, these findings strongly advocate a thorough
and fundamental analysis of the trace operator’s role in coupling conditions within
mixed-dimensional approaches. The ultimate goal is to develop a generalized trace
operator capable of facilitating a robust coupling of partial differential equations
across high-dimensional gaps.
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6 Appendix

6.1 Numerical experiments for square-shaped inclusion

For the sake of comparison of the effect of the inclusion shape on the relation
between the well-posedness of (16) and the diameter of the inclusion, we collect
here additional results for ΓY = 𝜕 (−Y, Y)2 and Ω = (−1, 1)2. These results are
analogous to Figure 12 and Figure 18 where circular ΓY is considered.
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Fig. 19 (Left) Mesh convergence of the extremal eigenvalues of Schur complement (21) for Ω =

(−1, 1)2, ΓY = 𝜕(−Y, Y)2. Both spaces 𝑉 and 𝑄 are discretized by P1 elements. For each Y a
sequence of problems is considered on uniformly refined meshes starting from size ℎ0 ≥ ℎ𝑙 ≥ ℎmin
leading to eigenvalues _𝐵,ℎ𝑙
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Fig. 20 Dependence of the Steklov eigenvalue _𝑆,ℎmin in (26) on the radius of coupling curve
ΓY = 𝜕(−Y, Y)2. The constant 𝐶 ≈ 1.116 was optimized for the best fit of the data. (Right)
Comparison of the largest eigenvalues of the Steklov problems. The 2𝑑-1𝑑 problem (16) is related
to (23) with eigenvalues _max = _max

𝑆,ℎmin
, cf. Figure 13, while _𝑆 denotes eigenvalues of (26) related

to 2𝑑-0𝑑 problem (25), see Figure 17. The relative error between the values of the full and reduced
models is plotted against the right vertical axis in black markers □.
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6.2 Numerical experiments for layered mesh

Here we collect additional results regarding the numerical experiments for a circular
domain Ω = {𝑥 ∈ R2, |𝑥 | < 1} with circular inclusion ΓY = {𝑥 ∈ Ω, |𝑥 | = Y}
obtained on layered mesh (see Figure 15 (right)) conformal simultaneously to every
ΓY𝑖 , with Y𝑖 ∈ {10−1, 10−2, 10−3, 10−4, 10−5}.
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Fig. 21 (Left) Mesh convergence of the extremal eigenvalues of Schur complement (21) for Ω =

{𝑥 ∈ R2, |𝑥 | < 1}, ΓY = {𝑥 ∈ Ω, |𝑥 | = Y}. Both spaces 𝑉 and 𝑄 are discretized by P1 elements.
For each Y a sequence of problems is considered on a uniformly refined layered mesh starting from
size ℎ0 ≥ ℎ𝑙 ≥ ℎmin leading to eigenvalues _𝐵,ℎ𝑙
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Fig. 22 Error between the smallest eigenvalue _min
𝐵

of the Schur complement problem (21) and
the largest eigenvalue _max

𝑆
of the Steklov problem (23). In both cases, values of the finest level

of refinement are considered, that is, _𝑋 := _𝑋,ℎmin . (Right) Dependence of the eigenvalues of the
radius of the coupling curve ΓY = {𝑥 ∈ Ω, |𝑥 | = Y}. The value 𝐶 ≈ 0.999 is obtained by fitting
values _min

𝐵
for Y < 10−1.
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6.3 Numerical experiments for P2 − P1 discretization
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Fig. 23 (Left) Mesh convergence of the extremal eigenvalues of Schur complement (21) for Ω =
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radius of the coupling curve ΓY = {𝑥 ∈ Ω, |𝑥 | = Y}. The value 𝐶 ≈ 0.999 is obtained by fitting
values _min

𝐵
for Y < 10−1.
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