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Abstract

Mixed-dimensional partial differential equations (PDEs) are characterized by coupled operators defined on domains
of varying dimensions and pose significant computational challenges due to their inherent ill-conditioning. Moreover,
the computational workload increases considerably when attempting to accurately capture the behavior of the system
under significant variations or uncertainties in the low-dimensional structures such as fractures, fibers, or vascular
networks, due to the inevitable necessity of running multiple simulations. In this work, we present a novel precondi-
tioning strategy that leverages neural networks and unsupervised operator learning to design an efficient preconditioner
specifically tailored to a class of 3D-1D mixed-dimensional PDEs. The proposed approach is capable of generaliz-
ing to varying shapes of the 1D manifold without retraining, making it robust to changes in the 1D graph topology.
Moreover, thanks to convolutional neural networks, the neural preconditioner can adapt over a range of increasing
mesh resolutions of the discrete problem, enabling us to train it on low resolution problems and deploy it on higher
resolutions. Numerical experiments validate the effectiveness of the preconditioner in accelerating convergence in
iterative solvers, demonstrating its appeal and limitations over traditional methods. This study lays the groundwork
for applying neural network-based preconditioning techniques to a broader range of coupled multi-physics systems.

Keywords: mixed-dimensional PDEs, finite element approximation, scientific machine learning, preconditioning

1. Introduction

Research on mixed-dimensional partial differential equations (PDEs) is advancing to address challenges in com-
plex multiscale applications in fields such as geophysics, biomechanics, and neuroscience. These disciplines often
involve thin structures with high aspect ratio, including structural mechanics and geomechanics [34, 27, 15], micro-
circulation and perfusion modeling [44, 38], axons in neural networks [7], and environmental flows [19]. Modeling
these interactions with traditional 3D meshes would require massive computational resources, making direct simula-
tions impractical. Mixed-dimensional PDEs, which enable lower-dimensional representations to be embedded within
higher-dimensional domains, present a promising alternative. However, the computational effort associated with these
models rises significantly when trying to capture the behavior of the system for varying configurations or interactions
within the low-dimensional structures, the latter representing, e.g., fracture networks in geological formations, fiber
distributions in structural materials, or vascular and neural networks in biological systems. Similarly, multiple sim-
ulations are needed when the structure of the low-dimensional problem is uncertain or unknown. In all such cases,
despite the simplifications provided by mixed-dimensional PDEs, the overall computational demand remains high
due to the cumulative cost of repeated individual simulations. This growing need underscores the importance of de-
veloping efficient solvers and preconditioners capable of handling the repeated solutions essential to representing the
statistical variability of intricate networks in real-world applications.

Today, the discretization of mixed-dimensional PDEs is established, providing computationally efficient schemes
suitable for applications with intricate networks [5, 17, 24], with rigorous error estimates ensuring accuracy. The
well-established literature on block and operator preconditioning techniques, see, e.g., [32], has been instrumental in
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the development of computational solvers for such problems. [23, 25] have paved the way for the efficient resolution
of discrete mixed-dimensional problems. Along this direction, we also mention the work of [8] on algebraic multigrid
methods for metric-perturbed coupled problems, which has significantly advanced the understanding of block precon-
ditioning techniques in mixed-dimensional PDEs. Parallel to this, other researchers have also explored approximate
algorithms that can enhance scalability for large systems: see, e.g. [13].

The goal of this study is to develop a novel preconditioning strategy that addresses the twofold challenges inherent
in mixed-dimensional PDEs: the ill-conditioned behavior of these problems and the need for adaptability across
diverse geometric configurations of the low-dimensional subproblems. We aim to create a preconditioner that not
only mitigates the ill-conditioning of the system, but also maintains this improved conditioning across a variety of
configurations for 1D or other low-dimensional structures. To accomplish this, the preconditioner is designed as a
nonlinear operator rather than a conventional matrix, enabling it to process the entire solution manifold effectively.
Our method takes advantage of the latest advances in the approximation capabilities of neural networks and learning
approaches related to machine learning [22, 6, 29]. These advancements have sparked active research in the creation
of novel solvers and preconditioners tailored for different types of problem [16, 20, 18, 33, 2], this being a non-
exhaustive list of examples supporting the potential of neural network-based preconditioners as a viable alternative
for solving large, sparse linear systems across various scientific and engineering domains.

Building upon these studies, we develop a nonlinear preconditioner designed to efficiently manage the numerical
challenges associated with the complex structure of mixed-dimensional equations. By incorporating a shape descriptor
into the learning framework, the preconditioner can generalize across different configurations of the 1D graph or low-
dimensional structures without the need for retraining. In order to demonstrate the efficacy of the proposed approach,
we focus our attention on a mixed-dimensional 3D-1D model problem, which serves as a representative template
for a broader class of coupled systems with similar characteristics. The results show that the learned preconditioner
significantly accelerates the convergence of the iterative Generalized Minimum Residual (GMRES) solver, even as the
complexity of the problem increases due to changes in the 1D graph’s topology or the size of the 3D domain. Unlike
traditional preconditioning techniques, which typically require problem-specific tuning or reconfiguration when the
underlying system changes, our method maintains consistent performance across diverse problem settings and mesh
resolutions. Moreover, the proposed preconditioning approach can be easily generalized, making it a versatile and
robust tool for a wide array of mixed-dimensional problems beyond the specific examples addressed in this study.

We finally observe that recent advances in operator learning (e.g., DeepONets [30] and Neural Operators [21])
provide fast surrogates for the parameter-to-solution map of PDEs, making them attractive for approximate evaluations
in tasks such as design exploration or uncertainty quantification. However, such surrogates cannot ensure systematic
accuracy with mesh refinement, may lose reliability outside the training distribution, and do not deliver the exact
discrete PDE solution. By contrast, the approach proposed here is not a surrogate but a learned component embedded
in an iterative solver: it preserves the full accuracy of the discretization while accelerating convergence, thereby
combining the robustness of classical solvers with the efficiency of machine learning and allowing seamless integration
into existing numerical pipelines.

This manuscript is organized as follows. First, we introduce the mathematical formulation of the 3D-1D mixed-
dimensional PDE and highlight the challenges associated with solving such systems. Then, we present the proposed
preconditioner learning framework, discussing both the theoretical foundations and the practical implementation of
the nonlinear preconditioner. Next, we apply the preconditioner to the 3D-1D problem, illustrating its construction
and providing a detailed analysis of its efficiency and scalability. Finally, we validate the approach through extensive
numerical experiments, comparing its performance against conventional preconditioning methods, and conclude with
a discussion of the implications and potential future directions for extending this work.

2. A mixed-dimensional problem

We consider here a mixed-dimensional elliptic problem as a simple template for a wider class of coupled problems
with similar characteristics. It will be our reference for comparisons, analyses, and considerations on preconditioner
performances. Originally, we define the problem in a three-dimensional (3D) slender domain embedded in an external
one, where we set partial differential equations coupled by suitable interface conditions. The mixed-dimensional
model is obtained by a dimensional reduction strategy that represents the slender interior domain as a one-dimensional
(1D) manifold, namely a metric graph. More precisely, we address a coupled problem defined by an exterior domain
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Ω ⊂ R3 and an interior domain Σ ⊂ Ω. We assume Σ to be a generalized cylinder with a centerline Λ, the latter being
a 1D domain with arc length parameter s ∈ (0, S ). We assume that the cylinder has a constant radius ϵ > 0, so that if
λ : (0, S ) → Λ parameterizes the centerline, then Σ = {λ(s) + ϵ : s ∈ (0, S ), ∥ϵ∥ ≤ ϵ, ϵ ⊥ τ(s)} with τ(s) the tangent
vector at Λ. We assume that the transverse diameter of Σ, which is equal to 2ϵ, is small compared to the diameter
of Ω. The dimensionality reduction process consists of replacing Σ with Λ while keeping some information about its
original 3D structure and its interaction with the external domain Ω. Specifically, let Γ := ∂Σ be the interface of the
coupled problem in the full 3D representation and let TΛ be the restriction operator fromΩ toΛ. In [26] it is defined as
the composition of the trace operator on Γ combined with a projection operator from Γ to Λ based on cross-sectional
averages. In particular, the averaging procedure plays a regularizing role: the ill-posed trace of a 3D function onto a
1D manifold (which is not defined in the usual Sobolev spaces) is replaced by the well-defined operator TΛ. Then,
the continuous 3D-1D coupled problem can be formulated as follows,

∇ · (−kΩ∇uΩ) + σΩuΩ + 2πϵ (TΛuΩ − uΛ) δΛ = fΩ, on Ω,
ds

(
−πϵ2kΛdsuΛ

)
+ 2πϵ (uΛ − TΛuΩ) = 0, on Λ,

−∇uΩ · n = 0, on ∂Ω,
−dsuΛ · n = 0, on ∂Λ \ ∂ΛD,

uΛ = 1, on ∂ΛD.

(1)

The functions uΩ, uΛ are coupled unknowns in the 3D and 1D domains, respectively, and kΩ, σΩ, kΛ represent the
coefficients of the elliptic operators. Here, ∂ΛD ⊂ ∂Λ is a given subset of the 1D domain holding a Dirichlet boundary
condition. We note that the first equation of (1) is only formally defined in its strong form, as the symbol δΛ denotes
the Dirac distribution supported on the one-dimensional manifoldΛ ⊂ Ω. For the weak formulation of (1), given a test
function v : Ω→ R, vδΛ represents the distribution that restricts the integration on Ω to the manifold Λ. The coupling
term 2πϵ (TΛuΩ − uΛ) δΛ is obtained by averaging on Γ the Robin-type coupling condition −kΩ∇uΩ · n = uΩ − uΛ,
similar to the one adopted in [26]. In fact, the coefficients 2πϵ and πϵ2 represent the cross-sectional measures of Γ
and Σ, respectively. An analogous formulation holds when the low-dimensional structure is given by the union of
multiple substructures Σ = ∪iΣi and Λ = ∪iΛi, each being a generalized cylinder. In this case, Λ becomes a 1D graph
embedded within a 3D domain. Figure 1 shows an example of a solution to this mixed-dimensional problem (1D
solution on the left, 3D solution in the center).

Figure 1: Solution of a 3D-1D coupled problem for a fixed graph geometry Λ. Left: plot of 1D solution uΛ. Center: slices of 3D
solution uΩ. Right: slices plot of the distance function d(Λ) associated to the graph.

2.1. Parametrization and discretization of the problem

As we mentioned, we are interested in solving multiple instances of the above problem for different configurations
of the low-dimensional structure, including, for instance, changes in the topology, arc-length or density of the 1D
graph Λ. To formalize this fact, it is useful to define a suitable parameter space, P, that collects all configurations
of interest. To this end, we first note that each 1D graph Λ ⊂ Ω is uniquely identified by its 3D distance function,
d(Λ) : Ω → R, which maps each point x ∈ Ω to its distance from the closest point in Λ: see the right panel of Figure
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1 for a visual representation. This allows us to define the parameter space as a subset of the space of continuous
functions on Ω, that is, P := {d(Λ)}Λ ⊂ C(Ω). This representation has several advantages. First, it can be easily
transferred to the discrete setting by introducing a suitable discretization of the exterior domain Ω using, for example,
Finite Elements (FE). Furthermore, it automatically enriches the parameter space by equipping it with a metrizable
topology (the one induced by the supremum norm): this allows us to discuss, for instance, about the continuity of
the 3D solution with respect to the 1D graph. Finally, it will be useful when discussing our neural preconditioning
approach in Section 4.

We now come to the discretization of (1). To this end, we first address its variational formulation. Let V :=
H1(Ω) × H1

∂ΛD
(Λ) be the mixed-dimensional space where PDE solutions will be sought. Here, H1

∂ΛD
(Λ) = {w ∈

H1(Λ) : w|∂Λd ≡ 1} accounts for Dirichlet boundary conditions, so that —up to translations— V is isomorphic to a
Hilbert space. In the parametric setting, re-writing Eq. (1) in weak form corresponds to saying that, for every µ ∈ P
we aim to find uµ ∈ V such that

aµ(uµ, v) = Fµ(v), ∀v ∈ V, (2)

with aµ : V × V 7→ R and Fµ : V 7→ R parameter-dependent operators. Specifically,

aµ(u, v) = aΩ(uΩ, vΩ) + aµ
Λ

(uΛ, uΛ) + bµ
Λ

(TΛuΩ − uΛ,TΛvΩ − vΛ),

where having set (u, v)Ω :=
∫
Ω

u(x)v(x)dx we obtain,

aΩ(u, v) = (kΩ∇u,∇v)Ω + (σΩu, v)Ω, (3)

aµ
Λ

(u, v) = (πϵ2kΛdsu, dsv)Λ, bµ
Λ

(u, v) = 2πϵ(u, v)Λ. (4)

While the bilinear form (3) follows a standard derivation, the forms (4) appear after the topological model reduction
procedure presented in [26] (taking averages over cross-sections Σ and Γ, thus introducing the factors πϵ2 and 2πϵ,
respectively). We note that the adopted notation is slightly redundant because the parametric dependence of aµ is only
due to the fact that aµ

Λ
and bµ

Λ
have support in Λ.

In order to discretize (2), we consider its Galerkin projection onto a (broken) FE space Vh = VΩh ×VΛh of dimension
Nh = NΩh +NΛh , being NΩh = dim(VΩh ) and NΛh = dim(VΛh ), which is suitably chosen depending on the characteristics of
the problem at hand. Assuming for simplicity a fully conformal approximation, given Vh ⊂ V with VΩh ⊂ H1(Ω), VΛh ⊂
H1
∂ΛD

(Λ), we aim to find uµh ∈ Vh such that

aµ(uµh, vh) = Fµ(vh) ∀vh ∈ Vh. (5)

From a discrete point of view, the problem (5) is equivalent to a (large) system of algebraic equations Aµhuµh = Fµh.
Specifically, we have

Aµh︷                                        ︸︸                                        ︷
Kh,00 0

0 Kµh,11

︸           ︷︷           ︸
Kµh

+γ

M
µ
h,00 Mµh,01

Mµh,10 Mµh,11

︸             ︷︷             ︸
Mµh



uµh︷︸︸︷u
µ
h,0

uµh,1

 =
Fµh︷︸︸︷fh,0

fµh,1

 , (6)

where uµh ∈ R
Nh is the vector of degrees of freedom of the FE approximation; Kh,00 and Kµh,11 represent the discretized

bilinear forms aΩ and aµ
Λ

where the coefficients kΩ and πϵ2kΛ have been embedded into the matrices; the block matrix
Mµh models the coupling enforced by the operator 2πϵ (TΛuΩ − uΛ,TΛvΩ − vΛ)Λ where we set from now on γ := 2πϵ
because the geometrical meaning of this coefficient is no longer significant as it essentially represents the relative
weight between the blocks Kµh and Mµh ; fh,0 denotes the non-trivial forcing term acting on the bulk domain Ω and fµh,1
takes into account the non-homogeneous Dirichlet condition on the 1D graph.

As we discretize the differential problem, we also take the opportunity to discretize the parameter space, which we
do by projecting —or interpolating— all 3D distance functions onto VΩh . This allows us to represent each parametric
configuration µ ∈ P through a finite-dimensional vector dµh ∈ R

NΩh , obtained by listing the nodal values of µ = d(Λ) at
the degrees of freedom. In this way, the discrete/finite-dimensional parameter space becomes Ph ≡ {dµh} ⊂ RNΩh .
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Remark 1. As apparent from equations (3)-(4), we notice that problem (2) is symmetric positive definite. However, we
will not exploit this property when defining the computational solver. This choice is motivated by two main reasons.
The first one is that (2) is just a particular case of a general family of operators in which the bilinear form aΩ(·, ·)
may also describe transport phenomena that violate symmetry. The second reason is that, as it will be clearer later
on, learned techniques, such as our neural preconditioner, can hardly preserve symmetry, unless this constraint is
explicitly built into the network architecture—a strategy that currently lacks a reliable and efficient implementation.

Remark 2. In what follows, we shall make the assumption that the 3D domain has been discretized using a uniform
mesh, consisting either of tetrahedrons or bricks. This requirement will be crucial in Section 4 when implementing
our neural network-based preconditioner as it will allow us to exploit the relationship between tensor-like structures
and convolutional neural networks. Nevertheless, we emphasize that in the context of mixed-dimensional problems,
where the primary challenge is representing a complex low-dimensional structure embedded in 3D, this restriction is
acceptable. In fact, this requirement does not constrain the low-dimensional domain, which can still exhibit arbitrary
geometric complexity.

2.2. A preconditioning strategy for the coupled problem

As we mentioned, solving (6) can be computationally intensive due to poor conditioning of the linear system.
Here, we address this fact by using a block-preconditioning approach, specifically tailored for the block-structured
matrix arising from the discretization of the coupled 3D-1D problem.

The goal is to employ a right-preconditioner expressed as:

AµhQµhzµh = Fµh, Qµhzµh = uµh, (7)

where Qµh is the inverse of the block upper triangular part of Aµh. Employing this right preconditioner to accelerate the
convergence of an iterative method, see e.g. [41], involves conditioning the residual from [zµh,0, z

µ
h,1]⊤ to [z̃µh,0, z̃

µ
h,1]⊤

by solving the following linear system through a two-step back-substitution procedure,[
(Kh,00 + γMµh,00) γMµh,01

0 (Kµh,11 + γMµh,11)

] [
z̃µh,0
z̃µh,1

]
=

[
zµh,0
zµh,1

]
. (8)

In general, the first step, which is to solve for z̃µh,1, does not pose significant challenges. This is because the dimension
of the discrete 1D problem is typically smaller than the one of the 3D problem, NΛh ≪ NΩh , making it more manageable
to address using traditional techniques, such as direct solvers. In contrast, the second step, which is to solve for z̃µh,0,
can be computationally demanding and can severely hinder the applicability of the approach when considering many-
query scenarios, where the linear system is to be solved for multiple instances of the model parameters. This step,
in fact, is the one where the main challenges inherent to mixed-dimensional problems become apparent. Indeed, as
noted in [8], the latter involves elliptic operators altered by a low-order semidefinite component, referred to as the
metric term. This term, whose impact is modulated by a scalable intensity parameter ϵ, can disrupt the structure and
conditioning of the elliptic component, thereby complicating the numerical approximation of the coupled system. For
these reasons, our objective is to develop a nonlinear preconditioner, P , for the mixed-dimensional system defined
on Ω,

(Kh,00 + γMµh,00)z̃µ0,h = zµh,0 − γMµ01z̃µ1,h. (9)

This nonlinear preconditioner will take two arguments: one that is conformal to the 3D solution (as any classical pre-
conditioner would do), and one that refers to the problem parameters, allowing the preconditioner to adjust depending
on the scenario of interest. We shall write P =P(v,d) in the discrete setting and, occasionally, P =P(v, µ) when
considering the more abstract continuous formulation. Using this notation, and having set

Cµh := (Kh,00 + γMµh,00), vµh := z̃µ0,h, bµh := zµh,0 − γMµ01z̃µ1,h, (10)

the right-preconditioned family of problems reads CµhP(vµh,d
µ
h) = bµh. Considering the specific structure of Fµh in (6),

we focus on making the preconditioner P efficient for a limited subset of acceptable right-hand sides within RNΩh . In
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particular, we are interested in solving the system for the forcing terms that arise from the solution of the 1D problem,
namely all B = {bµh}µ∈P such that

B :=
{
fh,0 − γMµ01,hx : µ ∈ P and x ∈ RNΩh with (Kµ11 + γMµ11,h)x = fµh,1

}
. (11)

As we anticipated, to guarantee generalization across various configurations of the 1D problem, it is essential to
develop a suitable nonlinear preconditioner, P . This involves carefully choosing an appropriate hypothesis space and
designing a representative training set, as detailed in the following section.

3. A learning approach for preconditioning parametrized systems

We shall now discuss the problem of learning preconditioners for parametrized systems. Although this task is
inherently related to finite-dimensional spaces, we find it convenient to explore and present the idea within an infinite-
dimensional context. This shift to a function space setting, as presented in this section, provides a deeper insight into
the mathematical structure of the problem. For these reasons, we start this section by fixing some notation. Given two
Banach spaces (V1, ∥ · ∥V1 ) and (V2, ∥ · ∥V2 ) we denote L(V1,V2) the space of bounded linear operators from V1 to V2,
equipped with the operator norm

∥A∥L(V1,V2) := sup
v∈V1\{0}

∥Av∥V2

∥v∥V1

.

It is also useful to introduce the General Linear Group

GL(V1,V2) := {A ∈ L(V1,V2) : ∃B ∈ L(V2,V1), BA = IdV1 and AB = IdV2 },

which consists of all linear operators from V1 → V2 that are both invertible and continuous. Here, IdVi denotes the
identity operator of Vi on itself. Given a Banach space (V, ∥ · ∥V ), we also denote by V ′ its topological dual, that is,
V ′ := L(V,R). Our purpose is to address the problem of operator preconditioning for parametrized linear problems in
arbitrary (complete) normed spaces, i.e. to find a continuous preconditioner operator P =P(v, µ) for a parametrized
problem of the form

find uµ ∈ V : Aµuµ = bµ, ∀µ ∈ P, (12)

given a Banach state space (V, ∥ · ∥V ) and a compact metric space P serving as parameter space. Here, Aµ ∈ GL(V,V ′)
and bµ ∈ V ′ are parameter-dependent operators and problem data. In general, we think of the latter as a linear system
arising from the discretization of a given PDE, such as (5) or (6). Everything, in fact, can be traced back to our
discussion in Section 2: we refer to Remark 3 for additional insight on the matter. Furthermore, we anticipate that the
upcoming Section 4 will also contain further clarifications on how these concepts translate when put into practice.

We organize the remainder of this Section into distinct parts. Initially, we explore how operator preconditioning
is applied to (12), emphasizing the imperative for a nonlinear preconditioner (Section 3.1). Subsequently, we outline
the structure of the learning algorithm, presenting a suitable unsupervised training strategy (Section 3.2).

Remark 3. The advantage of working within an abstract environment is that the idea can be easily transferred from
the continuous formulation to the discrete one and vice versa. For instance, following our notation in Section 2.2,
if we resort to the discrete setting, then Aµ � Cµh is a matrix, while uµ � vµh and bµ � b̃µh are finite-dimensional
vectors; cf. Eq. (9). Conversely, if we lift the idea to the continuous level, then Aµ is the linear operator acting as
u 7→ aΩ(u, ·) + bµ

Λ
(TΛu, ·), while uµ and bµ are functions defined over Ω: cf. Section 2.1.

3.1. The need for a nonlinear and matrix-free preconditioner

Classical approaches to operator preconditioning focus on finding a linear preconditioner for a given operator of
interest A ∈ L(V ′,V). In principle, one could apply this idea to parametric problems by addressing each parametric
scenario separately. Indeed, for a generic, but fixed, parameter µ̄ ∈ P one could consider the corresponding operator
Aµ̄ ≡ A, with A : V → V ′, and then look for a suitable (right) preconditioner that is, any linear operator P ∈ L(V ′,V)
for which κ(AP) ≪ κ(A), being κ the operator condition number κ(B) := ∥B∥L(V1,V2)∥B−1∥L(V1,V2) for B ∈ GL(V1,V2).
Then, once a suitable preconditioner is available, the original problem Auµ̄ = bµ̄ can be replaced with a new one,
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APzµ̄ = bµ̄, which is easier to solve, so that uµ̄ = Pzµ̄. In general, we note that up to isometries, the ”optimal”
preconditioner is P = A−1, regardless of the right hand side bµ̄ ∈ V ′. However, this approach becomes computationally
unfeasible if the procedure is repeated multiple times for varying µ ∈ P. A first alternative could be to look for a
surrogate P̃ : P → L(V ′,V) that, for each µ ∈ P, returns a suitable preconditioner for Aµuµ = bµ. However, we
do not find this solution to be very practical as that would entail casting the learning problem within an extremely
high-dimensional space. Notice, in fact, that in the discrete setting one has dimL(V ′,V) = (NΩh )2. Furthermore, even
if we restrict our attention to sparse preconditioners, this is still very challenging as the sparsity pattern would likely
depend on the structure of the underlying 1D problem, i.e. on µ ∈ P. A more practical approach can be to rely on a
matrix-free formulation. There, one is not directly interested in the preconditioner by itself, but rather in the way it
acts when applied to an input vector. Mathematically speaking, this change of perspective corresponds to looking for
a map, potentially nonlinear, of the form P : V ′ × P → V. This idea is further motivated by the following Lemma.

Lemma 1. Let P ∋ µ 7→ Aµ ∈ L(V,V ′) be continuous. For any µ ∈ P and any v ∈ V ′ let xµ,v be the solution of
Aµxµ,v = v. Then, there exists a continuous (nonlinear) operator P : V ′ × P → V such that

P(v, µ) = xµ,v ∀(v, µ) ∈ V ′ × P.

In particular, AµP(v, µ) = v for all (v, µ) ∈ V ′ × P.

Proof. Let A : P → GL(V,V ′) be the map A (µ) = Aµ. Let I : GL(V,V ′) → GL(V ′,V) be the inversion map,
B 7→ B−1. It is well known that I is continuous — for a rigorous proof, we refer the interested reader to the
Appendix, Lemma A.1. Let P : V ′ × P → V be defined as P(v, µ) :=

[
(I ◦A )(µ)

]
(v). Then, P is continuous and

P(v, µ) = (Aµ)−1v = xµ,v, as claimed.

As seen in Lemma 1, in order to adapt to different parametric scenarios, the preconditioner P must be nonlinear
in its arguments (see also Remark 4). In light of this, hereon, when speaking of a nonlinear preconditioner for a
parametric problem such as (12), we intend any continuous map P : V ′ × P → V for which AµP(v, µ) ≈ v,
or equivalently, (Id−AµP(·, µ))v ≈ 0. Ideally, this should hold for all µ ∈ P and all right-hand sides of interest
v ∈ Kµ ⊂ V ′, with the latter subset potentially depending on the parameter instance µ. For example, the simplest
choice could be Kµ = {bµ}, so that P(bµ, µ) ≈ uµ. Setting Kµ = V ′ is also possible but not strictly necessary: we
recall, in fact, that our ultimate goal is to solve (12). We shall return to this in Section 3.2, as we address the details
of our learning strategy, and in Section 4.1, where we discuss the actual implementation of the approach and the
definition of Kµ.

Remark 4. In principle, one could restrict oneself to continuous maps P : V ′ × P → V that are linear in their
first argument, P = P(v, µ), as it happens for the ”ideal” preconditioner in Lemma 1. However, allowing for more
general maps gives additional freedom in designing the preconditioner, potentially simplifying the learning process.
For example, assume that P is compact and that the map F : µ → bµ is both continuous and injective. Then,
F −1 : F (P) → P exists, is continuous and can be extended to V ′ ⊃ F (P) using, e.g., Dugundji’s extension of
Tietze’s Theorem [12]. With this setup, consider the simple scenario Kµ = {bµ} and let P be the map in Lemma 1.
Define P̂ : V ′ × P → V as P̂(v, µ) :=P(v,F −1(v)). Then, P̂ ,P is nonlinear in v, does not depend explicitly on
µ (only implicitly), but still AµP̂(v, µ) = v for all µ ∈ P and all v ∈ Kµ ⊂ V ′.

3.2. Learning strategy

Following our previous discussion, our purpose here is to learn a (nonlinear) preconditioner for a parametrized
problem given as in Eq. (12). In practice, this involves fixing a suitable hypothesis space H and finding the optimal
preconditioner P ∈ H by minimizing a suitable functional known as loss function. In light of Lemma 1, we let
H ⊂ C(V ′ × P,V) = {P : V ′ × P → V continuous} be a subset of the space of continuous functions from V ′ × P
to V . For instance, if we resort to deep learning techniques, as we shall do in the remaining of the paper, the latter
can be thought of as the space of all possible neural network models associated to a given architecture of choice. In
this case, we’ll refer to P as to a neural preconditioner. Concerning the loss function, instead, different approaches
become available. In principle, one could define the nonlinear preconditioner P by requiring either P(v, µ) ≈ xµ,v

or (Id−AµP(·, µ))v ≈ 0. In fact, we notice that if the original problem admits a unique solution for each µ ∈ P, then
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every P that fulfills P(bµ, µ) = uµ yields AµP(bµ, µ) = bµ and vice versa. In this sense, the two approaches may
seem equivalent. However, our hypothesis space will typically not contain the global minimizer in Lemma 1, reason
for which minimizing the error ∥P(v, µ) − xµ,v∥ or the residual ∥(Id−AµP(·, µ))v∥ can provide completely different
results. Furthermore, the two approaches differ significantly in their implementation: the first one is supervised, as it
requires actually solving (12) in order to compute xµ,v for multiple µ ∈ P; in contrast, the second approach is fully
unsupervised.

This work focuses exclusively on the second approach. This is because preliminary investigations by the authors
found the supervised approach to be extremely inefficient, with high costs during the training phase, significant chal-
lenges in minimizing the loss function, and unsatisfactory results. In contrast, the unsupervised approach is more
practical, as it does not require sampling from the solution manifold S = {uµ}µ∈P. All of this considered, a first
definition of the learning problem can be

P∗ = arg min
P∈H

∫
P

∥(Id−AµP(·, µ))bµ∥V ′ϱ(dµ), (13)

for a given probability measure ϱ defined over the parameter space P. The downside of this approach is that for each
µ ∈ P, we focus solely on how well P operates on bµ. As anticipated in Section 3.1, a better approach can be to
introduce a subset Kµ ⊂ V ′ of possible right-hand-sides (depending in general on µ), and reformulate (13) as

P∗ = arg min
P∈H

∫
P

∫
Kµ
∥(Id−AµP(·, µ))v∥V ′ϱµ(dv)ϱ(dµ), (14)

where ϱµ is a suitable probability measure supported over Kµ ⊂ V ′. Clearly, (13) is a special case of (14), since it
can be obtained letting Kµ = {bµ} be a singleton and ϱµ = δbµ be a Dirac delta measure. The question of defining Kµ

and the corresponding probability measure is generally intriguing, yet quite complex. We will defer this discussion to
Section 4.1. We anticipate thatKµ should contain all the components that are detrimental to the well-posedness of Aµ

and, in general, to the convergence rate of the algebraic solver considered.
From a practical point of view, the ideal minimization problem in Eq. (14) can be addressed through empirical

risk minimization [22, 6]. Specifically, let µ1, . . . , µNP be an independent random sample identically distributed (i.i.d.)
with µ j ∼ ϱ. For each j = 1, . . . ,NP let Kµ j := {v1, j, . . . , vN

K
µ j , j} ⊂ K

µ j , be an i.i.d. random sample with vi, j ∼ ϱµ j .
Consider the empirical measures

ϱNP =
1

NP

NP∑
j=1

δµ j , ϱN
K
µ j =

1
NKµ j

∑
v∈Kµ j

δv, ϱNKµ =

NP∑
j=1

1{µ j}(µ)ϱN
K
µ j ,

where δx is the Dirac measure centered at x. Following classical procedures, we define the empirical risk as

R(P) :=
∫
P

∫
Kµ
∥(Id−AµP(·, µ))v∥V ′ϱNKµ (dv)ϱNP (dµ) =

=
1

NP

N∑
j=1

1
NKµ j

∑
v∈Kµ j

∥(Id−Aµ jP(·, µ j))v∥V ′ .
(15)

Then, the training phase consists in solving the following minimization problem

P̃∗ := arg min
P∈H

R(P). (16)

Note that while this step might be computationally demanding, it has to be performed only once. After training,
the preconditioner can be readily applied to any problem in the parametric class, without further optimizations or
assembling stages. In particular, if one designs the hypothesis space to consist of neural network models, this can
provide significant speed ups, as the computational cost associated with online evaluations of P̃∗ becomes nearly
negligible (on the order of milliseconds).
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4. Realization of the learning approach

In this section, we return to the finite-dimensional setting to make the preconditioner learning strategy specific
to the discretization of the parametrized mixed-dimensional problem (9)-(10). As we address here the 3D problem
arising from the elimination of the 1D equations from the coupled system, with a slight abuse of notation, we write
Nh instead of NΩh . Once a suitable preconditioner P : RNh × RNh → RNh has been identified (we recall that the
finite-dimensional parameter space is Ph ⊂ RNh ), it can be used to accelerate the solution of the discrete problem.
In general, this can be achieved in multiple ways. Here, we propose the integration of the nonlinear preconditioner
within a GMRES solver,motivated by the fact that we cannot guarantee the symmetry of the neural preconditioner. In
addition, considering the nonlinear nature of the preconditioner P , we shall adopt the Flexible GMRES (FGMRES)
algorithm [42], as the latter can easily accommodate variations of the preconditioning operator with the input vector.

4.1. The training set Kµ

The selection of the training set Kµ is a crucial factor in the success of the operator learning approach for pre-
conditioning. In fact, the training set must match the underlying behavior of the operator to ensure that the learned
preconditioner is effective in different instances of the parameter space P. To start, we notice that inside the FGMRES
algorithm, the preconditioner will act only on vectors from the unit sphere SNh−1 := {v ∈ RNh : ∥v∥ = 1}. Thus, we let
Kµ ⊂ SNh−1. Next, based on the findings presented in [8], we propose that the training set should be guided by the ker-
nel structure of the operator. In fact, the coupling between the 3D and 1D domains introduces significant challenges
in the construction of efficient solvers, particularly because the kernel of the operator Mµh,00 contains high-frequency
components that must be taken into account by the computational solvers. In the context of the algebraic multigrid
(AMG) approach addressed in [8], it is shown that an essential property for the robustness of the AMG solver is the
following kernel decomposition condition:

ker(Mµh,00) = ker(Mµh,00) ∩ Vc +

J∑
j=1

ker(Mµh,00) ∩ V j ,

where in the case of AMG algorithms Vc refers to the coarse subspace that captures the low-frequency components
of the solution and V j are the fine subspaces that represent localized corrections in specific regions or aggregates.
In the context of a multiresolution method such as AMG, this condition suggests that the numerical solver should
operate on all components of the kernel of the coupling operator. The richer the kernel subspace, possibly including
low- and high-frequency components, the harder it is to develop good solvers. This issue is closely related to the
concept of spectral bias in neural network training, which states that lower-frequency components are learned more
easily and earlier during training, while higher-frequency components are more challenging to learn [39, 46]. For
the approximation of mixed-dimensional problems, this spectral bias has direct implications. Specifically, the high-
frequency components in the kernel of the coupling operator Mµh,00 may not be adequately captured if the training
process is not designed to address this inherent difficulty. To mitigate this challenge, we include in Kµ samples that
span both the low-frequency and high-frequency components of the kernel of Cµh , defined in (10). In the context of
operator learning, this insight is reflected in the definition of the measure ϱµ(dv) = ϱNKµ . This considered, we propose
the following training set structure:

Kµ =

NP⋃
j=1

Kµ j , Kµ j :=

 bµ j

h

||bµ j

h ||

 ∪Dµ j , bµ j

h ∈ B; (17)

where Dµ j represents a suitable data-augmentation set, given the parameter µ j (see Fig. 2). In this way, the operator
P(·, µ) can be trained to act as a preconditioner on a suitable subset of the unit sphere with a specified frequency
content. In what follows, we examine two distinct strategies for data augmentation, while the next section will present
numerical experiments that support this methodology and demonstrate that incorporating both right-hand side vectors
and kernel components into Kµ improves the convergence rates in FGMRES with the application of the learned
preconditioner.
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Figure 2: Pictorial summary for the construction of the augmented training set Kµ. The data augmentation setDµ j contains vectors
in the unit sphere with the desired frequency content. Here, B/||B|| := {b/||b|| : b ∈ B} ⊂ SNh−1 is the set of normalized right-hand
side vectors; µ j ∈ P ⊂ Rp denotes a parameter instance that is part of the training set.

4.1.1. Augmented Training Set by Krylov Subspaces
Our initial data-augmentation strategy involves incorporating high-frequency elements derived from the construc-

tion of Krylov subspaces related to the matrix. As a starting point, the Krylov subspace associated with a general
operator O ∈ L(X, X) and a vector x ∈ X is defined as:

Kq(O, x) := span(x,Ox,O2x, . . . ,Oq−1x)

where q is the order of the Krylov subspace. This subspace contains progressively higher-order components of x
under the action of the operator O, capturing information about the behavior of the system across multiple scales. By
including vectors from these Krylov subspaces in our training set, we effectively augment the representation of both
low- and high-frequency components in the solution space.

Specifically, for a generic parameter µ j, let O = Cµ j

h be the discrete operator associated with the mixed-dimensional
PDEs described in previous sections. We construct the data-augmentation setDµ j as

Dµ j :=
{
qµ j

p′ . . . q
µ j

(p+p′)

}
,

where 0 ≤ p′ is a suitable shift index and qµ j

i , i = 0, . . . , p′ + p is a suitable orthonormal basis ofK(p+p′)(C
µ j

h , b
µ j

h ) with
qµ j

0 ≡ bµ j

h /∥b
µ j

h ∥. These additional basis functions aim to capture a wider spectrum of the operator’s behavior, thus
enhancing the preconditioner’s ability to address different scales and frequencies present in the solution. In this con-
text, it is convenient to keep p and p′small and of the same magnitude (i.e. p ≃ p′). This lies in the balance between
representing the essential high-frequency characteristics of the operator Cµh and maintaining computational efficiency.
The choice of small p, p′ allows us to efficiently construct the augmented training set without significantly increasing
the computational burden during the training phase. As it will be shown later on (see Fig. 6 in Section 5.5), even with
a small value of p + p′, the Krylov subspace captures important high-order effects that improve the robustness of the
preconditioner.

4.1.2. Augmented Training Set by Random Vectors
A second approach involves adding to the physics-based training subset B a new set of completely unrelated

random functions. Specifically, we propose augmenting the training set by generating random unity vectors rh ∈

SNh−1 ⊂ RNh , uniformly sampled from the unit hypersphere. In practice, each rh can be generated by drawing and
normalizing a random vector v ∼ N(0, INh ) with standard multivariate normal distribution, that is, rh = v/∥v∥. Such
vectors are designed to introduce high-frequency content that is independent of the physics of the problem, thereby
complementing the functions based on physics bµh ∈ B. In fact, given a finite element discretization based on a
FEM space Vh(Ω), where Ω represents the three-dimensional computational domain and h denotes the characteristic
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element size, the vectors rh can be interpreted as the highest frequency modes that can be resolved by the mesh. The
frequency associated with these random vectors is proportional to |Ω|/h, which corresponds to the smallest possible
wavelength that can be captured in the discretized domain. Mathematically, we can define the data augmentation set
asDµ j :=

{
rh,1, rh,2, . . .

}
. Note that these vectors are independent of µ but a different instance ofD is defined for each

µ j. We expect this strategy to improve robustness with respect to high-frequency vectors that are inside ker(Mµh,00).

4.2. Hypothesis space for P

At this stage, it remains to define the hypothesis space H , over which the empirical risk minimization will be
performed (16). Following a deep-learning approach, the hypothesis space is specified once a particular neural archi-
tecture NH is selected. This architecture is characterized by a composition of linear and nonlinear functions, which
in turn are defined by a set of hyper-parameters H. The resulting hypothesis space H can thus be expressed as
H = {NH(· ; θ)}θ∈Rt where θ is the vector of trainable parameters associated with NH , over which the optimization is
performed. Drawing inspiration from cutting-edge deep learning techniques in image processing, as proposed in [2],
which employ varying resolutions to effectively manage the diverse scales of images through pooling and upscaling
operations, the neural architecture chosen to represent the preconditioner will be a U-net, see for example [40] for
a landmark paper and [45] for recent developments. This architecture is highly capable of addressing multi-scale
issues as it effectively captures both global and local features across varying resolutions. This makes it a strong can-
didate function for representing solutions of mixed-dimensional problems, such as the ones represented in Figure 1.
According to this choice, we define NH(· ; θ) ≡ UL(· ; θ), where UL represents a U-net architecture with L levels.
For the sake of simplicity, we will refer only to the hyper-parameter L to indicate the depth of the U-net, although
additional parameters such as bottleneck size, number of channels, and convolutional kernel sizes are also involved.
Consequently, the desired nonlinear preconditioner operator can be represented as P ≡ UL(· θ⋆), where θ⋆ denotes
the set of optimized parameters. The U-net architecture is structured as a combination of two components, an encoder
function Φ and a decoder function Ψ:

Φ := Φ0 ◦ Φ1 ◦ . . . ◦ ΦL−2 ◦ ΦL−1 : Rcin×n → Rcb×m;

Ψ := ΨL−1 ◦ ΨL−2 ◦ . . . ◦ Ψ1 ◦ Ψ0 : Rcb×m → Rcout×n.

Then, given an input tensor X = [X1|X2|...|Xcin ], where Xi ∈ Rn1×n2×...×nd , and a prescribed number of output channels
cout, a U-net with j levels can be defined recursively as follows:

U j(X) := Ψ j

(
[U j−1 ◦ Φ j|Φ j]

)
(X), U0(X) := Ψ0 ◦ Φ0(X),

where the notation [a|b] represents a channel stacking operation that concatenates tensors a and b along the channel
dimension. Specifically, if a ∈ Rca×m and b ∈ Rcb×m, then we have [a|b] ∈ R(ca+cb)×m. Operation [U j−1 ◦Φ j(X)|Φ j(X)]
is called the j-th skip connection, which transmits information from the j-th encoding layer to the corresponding
j-th decoding layer. Skip connections are critical in retaining and merging high-resolution features, ensuring that the
decoder can effectively recover fine-scale information. In the literature, the term c refers to the number of channels
at each layer. Specifically, cb is the number of channels in the bottleneck layer of the U-net, while cin and cout denote
the number of input and output channels, respectively. The convolutional layer operates locally by sliding a kernel
across the input tensor, extracting features from small spatial neighborhoods. Given a d-dimensional input tensor
X ∈ Rcin×n1×n2×...×nd , the convolution operation is defined as:

Yi =

cin∑
j=1

ki, j ∗ X j for i = 1, 2, . . . , cout, with
(
ki, j ∗ X j

)
(p) =

∑
q∈Zd

ki, j(q) X j(p − q),

ki, j ∈ Rs1×s2×...×sd being the kernel for the (i, j)-th input-output channel pair, p indexing the output tensor, and q
spanning the kernel positions. This operation enables convolutional layers to act as local feature extractors, capturing
patterns from the input tensor. Input data, often provided as ordered vectors, must be reshaped into tensor format to
preserve spatial correlations. Once trained, the kernel can operate on input tensors of arbitrary dimensions, provided
the structure is compatible, such as tensor-product meshes. As a result, the U-Net architecture can handle inputs of any
size, which may increase its application beyond the dimensions of the training data. However, reliance on structured
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grids restricts the application of convolutional layers to simple geometries. Future work will address this limitation
by integrating mesh-informed neural networks, as proposed in [14], to generalize U-net architectures while retaining
their feature extraction capabilities.

Figure 3: Schematic representation of the U-Net architectureU3. Tensor data are represented by blocks, where the number of channels corresponds
to the depth of the blocks. The tensor shape, c × n1 × n2 × n3, is reported on the top of the blocks. Solid line arrows represent layer action, while
dashed arrows represent channel-staking skip connection.

Layer type input size output size input channels output channels # parameters θ
Conv. 213 213 2 32 13,840
Conv.+Max P. 213 103 32 64 55,296
Conv.+Max P. 103 53 64 128 221,184
Conv. 53 53 128 128 442,368
Trasp. conv. + Skip 53 103 128 64 286,784
Trasp. conv. + Skip 103 213 64 32 71,912
Conv. 213 213 32 1 545

Table 1: Summary of the U3 architecture. Input data flows from the top row to the bottom row; see also the scheme in Fig.3. The
total number of trainable parameters is θ ≈ 106.

5. Numerical solution of mixed-dimensional PDEs using the neural preconditioner

We analyze how the neural preconditioner accelerates the convergence of iterative solvers, in the case of mixed-
dimensional PDEs. We discuss the computational setup and analyze the preconditioner’s impact on FGMRES con-
vergence rate, mesh size scalability, and computational time. In doing so, we shall take the opportunity to assess the
importance of the several design choices entailed by the implementation of the neural preconditioner, such as, e.g.,
the data-augmentation strategy and the parametrization of the 1D geometry. For the sake of this preliminary explo-
ration, in this Section we shall restrict ourselves to numerical solution of problem (10), that is, to the 3D block of the
mixed-dimensional system, thus ignoring the 3D-1D coupling. The latter will be addressed right after, in Section 6.

We anticipate that the main message emerging from this numerical exploration is that the neural preconditioner
proves competitive when compared to other state-of-the-art algorithms —such as AMG or ILU— thanks to a reduction
in the computational cost of each preconditioning step. However, the iteration count and the scalability of the neural
preconditioner with respect to the mesh size are not optimal. In fact, as shown later in Table 11, a trade-off between
computational cost and algorithmic efficiency appears. However, our findings indicate that, in general, the neural
preconditioner offers a competitive approach to solving mixed-dimensional PDEs, which motivates its use in Section
6 when addressing the coupled problem.

12



Figure 4: Examples of the graphs Λ considered in the numerical tests, with increasing geometrical complexity.

5.1. General setup of the numerical tests
The domain Ω is the unit cube, and the problem is discretized using a structured mesh with 9261 nodes (213 grid

points). Physical constants are set as kΩ = 10−3 and σΩ = 10−3, corresponding to a low diffusion-reaction regime
in Ω. In addition, we performed tests using kΩ = 10−2, σΩ = 10−2, confirming the adaptability of the method.
The magnitude of the coupling term is set by fixing the radius ϵ = 10−3 leading to γ = 2πϵ ≃ 6, 28 10−3 setting
the model in a regime where the coupling term Mµh,00 is comparable or greater to the block Kh,00. Concerning the
problem in Λ we set kΛ = 1, coherently with the general observation that the diffusion in the channels Λ is generally
larger than the one in Ω, although the actual magnitude of this coefficient may not exactly correspond to any specific
application. Although model (1) is not intended to represent a specific application, choice kΩ, kΛ, σΩ, ϵ is consistent
with the range of physiologically relevant parameters for oxygen transfer in the microcirculation, described in detail
in [38], for example. Here, our aim is to capture the correct balance between diffusion, reaction, and coupling, rather
than the precise numerical values of biological constants. The set of right-hand sides considered in the numerical
experiments includes non-homogeneous contributions, such as constant and oscillatory functions; however, unless
otherwise specified, the tests have been performed with the homogeneous value fh,0 := 0. For the training set Kµ,
different 1D graph geometries are considered (see Fig. 4), ranging from O(1) to O(102) number of branches.

We considered a three-level U-net architecture, U3, with two input channels: one relative to the vector in the
training set Kµ and one carrying the parameter information µ, that is, taking the discrete distance function dµh ∈ R

Nh

associated with the graph Λ. More technical details can be found in Table 1 and Fig. 3. The actual training set
B̃ ≈ B is obtained by solving approximately the system in (11), with a relative tolerance of 10−4, thus ensuring
computational efficiency in training set generation. The data-augmentations sets Dµ j vary depending on the scenario
analyzed, resulting in three different U-Net preconditioners:

Dµ j = ∅ ⇒ U∅3(· ; θ),

Dµ j = {qµ j

5 , . . . , q
µ j

8 } ⇒ U
kry
3 (· ; θ),

Dµ j = {rh,1, . . . , rh,4} ⇒ U
h f
3 (· ; θ).

Here, {qµ j

5 , . . . , q
µ j

8 } are orthonormal bases of the Krylov subspaceK8(Cµh , b
µ
h), and {rh,1, . . . , rh,4} are high-frequency

vectors sampled from the unit sphere SNh−1. The networks U3 are trained through the minimization of the empirical
risk:

U⋆3 = U3(θ⋆) with θ⋆ = arg min
θ
=

1
NP

NP∑
j=1

1
NKµ j

∑
v∈Kµ j

∥∥∥v − α−1Cµ j

h U3(v,dµ j

h ; θ)
∥∥∥2 ,

where α :=
(

1
NP

∑NP
j=1

1
√

Nh
∥diag(Cµ j

h )∥2
)

is a fixed normalizing constant representing the mean matrices diagonal root
mean square, which helps stabilize the training process. For comparison purposes, an equal number of graph samples
and training epochs is used forU∅3 ,Ukry

3 , andUh f
3 . More data on the training process are reported in Table 2.

Figure 5 displays the convergence history of training and validation for the U-Net architecture when the physical
constants kΩ = 10−3, σΩ = 10−3 are considered.
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Training 1D graphs Tot. samples Validation 1D graphs Tot. samples
Samples 480 2400 Samples 120 600
Batch Size 5 Epochs 250
Learning rate 10−3 Learning strategy decaying

Table 2: Details on the training dataset and parameters. Due to data augmentation strategies, the total number of training samples is
five times the one of the 1D graphs.

The graphs illustrate that the training and validation error forU∅3 ,Ukry
3 andUh f

3 possesses similar trends but quite
different values; nevertheless, as will be clarified later on, the training and validation error alone are not discriminant
for the performance of the U-Net preconditioner. What is fundamental is the data set over which the given error
is obtained; e.g., even if U∅3 and Ukry

3 possess similar error behavior in the validation set, their performance as a
preconditioner is quite different (cf. Table 3).
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Figure 5: Convergence of train (left) and validation (right) relative errors of the U-Net U⋆3 when trained on different datasets, for
the physical constants kΩ = 10−3, σΩ = 10−3.

The performance of the proposed neural preconditioner is evaluated by comparing it with two well-established
preconditioning strategies: the Incomplete LU (ILU) factorization and the Algebraic Multigrid (AMG) method [41].
The ILU preconditioner approximates the LU factorization of a matrix by allowing a controlled level of fill-in, which
provides a balance between sparsity and approximation accuracy, making it effective for moderately ill-conditioned
systems. AMG is a hierarchical method that constructs a sequence of progressively coarser spaces to efficiently
capture both low- and high-frequency error components, thereby accelerating convergence for a wide range of linear
systems. Both ILU and AMG preconditioners have been implemented using the PETSc library (https://petsc.
org/release/)[3], which offers efficient and scalable linear algebra routines for large-scale computational problems,
together with the PETSc python wrapper petsc4py(https://pypi.org/project/petsc4py)[10].

All these preconditioners are tested on a flexible GMRES algorithm with right preconditioning, designated as
FGMRES(k), restarted every k = 20 steps. Iterations are stopped when the relative residual satisfies ||r||/||r0|| ≤ 10−6.
In all tables, we show the average number of iterations required by the algorithm to converge (denoted as Mean Iter.),
for an ensemble of linear systems corresponding to 102 unseen graphs Λ, ranging from O(1) to O(102) branches.

5.2. Effect of the data-augmentation strategy, forcing terms and parameters

We analyze the performance of the proposed preconditioners under three augmentation strategies: (i) no augmen-
tation (U∅3), (ii) Krylov subspace augmentation (Ukry

3 ), and (iii) random high-frequency vector augmentation (Uh f
3 ).

To explore the robustness of the approach, the tests are repeated for two values of the physical parameters. The results
are reported in Table 3.
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For the most challenging parameter choice, kΩ = σΩ = 10−3, the unaugmented U-Net preconditioner (U∅3) is less
effective, requiring 92.41 iterations on average, which highlights its limited ability to capture the full spectrum of the
solution space. Incorporating Krylov subspace augmentation (Ukry

3 ) reduces the mean iteration count significantly
(24.54), as this strategy enriches the training set with information aligned with the operator spectrum. Random vector
augmentation (Uh f

3 ) achieves the lowest iteration count (17.82), demonstrating superior performance over the other
augmentation strategies.

We have further extended this analysis to account for non-homogeneous right-hand sides. In addition to the
homogeneous case (fh,0 ≡ 0), we considered two representative forcing terms:

fh,0,const := 10−3 · 1, fh,0,osc := A
(
sin(πkxx) + sin(πkyy) + sin(πkzz)

)
,

with A = 10−3 and kx = ky = kz = 2. The numerical results reported in Table 4 confirm that the neural preconditioner
remains stable and effective in all these scenarios. In the homogeneous case, iteration counts range from 17 to 25,
while in the constant and oscillatory forcing cases, they remain of the same order (approximately 21–28). This shows
that the performance of the preconditioner is not significantly affected by the type of right-hand side. Moreover, the
comparison between Krylov and random augmentation essentially confirms the conclusion of Table 3.

Finally, we comment on the effect of the coupling term γMµh in the preconditioned system. As the relative weight
of the metric contribution increases with respect to the diffusion–reaction terms, the conditioning of the underlying
operator is known to deteriorate [11]. Our numerical experiments confirm that the neural preconditioner reflects this
behavior: its effectiveness is progressively reduced when the coupling term becomes dominant. This outcome is con-
sistent with the general theory of operator preconditioning for mixed-dimensional PDEs [11, 23, 25], where the growth
of the ratio γ/kΩ is expected to amplify the condition number of the problem. Thus, while the neural preconditioner
remains effective across a broad range of parameter values, it does not circumvent the intrinsic difficulties associ-
ated with strongly coupled regimes, highlighting a structural limitation that is shared with classical preconditioning
techniques.

Preconditioner Type kΩ = σΩ = 10−3 kΩ = σΩ = 10−2

Mean Iter. ∆+ ∆− Mean Iter. ∆+ ∆−

None 147.72 +83.28 -52.72 187.04 +121.96 -70.04

U∅3 No Augmentation 92.41 +17.59 -16.41 42.13 +10.87 -6.13

U
kry
3 Krylov Subspace 24.54 +3.89 -4.11 15.54 +1.46 -2.54

U
h f
3 Random Vectors 17.82 +5.18 -2.82 16.63 +2.37 -1.63

Table 3: Mean FGMRES iterations for different preconditioners, averaged across 100 different test configurations. ∆± = difference
in iteration counts between the average case (Mean Iter.) and the worst (best) case in the test set, respectively.

Precond. fh,0 ≡ 0 fh,0 ≡ fh,0,const fh,0 ≡ fh,0,osc

Mean
Iter. ∆+ ∆−

Mean
Iter. ∆+ ∆−

Mean
Iter. ∆+ ∆−

U
kry
3 24.54 +3.89 -4.11 20.69 +4.31 -3.69 22.4 +4.8 -3.4

U
h f
3 17.82 +5.18 -2.82 27.92 +7.08 -5.92 22.98 +17.02 -4.98

Table 4: Mean FGMRES iterations for different preconditioners with zero, constant, and oscillatory right-hand sides. ∆± = difference in iteration
counts between the average case (Mean Iter.) and the worst (best) case in the test set, respectively.

5.3. Impact of the 1D graph parameterization
We also investigated to what extent including the distance function dµh as input enhances the effectiveness of the

neural preconditioner U(·,dµh; θ) for different instances of 1D domains. As shown in Table 5, including the distance
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function dµh as an input significantly improves its performance, particularly in scenarios where the µ-dependent com-
ponent Mµh,00 dominates. In fact, we recall that the structure of the linear system is defined as Cµh := Kh,00 + γMµh,00,
where Kh,00 is the fixed component, and Mµh,00 introduces the dependence of parameters. Without providing dµh, the
preconditioner mainly targets Kh,00, leading to lower performance on the whole system Cµh .

Preconditioner kΩ = σΩ = 10−3 kΩ = σΩ = 10−2

Mean Iter. ∆+ ∆− Mean Iter. ∆+ ∆−

U∅3(·) 108.65 +30.35 -29.65 41.50 +8.50 -5.50

U∅3(·,dµh) 92.41 +17.59 -16.41 42.13 +10.87 -6.13

U
kry
3 (·) 44.91 +8.09 -7.91 20.69 +2.31 -3.69

U
kry
3 (·,dµh) 24.54 +3.89 -4.11 15.54 +1.46 -2.54

U
h f
3 (·) 60.31 +26.69 -19.31 24.98 +6.02 -4.98

U
h f
3 (·,dµh) 17.82 +5.18 -2.82 16.63 +2.37 -1.63

Table 5: Mean FGMRES iterations with and without influence of the distance function. ∆± = difference in iteration counts between
the average case (Mean Iter.) and the worst (best) case in the test set, respectively.

5.4. Effect of pre- and post-smoothing
To improve the efficacy of the preconditioning method, similar to other studies [2, 20], we can employ techniques

for pre- and post-smoothing. The smoothing procedure helps mitigate high-frequency error components, particularly
for preconditioners that lack high-frequency training data. For a given residual r and initial guess x0, we consider a
smoothing algorithm with Jacobi relaxation SJ(A, r, x0,maxit) [43]. The impact of pre-post smoothing is summarized
in Table 6. The results show that preconditioning strategies with low-frequency training data (U∅3) benefit the most
from smoothing, reducing iterations by 60%.

This test sheds light on an important property of the data-augmented training strategy. Essentially, in Table 6 we
observe that pre- and post-smoothing has an effect comparable to that of data augmentation. This reveals that the
data-augmentation strategy is equivalent to adding a pre- and post-smoother to the preconditioner, helping in learning
how to process high frequencies and contrast the spectral bias. This property may turn out to be particularly effective
in those cases where an efficient smoother is not known for the problem at hand. This conclusion is further supported
by the fact that the high-frequency data augmentation strategyUh f

3 is less sensitive to smoother application.

5.5. Spectral analysis of training data and operator kernel
As previously observed, the introduction of high-frequency vectors in the training set is beneficial, with the aug-

mentation strategy based on random vectors slightly outperforming that using the Kylov subspace. In this section, we
seek to explain the observed behavior by contrasting the two training-set enrichment techniques with the operator’s
intrinsic kernel structure. In detail, to quantify the operator spectral content, we analyzed the null spaces of the prob-
lem matrices Kh,00, γMµ00,h, and Cµh using Singular Value Decomposition (SVD). Given a matrix A ∈ Rm×n with rank
r, the associated SVD is given by A = UΣV⊤, where U = [u1 | u2 | . . . | ur] and V = [v1 | v2 | . . . | vr] contain
the left and right singular vectors, respectively. The right singular vectors vi corresponding to zero singular values
(σ = 0) span the null space, capturing kernel components that influence preconditioning performance. Using sparse
SVD algorithms (scipy.sparse.svds), we extracted some of these vectors and analyzed them in frequency space
via the multidimensional discrete Fourier transform. Let us denote by V the d-dimensional tensor corresponding to a
right singular vector v. Then we denote the DFT as F , defined as follows,

F : V ∈ Rn1 × ... × Rnd → F (V) ∈ Ck1 × ... × Ckd , F (V)|k =
N−1∑
n=0

e−i2πk·(n/N)V|n,
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Precond. Relax kΩ = σΩ = 10−3 kΩ = σΩ = 10−2

Mean Iter. ∆+ ∆− Rel. Gain Mean Iter. ∆+ ∆− Rel. Gain

U∅3 None 92.41 +17.59 -16.41 0.64 42.13 +10.87 -6.13 0.47
U∅3 Jacobi 33.72 +13.28 -7.72 22.47 +3.53 -4.47

U
kry
3 None 24.54 +3.89 -4.11 0.49 15.54 +1.46 -2.54 0.26
U

kry
3 Jacobi 12.6 +3.40 -2.60 11.46 +0.54 -1.46

U
h f
3 None 17.83 +5.17 -2.83 0.26 16.63 +2.37 -1.63 0.22
U

h f
3 Jacobi 13.12 +2.88 -2.12 12.96 +2.04 -0.96

Table 6: Effect of pre- and post-smoothing on mean FGMRES iterations. ∆± = difference in iteration counts between the average
case (Mean Iter.) and the worst (best) case in the test set, respectively. Rel. Gain = relative reduction of the iteration counts when
using Jacobi relaxation smoothing.

where n = (n1, n2, ..., nd) ∈ Nd, k = (k1, k2, ..., kd) ∈ Nd and N = (N,N, ...,N) ∈ Nd are multi-integers and is N the
number of edge subdivision for the considered cubic structured mesh.

In Figure 6 (columns I-III), two-dimensional slices of the spectrum magnitudes ∥F (Vi)∥ associated with the kernel
vectors {vi}i=1,2,3 of matrices Kh,00, γMµh,00 and Cµh are shown. For better visualization, the so-called centered spectrum
is considered, where a suitable phase shift eiπk(N−1) in the frequency space is applied to F (V); in this way, the point
F (V)|(0,...,0), is centered on the plot. We note that the frequency content in the spectra of matrices Kh,00 and γMµh,00
is remarkably different. As expected, the kernel of the metric term γMµh,00 introduces very noisy high-frequency
components that need to be preconditioned. Figure 6 (columns IV-VI) presents a comparison between the different
data enhancement strategies, visualized in the frequency domain. Column IV shows the spectrum magnitude of the
normalized forcing term. Column V illustrates the spectrum magnitude of the orthonormal Krylov basis. Finally, the
last column presents the spectrum magnitude of the random high-frequency data augmentation set. In Figure 6 we
observe that Krylov subspace augmentation captures higher-order components by repeated application of the operator
to a basis vector, producing structured high-frequency content (column V). In contrast, random vector augmentation
introduces unstructured high-frequency content by randomly drawing components in an independent manner. This
results in a broader and more uniform spectral coverage (Fig. 6, column VI), enabling the preconditioner to handle
fine-scale variations in the solution, critical for mixed-dimensional problems like the 3D-1D coupled system. From
a comparison between the spectral content of different training sets and the spectrum of the kernel component of
the metric term γMµh,00 (Fig. 6, column II), one can conclude that the Krylov subspace augmentation introduces
structured high-frequency components, while random vector augmentation spans a broader frequency range, closer to
the true kernel spectrum of the operator. This broader frequency coverage can explain the better convergence behavior
observed in numerical experiments, where random vector-based augmentation results are more effective than Krylov-
based strategies in handling ill-conditioning and diverse parameter variations.

5.6. Scalability with respect to the problem size

Due to the intrinsic properties of the convolutional layers in the U-Net architecture, although trained on a low-
resolution input tensor X ∈ R21×21×21×2, the proposed neural preconditionerUh f

3 can be applied to inputs of arbitrary
dimensions, corresponding to higher resolutions of the problem. This adaptability makes it suitable for evaluating its
scalability with respect to increasing problem size, quantified by the number of unknowns Nh of the discrete problem.

We test here the convergence rate of the preconditioned FGMRES for the solution of the 3D problem, for three
different levels of mesh resolution N, namely [21, 41, 81] points per side of the cubic domain Ω corresponding re-
spectively to a number of degrees of freedom (d.o.f.), Nh, for a P1 FEM discretization equal to [213; 413; 813]. We
measure the average number of iterations across 100 different test cases, all referring to 1D graphs that were not used
during the training phase. Then, we analyze how the average iteration count scales with the number of d.o.f., Nh.
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Figure 6: Logarithmic plot in the frequency domain (k1, k2, k3) of the k2k3-cross section for the spectrum magnitude ∥F (Vi)∥;
k1 = 0 is considered and a value for µ is fixed given kΩ = σΩ = 10−3. Frequency components increase with the distance
from the center (0, 0, 0). Column I: magnitude of first three right-singular vectors associated to Kh,00; Column II: magnitude of
first three right-singular vectors associated to γMµ̄h,00; Column III: magnitude of first three right-singular vectors associated to
Cµh = Kh,00 + γMµ̄h,00; Column IV: spectrum magnitude of the normalized forcing term bµh; Column V: spectrum magnitude of the
orthonormal Krylov bases Dkry,µ := {qµ5 , . . . , q

µ
8} (note that qµ0 ≡ bµ̄h/||b

µ̄
h ||); Column VI: spectrum magnitude of the random high

frequency data augmentation setDh f ,µ := {rh,1 . . . rh,4}.
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To assess the capacity of the neural preconditioner to generalize on the mesh resolution, we compare the neural
preconditioner Uh f

3 trained on two different resolutions, N = 21 and N = 41, respectively, and analyze how these
two operators behave in the case of discretization based on 81 points. The comparison also includes incomplete LU
factorization (ILU) and Algebraic Multigrid (AMG) with 3 and 10 V-cycles, respectively.

Precond. Nh N Mean Iter. Rate (Nh) Time Rate (Nh) Time/Iter Rate (Nh)
9,261 21 147.72 365.33

None 68,921 41 431.91 0.53 7293.49 1.49
531,441 81 1000*
9,261 21 17.38 45.227 2.54

U
h f
3 (213) 68,921 41 37.24 0.37 497.86 1.2 13.37 1.21

531,441 81 100.73 0.49 9212.77 1.43 91.46 1.06
9,261 21 28.81 60.54 2.10

U
h f
3 (413) 68,921 41 45.54 0.27 519.95 1.07 11.42 1.19

531,441 81 119.27 0.47 11985.8 1.54 100.49 0.94
9,261 21 24.73 37.7 1.52

ILU 68,921 41 46.2 0.31 486.04 1.27 10.52 1.04
531,441 81 102.55 0.39 9422.78 1.45 91.88 0.94
9,261 21 9.56 62.35 6.52

AMG(3) 68,921 41 17.13 0.29 696.14 1.20 40.64 1.10
531,441 81 33.66 0.33 9631.04 1.29 286.13 1.05
9,261 21 3.64 55.67 15.29

AMG(10) 68,921 41 4.01 0.05 329.32 1.02 82.12 1.19
531,441 81 4.9 0.10 3921.46 1.07 800.30 0.90

Table 7: Mean FGMRES iterations and execution time for different preconditioning strategies of the problem with kΩ = σΩ = 10−3.
All times are in milliseconds. Rate(Nh) = for a given quantity of interest y, it is the estimated exponent q yielding y ∝ Nq

h . (*)
Denotes that, for at least a simulation in the test set, FGMRES did not converge in the maximum number of iterations, here set to
1000.

In Table 7 and 8, we see that the scaling behavior of the neural preconditioner Uh f
3 closely matches that of the ILU

preconditioner. These methods show a dependence on Nh of order ≃ 0.4 − 0.5. The AMG(3) preconditioner shows
a lower iteration count but features a similar scaling with respect to the size of the problem. None of these methods
achieves optimal scaling as the AMG(10) preconditioner, the iteration rates of which are almost independent on Nh.

Finally, we note that the performance of the neural preconditioners Uh f
3 (213) and Uh f

3 (413) is almost equivalent,
indicating that the size and resolution of the training data do not affect the overall performance of the neural opera-
tor. This means that it is possible to train the neural preconditioner on low-resolution data and deploy it on higher
resolutions, with considerable savings on the computational cost of the offline training phase.

Previous analyses have focused solely on the number of FGMRES iterations as a performance metric. Although
the neural preconditioners demonstrated sub-optimal results in terms of convergence rates, it is also essential to con-
sider execution time, as the forward pass through a neural network is computationally lighter than, e.g., a single
evaluation of the AMG algorithm. Although the implementation has not been optimized for performance (e.g., no
batch-optimized algorithm or GPU acceleration techniques [35]), we also present in Tables 7-8 the results for exe-
cution time. Looking at the scaling with Nh of the mean time required to solve the 3D problem, the advantage of
AMG(10) is significantly reduced with respect to the neural preconditioner, ILU, and AMG(3), which provide aligned
performances. This can be interpreted by observing that for FGMRES with sparse matrices, the overall computational
cost is O(m × Nh), where m is the number of iterations required for convergence. On the one hand, m is sensitive to
the choice of the preconditioner; precisely as shown in Table 7-8 column Mean Iter. we have m = (Nh)pi which being
pi ≃ 0.5 forUh f

3 , pi ≃ 0.4 for ILU, pi ≃ 0.4 for AMG(3) and pi ≃ 0 for AMG (10), this being the only case where m is
independent of Nh. On the other hand, the time per iteration scales linearly with Nh, that is, T = ciNh for all methods,
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Precond. Nh N Mean Iter. Rate (Nh) Time Rate (Nh) Time/Iter Rate (Nh)
9,261 21 187.94 216.17

None 68,921 41 511.34 0.50 3,329.16 1.36
531,441 81 1000*
9,261 21 16.63 41.18 2.48

U
h f
3 (213) 68,921 41 37.98 0.41 461.18 1.20 12.14 1.26

531,441 81 113.98 0.54 9,908.77 1.50 86.93 1.04
9,261 21 24.27 55.73 2.30

U
h f
3 (413) 68,921 41 41.39 0.27 458.34 1.05 11.07 1.28

531,441 81 104.99 0.46 9,586.00 1.49 91.30 0.97
9,261 21 31.46 42.09 1.34

ILU 68,921 41 62.18 0.34 548.30 1.28 8.82 1.06
531,441 81 147.30 0.42 12,123.32 1.52 82.30 0.91
9,261 21 11.50 63.95 5.56

AMG(3) 68,921 41 20.69 0.29 727.50 1.21 35.16 1.09
531,441 81 42.14 0.35 10,839.18 1.32 257.22 1.03
9,261 21 3.92 53.25 13.58

AMG(10) 68,921 41 4.00 0.01 404.91 1.01 101.23 0.999
531,441 81 4.00 0.00 3,450.91 1.05 862.73 0.95

Table 8: Mean FGMRES iterations and execution time for different preconditioning strategies of the problem with kΩ = σΩ = 10−2.
Table entries read as in Table 7.

but the proportionality constant may be radically different, namely ci = 1.72310−4, 1.88310−4 for neural precondi-
tioners trained on points 213 and 413, ci = 1.72110−4 for ILU, ci = 5.38310−4 for AMG(3) and ci = 14.9810−4 for
AMG(10), with neural and ILU preconditioners showing advantage over AMG. As a result, the following relation
between the total time and the size of the problem holds, log T = ci + (pi + 1) log Nh, showing that methods such as
neural preconditioners and ILU provide a potential advantage for systems of small size.

We finally observe that the neural preconditioner struggles to address large systems, for example, the one arising
from a discretization of the 3D domain with 101 points per side, corresponding to Nh ≃ 106, for which Uh f

3 (213)
requires on average 188.65 iterations to solve the 3D problem. The behavior does not improve with increasing the
dimension of the training set, as this is true for both Uh f

3 (213) and Uh f
3 (413). We hypothesize that this is due to the

effect of high frequencies that become dominant components when the discrete solution belongs to a high-dimensional
space. For this reason, we tested the preconditioner Uh f

3 (213) with pre- and post-smoothing, as described in Section
5.4, with very encouraging results given by an average number of iterations equal to [13.12; 27.60; 62.32; 91.55] for
Nh = [213; 413; 813; 1013], respectively. This corresponds to the parameters pi = 0.31 for the dependence of the
number of iterations on Nh and ci = 2.30210−4 for the proportionality constant between time and iterations. This
performance is in line with the ILU preconditioner, actually slightly better.

5.7. Effect of the FEM polynomial order

In order to assess the influence of the polynomial order of the finite element discretization, we have extended our
numerical tests to the case of second-order elements. This analysis explores the behavior of both classical and neural
preconditioners in higher-order settings. Moving from P1 to P2 elements causes the system matrices to have a denser
sparsity pattern, which increases both setup and application times. As a result, AMG(10) is expected to be significantly
slower in terms of wall-clock time, although the number of iterations remains largely unchanged, as demonstrated by
numerical experiments (details provided in Table 9). In this context, we perform a comparative analysis between
the neural preconditioner and AMG(10). To this end, we regenerated the training data with P2 discretizations and
trained a dedicated neural preconditioner. We then compared two scenarios: (i) applying a model trained on P1 data
directly to P2 residuals, and (ii) using a model trained specifically on P2 data. We denote the two preconditioners
by Uh f

3 (P1) and Uh f
3 (P2), respectively. The results, summarized in Table 9, confirm that the neural preconditioner is
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largely insensitive to the polynomial degree in terms of iteration counts. In addition, the performance of theUh f
3 (P1)

applied to the P2 problems is very close to that of the retrainedUh f
3 (P2), with only minor differences.

P1 P2

Precond. Nh N Mean Iter. Time/Iter N Mean Iter. Time/Iter
None 9,261 21 147.72 - 11 173.32 -

68,921 41 431.91 - 21 440.98 -
531,441 81 1000* - 41 1000* -

ILU 9,261 21 24.73 1.52 11 37.68 1.11
68,921 41 46.2 10.52 21 77.66 11.50
531,441 81 102.55 91.88 41 196.01 105.75

AMG(3) 9,261 21 9.56 6.52 11 11.73 6.77
68,921 41 17.13 40.64 21 21.34 52.26
531,441 81 33.66 286.13 41 42.11 328.15

AMG(10) 9,261 21 3.64 15.29 11 4.37 19.95
68,921 41 4.01 82.12 21 4.18 203.67
531,441 81 4.9 800.30 41 5.84 1405.25

U
h f
3 (P1) 9,261 21 17.38 2.54 11 23.15 1.64

68,921 41 37.24 13.37 21 37.29 10.87
531,441 81 100.73 91.46 41 89.17 113.21

U
h f
3 (P2) 9,261 21 11 23.26 1.63

68,921 41 - 21 35.35 12.02
531,441 81 41 102.6 101.01

Table 9: Mean FGMRES iterations for different preconditioning strategies with kΩ = σΩ = 10−3. (*) Denotes that, at least once,
FGMRES did not converge in the maximum number of iterations (1000); two polynomial orders are considered: P1 and P2.

Overall, these experiments demonstrate that the neural preconditioner adapts naturally to higher-order discretiza-
tions, with stable iteration counts and low per-iteration cost. In contrast, AMG(10), although optimal in iteration
numbers, becomes increasingly penalized in terms of computational time as the polynomial order grows. This iden-
tifies a practical regime in which the neural preconditioner represents an attractive alternative for higher-order FEM
discretizations.

5.8. Coupling the neural preconditioner with ensembled calculations

In the context of parametric simulations of mixed-dimensional PDEs, solving multiple instances of the underlying
linear system for varying configurations of the low-dimensional structure can become computationally prohibitive. To
mitigate this, the so-called ensembled framework has recently been developed to accelerate the solution of families
of linear systems that share a common structure [37, 28]. Ensembled methods consist of stacking multiple coeffi-
cient matrices and right-hand side vectors, each corresponding to a different parameter instance, and solving them
simultaneously as a batched linear system. This paradigm is especially well-suited for settings such as uncertainty
quantification or parametric sweeps, where many problems must be solved independently but share structural similar-
ities. The main advantage of this approach lies in the optimized memory access.

We note that a key feature of the proposed neural preconditioner lies in its ability to generalize across the parameter
space and that this property is well suited to ensemble methods, as the neural operator can process a group of inputs
at the same time, each representing various parameter settings.

We have implemented a prototype of the ensembled calculation using the algorithmic infrastructure developed
for the neural preconditioner, based on the PyTorch library ([36]) together with the CUDA kernel ([31]). In fact,
we recall that the input of the neural preconditioner consists of tensors Xi ∈ Rc×n with c representing the number
of channels and n = n1 × n2 × ... × nd a multi-index encoding the physical dimension of the data (see Section 4.2).
Given a set of tensors {Xi}i=1..N , it is possible to stack them along an additional batch dimension to obtain a new tensor
Xe = [X1|...|XN] ∈ RN×c×n that encodes all input tensors to be fed to the neural preconditioner.
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Figure 7: Left: plot of the speed-up associated to the batched execution of the neural preconditioning pass, using Uh f
3 (Xe) with Xe ∈

RN×2×21×21×21, and batch size N ∈ [1, 100]. Right: Plot of the execution time, expressed in millisecond, associated respectively to the serial
(non-batched) and batched preconditioner pass ofUh f

3 .

We evaluated the speed-up factor achieved by implementing the neural preconditionerUh f
3 on N ∈ [1, 100] input

tensors Xi ∈ R2×21×21×21, which correspond to N different 1D graphs in eq. 9, i.e.

s =

∑N
i=1 t
(
U

h f
3 (Xi)

)
t
(
U

h f
3 (Xe)

)
with t

(
U

h f
3 (·)
)

representing the execution time of the neural preconditioner pass. The numerical tests are performed
on an AMD EPYC 7301 CPU and a NVIDIA Tesla V100 GPU with 64 MB of dedicated RAM.

From the results shown in Table 10 and Fig. 7, we observe a speed-up around 4.5 when up to 100 input tensors
are considered. Saturation occurs as the batched input approaches the memory limit of the hardware. The beneficial
acceleration is associated with the contiguous memory structure, coupled with CUDA streams and execution via the
PyTorch library. We prospect that the synergy between the ensembled approach and the neural preconditioner, along
with the use of GPU based architectures, can enable significant gains in solver throughput, especially in multi-query
scenarios. A comprehensive study encompassing computational architecture, algorithmic design, memory manage-
ment, and preconditioner implementation is deferred to future research.

Batch size (N) 1 5 10 15 20 30 50 70 90 100

time non-batched [ms] 1.5 6.1 11.8 17.5 23.2 34.7 58.2 81.3 104.7 114.9

time batched [ms] 1.5 2.6 4.1 5.5 6.6 9.7 13.5 18.2 22.9 25.5

Speed-up 1.0 2.3 2.9 3.5 3.7 3.6 4.3 4.5 4.6 4.5

Table 10: Execution times [ms] and speed-up of the forward pass through the neural preconditioner as a function of the batch size.

6. Solution of the 3D-1D coupled problem

We now focus on the fully coupled 3D-1D problem, assessing how well the suggested block-preconditioning
strategy (7)-(8) performs when applied to the linear system (6). We use a right-preconditioned FGMRES solver with
a restart parameter k = 20 and a stopping criterion ∥r∥/∥r0∥ ≤ 1 · 10−15. This iterative solver is preconditioned by an
approximation Q̃µh of the block preconditioner defined in (8). More precisely, the block preconditioner Q̃µh is defined
by an approximate solution to the 1D problem, obtained with ILU factorization, returning z̃µh,1 (a direct solver has also
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been tested, leading to no remarkable differences); then, 3 steps of the preconditioned FGMRES algorithm (precisely
P-FGMRES with various preconditioners P) return z̃µh,0, an approximate solution of the 3D system.

The performance of this approach for the 3D-1D coupled problem (6) with a comparison of monolithic solvers and
different choices of preconditioners for the 3D problem can be found in Table 11. The latter presents a comparative
analysis of the different strategies employed to solve the coupled 3D-1D system using the FGMRES iterative solver,
with a focus on the impact of preconditioning.

As seen in the table, the results clearly highlight the importance of preconditioning for the efficient resolution of
mixed-dimensional PDEs. Indeed, the first key observation is that the absence of a preconditioner results in a solver
failing to converge within the budget of 2000 iterations. This emphasizes the severity of the ill-conditioning that char-
acterizes the 3D-1D coupled problem and establishes the necessity of a robust preconditioning strategy. The block-
diagonal preconditioner Q̃µh emerges as a good option, underlining the effectiveness of a decoupled block-structured
approach that aligns with the intrinsic structure of the mixed-dimensional system. Interestingly, the full monolithic
preconditioning strategy based on algebraic multigrid with 10 smoothing steps (denoted AMG(10) monolithic) fails
to deliver competitive performance. This suggests that generic monolithic approaches are suboptimal for problems
with strong 3D-1D coupling, as they are not designed to exploit the specific features of the system. In contrast, the
Haznics preconditioner, which involves a combination of AMG in the entire 3D domain and Schwarz smoother on the
interface between the 3D and 1D domain [9], shows the best performance in terms of iterations, validating its role as
the current state-of-the-art method for mixed-dimensional problems. A degradation of the mean iteration count can
be observed for the highest value of Nh, especially due to lack of convergence when very complex graph geometries
are considered.

The table also reports the results for strategies that combine the block-diagonal preconditioner Q̃µh with various
solvers applied to its diagonal blocks. In particular, the first block, corresponding to the 3D sub-problem, is precon-
ditioned with ILU, AMG (3), AMG (10) or different instances of the neural preconditioner, namely Uhf

3 (213) and
Uhf

3 (413). Although the iteration counts vary distinctively between the different strategies, we notice that their overall
computational times are remarkably similar. This is a result of a trade-off between the cost per iteration and the num-
ber of iterations required. For instance, classical preconditioners like AMG generally result in lower iteration counts
but at a higher per-iteration cost. Neural preconditioners, on the other hand, often yield higher iteration counts but
with significantly lower cost per iteration, because of their efficient matrix-free representation. This balance ensures
that all these strategies achieve similar total run-times, with performance comparable to or superior to monolithic
alternatives.

These findings support the potential of the neural preconditioners as a viable and efficient strategy for solving com-
plex mixed-dimensional problems of small-medium scale. The flexibility in trading iteration count for speed suggests
that these learned preconditioners can serve as lightweight generalizable components in the broader preconditioning
pipeline.

7. Conclusions and Future Perspectives

In this work, we have developed a novel unsupervised neural network-based preconditioning strategy tailored
to efficiently solve mixed-dimensional PDEs, specifically targeting the computational challenges arising from the
coupling between 3D domains and embedded 1D structures. Using operator learning through convolutional neural
networks, our approach successfully generalizes across various topological configurations of the 1D graphs and adapts
robustly to different mesh resolutions without requiring retraining.

The neural preconditioner was extensively validated against classical preconditioning methods, including incom-
plete LU factorization and algebraic multigrid methods. Numerical experiments demonstrated that the proposed
neural network preconditioner significantly accelerates convergence of iterative solvers, such as the Flexible GMRES,
effectively handling both low- and high-frequency error components. Among the data augmentation strategies inves-
tigated, enriching the training set with random high-frequency vectors emerged as the most effective, enabling the
neural network to overcome the inherent spectral bias common to most machine learning-based approaches.

Furthermore, our analysis underscored the critical role of including explicit parametric information through the
distance function associated with the 1D graph, which improved the effectiveness of the preconditioner in varying ge-
ometric configurations. We also explored the complementary effects of pre- and post-smoothing strategies, illustrating
their capacity to enhance preconditioning performance, particularly when the training set lacks high-frequency data.
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Precond. Nh kΩ = σΩ = 10−3 kΩ = σΩ = 10−2

Iter Rate(Nh) Time Rate(Nh) Iter Rate(Nh) Time Rate(Nh)

Non prec.
3D-1D problem

9,261 1973.55*
n.r.

1768.65*
n.r.68,921 2000* 2000*

531441 2000* 2000*

AMG(10)
monolithic

9,261 1181.48*
n.r.

1220.83*
n.r.68,921 1366.02* 1423.44*

531441 1862.71* 1918.29*

Haznics-AMG(10)
3D-1D problem

9,261 38.71 1.47 35.36 1.49
68,921 48.04 0.11 2.14 0.19 41.39 0.08 2.26 0.21
531441 725.44* 1.35 84.232 1.80 497.57* 1.22 64.95 1.64

1D: ILU
3D: P-FGMRES

P = none

9,261 153.82 0.50 123.25 0.49
68,921 417.82 0.50 8.51 1.42 316.88 0.47 4.48 1.10
531441 1564.84 0.65 260.41 1.32 916.19 0.52 152.88 1.73

1D: ILU
3D: P-FGMRES

P =Uh f
3 (213)

9,261 60.74 0.47 22.28 0.27
68,921 123.30 0.35 3.12 0.94 54.33 0.44 1.54 0.87
531441 438.69 0.62 93.49 1.66 157.69 0.52 32.98 1.50

1D: ILU
3D: P-FGMRES

P =Uh f
3 (413)

9,261 69.15 0.51 26.95 0.29
68,921 104.80 0.21 2.68 0.83 36.55 0.15 1.06 0.64
531441 257.91 0.44 54.62 1.48 59.99 0.23 12.78 1.22

1D: ILU
3D: P-FGMRES
P = AMG(10)

9,261 50.19 0.72 16.85 0.35
68,921 52.57 0.02 5.40 1.00 17.84 0.002 1.95 0.61
531441 56.13 0.03 49.17 1.08 18.85 0.02 17.49 0.81

1D: ILU
3D: P-FGMRES

P = AMG(3)

9,261 51.53 0.63 18.23 0.33
68,921 56.61 0.05 4.64 0.99 23.00 0.12 2.01 0.90
531441 68.64 0.08 45.58 1.12 37.1 0.23 24.75 1.23

1D: ILU
3D: P-FGMRES

P = ILU

9,261 52.14 0.4 18.72 0.26
68,921 58.08 0.05 1.97 0.79 26.52 0.17 1.05 0.70
531441 76.33 0.13 20.32 1.14 47.83 0.29 13.25 1.24

Table 11: Mean FGMRES iterations and execution times with associated rates for the preconditioning strategies considered, in
different mesh configurations. Times are reported in seconds. Rate(Nh) = for a given quantity of interest y, it is the estimated
exponent q yielding y ∝ Nq

h . (*) Denotes that, for at least a simulation in the test set, FGMRES did not converge in the maximum
number of iterations, here set to 2000. (n.r.) means that the data was not recorded.
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However, there are limitations and areas for future improvement. A significant current limitation is that the pro-
posed approach is applicable only to tensor-product domains, which restricts its use in realistic applications. To
address this, we are actively exploring the use of graph- and mesh-informed neural networks [4, 14], as suitable
alternatives to convolutional layers, with the aim of extending the applicability of this method to more general com-
putational domains. Additionally, developing a solid theoretical framework for selecting data augmentation subsets
and, more broadly, for learning-based preconditioning methods is crucial to consolidate this approach and broaden
the range of application areas. Although the scalability of the neural preconditioner shows promise, more work is
required to enhance its performance in large-scale problems.

The promising results obtained from this study not only establish neural preconditioning as a viable and efficient
alternative to traditional preconditioners for mixed-dimensional PDEs, but also lay a robust foundation for further
exploration into broader classes of coupled multiphysics problems.
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Appendix A. Auxiliary results

Lemma A.1. Let (V, ∥ · ∥V ) and (W, ∥ · ∥W ) be two Banach spaces. Let GL(V,W) ⊂ L(V,W) be the set of invertible
bounded linear operators from V to W, equipped with the operator norm

∥A∥L(V,W) := sup
v∈V\{0}

∥Av∥W
∥v∥V

.

Then,

1. GL(V,W) is open in the operator norm topology;

2. for every A ∈ GL(V,W) there exists a unique inverse A−1 ∈ L(W,V). Furthermore, A−1 ∈ GL(W,V);

3. the inversion map I : A 7→ A−1 is GL(V,W) 7→ GL(W,V) continuous.

Proof. We mention that a stronger result holds, as I is in fact holomorphic: see, e.g., the proof in [1, Proposition
4.8]. Nonetheless, we can easily prove the statements in the Lemma as follows.

1. Given A ∈ GL(V,W), let B ∈ L(V,W) be such that ∥A − B∥L(V,W) < 1/∥A−1∥L(W,V).We notice that the operator
C = A−1(A − B) = IdV −A−1B is an endomorphism from V onto itself. Furthermore,

∥C∥L(V,V) ≤ ∥A−1∥L(W,V) · ∥A − B∥L(V,W) < 1.

It follows that, for every k, the kth power of C, defined via composition, satisfies ∥Ck∥L(V,V) ≤ ∥C∥kL(V,V) < 1. As
a consequence, the Nuemann series

∑+∞
k=0 Ck is shown to be absolutely convergent in L(V,V). Indeed,

+∞∑
k=0

∥Ck∥L(V,V) ≤

+∞∑
k=0

∥C∥k
L(V,V) =

1
1 − ∥C∥L(V,V)

.

Since L(V,V) is a Banach space, this ensures that
∑+∞

k=0 Ck converges to some element of L(V,V). In particular,
by construction of the Neumann series,

∑+∞
k=0 Ck = (IdV −C)−1 = (A−1B)−1. Let

B† := (A−1B)−1A−1. (A.1)

Clearly, B† ∈ L(W,V) by composition. Furthermore, we have A−1BB† = A−1. Since A−1 is invertible, and thus
of full rank, this shows that BB† = IdW . Similarly, composing (A.1) with B yields

B†B = (A−1B)(A−1B) = IdV .

It follows that B ∈ GL(V,W) and B† = B−1.

2. This follows immediately from the fact that invertible operators have full rank. To see this, let A ∈ GL(V,W)
and assume B1, B2 ∈ L(W,V) are two -possibly different- inverses of A. For all w ∈ W we have

B1w = B2A(B1w) = B2(AB1w) = B2w

since B1w ∈ V and AB1w ∈ W. Then B1 ≡ B2 =: A−1. The fact that A−1 ∈ GL(W,V) is obvious.

3. Let An → A in GL(V,W). Define the error En = A−An. There exists some n0 such that ∥En∥L(V,W) < 1/∥A∥L(V,W)
for all n ≥ n0. As for our proof of (1), we notice that this ensures the convergence of the following Neumann
series

+∞∑
k=0

(A−1En)k = (IdV −A−1En)−1.
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whenever n ≥ n0. Since
∥A−1 − A−1

n ∥L(W,V) ≤ ∥ IdV −A−1
n A∥L(V,V) · ∥A−1∥L(W,V),

it suffices to prove that ∥ IdV −A−1
n A∥L(V,V) → 0 as An → A. To this end, we note that for all n ≥ n0

∥ IdV −A−1
n A∥L(V,V) = ∥ IdV −(A − En)−1A∥L(V,V)

= ∥ IdV −(IdV −A−1En)−1A−1A∥L(V,V)

= ∥ IdV −(IdV −A−1En)−1∥L(V,V).

In particular, ∥ IdV −A−1
n A∥L(V,V) =

∥∥∥∑+∞k=1(A−1En)k
∥∥∥
L(V,V), and thus

∥ IdV −A−1
n A∥L(V,V) ≤ ∥A−1∥L(W,V)

+∞∑
k=1

∥En∥
k
L(V,W) =

∥A−1∥L(W,V)∥En∥L(V,W)

1 − ∥En∥L(V,W)
,

which is vanishing for n→ +∞, as En → 0.
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