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Abstract

We prove stability and interpolation estimates for Hellinger–Reissner virtual elements; the
constants appearing in such estimates only depend on the aspect ratio of the polytope under
consideration and the degree of accuracy of the scheme. We further investigate numerically the
behaviour of the constants appearing in the stability estimates on sequences of badly-shaped
polytopes and for increasing degree of accuracy.

AMS subject classification: 65N12; 65N30.

Keywords: virtual element method; stability estimate; interpolation estimate; Hellinger–
Reissner principle.

1 Introduction

State-of-the-art. Virtual elements were introduced more than a decade ago [8] as a generaliza-
tion of finite elements able to handle meshes of polytopic elements; different types of elements have
been designed for several problems, including the linear elasticity problem based on the Hellinger–
Reissner (HR) principle. A lowest order HR virtual element in 2D was introduced in [5] and
generalized to the arbitrary order case in [6]; the 3D version of the method is presented in [17, 31].
HR virtual elements consist of strongly symmetric stresses, whose degrees of freedom are associ-
ated with the interior of a d dimensional element and its d − 1 dimensional facets, d = 2, 3, and
piecewise polynomial displacements.

The literature of finite elements involving strongly symmetric stresses traces back to the end of
the 60ies: Watwood and Hartz [32] constructed lowest order spaces of strongly symmetric stresses
on triangular meshes; therein, there are no vertex degrees of freedom and the design of the element
hinges on a suitable split of each triangle into three smaller triangles. That method was analyzed
by Hlaváček [24], and Johnson and Mercier [26]. Henceforth, we shall be referring to that kind of
element as JM element. The JM element was generalized to the 3D case by Krizek [27]. A different
avenue was undertaken decades later by Arnold and Winther [4] (AW) for triangular meshes; no
elemental splits are there necessary, the price to pay being an increase of the dimension of local
spaces and the use of vertex degrees of freedom. The AW original approach was generalized to
rectangular meshes in [2, 14] and 3D elements in [1, 3]. We also mention the work by Hu and
Zhang [25] for polynomial order larger than 4 on tetrahedral meshes, which was employed by Chen
and Huang to construct a full elasticity complex in [13]. Other elasticity complexes based on Alfeld
and Worsey-Farin splits are discussed in [15, 21]. More recently, JM elements in any dimension
were designed in [22].

To the best of our understanding, the above references can be clustered into two main cat-
egories: AW types elements, whose design does not require any split of the mesh elements but
in d dimensions is based on degrees of freedom on all geometrical entities with finite nonzero ℓ-
dimensional Hausdorff measure for all ℓ = 0, . . . , d; JM types elements, which compared to AW
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elements need fewer degrees of freedom attached only to geometrical entities with codimension 0
and 1, but require some elemental splits for their design.

HR virtual element spaces retain advantages of AW and JM finite elements: no split of the
mesh elements is necessary for their design; the degrees of freedom are only attached to the interior
and the facets of an element; they support meshes of polytopic elements.

These upsides come at the price that discrete functions are not known in closed form, but only
through certain polynomial projections on the skeleton of the mesh and the interior of each mesh
element. As such, the bilinear forms appearing in the weak formulation of the linear elasticity
problem in mixed formulation are not computable for HR virtual element tensors. For this reason,
following the standard virtual element gospel [8], bilinear forms are discretized so as to be the
sum of two terms: one guaranteeing the polynomial consistency of the method and requiring a
projection of the HR virtual element tensors onto polynomial tensors; the other providing stability,
i.e., well-posedness of the linear system equivalent to the method.

Goals. In the literature on HR virtual elements [5, 6, 17, 31], several stabilizations have been
employed and heuristic arguments as for its scaling with respect to local L2 inner products are
discussed. In this paper, we show rigorous results along this directions: for standard geometries,
we exhibit stabilizations with correct scaling properties, and stability constants in the sense of (20)
below, which only depend on the shape-regularity of the mesh and the degree of accuracy of the
scheme. The technical tools we employ boil down to integration by parts, polynomial inverse in-
equalities, direct estimates, polynomial approximation results, and well-posedness results of mixed
formulation with certain boundary conditions.

Another important theoretical aspect in the analysis of virtual elements is the derivation of
interpolation estimates, with constants that are explicit with respect to the shape of the polytopic
elements. Such estimates, yet with implicit constants, are already available for the 2D lowest order
case [5] and they can be generalized to the general order and 3D cases as remarked in [6, 17, 31].
Here, we provide a new proof of interpolation estimates in HR virtual elements (with explicit
constants) based on using the stability estimates discussed above.

As we derive stability and interpolation estimates for standard geometries (star-shaped elements
with no small facets) and for a fixed degree of accuracy, the question arises naturally whether the
proven bounds are effectively robust with those respects. Thus, we investigate numerically the
behaviour of the stability constants on sequences of badly-shaped elements and for increasing
degree of accuracy.

Notation. Given a domainD in Rd, d = 2, 3, with boundary ∂D, outward unit normal vector nD,
and diameter hD, L2(D) is the space of square integrable functions over D and L2

0(D) is its
subspace of functions with zero average over D. Hs(D) denotes the Sobolev space of order s in N;
we consider fractional order spaces defined by interpolation theory. H1

0 (D) denotes the subspace
of H1(D) consisting of functions with zero trace over the boundary of D. We endow each Sobolev
space with seminorm, norm, and bilinear forms

|·|s,D, ∥·∥s,D, (·, ·)s,D.

The negative order Sobolev space H−1(D) are defined as the dual space of H1
0 (D) and endowed

with the norm

∥v∥−1,D := sup
ϕ∈H1

0 (D), |ϕ|1,D ̸=0

−1⟨v, ϕ⟩1,D
|ϕ|1,D

∀v ∈ H−1(D). (1)

Vector and tensor valued Sobolev and Lebesgue spaces are defined similarly, and are denoted by
replacing H and L by H and H, and L and L; vector fields are highlighted in boldface font, and
tensors are further underlined (e.g., v, v, and v). On most occasions, Roman and Greek letters
will be employed for vectors and tensors, respectively.

We usual standard notation for differential operators. In particular, ∇S · and div · are the
symmetric gradient of a vector field and the divergence operator of a tensor. We further define the
space Hs

S(div, D), s ≥ 0, of Hs(D) symmetric tensors σ such that divσ is in Hs(D). We simply
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write H(div, D) if s = 0. For tensors σ in Hs
S(div, D), the image space of the map (called trace

operator) that associates σ with σ|∂D nD is called H− 1
2 (∂D), which we endow with the norm

∥σnD∥− 1
2 ,∂D

:= sup
v∈H1(D), ∥v∥1,D ̸=0

(σ,∇v)0,D + (divσ,v)0,D

h
− 1

2

D ∥v∥0,∂D + |v| 1
2 ,∂D

.

The trace operator above is surjective, see, e.g., [10, Lemma 2.1.2], and continuous: there exists a
positive ctr only depending on the shape of D such that

∥σnD∥− 1
2 ,∂D

≤ ctr(h
−1
D ∥σ∥0,D + ∥divσ∥0,D) ∀σ ∈ Hs

S(div, D). (2)

The constant ctr coincides with the constant appearing in the right-inverse trace inequality; see,
e.g., [29, Theorem 3.37]. We denote the duality pairing between H− 1

2 (∂D) and H
1
2 (∂D) by ⟨·, ·⟩.

Given I the identity tensor, we introduce devσ = σ − d−1 tr(σ)I. Pp(D) represents the space
of polynomials of maximum degree p in N over D. We use the convention P−1(D) = {0}. Vector
and tensor polynomial spaces are denoted by replacing P with P and P. The space of rigid body
motions

RM(D) := {r(x) = α+ ω ∧ x | α ∈ R3, ω ∈ R3}

has dimension six and is spanned by

(1, 0, 0); (0, 1, 0); (0, 0, 1); (1, 0, 0) ∧ x; (0, 1, 0) ∧ x; (0, 0, 1) ∧ x.

For positive constants a and b, we write a ≲ b if there exists a uniform positive constant c such
that a ≤ c b. If a ≲ b and b ≲ a, we write a ≈ b. On relevant occasions, we shall pinpoint the
actual dependence of the hidden constant.

The model problem. In what follows, we focus on 3D problems only, albeit the forthcoming
analysis can be generalized to the 2D case with minor modifications. Given a Lipschitz polyhedral
domain Ω in R3 with boundary Γ := ∂Ω, a symmetric, uniformly elliptic elasticity tensor D =
C−1 : R3×3 → R3×3 on the space of symmetric 3 × 3 matrices, and f in L2(Ω), we consider the
linear elasticity problem: Find u : Ω → R3 such that

−div σ = f in Ω

σ = C∇S(u) in Ω

σn = 0 on ∂Ω.

(3)

In the standard isotropic elasticity case, given nonnegative Lamé moduli λ ≥ 0 and µ > 0, we have

Cτ := 2µdev(τ ) +
2µ+ 3λ

3
tr(τ )I, Dτ :=

dev(τ )

2µ
+

tr(τ )I
3(2µ+ 3λ)

. (4)

We introduce the spaces and inner product

V := {v ∈ L2(Ω) | (v, r)0,Ω = 0 ∀r ∈ RM(Ω)},

Σ := {τ ∈ HS(div,Ω) | ⟨τ n,v⟩ = 0 ∀v ∈ H1(Ω)}, a(σ, τ ) := (Dσ, τ )0,Ω ∀σ, τ ∈ Σ.
(5)

We endow the space V with ∥·∥V, which is the usual L2 norm, and Σ with the norm given by

∥·∥2Σ := ∥·∥20,Ω + h2
Ω∥div ·∥

2
0,Ω.

The HR weak formulation of (3) is
Find (σ,u) ∈ Σ×V such that

a(σ, τ ) + (div τ ,u)0,Ω = 0 ∀τ ∈ Σ

(divσ,v)0,Ω = −(f ,v)0,Ω ∀v ∈ V.

(6)
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Theorem A.7 below guarantees that problem (6) is well-posed even for inhomogeneous essential
boundary conditions, with a priori bounds

∥σ∥Σ + ∥u∥V ≤ C∥f∥0,Ω.

Above, C is a positive constant, which only depends on the ratio between the diameter of Ω and
the radius of the largest ball contained in Ω. If other types of boundary conditions are considered,
then the well-posedness of the problem can be found, e.g., in [10, Chapter 8]; in this case, we are
not able to provide an explicit dependence for the stability constant.

Regular meshes of polytopic elements. Henceforth, we focus on three dimensional domains.
Even though the forthcoming analysis is only concerned with local stability and interpolation
estimates, we discuss regularity assumptions for given meshes of polytopic elements, as the results
we shall discuss can be used in the analysis of virtual elements for problem (6) below.

Given X either an edge, facet, or polyhedron, we introduce its diameter hX , centroid xX , and
measure |X|. Given K a polyhedron, its set of facets is FK and the outward unit normal vector
is nK . Given F a facet of the mesh, its set of edges is EF .

We consider sequences of regular meshes {Tn} of polytopic elements in the following sense:
there exists a positive ρ such that, for all meshes Tn in the sequence,

• each K in Tn is star-shaped with respect to a ball of radius larger than or equal to ρhK ;

• for each K in Tn, each facet F in FK is star-shaped with respect to a disk of radius larger
than or equal to ρhF , and is such that hF is larger than or equal to ρhK ;

• for each K in Tn and F in FK , every edge e in EF is such that he is larger than or equal
to ρhF .

The above assumptions may be relaxed; yet, we stick to the above setting for the presentation’s
sake. Henceforth, given the Lamé parameters λ and µ as in (4), we assume that

λ and (consequently) µ in (4) are piecewise constant over any mesh in {Tn}. (7)

For future convenience, we expand the bilinear form a(·, ·) into a sum of local contribution over
the elements of a mesh Tn:

a(σ, τ ) =
∑

K∈Tn

aK(σ, τ ) :=
∑

K∈Tn

(Dσ, τ )0,K . (8)

Outline of the paper. In Section 2, we introduce HR type virtual elements and discretize L2-
type inner products using polynomial projections and stabilizing bilinear forms. In Section 3, we
discuss stability bounds, which we use in Section 4 to derive interpolation estimates in HR VE
spaces. We assess numerically the behaviour of the stabilizations on sequences of badly-shaped
elements and for increasing degree of accuracy in Section 5. Conclusions are drawn in Section 6,
while technical results from the PDE theory are investigated in Appendix A.

2 Hellinger–Reissner virtual element spaces and forms

We review the construction of HR virtual elements, the choice of suitable degrees of freedom, the
definition of certain polynomial spaces and polynomial projections, and the design of the discrete
bilinear forms.

Polynomial spaces. We introduce the space of vector polynomials that are orthogonal in L2(K)
to rigid body motions:

RM⊥
p (K) := {qp ∈ Pp(K) | (qp, r)0,K = 0 ∀r ∈ RM(K)}

and note that
Pp(K) = RM(K)⊕L2(K) RM⊥

p (K). (9)

For all elements K in Tn, we further introduce the space

Tp(K) := {C∇S(qp+1) | qp+1 ∈ Pp+1(K)}. (10)
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Virtual element spaces. Given an elementK of Tn and p in N, we define the Hellinger–Reissner
virtual element space

Σh(K) := {σh ∈ HS(div,K) | σh solves weakly (11) below},

where 
σh = C∇S(w

∗)

divσh = qp ∈ Pp(K) for some vector field w∗.

σhn
K

|F = qF
p ∈ Pp(F ) ∀F ∈ FK

(11)

Given aK(·, ·) as in (8), the discrete tensor σh defined in (11) solves
Find σh ∈ HS(div,K), w∗ ∈ L2(K) such that

aK(σh, τ ) + (div τ ,w∗)0,K = 0 ∀τ ∈ HS(div,K)

(divσh, z
∗)0,K = (qp, z

∗)0,K ∀z∗ ∈ L2(K)

σhn
K

|F = qF
p ∀F ∈ FK .

(12)

Since the displacement w∗ in (12) is unique up to rigid body motions, we fix it so as to be L2-
orthogonal to RM(K).

Since C is a constant tensor over K, see (7), the space Tp(K) defined in (10) only contains
polynomials up to order p. Therefore, we have the inclusion

Tp(K) ⊂ Σh(K). (13)

Remark 1. In principle, a lowest order element can be designed as well. In particular, no internal
degrees of freedom would be required and slightly different boundary conditions would be imposed
in (11); we refer to [5, 17] for more details. The forthcoming analysis generalizes straightforwardly
also to this setting, whence we shall skip the details for the presentation’s sake.

Degrees of freedom. Hereafter, by scaled polynomial fields we mean polynomial fields qp with
∥qp∥L∞(X) = 1, X = K or F . Given τh in HS(div,K), we consider the following linear functionals:

• for all facets F of K, given a basis {mF
α} of Pp(F ) of scaled polynomial fields that are shifted

with respect to xF , the scaled vector moments of the tractions on F :

1

|F |

∫
F

τhn
K ·mF

α; (14)

• given a basis {m⊥
α} of RM⊥

p (K) of scaled polynomial fields that are shifted with respect
to xK , the interior scaled vector moments of the divergence:

hK

|K|

∫
K

div τh ·m⊥
α. (15)

The above functionals form a set of unisolvent degrees of freedom for Σh(K); see [31, Remark 1].

Polynomial projectors. We introduce several projectors. For each element K, the first one is
ΠRM : L2(K) → RM(K) given by

(v −ΠRMv,qRM
p )0,K = 0 ∀v ∈ L2(K), qRM

p ∈ RM(K). (16)

Next, we define Π⊥
RM : L2(K) → RM⊥(K) as

(v −Π⊥
RMv,q⊥

p )0,K = 0 ∀v ∈ L2(K), q⊥
p ∈ RM⊥(K). (17)

Remark 2. For τh in Σh(K), ΠRM div τh can be computed for τh in Σh(K) using the boundary
degrees of freedom (14); Π⊥

RM div τh using the interior degrees of freedom (15). Therefore, (9)
implies that div τh is available in closed-form.
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Additionally, we define ΠT
p : L2(K) → Tp(K) as

(D(τ −ΠT
p τ ),q

T
p
)0,K = 0 ∀qT

p
∈ Tp(K). (18)

or equivalently

(τ −ΠT
p τ ,∇S(qp+1))0,K = 0 ∀qp+1 ∈ Pp+1(K).

The operator ΠT
p is computable for functions in Σh(K) using the degrees of freedom (14) and (15).

In fact, as observed for the 2D case in [6, eq. (26)], the orthogonality condition in (18) for τ replaced
by τh in Σh(K) is equivalent to find rp+1 in Pp+1(K) such that

(C∇S(rp+1),∇S(qp+1))0,K = (τh,∇S(qp+1))0,K ∀qp+1 ∈ Pp+1(K).

The right-hand side above is computable via the degrees of freedom (14) and (15) after an inte-
gration by parts.

Finally, on each facet F , define Π0,F
p : L2(F ) → Pp(F ) as

(v −Π0,F
p v,qF

p )0,F = 0 ∀v ∈ L2(F ), ∀qF
p ∈ Pp(F ). (19)

Discrete bilinear forms and stabilizations. In the HR virtual element method, the local L2

inner product aK(σ, τ ) is discretized using two ingredients. The first one is the projector ΠT
p

in (18); the second one is a bilinear form SK(·, ·) : Σh(K)×Σh(K) → R satisfying two properties:

• SK(·, ·) is computable only using the degrees of freedom (14) and (15);

• SK(·, ·) “scales” like ∥·∥20,K on the kernel of ΠT
p , i.e., there exist positive constants α∗ ≤ α∗

independent of λ, µ, and hK such that

µ−1
|Kα∗∥τh∥

2
0,K ≤ SK(τh, τh) ≤ µ−1

|Kα∗∥τh∥
2
0,K ∀τh ∈ Σh(K) ∩ ker(ΠT

p ). (20)

The constants α∗ and α∗ may depend on the regularity parameter ρ in Section 1 and p
in (11).

Remark 3. For more standard virtual elements (such as those for the approximation of the Poisson
problem, the Stokes equations, edge, and face virtual elements . . . ), the bounds in (20) can be
made sharper [28, Corollary 2]: the lower bound is typically proven for functions (fields, tensors,
. . . ) in the virtual element space; the upper bound for functions (fields, tensors, . . . ) in a Sobolev
space with extra zero average conditions. In the HR virtual element setting, this is not possible;
see the proof of Proposition 3.2 below.

Let I be the identity operator. With the two ingredients above at hand, we introduce the local
discrete bilinear forms

aKh (σh, τh) := aK(ΠT
p σh,Π

T
p τh) + SK((I−ΠT

p )σh, (I−ΠT
p )τh) ∀K ∈ Tn. (21)

In Section 3 below, we shall exhibit an explicit choice of SK(·, ·) and prove the corresponding
stability bounds (20).

3 Explicit stabilizations and stability bounds

We introduce two explicit stabilizations and prove stability bounds as in (20). More precisely,
we investigate a “projection-based” stabilization in Section 3.1 and a “dofi-dofi” stabilization in
Section 3.2.
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3.1 A “projection-based” stabilization

Given Π⊥
RM as in (17), for all K in Tn, and all σh and τh in Σh(K), we define

SK(σh, τh) := µ−1
|KhK

∑
F∈FK

(σhn
K , τhn

K)0,F + µ−1
|Kh2

K(Π⊥
RM divσh,Π

⊥
RM div τh)0,K . (22)

A practical alternative option discussed in the literature [5, 6] is the stabilization above replacing
µ−1
|K by tr(D).

Proposition 3.1. The bilinear form SK(·, ·) defined in (22) is computable by means of the degrees
of freedom (14) and (15), and satisfies the stability bounds (20). In fact, the result holds true also
for tensors τh such that ΠT

p τh is different from the zero tensor.

Proof. The computability of the bilinear form follows from the computability of Π⊥
RM div(·) for

functions in Σh(K), see Remark 2, and the fact that tractions on facets are given polynomials,
see (11).

We assume that hK = 1. The general assertion is a consequence of a scaling argument. In
what follows, let τh solve (11) (or equivalently (12)).

Since the symmetric gradient of a rigid body motion is the zero tensor, we have

∇S(div τh) = ∇S(Π
⊥
RM div τh) ∀τh ∈ Σh(K). (23)

The lower bound. Using Theorem A.7 for the local problem (12) on K, we deduce the existence
of a positive constant cST depending only on ρ in Section 1 such that

∥τh∥0,K ≤ ∥τh∥div,K + ∥w∗∥0,K ≤ cST

(
∥div τh∥0,K +

∥∥τhn
K
∥∥
0,∂K

)
. (24)

Integrating by parts (IBP), and using (23), the Cauchy-Schwarz (CS) inequality, the H1 − L2

polynomial inverse inequality (II) [30] (constant cAinv), the fact that div τh is a vector polynomial, an
inverse L2 trace inequality (ITI) [30] bounding the L2 norm on the boundary by the L2 norm in the
interior (constant cBinv), and two Young’s (Y) inequalities with corresponding positive constants ε1
and ε2, we write

∥div τh∥
2
0,K =

∫
K

div τh · div τh

(IBP)
= −

∫
K

τh : ∇S(div τh) +

∫
∂K

τhn
K · div τh

(23)
= −

∫
K

τh : ∇S(Π
⊥
RM div τh) +

∫
∂K

τhn
K · div τh

(CS)

≤ ∥τh∥0,K
∣∣∣Π⊥

RM div τh

∣∣∣
1,K

+
∥∥∥τhn

K
∥∥∥
0,∂K

∥div τh∥0,∂K
(II), (ITI)

≤ (cAinv + cBinv)
(
∥τh∥0,K

∥∥∥Π⊥
RM div τh

∥∥∥
0,K

+
∥∥∥τhn

K
∥∥∥
0,∂K

∥div τh∥0,K
)

(Y)
=

1

2
(cAinv + cBinv)

(
ε21∥τh∥

2
0,K + ε−2

1

∥∥∥Π⊥
RM div τh

∥∥∥2

0,K
+ ε−2

2

∥∥∥τhn
K
∥∥∥2

0,∂K
+ ε22∥div τh∥

2
0,K

)
.

Being the constants cAinv and cBinv related to polynomial inverse inequalities on (regular sub-
tessellation on) polytopes, they depend on the regularity parameter ρ in Section 1 and p in (11).

Taking ε2 sufficiently small, we have that there exists a positive cε2 only depending on ε2, c
A
inv,

and cBinv such that

∥div τh∥0,K ≤ cε2

(
ε1∥τh∥0,K + ε−1

1

∥∥∥Π⊥
RM div τh

∥∥∥
0,K

+
∥∥τhn

K
∥∥
0,∂K

)
.

Inserting this bound in (24) and taking ε1 sufficiently small yields the assertion: there exists a
positive constant cε1 only depending on ε1 and cε2 such that

∥τh∥0,K ≤ cST cε1

(∥∥τhn
K
∥∥
0,∂K

+
∥∥∥Π⊥

RM div τh

∥∥∥
0,K

)
.

Notably, the constant α∗ in (20) for the stabilization SK(·, ·) in (22) only depends on cAinv, c
B
inv,

and cST .
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The upper bound. Using a polynomial inverse inequality [30] on ∂K (constant cCinv) entails∥∥τhn
K
∥∥
0,∂K

≤ cCinv
∥∥τhn

K
∥∥
− 1

2 ,∂K
.

Being the constant cCinv related to polynomial inverse inequalities on the boundary of polytopes, it
depends on the regularity parameter ρ in Section 1 and p in (11).

Next, we use the H(div) trace inequality (2) (constant ctr) and get∥∥τhn
K
∥∥
− 1

2 ,∂K
≤ ctr

(
∥τh∥0,K + ∥div τh∥0,K

)
.

It suffices to estimate the second term on the right-hand side. Using the L2 − H−1 polynomial
inverse inequality [30] (constant cDinv), definition (1), an integration by parts, and the Cauchy-
Schwarz inequality yields∥∥∥Π⊥

RM div τh

∥∥∥
0,K

≤ ∥div τh∥0,K ≤ cDinv∥div τh∥−1,K = cDinv sup
v∈H1

0(K)

(div τh,v)0,K
|v|1,K

≤ cDinv∥τh∥0,K ,

thereby implying the upper bound in (20). The constant α∗ in (20) for the stabilization SK(·, ·)
in (22) only depends on cCinv, c

D
inv, and ctr.

3.2 A “dofi-dofi” stabilization

With an abuse of notation, we denote the set of the degrees of freedom of Σh(K) by {dof}, which
we split into the union of facet {dofF }, for all F facets of K, and the divergence {dof⊥} degrees
of freedom.

Given the standard ℓ2 inner product (·, ·)ℓ2 for sequences, we introduce the “dofi-dofi” stabi-

lization S̃K : Σh(K)×Σh(K) → R defined on any element K as

S̃K(σh, τh) := µ−1
|Kh3

K(dof(σh),dof(τh))ℓ2

= µ−1
|Kh3

K

∑
F∈FK

(dofF (σh),dof
F (τh))ℓ2 + µ−1

|Kh3
K(dof⊥(σh),dof

⊥(τh))ℓ2 .
(25)

We prove that this stabilization is equivalent to the “projection based” stabilization in (22) under
a suitable choice of the polynomial bases appearing in (14) and (15).

Proposition 3.2. Given SK(·, ·) and S̃K(·, ·) the stabilizations defined in (22) and (25), there
exist positive constants β∗ ≤ β∗ such that

β∗S
K(τh, τh) ≤ S̃K(τh, τh) ≤ β∗SK(τh, τh) ∀τh ∈ Σh(K), ∀K ∈ Tn.

The constants β∗ and β∗ may depend on the regularity parameter ρ in Section 1 and p in (11).

Proof. We show the lower and upper bound separately.

The lower bound (part 1). We first show, for all facets F in FK , the existence of a positive
constant c1 such that

hK

∥∥τhn
K
∥∥2
0,F

≤ c1h
3
K

∥∥∥dofF (τh)
∥∥∥2
ℓ2

∀τh ∈ Σh(K). (26)

We have the decomposition into polynomial fields on facets

τhn
K

|F =

p∑
|α|=1

λF
αm

F
α for given λF

α ∈ R.

Testing both sides by mF
β , scaling by the area of the facet F , and using that the τhn

K are linear
combinations of scaled orthogonal polynomial fields, we deduce

dofFβ (τh) =
1

|F |

∫
F

(τhn
K) ·mF

β =
1

|F |

p∑
|α|=0

λF
α

∫
F

mF
α ·mF

β . (27)

8



Collect the coefficients λF
α in a vector λF . Using the arguments as in [12, Lemma 4.1], there exists

a positive constant cACH , which only depends on ρ in Section 1 and p in (11), such that∥∥τhn
K
∥∥2
0,F

≤ cACHh2
K

∥∥∥λF
∥∥∥2
ℓ2
.

Further using (27), we deduce (26).

The lower bound (part 2). We prove that there exists a positive constant c2 such that

h2
K(Π⊥

RM divσh,Π
⊥
RM div τh)0,K ≤ c2h

3
K(dof⊥(σh),dof

⊥(τh))ℓ2 . (28)

We have the decomposition into polynomial fields, which are orthogonal to rigid body motions,

Π⊥
RM div τh =

p∑
|α|=0

µ⊥
αm

⊥
α for given µ⊥

α ∈ R.

Testing on both sides by m⊥
β and using that the m⊥

α are linear combinations of scaled orthogonal
polynomial fields, we deduce

dof⊥β (τh) =
hK

|K|

∫
K

div τh ·m⊥
β =

p∑
|α|=1

µ⊥
α

hK

|K|

∫
K

m⊥
α ·m⊥

β . (29)

Collect the coefficients µ⊥
α in a vector µ⊥. Using the arguments for the 3D version of [12,

Lemma 4.1], there exists a positive constant cBCH , which only depends on ρ in Section 1 and p
in (11), such that ∥∥∥Π⊥

RM div τh

∥∥∥2
0,K

≤ cBCHh3
K

∥∥µ⊥∥∥2
ℓ2

= cBCHhK

∥∥hKµ⊥∥∥2
ℓ2
.

Further using (29), we deduce (28).
Combining bounds (26) and (28) yields the lower bound.

The upper bound (part 1). We show, for all facets F in FK , the existence of a positive
constant c3 such that

h3
K

∥∥∥dofF (τh)
∥∥∥2
ℓ2

≤ c3hK

∥∥τhn
K
∥∥2
0,F

∀τh ∈ Σh(K). (30)

Since
∥∥∥mF

β

∥∥∥
L∞(F )

= 1, we have

dofFβ (τh) =
1

|F |

∫
F

τhn
K ·mF

β ≤ 1

|F | 12
∥∥τhn

K
∥∥
0,F

≤ Cρh
−1
K

∥∥τhn
K
∥∥
0,F

,

for some positive constant Cρ only depending on ρ in Section 1.
This gives

h3
K dofFβ (τh)

2 ≤ C2
ρhK

∥∥τhn
K
∥∥2
0,F

.

Summing over the correct multi-indices gives (30) for all facets F of K.

The upper bound (part 2). We prove the existence of a positive constant c4 such that

h3
K(dof⊥(σh),dof

⊥(τh))ℓ2 ≤ c4h
2
K(Π⊥

RM divσh,Π
⊥
RM div τh)0,K . (31)

Since
∥∥∥m⊥

β

∥∥∥
L∞(K)

= 1, we have

dof⊥β (τh) =
hK

|K|

∫
K

div τhm
⊥
β ≤ hK

|K| 12

∥∥∥Π⊥
RM div τh

∥∥∥
0,K

≤ Cρh
− 1

2

K

∥∥∥Π⊥
RM div τh

∥∥∥
0,K

,

9



for some positive constant Cρ only depending on ρ in Section 1.
This yields

h3
K dof⊥β (τh)

2 ≤ C2
ρh

2
K

∥∥∥Π⊥
RM div τh

∥∥∥2
0,F

.

Summing over the correct multi-indices gives (31).

An immediate consequence of Propositions 3.1 and 3.2 is the following result.

Corollary 3.3. The bilinear form S̃K(·, ·) defined in (25) satisfies the stability bounds (20). In
fact, the result holds true also for tensors τh such that ΠT

p τh is different from the zero tensor.

Remark 4. In the virtual element discretization of (6), displacements are vector, piecewise poly-
nomials of degree p; see [6, 31]. In particular, divΣh(K) coincides with that space and therefore
the discrete stress solution is also the solution to the reduced problem on the discrete kernel of
the mixed method. Based on this, the stability bounds (20) should be valid for divergence free
discrete tensors in τh in Σh(K) ∩ ker(ΠT

p ). Reduced versions of the bilinear forms SK(·, ·) and

S̃K(·, ·) may be employed: in the former case, the divergence term vanishes; in the latter, only
facet degrees of freedom are employed (this is in fact the original stabilization proposed in [6, 31]).
On the theoretical level, we have the following advantages: no polynomial inverse inequalities are
needed in the proof of the lower bound in Proposition 3.1; in the proof of Proposition 3.2, the
“parts 2” can be skipped.

4 Interpolation estimates

We derive interpolation estimates for functions in HR virtual element spaces based on the stability
bounds derived in Proposition 3.1. Related but different interpolation results can be found in [5,
Proposition 5.3], [6, Proposition 4.2], [17, Proposition 4.2], and [31, Proposition 4.4].

Given an element K and a sufficiently smooth (in the sense of Remark 5 below) stress σ, we
consider the unique discrete stress σI in Σh sharing the degrees of freedom of σ. More precisely,
we define σI as the only function in Σh satisfying∫

K

div(σ − σI) · q⊥
p = 0 ∀q⊥

p ∈ RM⊥(K), ∀K ∈ Tn,∫
F

(σ − σI)n
K · qF

p = 0 ∀qF
p ∈ Pp(F ), ∀F ∈ FK , ∀K ∈ Tn.

(32)

Remark 5. We need sufficient regularity for the stress σ in order to define its interpolant σI in the

sense of (32). For instance, if σ belongs to HS(div,Ω) ∩H 1
2+ε(Ω), ε > 0, divσ belongs to L2(Ω)

and σnK
|F belongs to L2(F ) for all facets F in the mesh, whence the integrals in (32) are well

defined. Lower regularity can be demanded following, e.g., [10, eq. (2.5.1)] or [20, Sect. 17.2]: it
suffices that σ belongs to the space of symmetric stresses with σ in Ls(Ω), s > 2, and divσ in
Lq(Ω), q > 6/5. In this case, the integrals in (32) make sense up to face-to-cell liftings.

For Π⊥
RM and Π0,F

p as in (17) and (19), and sufficiently smooth stresses, definition (32) gives

Π⊥
RM divσI = Π⊥

RM divσ, (σIn
K)|F = Π0,F

p (σnK)|F ∀F ∈ FK . (33)

We have the following commutative property.

Lemma 4.1. Given σ satisfying one of the two assumptions in Remark 5 and σI its interpolant
in Σh as in (32), we have the following identity:

(divσI)|K = Π0,K
p (divσ)|K ∀K ∈ Tn. (34)

Proof. The proof is based on the arguments in Remark 2. The divergence of functions in Σh(K)
is a polynomial field. Given ΠRM and Π⊥

RM as in (16) and (17), we recall the orthogonal splitting

(divσI)|K = ΠRM(divσI)|K +Π⊥
RM(divσI)|K ∀K ∈ Tn. (35)
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Using the first condition in (32), we write∫
K

Π⊥
RM divσI · q

⊥
p =

∫
K

divσI · q
⊥
p =

∫
K

divσ · q⊥
p =

∫
K

Π⊥
RM divσ · q⊥

p ∀q⊥
p ∈ RM⊥(K).

This implies that
Π⊥

RM(divσI)|K = Π⊥
RM(divσ)|K ∀K ∈ Tn.

On the other hand, integrating by parts, using the second condition in (32), and exploiting the
fact that ∇S(q

RM
p ) is zero for all rigid body motions qRM

p , we also deduce 1∫
K

ΠRM divσI · q
RM
p =

∫
K

divσI · q
RM
p = −

∫
K

σI : ∇S(q
RM
p ) +

∑
F∈FK

∫
F

σIn
K · qRM

p

= −
∫
K

σ : ∇S(q
RM
p ) +

∑
F∈FK

∫
F

σnK · qRM
p =

∫
K

divσ · qRM
p =

∫
K

ΠRM divσ · qRM
p .

This implies that

ΠRM(divσI)|K = ΠRM(divσ)|K ∀K ∈ Tn.

Inserting the displays above in (35) and recalling the orthogonal decomposition (9), we obtain

(divσI)|K = ΠRM(divσ)|K +Π⊥
RM(divσ)|K = Π0,K

p (divσ)|K ∀K ∈ Tn.

Introduce the local spaces

Σ̃(K) := {τ ∈ HS(div,K) | ∃ w ∈ H1(K) such that τ = C∇S(w)} ∀K ∈ Tn.

The following polynomial approximation result is valid; see [6, Proposition 3.2] and [31, Proposi-
tion 4.3].

Lemma 4.2. Let σ belong to Σ̃(K) ∩ Hr(K), r nonnegative, and r be smaller than or equal
to p+ 1. Given ΠT

p as in (18), the following bound holds true: there exists a positive constant C
only depending on the regularity parameter ρ in Section 1 and p in (11) such that∥∥∥σ −ΠT

p σ
∥∥∥
0,K

≤ Chr
K |σ|r,K .

We are now in a position to prove interpolation estimates in HR virtual element spaces in the
L2 norm and in the L2 norm of the divergence.

Theorem 4.3. If σ belongs to Σ̃(K)∩Hr(K), r > 1/2 + ε for some ε > 0, and r is smaller than
or equal to p + 1, then there exists a positive constant c depending only on the shape of K and p
in (11) such that

∥σ − σI∥0,K ≤ chr
K |σ|r,K ∀K ∈ Tn. (36)

If σ belongs to Σ̃(K) ∩ Ls(Ω), s > 2, and divσ in Ht(Ω), t ≥ 0, and t is smaller than or equal
to p + 1, then there exists a positive constant c depending only on the shape of K and p in (11)
such that

∥div(σ − σI)∥0,K ≤ cht
K |divσ|t,K ∀K ∈ Tn. (37)

Proof. Bound (37) follows from (34) and polynomial approximation properties. In particular, the
constant c is that of a best polynomial approximation result.

As for bound (36), we first observe that (13) entails qT
p

= (qT
p
)I for any given qT

p
in Tp(K).

Next, we apply the triangle inequality and the lower bound as in Proposition 3.1 to get, for all qT
p

in Tp(K),

∥σ − σI∥0,K ≤
∥∥∥σ − qT

p

∥∥∥
0,K

+
∥∥∥(σ − qT

p
)I

∥∥∥
0,K

≤
∥∥∥σ − qT

p

∥∥∥
0,K

+ α−1
∗ µ|KSK((σ − qT

p
)I , (σ − qT

p
)I).

1The L2 inner products on facets should be replaced by suitable duality pairings in case σ satisfies the second
regularity assumption in Remark 5.
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Since the first term on the right-hand side yields optimal error estimates, see Lemma 4.2, with
constant that only depends on the regularity parameter ρ in Section 1 and p in (11), we only focus
on the second one.

Putting aside the parameter α−1
∗ , and recalling (22) and (33), we write

µ|KSK((σ − qT

p
)I , (σ − qT

p
)I) = hK

∑
F∈FK

∥∥∥(σ − qT

p
)In

K
∥∥∥2

0,F
+ h2

K

∥∥∥Π⊥
RM div(σ − qT

p
)I

∥∥∥2

0,K

= hK

∑
F∈FK

∥∥∥Π0,F
p ((σ − qT

p
)nK)

∥∥∥2

0,F
+ h2

K

∥∥∥Π⊥
RM div(σ − qT

p
)
∥∥∥2

0,K
.

As for the first term on the right-hand side, for each facet F , we use the stability of the L2 projector
on facets, the trace [20, Theorem 3.10] and the Poincaré inequality [20, Section 3.3], the triangle
inequality, a polynomial inverse inequality [30], and get, for a suitable polynomial approximant q

p

of σ, e.g., the tensor Bramble-Hilbert polynomial,

hK

∥∥∥Π0,F
p ((σ − qT

p
)nK)

∥∥∥2
0,F

≤ hK

∥∥∥σ − qT
p

∥∥∥2
0,F

≲ h1+2ε
K

∣∣∣σ − qT
p

∣∣∣2
1
2+ε,K

≲ h1+2ε
K

(∣∣∣σ − q
p

∣∣∣2
1
2+ε,K

+
∣∣∣q

p
− qT

p

∣∣∣2
1
2+ε,K

)
≲ h1+2ε

K

∣∣∣σ − q
p

∣∣∣2
1
2+ε,K

+
∥∥∥q

p
− qT

p

∥∥∥2
0,K

≲ h1+2ε
K

∣∣∣σ − q
p

∣∣∣2
1
2+ε,K

+
∥∥∥σ − qT

p

∥∥∥2
0,K

.

(38)

The hidden constants depend on ρ in Section 1 and p in (11). The above inequality gives

SK((σ − qT

p
)I , (σ − qT

p
)I) ≲ h1+2ε

K

∣∣∣σ − q
p

∣∣∣2
1
2
+ε,K

+
∥∥∥σ − qT

p

∥∥∥2

0,K
+ h2

K

∥∥∥Π⊥
RM div(σ − qT

p
)
∥∥∥2

0,K

≤ h1+2ε
K

∣∣∣σ − q
p

∣∣∣2
1
2
+ε,K

+
∥∥∥σ − qT

p

∥∥∥2

0,K
+ h2

K

∥∥∥div(σ − qT

p
)
∥∥∥2

0,K
.

The first two terms on the right-hand side converge optimally due to polynomial approximation
estimates and Lemma 4.2; thence, we focus on the second one. Proceeding as in (38) leads us to∥∥∥div(σ − qT

p
)
∥∥∥
0,K

≤
∥∥∥div(σ − q

p
)
∥∥∥
0,K

+
∥∥∥div(q

p
− qT

p
)
∥∥∥
0,K

≲
∥∥∥div(σ − q

p
)
∥∥∥
0,K

+ h−1
K

∥∥∥q
p
− qT

p

∥∥∥
0,K

≤
∥∥∥div(σ − q

p
)
∥∥∥
0,K

+ h−1
K

∥∥∥σ − q
p

∥∥∥
0,K

+ h−1
K

∥∥∥σ − qT
p

∥∥∥
0,K

.

Polynomial approximation estimates and Lemma 4.2 yield the assertion.

Remark 6. Bound (37) can be weakened by taking the Lq(K) norm of div(σ − σI) and the
(Banach) Sobolev Wt,q(K) seminorm of divσ, t > 0, q > 6/5, t smaller than or equal to p + 1,
on the left- and right-hand sides, respectively, in case σ satisfies the second regularity assumption
in Remark 5.

5 A numerical investigation on the stability constants

In this section, we discuss a practical approximation of the coercivity and continuity constants
of the discrete bilinear forms in (21), see Section 5.1, and assess numerically their behaviour on
sequences of elements with increasing aspect ratio, see Section 5.2, and with increasing degree
of accuracy on fixed elements, see Section 5.3. We shall also be focusing on 2D elements. The
implementation is based on the C++ library Vem++ [16].

5.1 Computation of the coercivity and continuity constants

Given an element K and the dimension NK
dof of the space Σh(K), let

{
φ

i

}NK
dof

i=1
be the basis

of Σh(K) dual to the degrees of freedom in (14) and (15). Define the symmetric matrices A and B

Ai,j := aKh (φ
j
,φ

i
), Bi,j := (Dφ

j
,φ

i
)0,K ∀i, j = 1, . . . , NK

dof . (39)
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In this section, we discuss a practical approximation of the coercivity and continuity constants
of the discrete bilinear forms aKh (·, ·) in (21). It can be readily seen that these constants are
the minimum and maximum eigenvalues of the following generalized eigenvalue problem: find the
eigenpair (v,ג) satisfying

Av = .Bvג (40)

We recall that the bilinear forms aKh (·, ·) are computable via the degrees of freedom: it suffices

to compute the projector ΠT
p in (18) and the stabilization. Therefore, the computation of the

matrix A in (39) is rather simple.
Instead, the computation of the matrix B is less immediate: the virtual element basis tensors

are not available in closed form; as such, they need to be approximated. To this aim, we proceed
in several steps.

Step 1. We partition the set of local basis tensors into basis tensors dual to facet (14) and
bulk (15) moments: {

φB
}
,

{
φ⊥} .

According to (11), a basis function φB dual to (14) and associated with a facet F satisfies

divφB = r ∈ RM(K), φBnK
|F = qF

p ∈ Pp(F ), φBnK
|∂K\F = 0; (41)

a bulk basis function φK dual to (15) satisfies

divφ⊥ = r⊥p ∈ RM⊥(K), φB nK
|∂K = 0. (42)

In (41), r is constructed using only qF
p ; see also Remark 2. In particular, compatibility conditions

are valid through the divergence theorem.

Step 2. We define displacements {zi}
NK

dof

i=1 such that we have

(Dφ
j
,φ

i
)0,K = (C∇Szj ,∇Szi)0,K ∀i, j = 1, . . . , NK

dof . (43)

A concrete realization of such displacements is given by the solutions to “face–type”
−div(C∇S(z

B
i ))

(41)
= −ri in K

C∇S(z
B
i )n

(41)
= qF

p,i on F

C∇S(z
B
i )n

(41)
= 0 on ∂K \ F

(44)

with ri satisfying a compatibility condition with the Neumann boundary condition, and “bulk–
type” −div(C∇S(z

⊥
i ))

(42)
= −r⊥p,i in K

C∇S(z
⊥
i )n

(42)
= 0 on ∂K,

(45)

elasticity problems. The rigid body motion components of the solutions to problems (44) and (45)
are fixed, e.g., by the conditions∫

∂K

zi · r =

∫
∂K

u · r ∀r ∈ RM(K),

where u can be chosen arbitrarily. In the following tests, we pick u as an element in Pp(K) such
that its moments with respect to the elements of the basis of scaled monomials with maximum
order p are equal to 1.

Step 3. We approximate the displacements, and thence the matrix B, using a virtual element
discretization as in [9] on the element K.
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5.2 Stability constants on sequences of badly-shaped elements

We assess numerically the behaviour of the minimum (nonzero) and maximum eigenvalues for the
generalized eigenvalue problem (40) for a fixed degree of accuracy on sequences of elements with
increasing aspect ratio in two and three dimensions.

We consider both a compressible (λ = µ = 1) and an incompressible materials (λ = 105, µ = 1).
For the computation of the matrix B in (43) we employ the VE scheme in [9]; as for the latter case,
we further adopt a sub-integration of the divergence term, which leads to a locking free scheme.

First test case. We consider a sequence of elements as in Figure 1. The initial element is a
nonconvex hexagon with hourglass shape; the distance between the two re-entrant vertices is 0.5,
while that of the other couples of vertices is 1. The other elements are constructed by halving the
distance between the two re-entrant corners at each step. We consider compressible materials.

Figure 1: A sequence of 2D hourglass shaped elements for a compressible material.

Second test case. We consider a sequence of elements as in Figure 2. The initial element is
a nonconvex decahedron with hourglass shape; the area of the upper and lower facets is 1, while
that of the minimal square section is 1/4. The other elements are constructed by halving the size
of the edges of the minimal square section. We consider compressible materials.

Figure 2: A sequence of 3D hourglass shaped elements for a compressible material.

Third test case. We consider a sequence of elements as in Figure 3. The initial element is
an isosceles trapezoid, where the length of the top edge is 1/2 and that of the bottom edge is 1.
The other elements are obtained by halving the distance between the bottom and top edges. We
consider incompressible materials.

Figure 3: A sequence of 2D trapezoidal elements for an incompressible material.

Numerical results: minimum and maximum generalized eigenvalues. In Table 1, we
display the minimum (nonzero) and maximum generalized eigenvalues of (40). For the 2D and 3D
sequences of hourglass shaped elements in Figures 1and 2, we consider degree of accuracy p = 1;
for the 2D sequences of trapezoidal elements in Figure 3, we set p = 2. We provide results for the
projection-based (22) and the dofi-dofi (25) stabilizations SK(·, ·) and S̃K(·, ·); in what follows, for

the latter stabilization, we denote the matrix A by Ã.
From the results in Table 1, for the case of sequences of elements as in Figure 1, we observe

that the minimum eigenvalues decrease moderately, while the maximum eigenvalues essentially do

14



Table 1 Minimum and maximum eigenvalues of (40) on sequences of badly-shaped elements.

SK(·, ·) S̃K(·, ·)
p = 1 minג maxג minג maxג

Fig. 1 1.0000e+00 2.7301e+02 3.4204e-01 2.7849e+02
1.0000e+00 2.3326e+02 2.2719e-01 2.3492e+02
6.4300e-01 2.0826e+02 1.7951e-01 2.0788e+02
2.0247e-01 1.9905e+02 1.4982e-01 1.9722e+02
7.8824e-02 1.9528e+02 6.7338e-02 1.9277e+02
2.7496e-02 1.9338e+02 2.3740e-02 1.9065e+02

p = 1 minג maxג minג maxג

Fig. 2 1.2260e-01 7.5879e+04 1.2497e-01 5.6961e+04
1.3380e-02 8.8178e+04 1.3875e-02 8.4101e+04
1.9540e-03 9.6572e+04 2.0313e-03 9.9241e+04
3.6127e-04 1.0486e+05 3.7564e-04 1.1105e+05
8.1663e-05 1.1083e+05 8.4897e-05 1.1890e+05
1.5835e-05 1.1373e+05 1.6496e-05 1.2314e+05

p = 2 minג maxג minג maxג

Fig. 3 1.9996e-05 6.5936e+02 1.9996e-05 6.7161e+02
1.9980e-05 1.0625e+03 1.9980e-05 1.0757e+03
1.9758e-05 1.4710e+03 1.9758e-05 1.4801e+03
1.1262e-05 3.1641e+03 1.1262e-05 3.1704e+03
2.0184e-10 2.3531e+03 2.0229e-10 2.3541e+03
1.5359e-10 2.7322e+03 1.4313e-10 2.7215e+03

not increase; for the case of sequences of elements as in Figure 2, a less moderate growth of the
maximum eigenvalues is displayed, while the minimum eigenvalues lose one order of magnitude at
each halving step; for the case of sequences of elements as in Figure 3, the maximum eigenvalues
grow slowly and the minimum eigenvalues are essentially constant, with the exception of the last
two elements of the sequence; we shall motivate this behaviour in the next paragraph.

Numerical results: condition numbers. Under the same choices as in the previous paragraph,
in Table 2, we assess the behaviour of the condition numbers of the matrices A, Ã, and B in
problem (40); we recall that the matrices A and Ã are computed based on the projection-based
(22) and dofi-dofi (25) stabilizations.

Table 2 Condition numbers of A, Ã, and B in (40) on sequences of badly-shaped elements.

Fig. 1 B 5.8348e+03 2.2734e+04 7.7885e+04 2.4295e+05 6.2642e+05 1.7875e+06
A 4.3858e+03 8.7185e+03 1.1033e+04 1.2342e+04 1.3042e+04 1.3395e+04

Ã 3.4318e+03 6.3807e+03 7.4790e+03 7.9627e+03 8.1894e+03 8.2922e+03
Fig. 2 B 3.4677e+04 9.3584e+04 2.0927e+05 5.4514e+05 2.3226e+06 2.5258e+07

A 9.9945e+03 1.8980e+04 2.6203e+04 3.0440e+04 3.2767e+04 3.3994e+04

Ã 6.7282e+03 1.4792e+04 2.1655e+04 2.5956e+04 2.8424e+04 2.9758e+04
Fig. 3 B 2.2076e+05 2.1286e+06 3.5757e+07 1.1220e+09 4.4996e+09 2.3369e+10

A 2.4149e+10 1.1371e+11 1.2118e+12 2.2248e+13 5.6501e+14 1.6530e+16

Ã 1.3668e+10 6.9767e+10 9.0468e+11 1.9766e+13 5.4511e+14 1.6521e+16

From the results in Table 2, we deduce some facts: the condition numbers of A and Ã are
essentially the same, the latter being always slightly smaller than the former; there is no clear
indication on whether the condition numbers of B are larger or smaller than those of A and Ã; the
condition numbers for the last two trapezoidal elements are rather high, which suggests a reason
why the corresponding minimum eigenvalues from the previous paragraph looked unreliable.
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Table 3 Minimum and maximum eigenvalues of (40) for variable degrees of accuracy.

SK(·, ·) S̃K(·, ·)
p minג maxג minג maxג

1 1.0000e+00 1.7600e+02 2.6323e-01 1.7398e+02
2 9.9802e-01 5.9800e+02 4.3155e-01 5.7797e+02
3 9.9640e-01 1.2708e+03 9.3328e-01 1.2491e+03
4 9.9057e-01 2.3578e+03 9.9057e-01 2.3313e+03
5 9.6450e-01 4.1013e+03 9.6377e-01 4.0739e+03
6 9.3644e-01 6.8462e+03 9.3645e-01 6.8147e+03

5.3 Stability constants increasing the degree of accuracy

We assess numerically the behaviour of the minimum (nonzero) and maximum eigenvalues for the
generalized eigenvalue problem (40) for increasing degree of accuracy on a fixed triangular element
of vertices (0, 0), (1, 0), and (0, 1) in a compressible material; see Table 3. We provide results for

the projection-based (22) and the dofi-dofi (25) stabilizations SK(·, ·) and S̃K(·, ·).
From the results in Table 3, it appears that the minimum and maximum eigenvalues behave

rather robustly with respect to the degree of accuracy.

6 Conclusions

For shape-regular sequences of polytopic meshes, we derived rigorously interpolation and stability
estimates for HR-type virtual elements with fixed degree of accuracy in three dimensions (the
two dimensional case is a low hanging fruit of the analysis given in this work). Essential tools in
the analysis are integrations by parts, polynomial inverse estimates over suitable sub-tessellations
of the polytopic elements, direct estimates, polynomial approximation results, and the proof of
the well-posedness (with a priori estimates on the data involving constants that are explicit with
respect to the shape of the domain) of mixed formulations of linear elasticity problems. Besides,
we investigated on the numerical level the behaviour of the stabilization on sequences of badly-
shaped elements and increasing degree of accuracy employing two different stabilizations: standard
assumptions on the geometry are not enough to guarantee the robustness of the method. Future
investigation will cope with the construction of ad-hoc stabilizations leading to stable bilinear
forms on degenerating geometries and increasing degree of accuracy.

Acknowledgments. MB and LM have been partially funded by the European Union (ERC,
NEMESIS, project number 101115663); views and opinions expressed are however those of the
authors only and do not necessarily reflect those of the EU or the ERC Executive Agency. MB and
MV have been partially funded by INdAM-GNCS project CUP E53C23001670001. LM has been
partially funded by MUR (PRIN2022 research grant n. 202292JW3F). GV and MV have been
partially funded by MUR (PRIN2022 research grant n. 2022MBY5JM). GV has been partially
funded by the Italian Ministry of Universities and Research (MUR) and the European Union
through Next Generation EU, M4.C2.1.1, through the grant PRIN2022PNRR n. P2022M7JZW
“SAFER MESH - Sustainable mAnagement oF watEr Resources ModEls and numerical MetHods”
research grant, CUP H53D23008930001. All the authors are also members of the Gruppo Nazionale
Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References
[1] S. Adams and B. Cockburn. A mixed finite element method for elasticity in three dimensions. J. Sci. Comput.,

25(3):515–521, 2005.

[2] D. N. Arnold and G. Awanou. Rectangular mixed finite elements for elasticity. Math. Models Methods Appl.
Sci., 15(09):1417–1429, 2005.

[3] D. N. Arnold, G. Awanou, and R. Winther. Finite elements for symmetric tensors in three dimensions. Math.
Comp., 77(263):1229–1251, 2008.

16



[4] D. N. Arnold and R. Winther. Mixed finite elements for elasticity. Numer. Math., 92:401–419, 2002.

[5] E. Artioli, S. De Miranda, C. Lovadina, and L. Patruno. A stress/displacement virtual element method for
plane elasticity problems. Comput. Methods Appl. Mech. Engrg., 325:155–174, 2017.

[6] E. Artioli, S. De Miranda, C. Lovadina, and L. Patruno. A family of virtual element methods for plane elasticity
problems based on the Hellinger–Reissner principle. Comput. Methods Appl. Mech. Engrg., 340:978–999, 2018.

[7] A. K. Aziz, editor. The mathematical foundations of the finite element method with applications to partial
differential equations. Academic Press, New York-London, 1972.

[8] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, and A. Russo. Basic principles of virtual
element methods. Math. Models Methods Appl. Sci., 23(01):199–214, 2013.

[9] L. Beirão da Veiga, F. Brezzi, and L. D. Marini. Virtual elements for linear elasticity problems. SIAM J.
Numer. Anal., 51(2):794–812, 2013.

[10] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications, volume 44. Springer, 2013.
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A Well-posedness of the linear elasticity problem in mixed
formulation with essential boundary conditions

We show a stability estimate for the Hellinger–Reissner formulation of linear elasticity problems
with essential boundary conditions. We shall be able to prove a priori estimates that are explicit
in terms of the ratio between the diameter and the radius of the largest ball with respect to which
the domain is star-shaped. The main result of the appendix is Theorem A.7 below.

Strong formulation. Let Ω be a bounded, polyhedral, Lipschitz domain in R3, with bound-
ary ∂Ω and outward unit normal vector n. Given a volumetric force f in L2(Ω) and σN inH− 1

2 (∂Ω),
the linear elasticity problem in mixed formulation with an inhomogeneous, essential boundary con-
dition reads as follows: Find a symmetric stress tensor σ and a displacement field u such that

−div σ = f in Ω

σ = C∇Su in Ω

σn = σN on ∂Ω.

(46)

On occasion, we shall be demanding extra regularity on the boundary condition, namely

σN ∈ L2(∂Ω). (47)

This is needed to derive explicit a priori estimates on the solution to (46). In what follows,

hΩ denotes the diameter of Ω;

ρΩ denotes the radius of the largest ball with respect to which Ω is star-shaped.
(48)

A Stokes’ lifting for the inhomogeneous essential condition. In order to write a weak
formulation for (46), we construct a lifting of the essential condition σN . To this aim, given the
identity tensor I, we consider the Stokes problem: Find a velocity field u and a pressure p such
that 

−div(∇Su− p I) = 0 in Ω

div u = 0 in Ω

(∇Su− p I)n = σN on ∂Ω∫
Ω
u = 0,

∫
Ω
∇× u = 0.

(49)

Introduce H̃1(Ω) as the subspace of H1(Ω) consisting of fields v satisfying the two conditions in
the last line of (49).

A weak formulation of (49) reads
Find (u, p) ∈ V×Q := H̃1(Ω)× L2(Ω) such that

(∇Su,∇Sv)0,Ω − (div v, p)0,Ω = ⟨σN , v⟩ ∀v ∈ V

(div u, q)0,Ω = 0 ∀q ∈ Q.

(50)

In order to prove the well-posedness of (50), we prove the two following technical results.

Lemma A.1 (Stokes’ inf-sup condition). There exists a positive constant β0, which only depends
on the ratio between hΩ and ρΩ in (48) such that

inf
q∈Q

sup
v∈V

(div v, q)0,Ω
|v|1,Ω∥q∥0,Ω

≥ β0.

Proof. A lower bound for the constant β0 is given, e.g., in [11, Proposition 1.1] in terms of the
so-called Babuška-Aziz inequality [7]. In turns, an estimate for the constant appearing in that
inequality (also known as the generalized Poincaré inequality), which is explicit in terms of the
ratio between hΩ and ρΩ in (48), is given in [23, Corollary 19, point 3].
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Lemma A.2 (Korn’s inequality). There exists a positive constant α0, which only depends on the
ratio between hΩ and ρΩ in (48), such that

α0∥∇v∥0,Ω ≤ ∥∇Sv∥0,Ω ∀v ∈ V. (51)

Proof. We start by noting the splitting of the gradient into its symmetric (∇S) and skew-symmetric
(∇SS) parts, and the identity

∥∇v∥20,Ω = ∥∇Sv∥20,Ω + ∥∇SSv∥20,Ω.

It suffices to bound the second term on the right-hand side. Algebraic computations and the fact
that v belongs to H̃1(Ω) (notably the fact that ∇× v has zero average) imply that

∥∇SSv∥0,Ω =
1√
2
∥∇ × v∥0,Ω =

1√
2

inf
c∈R3

∥∇ × v− c∥0,Ω.

A Nečas-Lions inequality holds true using, e.g., [19, Theorem 3.2], with a constant CNL,0 only
depending on the ratio between hΩ and ρΩ in (48) such that

inf
c∈R3

∥∇ × v− c∥0,Ω ≤ CNL,0∥∇(∇× v)∥−1,Ω.

Algebraic computations as in [11, Lemma 3.1] and manipulations on negative Sobolev norms entail

∥∇(∇× v)∥−1,Ω ≤ 2∥∇ × (∇Sv)∥−1,Ω ≤ 2∥∇Sv∥0,Ω.

Combining the above displays yields the assertion.

We deduce the well-posedness of problem (50).

Proposition A.3. Problem (50) is well-posed. Given (u, p) the solutions to (50), there exists a
positive constant cL such that

|u|1,Ω + ∥p∥0,Ω ≤ cL∥σN∥− 1
2 ,∂Ω

. (52)

If assumption (47) holds true, then there exists a positive constant c̃L only depending on the ratio
between hΩ and ρΩ in (48) such that

|u|1,Ω + ∥p∥0,Ω ≤ c̃L∥σN∥0,∂Ω. (53)

Proof. Existence and uniqueness of a solution to (50) are a consequence of the standard inf-sup
theory, and Lemmas A.1 and A.2.

As for the stability estimates, we focus first on the case σN only belongs to H− 1
2 (∂D). We

take v = u and q = p in (50) and deduce

∥∇Su∥20,Ω = ⟨σN , u⟩ ≤ ∥σN∥− 1
2 ,∂Ω

∥u∥ 1
2 ,∂Ω

.

The standard trace inequality [20, Theorem 3.10, point (iii)], the Poincaré inequality [20, Lemma
3.24], and Korn’s inequality (51) entail the existence of a positive C such that

∥∇Su∥0,Ω ≤ C∥σN∥− 1
2 ,∂Ω

.

We are not able to detect an explicit dependence of C on the ratio between hΩ and ρΩ in (48),
due to the use of the standard trace inequality. Combining the above bounds yields the bound on
|u|1,Ω in (52). The bound on ∥p∥0,Ω follows from the standard inf-sup theory.

We now prove (53) under assumption (47). We take v = u and q = p in (50), and deduce

∥∇Su∥20,Ω = ⟨σN , u⟩ ≤ ∥σN∥0,∂Ω∥u∥0,∂Ω.

The continuous trace inequality [18, Lemma 1.49] (constant ccti), the Poincaré inequality [20,
Lemma 3.24] (constant cP ), and Korn’s inequality (51) (constant α0) give

∥∇Su∥0,Ω ≤ ccti cP α0∥σN∥0,∂Ω.

The three constants in the display above are explicit with respect to the ratio between hΩ and ρΩ
in (48). The bound on |u|1,Ω in (52) is proven. We are left with the bound on ∥p∥0,Ω, which indeed
follows from [10, Theorem 4.2.3], and the fact that α0, Ca, and β0 are explicit with respect to the
ratio between hΩ and ρΩ in (48).
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We are now in a position to define a stable lifting σ̂ of σN . Given (u, p) the solution to (50),
we introduce the symmetric tensor

σ̂ := ∇Su− p I. (54)

The triangle inequality and Proposition A.3 yield

∥σ̂∥0,Ω ≤ c̃L∥σN∥0,∂Ω, (55)

where c̃L is the constant in (53). Moreover, problem (49) implies that σ̂ is divergence free.

A weak formulation of (46). Let Σ, V, and a(·, ·) be as in (5). Given σ̂ as in (54), an
equivalent weak formulation of (46) reads as follows:

Find σ0 ∈ Σ and u ∈ V such that

a(σ0, τ ) + (div τ ,u)0,Ω = −a(σ̂, τ ) ∀τ ∈ Σ

(divσ0,v)0,Ω = −(f ,v)0,Ω ∀v ∈ V.

(56)

The solution σ to (46) is given by the sum of σ0 and σ̂. Below, under assumption (47), we shall
discuss the well-posedness of (56), and derive a priori estimates for σ, which are explicit with
respect to the ratio between hΩ and ρΩ in (48).

The well-posedness for the case of natural and mixed natural-essential boundary conditions is
discussed in [10, Chapter 8], yet without an explicit knowledge of the constants in the a priori
estimates.

A technical result. We prove a result, which is instrumental to infer the coercivity on the kernel
of the bilinear form a(·, ·) employed in (56).

Lemma A.4. There exists a positive constant Cd only depending on the ratio between hΩ and ρΩ
in (48) such that

∥τ∥0,Ω ≤ Cd

(
∥dev τ∥0,Ω + hΩ∥div τ∥0,Ω

)
∀τ ∈ Σ. (57)

Proof. Using [23, Corollary 19, point 3], there exists a positive constant cGS only depending on hΩ

and ρΩ such that for any τ in Σ, there exists v in H1(Ω) ∩ L2
0(Ω) satisfying

divv = tr(τ ) and |v|1,Ω ≤ cGS∥tr(τ )∥0,Ω. (58)

The definition of the dev operator allows us to write∫
Ω

tr(τ )2 =

∫
Ω

tr(τ ) divv =

∫
Ω

τ : tr(∇v)I = 3

∫
Ω

τ : (∇v − dev(∇v)).

Using the symmetry of τ , an integration by parts, the above identity, the definition of Σ in (5),
the Cauchy–Schwarz inequality, the Poincaré inequality [20, Section 3.3] (constant cP independent
of the ratio between hΩ and ρΩ in (48)), and (58) (constant cGS), we get

∥tr(τ )∥20,Ω = −3

∫
Ω

dev τ : ∇Sv − 3

∫
Ω

(div τ ) · v

≤ 3
(
∥dev τ∥0,Ω∥∇Sv∥0,Ω + ∥div τ∥0,Ω∥v∥0,Ω

)
≤ (1 + cP )

(
∥dev τ∥0,Ω + hΩ∥div τ∥0,Ω

)
|v|1,Ω

≤ (1 + cP )cGS

(
∥dev τ∥0,Ω + hΩ∥div τ∥0,Ω

)
∥tr(τ )∥0,Ω.

We deduce
∥tr(τ )∥0,Ω ≤ (1 + cP )cGS

(
∥dev τ∥0,Ω + hΩ∥div τ∥0,Ω

)
.

The assertion follows using again the definition of the dev operator:

∥τ∥0,Ω ≤ ∥dev τ∥0,Ω + ∥tr(τ )∥0,Ω ≤ 2(1 + cP )cGS

(
∥dev τ∥0,Ω + hΩ∥div τ∥0,Ω

)
.
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An inf-sup condition and coercivity on the kernel for the Hellinger–Reissner principle.
We recall an inf-sup condition for the Hellinger–Reissner principle, whose proof can be found in
[11, Proposition 1.5].

Proposition A.5. There exists a positive constant β∗
0 only depending on the ratio of hΩ and ρΩ

such that

inf
v∈V

sup
τ∈Σ

(div τ ,v)0,Ω
∥τ∥Σ∥v∥V

≥ h−1
Ω β∗

0 . (59)

We define the Hellinger–Reissner kernel as

K := {τ ∈ Σ | (div τ ,v)0,Ω = 0 ∀v ∈ V}. (60)

Proposition A.6. The coercivity of a(·, ·) on the kernel K

α∗
0∥τ∥

2
Σ ≤ a(τ , τ ) ∀τ ∈ K (61)

holds true with coercivity constant a∗0 independent of the ratio between hΩ and ρΩ in (48), and the
Lamé parameter λ.

Proof. We have

a(τ , τ ) ≥ (2µ)−1∥dev τ∥20,Ω
(57),(60)

≥ (2µCd)
−1∥τ∥20,Ω

(60)
= (2µCd)

−1∥τ∥2Σ ∀τ ∈ K. (62)

Well posedness of (56). We are in a position to prove the main result of the appendix.

Theorem A.7. For every f in L2(Ω), σN in L2(∂Ω), and σ̂ as in (54), problem (56) admits a
unique solution (σ,u) in Σ×V. Moreover, there exists a positive constant cHR depending on the
ratio between hΩ and ρΩ in (48), and µ, but independent of λ such that the solution to problem (56)
satisfies the stability bound

∥σ∥Σ + ∥u∥V ≤ cHR(∥f∥0,Ω + ∥σN∥0,∂Ω).

If assumption (47) is not valid, well-posedness can be still proved but without an explicit dependence
of the stability constant in terms of the geometric properties of Ω.

Proof. Since the right-hand sides in (56) define linear functionals on Σ and V, existence and
uniqueness of the solution to (56) follow from the standard inf-sup theory, (59), and (62).

From [10, eqs. (4.2.36) and (4.2.37)], the constant in a priori estimates only depend on the
continuity constants of the two bilinear forms and the right-hand side, the inf-sup constant β∗

0

in (59), and the coercivity constant α∗
0 in (61). All such constants are independent of hΩ and ρΩ;

see Propositions A.5 and A.6. On the other hand, the right-hand side involves the lifting σ̂ of the
essential boundary condition σN . Under assumption (47), we can further use (55) and deduce the
assertion.
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