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Konrad Abramowicz∗, Alessia Pini†, Lina Schelin‡,
Sara Sjöstedt de Luna∗, Aymeric Stamm§, Simone Vantini¶

Abstract

Functional data are smooth, often continuous, random curves, which can be
seen as an extreme case of multivariate data with infinite dimensionality. Just as
component-wise inference for multivariate data naturally performs feature selec-
tion, subset-wise inference for functional data performs domain selection. In this
paper, we present a unified null-hypothesis testing framework for domain selection
on populations of functional data. In detail, p-values of hypothesis tests performed
on point-wise evaluations of functional data are suitably adjusted for providing a
control of the family-wise error rate (FWER) over a family of subsets of the do-
main. We show that several state-of-the-art domain selection methods fit within
this framework and differ from each other by the choice of the family over which
the control of the FWER is provided. In the existing literature, these families are
always defined a priori. In this work, we also propose a novel approach, coined
threshold-wise testing, in which the family of subsets is instead built in a data-
driven fashion. The method seamlessly generalizes to multidimensional domains
in contrast to methods based on a-priori defined families. We provide theoreti-
cal results with respect to exactness, consistency, and strong and weak control of
FWER for the methods within the unified framework.

Keywords: Permutation test, adjusted p-value function, multidimensional domain

1 Introduction

Functional data analysis (FDA) is a field of statistics that pertains to the study of
data sets in which the sample unit is a smooth curve. Besides estimation, clustering
or prediction, it is also of critical importance to design appropriate statistical method-
ologies for making inference on populations of functional data, which is the objective
of the present work.

For example, suppose that samples of continuous random functions are observed
from two populations over some domain, and that we want to test if the mean functions,
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µ1 and µ2, are the same in both populations, testing H0 : µ1(·) = µ2(·) over the whole
domain versus H1 : µ1(·) 6= µ2(·) over at least some part of the domain. Many
methods have been devised in the literature to form so called global (overall) tests for
this situation as well as for more general scenarios, both parametrically (e.g. Spitzner
et al. 2003; Cuevas et al. 2004; Abramovich and Angelini 2006; Horváth and Kokoszka
2012; Staicu et al. 2014) and non-parametrically (e.g. Hall and Tajvidi 2002; Cardot
et al. 2004; Corain et al. 2014). If H0 is rejected, it is typically also of interest to
identify the parts of the domain where significant differences occur, performing so
called local inference, with control of the type I error.

In this paper, we focus on local inference for functional data, which we refer to as
domain selection. Few attempts have been made in this direction in the literature. A
natural approach pertains to discretizing the functional domain, performing pointwise
inference and using the resulting pointwise p-values to select regions responsible for
rejecting a null hypothesis. For instance, Fan and Zhang (2000); Reiss et al. (2010);
Ramsay and Silverman (2005) derive pointwise confidence bands for functional data.
This however only provides a pointwise control of the probability of type I errors. If
such a control is desirable on the entire domain, it is necessary to adjust the pointwise
p-values in order to account for the multiplicity of hypothesis tests that are jointly
performed when analyzing the whole domain. This issue already arises in multivariate
analysis and has given birth to many adjustment procedures (see, e.g., Marcus et al.
1976; Holm 1979; Holmes et al. 1996; Winkler et al. 2014). It naturally translates
to functional data. However, functional data differ from multivariate data in that
functional data feature unique properties such as natural ordering and continuity,
which can be used to improve upon classic methods for performing domain selection.

Vsevolozhskaya et al. (2013, 2014) propose a method for local inference of func-
tional data that relies on the availability of a partition of the domain that allows them
to perform dimensionality reduction. Specifically, they perform functional hypothesis
tests on the elements of the partition and resort to a closed testing procedure (Marcus
et al. 1976) to adjust the resulting p-values and achieve strong control of the family-
wise error rate (FWER) between the elements of the partition. Hence, the resulting
inference might heavily depend on the partition itself. In addition, the coarseness of the
partition defines the depth into which local inference is performed, and the approach
is actually of practical relevance only for relatively small partitions. In the remainder
of the paper, we refer to this method as partition closed testing (PCT). Another ap-
proach – introduced for functional t-tests in Pini and Vantini (2017) and extended to
functional-on-scalar linear models in Abramowicz et al. (2018) – is the interval-wise
testing (IWT). The procedure simultaneously tests a family of hypotheses generated by
restricting the functional data to any interval of the domain. The resulting unadjusted
p-values are turned into a continuous function of adjusted p-values by borrowing ideas
from closed testing procedures in order to control the FWER on every interval of the
domain. The adjusted p-value function is then used for domain selection. This is how-
ever of practical use only for functional data defined on one-dimensional domains as
it is unclear how to define “multidimensional intervals” and, in any event, that would
be computationally over-demanding. Furthermore, IWT only provides strong control
of the FWER on intervals: if the subset of the domain on which the null hypothesis is
true is more complex (e.g. a union of intervals), IWT fails at controlling the FWER.

2



In this paper, following the recent literature on domain selection, we focus on local
inferential techniques that aim at providing control of the FWER. We start by formal-
izing the concepts of weak and strong control of the FWER in the context of functional
data. Then, we introduce a general framework for performing local inference that leads
to domain selection. The ground principles of the methodology are based on standard
pointwise inferential procedures and their set-wise counterparts for a chosen family of
subsets. The framework is related to a wide class of inferential problems (e.g., prop-
erties and comparisons of populations, significance tests for coefficients in models), as
we utilize general concepts of null and alternative hypotheses. Furthermore, it can be
applied either to a parametric or a nonparametric analysis. Using the properties of
the underlying pointwise tests, we formulate and prove finite sample and asymptotic
properties for methods within this framework. We show how well-established methods
from the literature of inference for functional data can be described in the light of
our proposed unifying framework. In addition, we present a novel method with desir-
able theoretical properties, where the computational complexity is independent of the
dimension of the domain of the functional data.

The paper is outlined as follows. In Section 2, we formulate the inferential prob-
lem and define different types of FWER control. In Section 3, we present the unified
framework for local inference and the theoretical results describing the properties of
the resulting methods. In Section 4, we present how some of the existing methods are
special cases of this framework and introduce some other methods that feature inter-
esting theoretical properties. We also present an illustrative example to elucidate the
construction of families and the domain selection mechanisms that can be obtained.
A simulation study designed to exemplify the theoretical properties of the introduced
method is presented in Section 5. In Section 6, we discuss a generalization to multi-
dimensional domains and show the full potential of this approach in a neuroimaging
application. Finally, Section 7 contains conclusions.

2 Definitions and the inferential problem

Consider a space of continuous random functions defined on domain D, where D is
a compact subset of Rd, d ≥ 1. Let us consider a general inferential problem based
on a sample of n independent functional observations. Without loss of generality,
assume that we aim at testing a functional null hypothesis H0 against an alternative
hypothesis H1 not only globally but also from a local perspective. For instance, it
could be the functional two-sample t-test where H0 : µ1(·) = µ2(·) is tested against
H1 : µ1(·) 6= µ2(·), cf. Section 4.3. Let D0 and D1 denote the regions of D where the
null hypothesis is true and false, respectively. Our goal is to construct an inferential
method that correctly identifies regions D0 and D1 and controls the type I error along
the domain.

Formally, assume that we observe a random sample of n random continuous func-
tions y1(t), y2(t), . . . , yn(t), t ∈ D, possibly with attached functional or scalar covari-
ates. For all t ∈ D, we denote by Ht

0 and Ht
1 the restrictions of H0 and H1 to the point

t, respectively. Assume that, based on the data, we can obtain a test statistic Tn(t)
for testing Ht

0 against Ht
1 at point t, where Ht

0 is rejected for large values of Tn(t). We
denote by pn(t) the p-value of the test at point t based on the statistic Tn(t). In the
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notation, we stress the dependence of the test statistic and the p-value functions on the
sample size n, as some properties investigated in our work are asymptotic. Depending
on the assumptions on the generative process of the functional data, on the sample
size, and on the test, pn(t) can be computed with parametric, asymptotic, or nonpara-
metric tests. Below, we define some of the properties that are typically required for
pointwise tests.

Definition 2.1. We say that the pointwise test of Ht
0 against Ht

1 based on the statistic
Tn(t) with p-value pn(t) is

• exact if for any α ∈ (0, 1) and any n ∈ N+ the probability of rejecting Ht
0 at

level α is equal to α when Ht
0 is true:

t ∈ D0 ⇒ P[pn(t) ≤ α] = α,

• asymptotically exact if for any α ∈ (0, 1) the probability of rejecting Ht
0 at

level α is asymptotically equal to α when Ht
0 is true:

t ∈ D0 ⇒ lim
n→∞

P[pn(t) ≤ α] = α,

• consistent if for any α ∈ (0, 1) the probability of rejecting Ht
0 when Ht

0 is false
is asymptotically one:

t ∈ D1 ⇒ lim
n→∞

P[pn(t) ≤ α] = 1.

Remark 2.1. In Definition 2.1, we specify in general terms n → ∞. However, de-
pending on the test that is performed, some more specific assumptions about the sample
size may be required. For example, when performing a test comparing two populations,
both sample sizes are required to go to infinity and not only the total sample size n.

Since our goal is to provide testing methods resulting in domain selection we need
to introduce concepts of tests on sets of the domain. Let us introduce the following
hypotheses defined on any set A ⊂ D,

HA
0 = {Ht

0 is true ∀t ∈ A} and HA
1 = {∃t ∈ A : Ht

1 is true}.

We assume that tests of HA
0 against HA

1 are performed using the following statistic

TA
n =

∫
A
Tn(t)dt, (1)

where the integral is defined in a Lebesgue sense. Let pAn be the corresponding p-value.
Similarly to pointwise inference, we provide the definitions of exactness and consistency
for the test on set A. Let |A| denote the Lebesgue measure of a set A.

Definition 2.2. For any A ⊆ D s.t. |A| > 0, we say that the test of HA
0 against HA

1

based on the statistic Tn(t) with p-value pAn is

• exact if for any α ∈ (0, 1) and for any n ∈ N+

|A ∩ D1| = 0 ⇒ P[pAn ≤ α] = α;
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• asymptotically exact if for any α ∈ (0, 1)

|A ∩ D1| = 0 ⇒ lim
n→∞

P[pAn ≤ α] = α;

• consistent if for any α ∈ (0, 1)

|A ∩ D1| > 0 ⇒ lim
n→∞

P[pAn ≤ α] = 1.

In the nonparametric permutation test framework, it is straightforward to directly
build exact and consistent tests on sets from the corresponding pointwise tests under
some mild assumptions. Specifically, following Pesarin and Salmaso (2010), pp. 122–
124, we know that if permutation tests are used and we use the same permutations
for all points of the set, the (asymptotic) exactness of the pointwise tests implies
(asymptotic) exactness of the tests on sets. Further, if ∀t ∈ D, Tn(t) is non-negative
and stochastically greater under Ht

1 than under Ht
0, we have that consistency of the

pointwise tests implies consistency of the tests on sets.
Let us now turn our attention to domain selection. Say that we use the pointwise

p-values for selecting the parts of the domain imputable for the rejection of H0 by
performing a thresholding at level α ∈ (0, 1). Even though in this way we can select a
region, the probability that this region - or part of it - has been wrongly selected is not
controlled. In detail, since the p-values, pn(t), are only computed pointwise, we can
not guarantee any control of the probability of committing at least one type I error
over the domain.

In multivariate statistical analysis - when several tests are performed - the single
p-values are adjusted to provide a global control of the type I error rate. The selection
of the variables for the rejection of the null hypothesis is performed by thresholding of
properly adjusted p-values instead of the original unadjusted ones. One of the families
of adjustement strategies are those controlling the family wise error rate (FWER, i.e.,
the probability of rejecting at least one true null hypothesis). There are two classical
types of control of the FWER that have been defined in the multivariate literature;
weak control of the FWER holds if the FWER is controlled when D0 = D, while strong
control of the FWER holds if the FWER is controlled when D0 is any subset of D.

Our aim is to define an adjusted p-value function, p̃n(t), t ∈ D, that can be thresh-
olded to select the regions of D imputable for the rejection of H0 providing control of
FWER over the domain. The different FWER control types of a procedure for local
testing based on an adjusted p-value function p̃n(t) can be formally defined as follows.

Definition 2.3. We say that a procedure is provided with a weak control of the
FWER if for any n ∈ N+ its adjusted p-value function p̃n(t), t ∈ D is such that,
∀α ∈ (0, 1):

D0 = D ⇒ P(∃t ∈ D0 : p̃n(t) ≤ α) ≤ α.

Definition 2.4. We say that a procedure is provided with a strong control of the
FWER if for any n ∈ N+ its adjusted p-value function p̃n(t), t ∈ D is such that,
∀α ∈ (0, 1):

P(∃t ∈ cl(D0) : p̃n(t) ≤ α) ≤ α,
where cl(D0) denotes the closure of the set D0.
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The reason why we introduce the strong control on the closure of D0 is detailed in
Remark 2.2. Some situations require an asymptotic strong control of the FWER, i.e.,
the control of the FWER when the sample size n goes to infinity.

Definition 2.5. We say that the procedure is provided with an asymptotic strong
control of the FWER if its adjusted p-value function p̃n(t), t ∈ D is such that,
∀α ∈ (0, 1):

lim sup
n→∞

P(∃t ∈ cl(D0) : p̃n(t) ≤ α) ≤ α.

Asymptotic weak control of the FWER can be defined similarly. Finally, similarly
to pointwise inference we define consistency of an inferential procedure, assuring that
it asymptotically detects the parts of the domain where H1 holds, i.e., D1.

Definition 2.6. We say that the procedure is consistent if its adjusted p-value func-
tion p̃n(t), t ∈ D is such that, ∀α ∈ (0, 1):

lim
n→∞

P(∀t ∈ Int(D1) : p̃n(t) ≤ α) = 1,

where Int(D1) denotes the interior of set D1.

Remark 2.2. Since tests on subsets are performed using an integrated pointwise test
statistic, deviations from the null hypothesis at only one point or at a set of null
Lebesgue measure can not be detected. In particular, the boundary of the set D1 cannot
be detected, since it has null measure. Hence, strong control of the FWER is extended
to the closure of the set D0, while consistency can be reached only for the interior of
D1.

3 A unified framework

In this section we describe a unified framework for testing local functional hypothe-
ses over the domain D, given a set of n random functions. We present a class of
methods that can be used to adjust the pointwise p-values pn(t) in order to provide
a control of the FWER over the domain D. Consider a non-empty (possibly infinite)
family F of Lebesgue-measurable subsets of the domain of non-null measure, such
that: ∪S∈FS = D. The testing procedure that we propose is based on performing tests
on the restrictions of H0 and H1 to all subsets of the family, and then adjusting the
p-value according to the results of such tests. First, we formally describe the testing
procedure for a general F , and provide a characterization of the inferential properties
of the methods depending on the choice of F . Further, we describe in detail several
methods that can be obtained for some particular choices of F . The unified framework
consists in the following steps (presented graphically in Section B, supplementary file).

1. Computation of p-values for all subsets. For all S ∈ F , compute the p-value
pSn of the test of HS

0 against HS
1 , based on the test statistic TS

n in (1).

2. Computation of the adjusted p-value function. For all t ∈ D, compute the
adjusted p-value function defined as:

p̃n(t;F) = sup
S∈F :t∈S

pSn . (2)
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3. Domain selection. Select the subsets of the domain D where H0 is rejected at
level α ∈ (0, 1) as

{t ∈ D : p̃n(t;F) ≤ α}.

We consider two types of families F : a predefined type, where all subsets belonging
to F are defined a priori, and a data-driven type, where the subsets belonging to the
family depend on the data at hand. For sake of clarity, we denote the predefined
families by F− and the data driven ones by Fn. The inferential properties of the
described procedure are characterized by the following results.

Theorem 3.1. Let F− be a predefined non-empty family of Lebesgue-measurable sub-
sets of the domain D. Let p̃n(t;F−), t ∈ D be the adjusted p-value function defined
in (2). If the tests of HS

0 against HS
1 are exact ∀S ∈ F−, the procedure based on the

adjusted p-value function p̃n(t;F−), t ∈ D is provided with the following control for all
n ∈ N+:

∀S ∈ F− : HS
0 is true ⇒ P[∃t ∈ S : p̃n(t;F−) ≤ α] ≤ α.

The above theorem states that if the family F is fixed, the probability of wrongly
detecting as significant a set (or part of it) where the null hypothesis is actually true
is upperly bounded to α for every set included in the family F . For instance, if the
family F includes every subset of the domain D, we clearly have strong control of
the FWER, cf. Definition 2.4. It is not straightforward to extend Theorem 3.1 to
data driven families, since the sets belonging to the family are random. Still, under
some assumptions on the structure of F , an asymptotic control of the FWER can be
provided.

Theorem 3.2. Let Fn be a data driven non-empty family of Lebesgue-measurable
subsets of the domain D. Let p̃n(t;Fn), t ∈ D be the adjusted p-value function defined
in (2). Assume that all tests of HS

0 against HS
1 are asymptotically exact and that all

tests of Ht
0 against Ht

1 are asymptotically exact and consistent. In addition, assume
that there exists a sequence {εn}n≥1 such that ∀n ∈ N+ εn > 0, limn→∞ εn = 0, and
∀n, Fn almost surely contains the set

{t ∈ D s.t. pn(t) ≥ εn}.

Then, the procedure based on the adjusted p-value p̃n(t;Fn) is provided with an asymp-
totic strong control of the FWER.

Theorem 3.2 states the conditions under which a procedure based on a data-driven
family Fn is provided with an asymptotic strong control of the FWER. In addition
to assuming that tests on subsets are asymptotically exact, also consistency of the
point-wise tests based on the unadjusted p-value function is needed. Asymptotically,
as n → ∞, the family Fn must contain the set Pn = {t ∈ D s.t. pn(t) > 0} (that
separates the sets on D on which the point-wise p-value function is zero). Indeed, if
point-wise tests based on the unadjusted p-value function are consistent, as n → ∞,
∀t ∈ D1, pn(t) converges to zero almost surely, while ∀t ∈ D0, pn(t) is almost surely
positive. Hence, asymptotically, the set {t ∈ D s.t. pn(t) > 0} a.s. corresponds to D0,
that is asymptotically included in Fn. Such inclusion, together with the fact that the
test of HD0

0 against HD0
1 is asymptotically exact, implies asymptotic strong control.
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Theorem 3.2 makes a connection between the family Fn and the unadjusted p-
value function. In principle, Fn can be obtained in many different ways. However, if
its construction is related to pn(t), it is provided with sound theoretical properties.

A consequence of Theorem 3.2, is that if all tests of HS
0 against HS

1 are exact and
if all tests of Ht

0 against Ht
1 are consistent, we still obtain asymptotic strong control

of the FWER, given that the family Fn satisfies the necessary assumptions. Finally,
the following theorems provide the conditions on the family F under which the testing
procedure is consistent. We start by the pre-defined families.

Theorem 3.3. Let F− be a predefined non-empty family of Lebesgue-measurable sub-
sets of the domain D. Let p̃n(t;F−), t ∈ D be the adjusted p-value function defined in
(2). Assume that the Lebesgue measure of D1 is strictly positive and that tests of HS

0

against HS
1 are consistent ∀S ∈ F−. Further assume that F− is such that:

∀S ∈ F− : S ∩ Int(D1) 6= ∅, |S ∩ D1| > 0. (3)

Then the procedure based on the adjusted p-value function p̃n(t;F−) is consistent.

Consistency is assured for a predefined family if the Lebesgue measure of D1 is
positive, and if all sets of the family intersecting D1 in one of its interior points also
intersects with D1 on a set of positive measure. Such requirement is important due to
the integral nature of the test statistics used on the elements of the family F− and its
invariance with respect to values on zero measure sets. For data driven families the
content of Fn may be sample size dependent. Since consistency is a limiting property,
without loss of generality, we weaken the formulation of the assumptions in Theorem
3.3.

Theorem 3.4. Let Fn be a data driven non-empty family of Lebesgue-measurable
subset of the domain D. Let p̃n(t;Fn), t ∈ D be the adjusted p-value defined in (2).
Assume that the Lebesgue measure of D1 is strictly positive and that all tests of HS

0

against HS
1 are consistent. Further assume that Fn is such that as n→∞:

∀S ∈ Fn : S ∩ Int(D1) 6= ∅, |S ∩ D1| > 0 a.s.

Then the procedure based on the adjusted p-value function p̃n(t;Fn) is consistent.

4 Examples of methods within the unified framework

This section discusses test procedures for particular choices of F , and their correspond-
ing theoretical properties. We focus on the case when D is one-dimensional, leaving
the discussion about higher dimensions to Section 6. The computational aspects of
each procedure are presented in Section C in the supplementary file. In what follows,
when using the results from Section 3 all underlying assumptions are assumed valid.

4.1 Pre-defined families F−
We start by describing how some inferential methods already presented in the literature
can be embedded within the unified framework with the pre-defined families F−.
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Global Testing

Consider the method based on the family consisting of one single set, being the whole
domain, i.e.,

FGlob := {D}.
The corresponding test procedure would then perform just one global test over the
whole domain D and assign its p-value to all points of D. The adjusted p-value
function is p̃n(t;FGlob) ≡ pDn , ∀t ∈ D. From Theorem 3.1 it is straightforward to see
that this method is provided with a weak control of the FWER for exact tests. In
addition, consistency of the procedure follows directly by the consistency of the single
test. However, a global test can not provide strong control of the FWER. In addition,
since the adjusted p-value function is constant, it can not be used to select specific
parts of the domain responsible for the rejection of the null hypothesis.

Borel-Wise Testing

The Borel-wise testing procedure (BWT), being on the other end of the spectrum
compared to the Global test, is based on the choice

FBWT := B(D), (4)

where B(D) denotes all Borel sets of the domain D of non-null measure. We exclude
the Borel subsets of zero measure from the procedure since the test statistic (1) is not
definite on such sets. For simplicity, we still denote the procedure Borel-wise testing.
The resulting procedure is the continuous extension of the closed testing procedure
(see, e.g., Marcus et al. 1976), that has been proposed in multivariate analysis to
adjust p-values.

If all tests are exact, Theorem 3.1 implies that BWT is provided with a strong
control of the FWER. However, Theorem 3.3 does not apply to the family FBWT since
even if |D1| > 0, there exist Borel sets that intersect interior points of D1 in zero-
measure sets. Analogously to the global test, the adjusted p-value function for this
method is constant p̃n(t;FBWT ) ≥ maxt∈D pn(t) (see Proposition A.1 in Section A,
supplementary file). It is therefore clear that BWT is not consistent, and can not be
used for domain selection.

Partition Closed Testing

Assume that interest lies in performing tests on an a priori selected partition of the
original domain. Let {Sj}Jj=1 for some finite J ∈ N+ define the sets of the partition,

satisfying Sj ⊆ D, Sj ∩ Sj′ = ∅ ∀j 6= j′, and
⋃J

j=1 Sj = D. Assume that Sj is
Lebesgue-measurable for all j. Then, the Partition Closed Testing procedure (PCT,
Vsevolozhskaya et al. 2013) is the inferential procedure based on a family containing
all possible unions between sets Sj , i.e.,

FPCT = {∪j∈ISj}I⊆{1,...,J} .

From Theorem 3.1 it follows that the PCT procedure is provided with a control
that is in between the weak and the strong control of the FWER: strong control holds
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between the Sj sets in the sense that the probability of selecting at least one set Sj ,

where the null hypothesis H
Sj

0 is true, is controlled. Within the sets Sj , however, the
control is only weak, since if the adjusted p-value p̃n(t;FPCT ) for t ∈ Sj is below α, we
only know that Sj presents a statistically significant deviation from the null hypothesis
in at least one of its points. With this method, it is not possible to decide which set
of points that are responsible for the rejection of H0. Furthermore, for every finite
J , the PCT method is consistent as a consequence of Theorem 3.3. In the general
case, since the method is based on performing tests on unions of sets Sj , the adjusted
p-value p̃n(t;FPCT ) is a stepwise constant function assuming the same value for all
points belonging to the same element of the partition.

It is straightforward to see that for J = 1 the PCT method coincides with the
global testing. Further, consider two equisized partitions of the domain D, the first of
size J0, J0 ∈ N+ and the second of size J1 = kJ0, for an arbitrary k ∈ N+, k > 1. By
definition, the adjusted p-value function for the PCT method based on the partition
of size J1, cannot be smaller than the one corresponding to size J0. Moreover, if
at any t0 ∈ D the unadjusted p-value function is above the significance level, the
corresponding adjusted p-value function increases with k, and at some point exceeds
the significance level on the whole domain, resulting in no domain selection. Finally if
the measure of all elements of the partition goes to zero, the PCT and BWT methods
coincide.

Interval-Wise Testing

The Interval-Wise Testing (IWT, Pini and Vantini 2017) is based on performing a test
on every interval of the domain. The method fits under the unified framework with
the family

FIWT = {[t1, t2] : t2 > t1}t1,t2∈D .
The procedure is provided with a weak (but not strong) control of the FWER but not
with a strong control of the FWER. From Theorem 3.1, it follows that the IWT is
provided with a control of the FWER over intervals. The attained interval-wise control
of the FWER (for a formal definition, see, Pini and Vantini 2017), is also in between
the weak and the strong control. Moreover the IWT is consistent as a consequence of
Theorem 3.3. Further, the pointwise test statistic is a continuous function, and the test
statistic (1) is also continuous with respect to the limits of integration. This implies
that the IWT-adjusted p-value function p̃n(t;FIWT ) is continuous on D, providing us
with a viable tool for domain selection.

Other methods similar to IWT can be defined by replacing intervals with more
complex subsets of the domain. For instance, an apparently straightforward extension
of IWT would be the extension of the underlying family so that it also includes families
of countable unions of intervals. However, such a generalization does not lead to a
method with desired properties. Indeed, for a fixed integer K, consider the testing
procedure based on the family

FK =
{
∪Kj=1[t1j , t2j ] : t2j > t1j

}
t1j ,t2j∈D, j=1,...,K

that is, the family of all possible unions of at most K disjoint intervals. It can be
shown (see Proposition A.2 in Section A, supplementary file) that the adjusted p-value
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function p̃n(t;FK) is such that on the one hand, ∀K ≥ 2, p̃n(t;FK) is constant on D
and such that p̃n(t;FK) ≥ maxt∈D pn(t). On the other hand, ∀K <∞, p̃n(t;FK) is not
provided with a finite-sample strong control of the FWER. Hence the adjusted p-value
function is constant, making the method unsuitable for domain selection. Further, the
finite sample strong control of the FWER is not possible to obtain for any such family
smaller than FBTW .

4.2 Data-driven families Fn

Section 4.1 shows that in the case of pre-defined families it is not possible to guarantee
both the possibility of performing domain selection and strong control of the FWER.
This limitation introduces the urgency of focusing on a wider class of families which
could possibly overcome this limitation, i.e., data-driven families. In the following, we
show that in this enlarged setting and with large sample sizes, it is possible to identify
families that could both provide an (asymptotic) strong control of the FWER and
allow for domain selection at the same time. As an example of this novel apporach,
we introduce a novel Treshold-Wise Testing procedure and briefly comment on this.

Threshold-Wise Testing

The idea behind the Threshold-Wise Testing (TWT) is to costruct a family FTWTn

derived from the unadjusted p-value function, thus being data dependent. We define
the family as made of the sublevel and superlevel sets of the the unadjusted p-value
function. Formally, the TWT is based on the data driven family

FTWTn = {{t ∈ D : pn(t)≤y} , {t ∈ D : pn(t)≥y}}y∈[0,1] . (5)

For finite n, TWT is only provided with a weak control of the FWER. However, it
meets the conditions of Theorem 3.2, and is hence provided with an asymptotic strong
control of the FWER. In addition, due to the limiting behaviour of the unadjusted p-
value function, as n→∞ the sets of FTWTn intersect D1 on sets of positive measure.
Hence, Theorem 3.4 implies that the method is consistent and can be used for domain
selection.

Other data driven families can also be constructed using preimages of the unad-
justed p-value function, corresponding to a suitable family of subsets of the codomain
[0, 1]. Such families, that also satisfy the assumptions of Theorems 3.2 and 3.4 will
share the same asymptotic properties as the TWT method. For example, FTWTn can
be enlarged so it contains the counter images of every closed interval in the codomain
of the unadjusted p-value function. A reduced family of FTWTn is exemplified by the
two level sets of the unadjusted p-value function:

F0n = {{t ∈ D : pn(t) > 1/n} , {t ∈ D : pn(t) ≤ 1/n}} .

It is straightforward to assess the inferential impacts of reducing or enlarging a given
family. Removing some elements from the family means removing the corresponding
tests in the computation of the adjusted p-value function (eq. 2) thus weakening the
control of the FWER (being the control guaranteed just on the performed tests) but
possibly increasing the statistical power of the procedure (being the new adjusted
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Figure 1: Pre-processed kinematics data. The bold lines correspond to the average curves within each
group. The landmarks used for registration are marked on the x-axis.

p-value function uniformly equal to or smaller than the original one). If instead new
elements (and thus new tests) are introduced in the family, the control of the FWER is
strengthened and thus the convergence towards a strong control of the FWER possibly
fastened. The price for this is of course a natural loss of statistical power.

In the following sections, we use the TWT in (5) as a representative of the class of
data-driven family methods. It illustrates how data-driven family methods successfully
may overcome the pre-defined family methods both in terms of FWER and power.
However, it is out of the scope of this work to show that the TWT is, in ways yet
to be defined, the “best” method based on the segmentation of the codomain of the
unadjusted p-value function.

Finally, the computational costs of TWT and of all other possible methods based on
the segmentation of the codomain of the unadjusted p-value function are not affected
by the dimensionality of the domain. This makes them naturally suited to deal with
functional data defined on multidimensional domains or even on smooth manifolds, cf.
Section 6.

4.3 Illustrative 1D example

We present the results of the p-value adjustment methods on a knee kinematics data
example. The data are obtained from a long-term follow up after injury to the anterior
cruciate ligament (ACL) also including knee-healthy controls (KACL20-study) (see,
e.g., Tengman et al. 2013, for details). We consider the knee flexion during a one-leg
hop for distance, comparing a first group (i = 1, n1 = 33) of ACL-injured individuals
treated with physiotherapy only with a second group (i = 2, n2 = 34) of knee-healthy
controls.

Movements were recorded using a motion capture system with eight cameras (Oqus
R©, Qualisys Medical AB, Gothenborg, Sweden). After initial pre-processing we obtain
the dynamics of the knee flexion over time. To make the functional objects comparable,
we align the data using as landmarks take-off and touch-down events, together with
the events of maximal knee flexion during take-off and landing-phases. For details,
we refer to Hébert-Losier et al. (2015). The obtained functional data together with
landmarks is displayed in Figure 1.

We assume that the observed functional data follow the model yij(t) = µi(t)+εij(t),
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i = 1, 2, j = 1, . . . , ni, t ∈ D. The functions µi(·) are group means and εij(·) are zero-
mean i.i.d. error functions. Note that we make no assumptions about the dependency
of the error term in-between two time points, neither we make any further distributional
assumptions about it. We want to test the equality of means in both groups,:

H0 : µ1(·) = µ2(·) vs. H1 : µ1(·) 6= µ2(·). (6)

To carry out local inference, we make use of the pointwise test statistics:

Tn(t) = (ȳ1(t)− ȳ2(t))2, (7)

where ȳ1(t) and ȳ2(t), t ∈ D, are the means of the functional observations at point
t in the ACL and control groups, respectively. We utilise permutations to perform
the pointwise test and the tests on subsets (see, Pesarin and Salmaso 2010) which
guarantees that all tests are exact and consistent and, as such, satisfy the assumptions
of the theorems.

Implementation details The domain is discretised into 1000 equisized subinter-
vals. The unadjusted p-values are computed on the right endpoint of each subinterval.
For each subset S ∈ F the integrated test statistic is computed with a rectangle rule.
Permutation tests on subsets are based on 5000 randomly chosen permutations. To
avoid exhaustive calculations, for approximating the BWT-adjusted p-value function
p̃n(t) we use its lower bound maxt∈D pn(t). For the TWT procedure the codomain of
the unadjusted p-value function is discretized into 5000 subintervals. Finally, the PCT
method is applied on partitions of J = 3 and J = 18 equisized intervals.

Results In Figure 2 we present the results of the introduced inferential methods.
The figure consists of six panels, each corresponding to a different family F . In each
plot, the black and colored lines corresponds to the unadjusted and adjusted p-value
function, respectively. For each family we also present some of its members below the
corresponding x-axis. The unadjusted p-value ranges from very low values up to 1
(as the mean functions for both groups are crossing twice). For the global test, the
effect of the significantly different regions is sufficiently strong to result in an adjusted
p-value that is low. On the contrary, the existence of an unadjusted p-values equal
to 1, implies that the BWT-adjusted p-value is constantly equal to 1. When looking
at the PCT method, we see the difference between the two resolutions used. When
J = 3, the adjusted p-value function is a 3-step function identifying two regions where
H0 is rejected. On the other hand, when J = 18 the adjusted p-value function is an
18-step function, and the potential resolution of regions where the two populations are
significantly different is higher. Still, the adjustment for a higher number of elements of
the partition makes the procedure more conservative. Indeed, in this case no significant
difference are detected. The IWT results in a continuous adjusted p-value function.
However, a union of two intervals is detected, so the strong control of the FWER on
the selected region is not guaranteed. Finally, the TWT method results in an adjusted
p-value function that is relatively similar to the IWT one. Even though no strong
control of the FWER is provided for finite samples, asymptotically such property is
attained. A figure showing the resulting domains for all methods are found in Section
D in the supplementary file.
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Figure 2: Plots representing resulting adjusted p-value functions for introduced methods (colored). In
each plot, the solid (black) line corresponds to the unadjusted p-value function. Below each plot, a
sample of members of the family F is presented. A horizontal line at level 5% is added to help the
reader visualise the results of the adjustment on domain selection.
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Left and right panels correspond to Scenario 1 and 2, respectively.

5 Simulation study

To compare the performance of the methods in a finite sample setting and further
exemplify the properties, we designed the following simulation study. The inferen-
tial problem at hand is the same as in our illustrative data example, i.e., the com-
parison of means of two functional populations. We consider equal size samples of
two groups: yij(t) = µi(t) + εij(t) i = 1, . . . , n, j = 1, 2, t ∈ D = [0, 1]. The error
functions εij(t) are zero mean, Gaussian and independent between individuals and
populations. We assume a squared exponential covariance structure on time domain,
i.e., Cov(εij(t1), εij(t2)) = exp(−(t1 − t2)2), t1, t2 ∈ D. We consider two scenarios for
the mean function, depicted in Figure 3. In both cases the mean value functions are
equal on about half of the domain and different on the remaining part. The amplitude
difference, when present, is at the same level in both cases. However, the difference
between the two scenarios is the distribution of the equality region on the domain. In
Scenario 1, the difference is present on one unique interval, in the beginning of the
domain, while in Scenario 2, there are 15 alternating equality and inequality regions.
Similarly to the illustrative example we want to test the two sample mean equality
hypothesis (6) using permutation tests with the pointwise test statistics defined in (7).

Implementation details The domain of the functional data is discretised into
60 equisized subintervals, and the unadjusted p-values are computed on the right end-
points of the 60 subintervals. For each set s ∈ F the integrated test statistic is com-
puted with a rectangle rule. Each permutation test is based on 5000 randomly chosen
permutations. The lower bound maxt∈D is used for approximating the BWT-adjusted
p-value function p̃n(t). For the TWT method the codomain of the p-value function is
discretized into 100 subintervals. The PCT method is applied on partitions of 4, 5,
and 10 equisized intervals.

Performance measures The performance of the methods is measured by esti-
mating the following measures based on 1000 simulated realizations.

• The FWER, defined as P (∃t ∈ D0 : p̃n(t) ≤ α), by the proportion of the simu-
lated realizations where we wrongly rejected H0 in at least one point t ∈ D0.

• The sensitivity, defined as E [|t ∈ D1 : p̃n(t) ≤ α|/|D1|], by the average proportion
of the domain D1 where a difference is correctly discovered.
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• The fall-out, defined as E [|t ∈ D0 : p̃n(t) ≤ α|/|D0|], by the average proportion
of the domain D0 where a difference is wrongly discovered.

In Figure 4, we present the dynamics of the estimated quantities, as a function of
n. As expected, for both scenarios, the sensitivity of all the methods, except BWT,
increases as n increases. On the contrary, the BWT is the only method always con-
trolling the FWER in both scenarios. Observe thought that in practice the method
does not detect any significant differences and hence is not of any practical use. The
IWT and PCT methods, control the FWER only if the underlying partition into D0

and D1 can be captured by the corresponding family of subsets. In Scenario 1, since
the null hypothesis is true on an interval, the IWT results in a finite sample control of
the FWER. Further, the interval can also be constructed using a partition defined by
the PCT method with J = 4 and 10 intervals, but not with J=5. The visualisation of
PCT partitions can be found in Section E, in the supplementary file. In Scenario 2,
none of the PCT partitions result in a separation of D0 and D1 and therefore no con-
trol, neither final sample, nor asymptotic. Finally, the TWT is the only method which
possibly allows the selection of portions of the domain and provides strong control of
the FWER. In detail, this control is here reached for a reasonable small sample size
(i.e, n ≈ 25) which further supports its possible usefulness in the statistical practice.

6 Analysis of MRI data

This section aims at demonstrating the performance of the proposed TWT framework
in the context of statistical testing with domain selection over complex domains. We
will emphasize this aspect using data from brain magnetic resonance imaging (MRI).
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6.1 Brain structural connectivity from diffusion MRI

A brain image constitutes a complex spatial domain, since it is a subspace of R3

with a complex shape. In this application, the complex domain over which we will
perform p-value correction is defined by the voxels (3D pixels of the imaged brain)
that are intersected by the so-called corpus callosum (CC), which is the set of neurons
connecting the two hemispheres of our brain. The CC neurons are arranged along a
surface, so our domain is a two-dimensional manifold of R3.

Clinical Context. The major constituents of the brain white matter are (i)
the axons that are prolongations of neurons that connect them together, and (ii) the
glial cells, which forms the tissue that support the axons. Both types of cells have
impermeable membranes, so water trapped within these cells will undergo restricted
diffusion. This gave birth to the idea of using diffusion MRI for mapping the white
matter microstructure (Moseley et al. 1990). Typically, this is performed by assuming
a parametric model of the diffusion in each voxel and by estimating its parameters
given the observed MR signals, which depict diffusion in Fourier space. Many models
for describing the diffusion voxelwise have been devised in the literature, including the
widely used zero-mean 3-dimensional Gaussian distribution (generalization of Brown-
ian motion to anisotropic media), giving its name to the single tensor model (hereafter
referred to as STM, Basser et al. 1994). In STM the diffusion tensor is defined as
3-dimensional symmetric definite positive matrix proportional to the covariance ma-
trix of the assumed Gaussian diffusion. The fractional anisotropy (FA, Pierpaoli and
Basser 1996) is a scalar index that can be computed from the diffusion tensor, which
takes value between 0 (isotropy, all the eigenvalues of the tensor are the same) and 1
(asymptotic anisotropy, degenerated tensor with a single non-zero eigenvalue). FA has
been widely adopted as a proxy for quantifying axonal damage (Horsfield and Jones
2002; Assaf and Pasternak 2008) which provokes a drop in FA.

Clinical Question. Diffusion MRI however has a rather low spatial resolution
(typically about 2 mm3 voxel size). For this reason, it has been shown that modeling
diffusion in a voxel as a single Gaussian distribution provides an inaccurate description
of the microstructure. This is because more than one tissue population compose each
voxel of the white matter (different axon orientations, possible presence of glial cells).
Hence, when a drop of FA is observed, it might be the sign of lesional damage but
it might also simply be a sign of model mis-specification, i.e., a failure to account for
the presence of multiple tissue populations. As a response to this criticism, mixture
models of the diffusion (a.k.a. multi-compartment models, MCM) have been pro-
posed (Panagiotaki et al. 2012). MCM are based on adding mixture components for
modelling additional tissue populations. In this case study, we specifically add compo-
nents that capture free water diffusion outside the cells and restricted diffusion within
glial cells. While it is believed that such models should provide more specific markers
for lesional damage, there has not been, to the best of our knowledge, any study that
aimed at statistically quantifying this claim. We hereby propose to demonstrate that
improving upon the widely adopted STM of the diffusion by using MCM does result
in maintaining high FA values where expected.

Design of experiment. To achieve this goal, we processed diffusion MRI data of
30 healthy subjects from the Human Connectome Project (Van Essen et al. 2013) to
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Figure 5: Corpus Callosum Reconstruction via Diffusion MR Tractography. Coronal view
of the reconstructed corpus callosum of one healthy subject from the Human Connectome Project
database, performed using the single tensor model (STM) on the left and the multi-compartment
model (MCM) on the right. Colors encode FA (red: 0, blue: 1).

obtain a reconstruction of the CC of each subject. We chose the CC because its re-
construction is relatively easy and it should present a high FA everywhere on healthy
subjects. We performed CC reconstructions using both STM and MCM. We fitted
the models by maximum likelihood (Stamm et al. 2016) and coregistered the subjects’
brain onto the common MNI template (Brett et al. 2002) in which we subsequently per-
formed the CC reconstructions using the fiber assignment continuous tracking (FACT)
algorithm (Mori et al. 1999). Figure 5 shows the reconstructed CC for one of the sub-
jects using both models. Finally, we defined the common domain of the CC as the set
of all the voxels of size 1.25 mm3 that were intersected by the CCs of all the 30 healthy
subjects, which provided us with a domain of 950 voxels georeferenced in 3 dimensions
and lying on a two-dimensional manifold.

6.2 Comparing structural connectivity maps with TWT

We test the null hypothesis that the two distributions that generated the FA maps
we observed from the two different diffusion models are the same with a paired one-
tailed permutation test. The alternative hypothesis is defined by the voxelwise test
statistic that one chooses for performing the test. Using the Kolmogorov-Smirnov (KS)
statistic, we look for global differences of the two distributions. Using the difference
between the sample means, we instead look for mean differences specifically. Using the
variance ratio, we look for variance differences. We used all three test statistics but
only report the results for variance comparisons since we obtained very low p-values on
the whole domain in the other two cases. In the latter case, we tested the alternative
hypothesis that the variance of FA in MCM is lower than the variance of FA in STM.

Domain selection is of paramount importance in brain applications where we need
spatial localization of the differences. However, as shown theoretically and by sim-
ulations, global testing and BWT are not of practical use because they select either
the whole domain or nothing at all. It is also difficult to make a sensible choice of
the domain partition that would be required for applying PCT and generalizations
of intervals to complex manifolds such as the one defined by the CC surface are not
straightforward, which prevents us from using IWT. Hence, domain selection can only
be performed through TWT. For completeness, we included also maps of unadjusted p-
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values and adjusted p-values using Holm adjustment, a classical procedures for strong
control of the FWER (Holm 1979). The three panels of Figure 6 shows the restric-
tion of resulting p-values maps on a two-dimensional section of the three-dimensional
domain.

Figure 6: P -Values Maps on the Common Corpus Callosum Surface. Tested alternative
hypothesis is that FA variance is smaller with MCM w.r.t. STM.

We can see that, while the TWT offers strong control of the FWER while maintain-
ing high statistical power, the Holm method loose a significant amount of statistical
power. The TWT approach identifies two symmetric areas (one in each brain hemi-
sphere) where the FA variance cannot be claimed to be significantly lower in the MCM
with respect to the STM. This is very interesting from a neurological perspective be-
cause these two areas are precisely the regions where the CC tract crosses with two
other well known tracts, namely the superior longitudinal fasciculus and the pyrami-
dal tract. Hence, while it makes sense that adding extra isotropic component mixtures
helps in increasing the FA mean of the CC, we indeed do not expect improvement in
the FA variance unless we add extra anisotropic components that would specifically
model the additional tracts.

7 Conclusions

In this paper, we introduce a general framework for local inference for functional data,
which covers existing and opens up the possibility of introducing new such methods.
We provide tools that verify the properties of the methods within the framework. For
the methods discussed, we focused on their inferential and computational aspects. A
summary of the methods and their properties can be found in Section F, supplementary
file. Among the methods resulting from pre-defined choices of F , none om them are
resulting in strong control of the FWER, consistency and continuous domain selection
properties. Further, the complexity of pre-defined families increases with the dimension
and without special care the methods become infeasible for d > 1. On the contrary,
the complexity of the proposed TWT method, does not depend on the dimension and
can be used for complex data.
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Supplementary material

The file Supplementary.pdf contains proofs related to the results in Section 3, a
graphical representation of the unified framework and a comparison between the in-
troduced methods within the framework (including computational aspects), as well as
additional figures related to the real and simulated examples. The file Simulation.R
contains the R-code for reproducing the simulation study in Section 5.
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A Proofs

Proof of Theorem 3.1. Assume that S ∈ F− and HS
0 is true. Since S ∈ F−, the test

of HS
0 against HS

1 is included in the testing procedure, and its p-value pSn is included
in the maximization in (2). Hence, by the definition of the adjusted p-value function,
we have that ∀t ∈ S, ∀n ≥ 1, p̃n(t;F) ≥ pSn . By assumption the test of HS

0 is exact
and HS

0 is true. Hence we have ∀α ∈ (0, 1) and ∀n ≥ 1:

P[pSn ≤ α] = α.

This implies
P[∃t ∈ S : p̃n(t;F) ≤ α] ≤ P[pSn ≤ α] = α,

which ends the proof.

Proof of Theorem 3.2. The FWER can only be defined if D0 is not empty. Hence,
assume that D0 6= ∅. Depending on the nature of D0 and D1, we distinguish between
two cases.
Case 1. If |D1| = 0 (and consequently cl(D0) = D), we have that Ht

0 is true almost
everywhere on D. Since by the definition of D0, H

D0
0 is true and the test of HD0

0

against HD0
1 is asymptotically exact, its p-value pD0

n is such that ∀α ∈ (0, 1):

lim
n→∞

P[pD0
n ≤ α] = α.

Note that, due to the integral nature of the test statistic, the p-value pD0
n of the test

on D0 coincides with the p-value of the test on the closure of D0:

pD0
n = pcl(D0)

n = pDn .

Furthermore, since the global test is included in the family Fn, we have that ∀n ≥ 1
and ∀t ∈ D, p̃n(t;Fn) ≥ pDn = pD0

n . Hence, we have:

lim sup
n→∞

P[∃t ∈ D, p̃n(t;Fn) ≤ α] ≤ lim sup
n→∞

P[∃t ∈ D, pDn ≤ α] = α.

and we have the thesis.
Case 2. Assume now |D1| > 0, i.e., there exists at least one subset of D of non-
null measure where the null hypothesis is false. Since all tests of Ht

0 against Ht
1 are

consistent we have that ∀t ∈ D1, pn(t)
a.s.−−→ 0 as n → ∞. Since all tests of Ht

0

against Ht
1 are asymptotically exact, we also have that ∀t ∈ D0, pn(t) converges in

distribution to a uniform distribution on [0, 1], such that ∀n ≥ 1 P[pn(t) > 0] = 1, and
by consequence we have also limn→∞ P[pn(t) > 0] = 1. So with probability one:

∀t0 ∈ D0, t1 ∈ D1 : lim
n→∞

pn(t1) = 0 < lim
n→∞

pn(t0),
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i.e., the images of the sets D0 and D1 through the function pn(t) separate asymp-
totically on the interval [0, 1]. Now, we know that for every n the family Fn includes
almost surely the set {t ∈ D s.t. pn(t) ≥ εn}, ε̃n > 0. Since limn→∞ εn = 0, for n→∞
and with probability one, Fn will asymptotically include the set D0. Consequently,
∀t ∈ D0, lim supn→∞ p̃n(t;Fn) ≥ lim supn→∞ p

D0
n almost surely. Due to the integral

nature of the test statistic, the p-value pD0
n of the test on D0 coincides with the p-value

of the test on the closure of D0:

pD0
n = pcl(D0)

n .

Finally, since the test of HD0
0 against HD0

1 is asymptotically exact and HD0
0 is true, we

have
P[pcl(D0)

n ≤ α] = P[pD0
n ≤ α]→ α.

Hence:

lim sup
n→∞

P[∀t ∈ cl(D0), p̃n(t;Fn) ≤ α] ≤ lim sup
n→∞

P[pcl(D0)
n ≤ α] = α.

Proof of Theorem 3.3. Consider a point t ∈ Int(D1) (Ht
0 is false). Then, for every

set S such that t ∈ S, we have that HS
0 is false, since on S1 = (S ∩ D1) the null

hypothesis is false. In addition, since t ∈ Int(D1), condition (3) implies that |S1| > 0.
Since all tests are consistent, we have

∀S : t ∈ S pSn
a.s.−−−→

n→∞
0

Since the adjusted p-value at point t is

p̃n(t;F−) = sup
S∈F−:t∈S

pSn ,

we also have p̃n(t;F−)→ 0 almost surely as n→∞. Hence, we have

∀t ∈ Int(D1) ⇒ lim
n→∞

P(p̃n(t;F−) ≤ α) = 1.

Further, note that P [∀t ∈ Int(D1), p̃n(t;F−) ≤ α] = P[supt∈Int(D1) p̃n(t;F−) ≤ α].
Then, by the definition of p̃n(t;F−):

sup
t∈Int(D1)

p̃n(t;F−) = sup
t∈Int(D1)

sup
S:t∈S

pSn = sup
S:|S∩Int(D1)|>0

pSn

where the fact that |S ∩ Int(D1)| > 0 is a direct consequence of condition (3). Being

H
S∩Int(D1)
0 false when |S ∩ Int(D1)| > 0, we have that supS:|S∩Int(D1)|>0 p

S
n → 0, almost

surely. This proves the thesis, i.e., ∀α ∈ (0, 1):

lim
n→∞

P(∀t ∈ Int(D1) : p̃n(t) ≤ α) = 1.

Proof of Theorem 3.4. Let A ⊆ Int(D1) and consider a point t ∈ A (Ht
0 is false).

As n → ∞, we know that for every set S such that t ∈ S, the measure of S ∩ D1 is
almost surely positive. Since the null hypothesis is false in S ∩ D1, it is also false on
S. Since all tests are consistent, we have

∀S : t ∈ S pSn
a.s.−−−→

n→∞
0

And the thesis follows with the same argument used for Theorem 3.3.
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Proposition A.1. Let FBWT be the BWT family defined in equation (4). For all
t ∈ D, let p̃n(t;FBWT ) be the corresponding adjusted p-value function. Then the
adjusted p-value function is constant, and such that:

p̃n(t;FBWT ) ≡ p∗ ≥ max
t∈D

pn(t).

Proof. Denote with S∗ ∈ FBWT the Borel set such that pS
∗ ≥ pS ∀S ∈ FBWT . We

have straightforwardly that ∀t ∈ S∗, p̃n(t;FBWT ) = pS
∗

n . Consider a point t 6∈ S∗,
and denote with S∗ε the set S∗ε = S∗ ∪ (Bε(t) ∩D), where Bε(t) is the closed ball of t
with radius ε ≥ 0, i.e.: Bε(t) = {t′ ∈ Rd : d(t′, t) ≤ ε}, where d(·, ·) is the Euclidean
distance in Rd. Clearly, S∗ε ∈ FBWT , so by definition of adjusted p-value, we have

∀ε ≥ 0 : p̃n(t;FBWT ) ≥ pS∗εn . (8)

The test statistic (1) is such that

lim
ε→0

TS∗ε
n = TS∗

n ⇒ lim
ε→0

pS
∗
ε

n = pS
∗

n .

So, by taking the limit in inequality (8), we have p̃n(t;FBWT ) ≥ pS∗n . Finally, observing
that by definition of S∗, we have p̃n(t;FBWT ) ≤ pS

∗
n , it must be p̃n(t;FBWT ) = pS

∗
n .

In conclusion, we have that p̃n(t;FBWT ) ≡ pS∗n ≥ maxt∈D pn(t), ∀t ∈ D.

Proposition A.2. For integer K, consider the testing procedure based on the family

FK =
{
∪Kj=1[t1j , t2j ] : t2j > t1j ,

}
t1j ,t2j∈D,j=1,...,K

The adjusted p-value of such family p̃n(t;FK) is such that:

1. ∀K ≥ 2, pn(t;FK) is constant on D and such that pn(t;FK) ≥ maxD pn(t);

2. ∀K <∞, pn(t;FK) is not provided with a finite-sample control of the FWER.

Proof. The first point of the statement follows from the same argument that was
used for the BWT procedure, by replacing S∗ with S∗K that is the set in FK such that

p
S∗L
n ≥ pS ∀S ∈ FK .

For the second point of the statement, let A = ∪K+1
j=1 [t1j , t2j ] with [t1j , t2j ] being K+ 1

disjoint intervals of non null measure. Clearly A 6∈ FK . Furthermore, A can not
be closely approximated with any set of the family FK . Assume now that HA

0 is
true. Since A can not be closely approximated by any set in FK , the adjusted p-value
function pn(t;FK) is not necessarily lower than pAn for all t ∈ A. Hence, the probability

P[∃t ∈ A : pn(t;FK) ≤ α]

is not controlled and can in general be higher than α. Hence, the FWER is not strongly
controlled.
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B Graphical representation of the unified framework

Functional data
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Computation of the
adjusted p-value function
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Figure 7: Graphical representation of the unified framework.
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C Computational aspects of introduced methods

Borel-Wise Testing From the practical point of view, the implementation of the
BWT requires a discretization of the domain of the functional data on a fine grid
in order to be able to perform tests. In detail, we can partition the domain D into
k equally-spaced subsets S1, . . . , Sk and perform a test for every possible union of
the subsets. The BWT-adjusted p-value can be estimated by applying formula (2)
to these discretized subsets. As k → ∞, the obtained approximation of the BWT-
adjusted p-value function converges to its theoretical expression. This procedure poses
another problem: the number of tests to be performed for such a procedure is O(2k),
with k large enough to reduce the approximation error. Consequently, the BWT is
computationally unfeasible.

Partition Closed Testing The implementation of the method, for a given partition
of size J is straightforward, requiring 2J tests to be performed, potentially causing
computational difficulties for large values of J . On the other hand, since the family
consists of a finite number of well defined sets, there is no information loss related to
a discretisation of the domain.

Interval-Wise Testing The implementation of the IWT requires a discretization
of the domain into a fine grid. Then, each element of the grid is tested, together with
each interval composed by elements of the grid. The number of tests to be performed
to apply IWT is O(k2/2), where k is the number of elements of the grid. For further
details on the implementation, see Pini and Vantini (2017).

Threshold-Wise Testing The numerical implementation of TWT first requires the
computation of the unadjusted p-value function on a fine grid of the domain. The
codomain of the unadjusted p-value function, [0, 1], is discretized into a fine grid (of size
M) and each anchored discrete interval is mapped on a set of the domain through the
unadjusted p-value function. Finally, the adjusted p-value is computed by identifying
the largest p-value of tests on sets FTWTn . Since anchored intervals only depend on one
parameter (one of the two extremes of the interval is always fixed), the total number
of tests that is required here is O(M).
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D Selected domain and adjusted p-value functions com-
parison in Illustrative 1D example (Subsection 4.3)
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Figure 8: Comparison between the regions with significant difference detected by the six considered
procedures (left) and their adjusted p-value functions (right).
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E PCT partition visualization for Simulation study in
Section 5.
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Figure 9: Visualization of the equisized partitions of size J used in the CTP procedure in simulation
study (vertical lines) in both scenarios: Scenario 1 (left column) and Scenario 2 (right column).
Similarly to Figure 3 we present the mean functions (bold lines) together with the sample functions
(light lines) for both groups (with groups color coded)
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F Tabular summary of the introduced methods

Procedure Family F
Weak control

of FWER

Strong control

of FWER
Consistent Type of p̃n(·;F) Complexity

Global test {D} Yes No Yes Constant 1

BWT B(D) Yes Yes No Constant O(2k)

PCT {∪j∈ISj}I⊆{1,...,J} Yes No Yes Stepwise O(2J)

IWT {[t1, t2] : t2 > t1}t1,t2∈D Yes No Yes Continuous O(k2/2)

TWT

{
{t ∈ D : pn(t)≤y} ,
{t ∈ D : pn(t)≥y}

}
y∈[0,1]

Yes Asymptotically Yes Continuous O(M)

Table 1: Tabular summary of all introduced methods for local testing functional hypotheses on domain D. k: number of discretization points on the domain D. J : size of the partition
used in PCT. M : number of discretization points on the codomain of the unadjusted p-value function [0, 1].
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