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Abstract This paper presents a review of the available mathematical models
and corresponding non-conforming numerical approximations which describe
single-phase fluid flow in a fractured porous medium. One focus is on the geo-
metrical difficulties that may arise in realistic simulations such as intersecting
and immersed fractures. Another important aspect is the choice of the ap-
proximation spaces for the discrete problem: in mixed formulations, both the
Darcy velocity and the pressure are considered as unknowns, while in classi-
cal primal formulations, a richer space for the pressure is considered and the
Darcy velocity is computed a posteriori. In both cases, the extended finite
element method is used, which allows for a complete geometrical decoupling
among the fractures and rock matrix grids. The fracture geometries can thus
be independent of the underlying grid thanks to suitable enrichments of the
spaces that are able to represent possible jumps of the solution across the
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fractures. Finally, due to the dimensional reduction, a better approximation
of the resulting boundary conditions for the fractures is addressed.

Keywords Fractured porous media · Reduced Model · XFEM

1 Introduction

The simulation of subsurface flow is of great importance for a large number
of applications ranging from the production of energy (oil and gas reservoirs,
geothermal energy) to the management of water resources, or the safe storage
of atomic waste and carbon dioxide. Fractures are present in porous media at
a variety of scales. Large fractures and faults in particular are very relevant for
the flow since they can either act as barriers (in the case of impermeable faults)
or preferential pathways for the flow (in the case of permeable fractures).
Opposed to small-scale fractures, that can be accounted for by upscaling of
the permeability, large features should be explicitly included in the model
to reproduce their non-local effects on the flow. Thanks to the developments
of numerical methods and computing power direct numerical simulations of
fracture networks are replacing or complementing multi-continua approaches
such as dual-porosity/permeability.

Fractures and faults are three-dimensional regions characterized by a differ-
ent porosity and permeability with respect to the surrounding porous matrix.
However, thanks to their small aperture compared to the typical length and
the size of the domain, they are usually represented as (N−1)-dimensional
interfaces immersed in a N -dimensional matrix. From a computational view-
point, this avoids the need for an extremely fine grid to resolve the width
of fractures, that are now replaced by discontinuity surfaces where a suitable
reduced (N−1)-dimensional problem is solved and coupled with the surround-
ing flow. However, the complexity of geological structures remains one of the
main challenges in large-scale numerical simulations. Indeed, the data for the
construction of the model are usually given as a lage number of possibly inter-
secting surfaces, called horizons, that separate layers with different mechanic
and hydraulic properties, and a set of surfaces that represent faults and frac-
tures. In this framework, the construction of a grid which is conforming with
all the aforementioned features is a difficult task, [21], whose outcome could
be a grid that is either too refined to be used, or with low quality elements.
Since in these realistic cases the construction of a high-quality grid that honors
the geometry of hundreds or thousands of fractures is a challenging task, two
alternative approaches are possible:

– to develop numerical methods that are accurate and robust even for very
distorted grids, such as the Mimetic Finite Difference Methods [8],

– to allow the fractures to cross a fairly regular and coarse grid in arbitrary
ways, and to employ the eXtended Finite Element Method (XFEM) to
account for the solution discontinuities within elements.
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This paper presents the second approach, reviewing the recent literature
on the application of the XFEM to the simulation of flow in fractured porous
media, focusing on single-phase flow in the presence of one or more, possibly
intersecting, fractures.

The XFEM has been successfully used for the simulation of crack mechan-
ics for a long time, [23,24,48], while its application to flow in fractured media
is a recent development. Allowing for non-matching grids with respect to the
fracture network can be advantageous in geological problems since not only
it avoids the burden of computing a conforming grid, but it avoids the need
for re-meshing in the case of uncertain geometry, i.e. one could perform sim-
ulations of different scenarios with different fracture configurations with the
same background grid.

The enrichment of the finite element spaces should be able to effectively
represent discontinuities in the pressure and in the flux across fractures: pres-
sure jumps arise in the case of impermeable interfaces, while a discontinuous
flux can be observed due to the fact that fluid can enter the fractures and flow
along them.

The development and the analysis of (N−1)-dimensional models for frac-
tures for single-phase flow have been extensively addressed in [2,46,7,30,13],
where the fracture flow equations and the proper interface conditions across
the fracture have been first derived, and the continuous and discrete problems
have been studied in their mixed formulation. However, in the aforementioned
works, the computational grid of the porous domain is considered to be match-
ing with the fracture, i.e. the fracture is the (conforming) interface between
two mesh blocks, possibly with different resolution. Similarly, in more recent
works, this type of space discretization has been employed to describe the flow
in faulted sedimentary basins, coupled with a double-layer model for the fault,
see [56,27]. However, while non-conforming meshes on the interface could be
dealt with by mortaring, this does not allow the fractures to cut the elements
of the grid.

The use of XFEM to deal with fractures as non-matching, immersed inter-
faces, was first introduced in 2011, for the single phase case, in [44,19]. In the
former, the concept of EFEM (Enriched Finite Element Method) is applied
to the primal formulation with suitable enrichments for the pressure, while
in the latter the mixed formulation of the problem is considered, and the au-
thors employ concepts borrowed from [40] to enrich both the pressure and the
Darcy velocity spaces. In the same years, XFEM have been applied for the
discretization of the primal formulation in [54].

The application to the case of several intersecting fractures is discussed in
[28,11] in the case of an impervious surrounding medium, with slightly different
coupling conditions at the intersections based on different assumptions on
the fractures permeability. The coupled problem, in the mixed and primal
formulation respectively, are considered in [31,32,55]. As concerns the physics
of flow in porous media, some works consider also the case of passive transport
of solutes in fractured porous media, [34], and two-phase flow [35] by means
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of the XFEM. Moreover, the coupling of Darcy flow with fracture mechanics
(opening, propagation) is addressed in [39,52].

Regarding the analysis of the method, the inf-sup stability of XFEM ap-
plied to Darcy flow in porous media has been proven, under suitable conditions,
in [19,22].

This paper is organized as follows. In Section 2, we introduce the math-
ematical model for single-phase flow in fractured porous media in the equi-
dimensional case, and derive the corresponding hybrid-dimensional, or re-
duced, model. Intersecting fractures are considered, as well as the task of
assigning boundary conditions for the fractures. In Section 3, we present the
numerical discretization techniques for the problem in primal and dual mixed
form, with a focus on the ad-hoc enrichments at intersections and tips, and
on the approximation of coupling terms. Section 4 is dedicated to solvers for
the resulting linear system, in particular to conditioning issues and the choice
of iterative vs. monolithic approaches. Finally, Section 5 is devoted to some
concluding remarks and future perspectives.

2 Governing equations

In this section, we present the mathematical model of single-phase flow in
porous media, focusing our attention on the description of the fractures. We
start considering the standard Darcy law and mass balance in an equi-dimensional
setting, where the fractures are N -dimensional regions embedded in an N -
dimensional porous matrix. Then we introduce the so called reduced, or hybrid-
dimensional, models to handle fractures as objects of effective lower dimension,
intersections and branching of fractures, and proper boundary conditions to
prescribe at the fracture tips and on the cut matrix boundaries.

2.1 Equi-dimensional models

We consider an inert and at rest porous medium which can be modeled as a
bounded, connected, and open set D ⊂ RN , N=2 or 3. We assume that the
medium is saturated with a single incompressible fluid phase that is composed
of a unique component, e.g., water. The boundary, which is required to be reg-
ular enough for the forthcoming assumptions, is indicated by ∂D with outward
unit normal nD. Let us assume that D contains several fractures, that all to-
gether constitute a single domain Γ of spatial dimension N such that Γ ⊂ D,
which is a possibly unconnected, open subset of D. The fracture network can
also be seen as the union of fracture branches Γi. The surrounding porous rock,
namely, the remaining part of D, is called Ω := D \Γ . The outer boundary of
the rock matrix is indicated by ∂Ω = Ω∩∂D, while the outer boundary of the
fracture network is indicated by ∂Γ and defined by ∂Γ := Γ ∩ ∂D. Moreover,
the internal part of the fracture boundary, namely, the interface between the
fracture domain and the surrounding medium, is indicated by γ and defined
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as γ := Γ ∩ Ω. For each fracture branch, we call its own part of this internal
boundary γi. The unit normal, pointing out of Γ into Ω, is indicated by n. We
suppose that for each fracture branch there exists a central axis γ̂i, which is a
non self-intersecting (N−1)-dimensional surface, such that a fracture branch
can be described as

Γi =

{
x ∈ RN : x = s+ rni, s ∈ γ̂i, |r| <

di
2

}
, (1)

where di is the aperture of Γi, which may depend on the curvilinear abscissa s,
and ni is the unit normal associated with the central axis γ̂i. We assume that
the apertures di are small compared to other characteristic dimensions of the
fractures. With definition (1) the fracture domain is composed by Γ = ∪Γi,
but note that Γi may intersect each other with a non-null intersection. See
Figure 1 for an illustration of the aforementioned notation.

Ω

nD

Γ1

Γ3

Γ2

n

γ

γ̂4

Fig. 1: Notation for a general configuration of fractures in the equi-dimensional
model.

In this work we assume that the fractures are filled by a porous medium
themselves such that Darcy flow takes place in both the rock matrix and
fractures. In the relevant case of open fractures the lubrication model could
be used, see for instance [57].

2.1.1 Dual formulation

In this part, our objective is to compute the steady-state pressure field p and
the Darcy velocity field, or macroscopic velocity, u in the entire porous domain
D. To this purpose, following for example [9], we employ the law of mass
conservation together with Darcy’s law and, to ease the notation, we assume
homogeneous boundary conditions for the pressure on the whole boundary.
The system of equations for the porous matrix Ω is given by

∇ · u = f
u+ Λ∇p = 0

in Ω,

p = 0 on ∂Ω,

(2a)
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where the scalar source term f represents a possible volume source or sink and
Λ denotes the symmetric and positive definite permeability tensor in Ω. To
simplify the notation we consider a permeability tensor that is already scaled
with the viscosity. Coupled with (2a), a similar system of equations can be
considered for the fracture network. The data and unknowns related to the
fractures are indicated with a subscript f. We obtain

∇ · uf = ff
uf + Λf∇pf = 0

in Γ ,

pf = 0 on ∂Γ .

(2b)

Following [46] we require that the permeability tensor in the fracture system,
for each fracture branch, can be written as Λf,i = λi,nN i + λi,τT i, where the
projection matrix N i in the direction normal to γ̂i and the projection matrix
T i in the direction tangential to γ̂i are defined as follows:

N i := ni ⊗ ni and T i := I −N i.

To couple the systems (2a) and (2b) we consider the following classical interface
conditions, namely {

p = pf

u · n = uf · n
on γ. (2c)

Combining (2a), (2b) and (2c), we obtain the strong problem formulation in
its dual form.

Problem 1 (Dual equi-dimensional strong formulation) Find velocity
fields u,uf and pressure fields p, pf such that (2) is fulfilled.

The proof of the well-posedness of Problem 1 in its mixed weak form can be
found in a number of references, such as [15,50,25,53].

2.1.2 Primal formulation

A common formulation for single-phase porous-media flow is the so-called
primal formulation, that can be obtained inserting Darcy’s law for matrix and
fracture domain, namely, the second lines of (2a), (2b) into the mass-balance
equations, namely, the first lines of (2a), (2b), as well as into the flux-coupling
condition, namely, the second line of (2c). In particular, for the matrix domain
Ω, we obtain {

−∇ · (Λ∇p) = f in Ω,

p = 0 on ∂Ω,
(3a)

while for the fracture domain Γ , we have{
−∇ · (Λf∇pf) = ff in Γ ,

pf = 0 on ∂Γ ,
(3b)
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coupled by {
p = pf

Λ∇p · n = Λf∇pf · n
on γ. (3c)

The problem can, in this case, be cast as follows.

Problem 2 (Primal equi-dimensional strong formulation) Find pres-
sure fields p, pf such that (3) is fulfilled.

The well-posedness of Problem 2 and its weak form can be found in any stan-
dard textbook on partial differential equations or finite elements.

2.2 Hybrid-dimensional models

In this section, we present the hybrid-dimensional model, or reduced model, in
the case of single fracture dividing the domain in two unconnected parts. We

Ω1

∂Γ

Ω2

Γ

d

(a) Equi-dimensional model domain.

Ω1

∂γ̂

Ω2

γ̂

(b) Hybrid-dimensional model domain which
includes a lower dimensional fracture.

Fig. 2: Model domains with fracture.

refer to [4,26,6,46,20] for a detailed presentation. The derivation of the model
is based on its dual formulation, however, we present also its primal formu-
lation, obtained with a “post-processing”. For both formulations, we briefly
introduce their weak formulation to be used for the numerical discretization.

During the process, we substitute the fracture Γ by its centre line γ̂ and
the surrounding porous medium is enlarged to fill the gap. In practical cases,
this step is very seldom performed since the fracture geometry is directly
given as an object of codimension one. The Darcy equations (2a) for the rock
matrix are thus the same as in the equi-dimensional case and we focus only
on the equations (2b) for the fracture. Since Ω is split in two parts Ω1,2, we
define n = n1 = −n2, where ni is the outward-pointing normal of Ωi. Let us
introduce the normal and tangential divergence and gradient on the fracture:
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given two regular functions a and a, respectively vector- and scalar-valued, we
define

∇ · a = ∇n · a+∇τ · a with ∇n · a := N : ∇a and ∇τ · a := T : ∇a,
∇a = ∇na+∇τa with ∇na := N∇a and ∇τa := T∇a.

2.2.1 Dual formulation

We decompose the Darcy velocity in the fracture into its normal part uf,n :=
Nuf and tangential part uf,τ := Tuf, such that uf = uf,n+uf,τ . We consider
first the conservation equation which is integrated along the normal direction
of γ̂ for the fracture aperture d. We obtain a conservation equation in the

tangential space of γ̂ for the reduced flux û :=
∫ d/2
−d/2 uf,τ which involves also

the contribution of the incoming flux from the surrounding porous medium,
namely,

∇τ · û = f̂ + Ju · nKγ̂ in γ̂, (4)

where the reduced source term is defined as f̂ :=
∫ d/2
−d/2 ff. In (4) we made use

of the jump operator defined as Ju · nKγ̂ := u1 · n − u2 · n, with an abuse of
notation for the normal n. We consider now the Darcy equation projected on
the tangential space of γ̂ and integrated in normal direction for the aperture
of the fracture, obtaining

û+ λ̂∇τ p̂ = 0 in γ̂, (5)

where p̂ is the reduced pressure in the fracture, defined as p̂ := 1
d

∫ d/2
−d/2 pf. In

the previous equation, λ̂ is the effective permeability in tangential direction,
defined as λ̂ := dλf,τ . Finally, projecting Darcy’s law on the normal space of
the fracture and integrating in normal direction on the first and on the second
half of the aperture, we end up with coupling conditions between the lower-
dimensional fracture and the rock matrix. Using a suitable approximation of
the integral of ui · n, as discussed in [46,7], we get{

ξu1 · n+ (1− ξ)u2 · n = 2λγ̂ (p1 − p̂)
ξu2 · n+ (1− ξ)u1 · n = 2λγ̂ (p̂− p2)

on γ̂, (6)

where λγ̂ is the effective permeability in normal direction of the fracture,
defined as λγ̂ := λf,n/d. Moreover, ξ ∈ (0.5, 1] is a closure parameter related
to the pressure cross profile in the fracture, see the aforementioned works for
more details. Considering (2a) coupled with (4), (5), and (6) we obtain the
following hybrid-dimensional problem.
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Problem 3 (Dual hybrid-dimensional strong formulation) Find (ui, pi)
for i = 1, 2 and (û, p̂) such that
∇ · ui = fi
ui + Λi∇pi = 0

in Ωi,

pi = 0 on ∂Ωi,

and


∇τ · û = f̂ + Ju · nKγ̂
û+ λ̂∇τ p̂ = 0

in γ̂,

p̂ = 0 on ∂γ̂,

(7a)

with interface conditions{
ξu1 · n+ (1− ξ)u2 · n = 2λγ̂ (p1 − p̂)
ξu2 · n+ (1− ξ)u1 · n = 2λγ̂ (p̂− p2)

on γ̂. (7b)

An alternative form of the interface conditions (7b), introduced in [18], is{
{{u · n}}γ̂ = λγ̂ JpKγ̂
ξ0 Ju · nKγ̂ = λγ̂

(
{{p}}γ̂ − p̂

) on γ̂, (7b-bis)

with ξ0 = 4/(2ξ − 1) and where we have used the average operators {{p}}γ̂ :=
1
2 (p1 + p2) and {{u · n}}γ̂ := 1

2 (u1 · n+ u2 · n), as well as the jump operator
for the pressure JpKγ̂ := p1 − p2.

We now introduce the weak formulation of the reduced problem, which will
be useful to present the XFEM in Section 3. For a detailed presentation of the
suitable functional spaces refer to [7]. We start by introducing the following
bilinear forms and functionals for the rock matrix

ad(u,v) :=
∑
i

(Hui,vi)Ωi +
(
ηγ̂ {{u · n}}γ̂ , {{v · n}}γ̂

)
γ̂

+ξ0

(
ηγ̂ Ju · nKγ̂ , Jv · nKγ̂

)
γ̂
, with i = 1, 2,

with H := Λ−1, ηγ̂ := λ−1γ̂ the inverse of the permeabilities. The bilinear
form and the functional which include the source term and possibly boundary
conditions read

bd(p,v) := −
∑
i

(pi,∇ · vi)Ωi and F (q) :=
∑
i

(fi, qi)Ωi .

The weak formulation for the fracture requires to introduce the following bi-
linear forms and functional

âd(û, v̂) := (η̂û, v̂)γ̂ , b̂d(p̂, v̂) := − (p̂,∇τ · v̂)γ̂ and F̂ (q̂) :=
(
f̂ , q̂
)
γ̂
.

with η̂ := λ̂−1 the inverse of the effective tangential permeability. Finally the
bilinear form which couples the fracture and the surrounding porous medium

cd(u, q̂) :=
(
Ju · nKγ̂ , q̂

)
γ̂
.

The weak formulation of (7) is given as follows.
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Problem 4 (Dual hybrid-dimensional weak formulation) Find (ui, pi)
for i = 1, 2 and (û, p̂) respecting the given boundary conditions such that{
ad(u,v) + bd(p,v) + cd(p̂,v) = 0

bd(q,u) = F (q)
and

{
âd(û, v̂) + b̂d(p̂, v̂) = 0

b̂d(q̂, û)− cd(q̂,u) = F̂ (q̂)
,

for all test functions v, q, v̂ and q̂ defined in their proper spaces.

2.2.2 Primal formulation

As for the equi-dimensional setting, a primal formulation can be derived by
inserting Darcy’s laws into the mass balance equations in (7a).

Problem 5 (Primal hybrid-dimensional strong formulation) Find pi
for i = 1, 2 and p̂ such that{
−∇ · Λi∇pi = fi in Ωi,

pi = 0 on ∂Ωi,
and

{
−∇τ · λ̂∇τ p̂ = f̂ − JΛ∇p · nKγ̂ in γ̂,

p̂ = 0 on ∂γ̂,

(8a)

with interface conditions (7b-bis) reformulated as{
−{{Λ∇p · n}}γ̂ = λγ̂ JpKγ̂
−ξ0 JΛ∇p · nKγ̂ = λγ̂

(
{{p}}γ̂ − p̂

) on γ̂. (8b)

Proceeding to the weak formulation of the primal problem, we define the ma-
trix bilinear form

ap(p, q) =
∑
i

(Λi∇pi,∇qi)Ωi +
(
ξ0λγ̂ {{p}}γ̂ , {{q}}γ̂

)
γ̂

+
(
λγ̂ JpKγ̂ , JqKγ̂

)
γ̂

and the fracture bilinear form

âp(p̂, q̂) =
(
λ̂∇τ p̂,∇τ q̂

)
γ̂

+ (ξ0λγ̂ p̂, q̂)γ̂ .

The coupling between matrix and fracture is accounted for by the bilinear
form

cp(p, q̂) =
(
ξ0λγ̂ {{p}}γ̂ , q̂

)
γ̂
.

This allows to obtain the weak formulation of Problem 5.

Problem 6 (Primal hybrid-dimensional weak formulation) Find pi for
i = 1, 2 and p̂ respecting the given boundary conditions such that{

ap(p, q)− cp(q, p̂) = F (q)

−cp(p, q̂) + âp(p̂, q̂) = F̂ (q̂)
,

for all test functions q and q̂ defined in their proper spaces.

The analysis of Problem 6 is straightforward and presented in, for example,
[54]. However, the situation becomes more involved if the fracture is allowed
to end inside the interior of the matrix, yielding a non-Lipschitz domain Ω. A
rigorous mathematical analysis of this setup is carried out in [39].
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2.3 Branching and intersections

In this part, we present several strategies to model the intersection of fractures.
This is an important aspect, since the complex nature of networks of possibly
heterogeneous fractures requires an appropriate treatment to avoid un-physical
results. In a crossing, however, the different properties of every fracture branch
can overlap and a unique association of properties is not always possible,
so that, in general, new properties have to be defined for the crossing area,
based on physical arguments to be provided by the modeler. If there is a
crossing of fractures with very different permeabilities, one fracture always
dominates a crossing from a geological point of view. For example, if there
exists a highly permeable fracture which becomes intersected over time by an
almost impermeable fracture, the crossing permeability is more likely to be
almost impermeable than highly conductive or averaged. It is then neither
a realistic choice to always average the permeabilities in a crossing nor to
neglect the connection between different fractures. In the forthcoming reduced
models, to simplify the notation, we focus our attention on a single fractures
intersection inside the porous domain where several fracture branches γ̂k meet.
In all the subsequent cases, the model for the flow in the fractures, in the
surrounding rock matrix and the coupling conditions between each fracture
and the corresponding portion of the rock matrix are the same as in (7),
or equivalently (8), but separately for all the pieces. The reduction process,
similarly to the previous part, replaces the equi-dimensional domain, which
represents the intersecting region, to a single point, which is ip :=

⋂nf

k=1 γ̂k
with nf the number of participating branches, and introduce a new variable
p̂I which represents the pressure in the intersection.

The equi-dimensional setting for a crossing is shown in Figure 3 on the
example of four intersecting fracture branches. The equi-dimensional model
domain can be decomposed into three different domain types: matrix, fracture
and crossing, namely

D =
(
∪
i
Ωi

)
∪
(
∪
i
Γi

)
∪ I.

We define the crossing area I with boundaries to the fractures (solid red lines)
and boundaries to the rock matrix (dashed red lines), respectively as

(∂I)f,i ..= ∂Γi ∩ ∂I and (∂I)m ..= ∂I\(∪
i
∂Γi).

Introducing the green boundaries in Figure 4 by connecting the appropri-
ate corners in our crossing region, we get a closed control area for which we
can write the mass conservation equation which gives a relation between the
crossing area pressure and the adjacent fracture pressures pi. For the reduced
model, mass conservation implies

nf∑
k=1

ûk · τ k|ip = fI , (9)
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θ

pIp1

p2

p3

p4

∂Γ2 ∩ ∂I

Id1

d2

d4

y

x

τ3

n3

Fig. 3: Crossing with intersection geometries and location of pressure un-
knowns in the equidimensional model

pI

p2

p3

I

d∗2

τ∗3
∂Γ ∗2

`∗2

Fig. 4: Crossing with definition of geometrical parameters inside the crossing
area

where τ k is the unit tangent along the fracture branch γ̂k, or, in other words,
τ k|ip is the unit outward normal of γ̂k at ip. Moreover, fI ∈ R is an integrated
source term given for the intersection.

In the following, we will distinguish three different approaches for assigning
boundary/coupling conditions for the fracture branches γ̂k at the intersection
point ip. The first two admit rather general intersection situations and are
mainly suited for the primal formulation in connection with assigning degrees
of freedom in the intersection point for every fracture branch: assuming pres-
sure continuity and Robin-type conditions. The third assumes an X-shaped
intersection of four fracture branches and is especially tailored for the dual
formulation in connection with a lower-dimensional XFEM approach to cap-
ture the discontinuity in the intersection.
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2.3.1 Assuming pressure continuity

If the properties, e.g., permeability and aperture, of the fractures and in the
intersection are equal, or at least comparable, a simple strategy is to impose a
pressure and normal flux continuity. The model is valid also if we can consider
the intersection as a void space, i.e., infinite permeability, or small enough
that it can be neglected. In the latter case the source term at the intersection
may be omitted. Following [3,5,10] and the references therein, we require mass
conservation (9) together with pressure continuity

p̂k|ip = p̂I ∀k = 1, . . . , nf . (10)

With (9) and (10), it is possible to eliminate the value p̂I of the pressure at
the intersection. Moreover the primal formulation of (10) is straightforward.
In some cases the heterogeneity between fractures could be severe and the
aforementioned model behaves poorly, see [28].

2.3.2 Robin boundary conditions

In [55], an alternative to requiring pressure continuity in the intersection has
been proposed which amounts to replace the Dirichlet-type coupling (10) by
Robin-type conditions for each fracture branch.

Considering the equi-dimensional setup from Figures 3 and 4, we assume
that the Darcy velocity uk associated with the fracture branch Γk can be
prolongated to the intersection region I and be defined there as

uk|I = −ΛIτ k
1

`∗k
(pI − pk),

where `∗k is the distance between the crossing point ip and the point ∂Γk ∩ γ̂k.
Proceeding to the reduced model and integrating along the green lines in
Figure 4 yields the Robin boundary condition

ûk · τ k|ip = τ ∗k
>ΛIτ k

d∗k
`∗k

(p̂k − p̂I), (11)

where d∗k = |∂Γ ∗k | is the length of the interface (green) for fracture k within I
and τ ∗k the unit outward normal on that interface.

The mass conservation (9) can be rewritten as

nf∑
k=1

τ ∗k
>ΛIτ k

d∗k
`∗k

(p̂k − p̂I) = fI . (12)

Conditions (11) and (12) can be easily incorporated into the primal hybrid-
dimensional problem formulation (8).
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2.3.3 Dual formulation for X-shaped intersections

In the case of two intersecting fractures with an X-shaped intersection, a math-
ematically rigorous derivation of coupling conditions is presented in [28,37].
These conditions are perfectly suited for incorporation into a dual problem for-
mulation discretized by XFEM. In this case, we have nf = 4 but we make an
explicit use of the fact that two distinct fractures intersect and associate only
one index k with the two branches of one fracture, see Figure 5. This allows
to formulate for a quantity q̂k associated with fracture k its average {{q̂k}}ip
and jump Jq̂kKip at the intersection point ip. The model takes into account
the aperture, permeability and angle at the intersection between fractures as
well as the permeability in the intersecting region. This model allows a pres-

Fig. 5: Geometry and notation for the case of X-shaped intersections.

sure and Darcy velocity discontinuity across the intersection, where the jumps
are computed accounting for the pressure and fluxes from both fractures. In
addition to the mass conservation (9), the coupling conditions are


|I|
di

2∑
k=1

η̂ik
d∗k
{{ûk · τ k}}ip = Jp̂iKip

ξ̂0
dj
di
η̂ii Jûi · τ iKip = {{p̂i}}ip − p̂I

for i, j = 1, 2, i 6= j, (13)

where d∗k = dk/ sin θ and θ is the angle between the two fractures, η̂ij is the
tangential projection along γ̂j and then γ̂i of the inverse of the permeability
in the intersection region, namely η̂ij := τ>i Λ

−1
I τ j . Note the similarity of

(13) to the interface conditions (7b-bis) of the “full” dual hybrid-dimensional
problem. This allows to directly apply the corresponding XFEM techniques in
a lower-dimensional context. Moreover, the system of equations (13) can be
viewed as a generalization of (10) since the former boils down to the latter
providing the intersection permeability goes to infinity or the dimension of the
intersection goes to zero.
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2.4 Boundary conditions

This section is divided into two parts: Dirichlet boundary conditions for a
matrix boundary that is intersected by fractures and conditions for fracture
tips that are located in the interior of the matrix domain.

2.4.1 Dirichlet conditions for fractured porous media

Boundary conditions for fractured porous media systems with explicitly mod-
eled fractures are not easy to define. The simplest choice is to prescribe a
constant pressure along a domain boundary or a linear change, for example
for the case of a hydrostatic pressure distribution. This often does not re-
flect the highly heterogeneous structure in the case of fractured porous media
systems. That again leads to a strong influence of the boundary conditions
on the solution if the domain is not chosen large enough. For field scale sim-
ulations, one usually obtains pointwise pressure information from which the
best boundary conditions are to be picked. In [55], a possibility is presented
to interpolate pointwise pressure data along a given boundary including the
information of the geometrical position and geological parameters (aperture,
permeability) of the fractures intersecting with this boundary.

In particular, the situation depicted in Figure 6 is considered. For a bound-

∂Ωm,i

ωiω1 . . .
χ = 0 χ1

ω0 ωnf−1 ωnf

χ = 1χi χnf. . .

∂Ωm,1 . . .∂Ωm,0 ∂Ωm,nf∂Ωm,nf−1

Fig. 6: Partitioning of the boundary according to intersecting fractures.

ary segment ω ⊂ ∂Ω that is parametrized by χ ∈ [0, 1], the left and right pres-
sure values pleft and pright at χ = 0 and χ = 1 are assumed to be known. The
segment ω is intersected by nf fractures that divide it in nf + 1 parts ωi. The
goal is to find a pressure distribution pb on ω that accounts for the presence
of the intersecting fractures by admitting jumps across the fracture-boundary
intersections χj . Proceeding analogously to the derivation of Problem 6, one
has to find pb such that pb(0) = pleft, pb(1) = pright and

nf∑
i=0

(λb,i∇pb,∇qb)ωi +

nf∑
j=1

λγ̂(χj)
(

[[pb]]j [[qb]]j + ξ0({{pb}}j − pf j){{qb}}j
)

= 0,

(14)
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for all test functions qb. Here, λb,i = τ>b Λiτ b is the permeability along the
boundary segment, while [[ · ]]j and {{ · }}j refer to the jump and average in
the fracture-boundary intersection χj . In order to derive a closed system, one
is left with the choice of the fracture pressures pf j . In [55], two options are
discussed. The first one assumes pf j = {{pb}}j such that the fracture pressures
are indeed an outcome of solving (14). The second one builds upon expert
knowledge to describe explicit values for pf j .

In order to facilitate the solution of (14), it is assumed that pb is piecewise
linear with respect to the unfractured parts ωi, namely,

pb(χ) = miχ+ bi on ωi, (15)

with the two unknown coefficients mi, bi. By choosing appropriate test func-
tions qb, analytical expressions for these coefficients are derived for an arbitrary
number of fractures and the case pf j = {{pb}}j , see [55].

For example, for one single fracture, nf = 1, the slopes are given by

m0 =
pright − pleft

λb,0

λγ̂
+ |ω1|+ |ω0| λb,0

λb,1
+ (

λb,0

λb,1
− 1)

,

m1 =
pright − pleft

λb,1

λγ̂
+ |ω0|+ |ω1| λb,1

λb,0
+ (1− λb,1

λb,0
)
.

In [55], the resulting boundary conditions are shown to be superior to standard
choices. In particular, the transition from the inner part of the domain to the
boundary appears much more natural in the presence of blocking fractures.

2.4.2 Boundary and coupling conditions for fracture tips

We consider now the situation where parts of the fractures are ending inside
the interior of the matrix domain, namely, in γ̂tip = ∂γ̂ ∩Ω. Apart from being
challenging from the mathematical and numerical point of view, the modeling
question is what kind of boundary or coupling conditions should be prescribed
at γ̂tip.

An obvious easy choice is to prescribe no-flow conditions across the fracture
tip [7], namely,

û · τ |γ̂tip = 0. (16)

In many situations, this condition is well justified by the essential modeling
assumption that the fracture aperture d is small compared to its lateral dimen-
sions. However, there can be problem settings where (16) may not be accurate
enough. In particular, if the tangential permeability of the fracture is larger
than the normal one, namely, λ̂ > λγ̂ , the flow across the fracture tip could be
rather large compared to the flow over the fracture’s lateral boundaries and
should be taken into consideration.
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Taking into account the flow across the tip can be achieved by assigning a
corresponding source term fΩ for the matrix domain [54],

fΩ = δγ̂tipû · τ |γ̂tip . (17)

The coupling condition (17) can be complemented by a condition involving
the matrix and fracture pressures. For example, one could aim for

p̂|γ̂tip = [[p]]γ̂tip . (18)

Conditions (17) and (18) are discussed and investigated for the discretized
primal formulation in [54]. While (17) is implemented as a source for the
matrix domain, (18) can be realized as a Dirichlet condition for the fracture.
However, a proper mathematical derivation from the continuous setting as well
as thorough numerical comparisons with (16) are still missing.

3 Numerical discretization by means of XFEM

Before we present the numerical approximation of the previous reduced mod-
els, both in dual and primal form, using the extended finite element method
(XFEM), we provide a very brief overview of its historical development and
some pointers to the literature.

Ideally, one would want to use a mesh that is as structured and axis-aligned
as possible. The standard Galerkin finite-element method, however, cannot
handle discontinuities in the solution except by resolving them through the
grid, namely, by doubling and decoupling the degrees of freedom along the dis-
continuities. Coming from the structural-mechanics problem of evolving cracks
that leads to discontinuities in the solution (displacement, stress, strain), an
extension to the standard finite-element scheme was developed, [23,24,48], and
called “eXtended Finite Element Method.”

From the more theoretical point, Nitsche’s method, intentionally devel-
oped to handle Dirichlet constraints, evolved to a new possibility to treat
interface problems, [41,43,17]. XFEM and Nitsche’s method applied to inter-
face problems are in this case essentially the same approach. An overview of
recent problems where XFEM methods are investigated is given in [1]. Some
works that influence the following presentation are [24,42,48]. XFEM was first
used in the fractured porous media context in [20,33] for lower dimensional
fractures introducing a discontinuous solution in the matrix, in [11] for lower
dimensional fracture networks having different permeabilities in the network
and therefore also discontinuities, and in [45] for thin heterogeneities (equi-
dimensional) which are not resolved directly with the grid but rather with the
XFEM.

In the literature such techniques are very often referred to as “partition-
of-unity” PUFEM and “generalized finite-element methods” GFEM. The dif-
ference here is that those are usually on a global level where XFEM adopts
the same techniques on an element-local formulation. The composite finite ele-
ment method, first presented in [38], is a special type of a geometric multi-grid
methods and falls therefore in the category of multi-scale methods.
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3.1 Modification and addition of basis functions

In the classical Galerkin finite-element approach, the discrete solution, ph(x),
at a global point x in space, which lies within an element E, is defined by the
sum over all shape functions associated with this element multiplied by the
value of the corresponding degree of freedom p̃i, cf. for example [14],

ph(x) =
∑
i∈NE

bi(x) p̃i. (19)

Here, bi denotes the shape function of the degree of freedom i, NE = {n1, . . . , nr}
denotes the set of standard degrees of freedom of the element E. All matrix
elements which are not cut by a fracture are treated with such a standard
finite element approach.

If an element E is cut by a fracture, additional degrees of freedom p̃ e
j are

introduced. Those elements which are cut by at least one fracture are called
enriched elements. The discrete solution on an enriched element E can be
written as

ph(x) =
∑
i∈NE

bi(x)usi(x) p̃i +
∑

j∈Ne,E

bej(x)uej(x) p̃ e
j (20)

Here, Ne,E is the set of enriched degrees of freedoms. To capture discontinuities
in the solution the basis functions are multiplied by discontinuous functions,
where usi denotes the discontinuity functions for the standard degrees of free-
dom, while uej denotes the discontinuity functions for the enriched degrees of
freedom, respectively. These functions will be defined below.

In the course of this work, the standard basis at cut elements is chosen
to be same as for uncut elements, i.e., (bi-)linear and the additional shape-
functions are chosen to be of the same type as the standard shape-functions,
i.e., also (bi-)linear, bi = bej if i and j refer to degrees of freedom located at the
same vertex. Then, bej denotes the nodal shape function of an enriched node j.
Furthermore, the XFEM concept is here used in combination with the Ritz-
Galerkin approach, i.e., the basis-function space and the test-function space
are equal.

The choice of the discontinuity functions is somehow arbitrary, as long as
certain conditions are fulfilled. One commonly desired goal is to choose the dis-
continuity functions such that the resulting enriched basis functions are forced
to be zero in all nodes. On the one hand this leads to a propitious quality: the
nodal interpolation is still guaranteed by the solution in the standard nodes
alone, [48]. More importantly this property yields to enriched basis functions
which are completely local with respect to the cut elements and every basis
function has only one discontinuity (within this element) for every set of ad-
ditional degrees of freedom. This avoids blending elements, [29], which have
to be introduced otherwise. However, this is only valid for the special case of
a single interface per element. The general, more complex case of several (in-
tersecting) interfaces is more demanding and discussed in, for example, [54].
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There are many other possible choices for the discontinuity functions with dif-
ferent properties. For example, they can be chosen such that the standard basis
remains unmodified and the discontinuity is only represented by the enriched
basis or such that the mean of the enriched basis functions is zero.

To become more explicit, we define the discontinuity functions by using
the sign function sgn which is positive one on the side of the positive normal
direction and negative one on the other, as

usi(x) ..=
1

2
|sgn(x) + sgn(xi)| , uei (x) ..=

1

2
|sgn(x)− sgn(xi)| .

The second term, sgn(xi), associates a constant value to every node, so that
the discontinuity function for the original degrees of freedom is one if x and xi
lie on the same side of the interface and zero if they are on different sides, and
vice versa for the additional degrees of freedom. The modified basis functions
for this kind of discontinuity functions are exemplarily shown for the one-
dimensional case in Figure 7. For this approach, the orientation of the normal
vector n of the interface has to be chosen. This choice is arbitrary.

b2us2 = 1
2
|sgn(x) + sgn(x2)|

ξ

b3us3 = 1
2
|sgn(x) + sgn(x3)|

b5ue5 = 1
2
|sgn(x)− sgn(x5)|

b6ue6 = 1
2
|sgn(x)− sgn(x6)|

Fig. 7: The zero dimensional fracture with local coordinate ξ divides the one
dimensional matrix element. Solid lines show the two modified basis functions
associated to node two (degrees of freedom two and five), dashed lines the
modified basis of degrees of freedom three and six at node three.

3.2 Primal formulation with XFEM

The matrix domain Ω is discretized by nm triangular or quadrilateral elements
Ej into Thm = {Ej}nm

j=1 independent of γ. The fracture γ is discretized with

lower-dimensional elements, Thf = {Ejf }n
f

j=1, independent of Thm. We define all

elements E ∈ Thm which are totally in or partly belonging to Ωi as Ei = E∩Ωi.
All elements which are not fully included in one sub-domain belong to both.
The discrete space can then be defined as

Qhi = {qh,i ∈ C0(Ωi) : qh,i|E∩Ωi ∈ Q1(Ei), E ∈ Thm}

for quadrilateral elements E, with Q1 being replaced by P1 for triangular
elements. The complete discrete space for the rock matrix domain is then
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just the product space of the sub-domain spaces Qhm = Qh1 × Qh2 , where the
elements cut by a fracture are contained twice but each with the cut basis.
The discrete space for γ reads

Qhf = {q̂h ∈ C0(γ) : q̂h|Ef
∈ Q1(Ef), Ef ∈ Thf }

so that the combined space isQh = Qhm×Qhf . This allows to obtain the discrete
formulation of Problem 6.

Problem 7 (Primal hybrid-dimensional discrete formulation) Find
ph = (ph,1, ph,2) and p̂h in subspaces of Qhm and Qhf that respect the given
boundary conditions such that{

ap(ph, qh)− cp(qh, p̂h) = F (qh)

−cp(ph, q̂h) + âp(p̂h, q̂h) = F̂ (q̂h)
,

for all test functions qh and q̂h defined in proper subspaces of Qhm and Qhf .

3.3 Dual mixed formulation

In [20], and in some more recent works such as [31,32,34] the XFEM is ap-
plied to the dual mixed formulation of the problem in a similar way, but with
different FEM spaces. In particular, the lowest order Raviart-Thomas pair
RT0,P0, see [51,53], is employed for velocity and pressure, respectively. This
is a common choice in porous media simulations, which guarantees local mass
conservation. In the aforementioned works the domain is discretized by means
of a triangular or tetrahedral grid, however, the method could be generalized
to the case of quadrilateral or hexahedral grids.

The cut mixed finite element spaces can be defined as follows. For each
element Em let RT0(Em,i) =

{
vh|Em,i : vh ∈ RT0(Em)

}
be the restriction

of the standard RT0 functions to the sub-element Em,i, and analogously let
P0(Em,i) =

{
qh|Em,i

: qh ∈ P0(Em)
}

be the restriction of the standard P0 func-
tions. See Figure 8 for a sketch of the restricted basis functions and the corre-
sponding degrees of freedom in the 2D case.

The discrete velocities and pressure in Ω are then sought in the following
spaces respectively:

Vh = V1,h ×V2,h Qh = Q1,h ×Q2,h

where

Vi,h =
{
vh ∈ Hdiv(Ωi) : vh ∈ RT0(Em,i) ∀Em ∈ Thm

}
Qi,h =

{
qh ∈ L2(Ωi) : qh ∈ P0(Em,i) ∀Em ∈ Thm

}
.

The finite element spaces for the fracture problem, on γ, are the standard RT0-
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Fig. 8: Basis functions for the lowest order Raviart-Thomas pair, restricted to
the subdomains Ωi.

P0 in N−1 dimensions, thus, the discrete flux and pressure in the fracture are
sought in the spaces

V̂i,h =
{
v̂h ∈ Hdiv(γ) : v̂h ∈ RT0(Ef) ∀Ef ∈ Thf

}
Q̂i,h =

{
q̂h ∈ L2(γ) : q̂h ∈ P0(Ef) ∀Ef ∈ Thf

}
.

In the case of intersecting fractures, one could consider non-matching fracture
grids at the intersection: in this case, a suitable XFEM enrichment should be
considered also in the fractures. We refer to [28] for details.

We can now define Ṽh = Vh×V̂, and Q̃h = Qh× Q̂h, and Wh = Ṽh× Q̃h
and formulate the discrete version of Problem 4.

Problem 8 (Dual hybrid-dimensional discrete formulation)
Find (uh, ûh, ph, p̂h) ∈Wh such that

ah(uh, ûh,vh, v̂h) + bh(ph, p̂h,vh, v̂h)− bh(qh, q̂h,uh, ûh) =

F(vh, v̂h, qh, q̂h) ∀(vh, v̂h, qh, q̂h) ∈Wh.

for all test functions qh and q̂h defined in proper subspaces of Qhm and Qhf .

The well-posedness of the dual discrete problem has been proven in [20] for
the case of given pressure in the fracture, and in [22] for the fully coupled case.
Particularly relevant is the problem of the inf-sup stability of the extended
spaces: indeed, even if we start from a stable pair the enriched spaces could
present instabilities in some particular configurations. Sufficient conditions on
the fracture geometry and on the underlying grid of the porous medium are
given in the two aforementioned works.

3.4 Fracture grids and approximation of the coupling terms

Once the finite element spaces for both the fracture and the rock matrix are
defined, one crucial ingredient is the approximation of the coupling term be-
tween the two media. To simplify the presentation, we consider only fracture
and matrix grids which are genuinely non-matching if each fracture element
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is fully contained in a N -dimensional element or is contained in a pair of fac-
ing N -dimensional elements. In the important case of matching geometries, a
standard technique can be employed to approximate the coupling term, see
for example [30]. The construction of the fracture grid can be done in two
different ways. One possibility is to consider the fracture grid induced by the
intersection between the background mesh and the interface. This approach
avoids the construction of complex interpolation operators, explained in the
sequel, but can be done easily only in the two-dimensional case and may pro-
duce elements with strongly varying aspect ratios. One possibility to overcome
these difficulties consists in using the trace of higher dimensional basis func-
tions as in the Trace FEM method, coupled with suitable stabilizations, see
[49,47,16]. To allow a higher flexibility in the numerical discretization, it is
possible to introduce an interpolation operatorM : Q̂h → Qh which maps the
value of the pressure in the fracture elements to the corresponding element in
the matrix grid. Note that it has to take into account also fractions of frac-
ture elements. In the particular case of a piecewise constant approximation for
pressure, following [36], the discrete version ofM is a rectangular matrixMh

with entries

[Mh]ij =

∫
K̂j∩Ki

1dx,

where Ki is the i-th element in matrix mesh and K̂ is the j-th element in
the fracture mesh. To preserve mass conservation at discrete level, we consider
the approximation of the adjoint operator M∗ : Qh → Q̂h as the transpose of
Mh.

In [30], the authors note that, in the case of an immersed fracture, if the
fracture grid is too fine compared with the mesh of the matrix, depending
also on the permeability contrast, the solution in the fracture could present
oscillations. The authors suggest a possible explanation which is related to the
singularity of the solution at the fracture tip. The aforementioned work is in
the context of non-matching, but still conforming (i.e. aligned with the grid)
discretizations, and the authors consider a mortar technique to deal with the
non-matching elements at the interface. The same phenomenon is also observed
when the XFEM method is employed. In fact considering the simple domain
depicted in Figure 9, it is possible to obtain the solutions reported in Figure 10
where the fracture behaves like a barrier only in its middle part. The domain
is discretized using a structured triangular mesh where each boundary edge
is approximated with n segments, while the fracture is discretized using m
segments. The results show that, also in the case of XFEM, the oscillations
occur when the discretization of the fracture is finer than the rock mesh. Apart
from cases where the mesh is too coarse the oscillations exhibit a frequency
that depends only on the discretization of the outer medium. In this particular
case it can be estimated as n/2 for most of the cases. We notice that this
frequency corresponds to the n−th eigenfunction of the problem. Indeed, if n
is odd the solution becomes asymmetrical. It is also interesting that, for fixed
n, the amplitude of the oscillations is constant with increasing m, while if we
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0.47

0.25 0.250.5

Fig. 9: Representation of the domain for the oscillation problem. In the fracture
we highlight the pieces with different permeability.

Fig. 10: In the left, the grid sizes of the matrix and the fracture are comparable.
In the centre, the fracture grid is finer than the rock grid, some oscillations
are present. In the right, both meshes are refined maintaining the same ratio
of the grid size as the solution in the centre. In this case the amplitude of the
oscillations decreases.

refine both fracture and medium the amplitude decreases. This phenomena
are particularly relevant when the normal or tangential (or both) permeability
change sharply along the fracture.

3.5 Basis function enrichment around fracture tips

If a fracture branch ends inside the interior of the matrix domain in the fracture
tip γ̂tip, the question arises on how to enrich the basis functions inside an
element Etip that contains γ̂tip. For the primal formulation, an ad-hoc solution
is presented and used in [54]. In Etip, only those basis functions are enriched
that correspond to the vertices of the element face that is intersected by the
fracture, see the left picture of Figure 11. While this approach is attractive for
its simplicity, it disregards the potential singularity in the solution at the tip
γ̂tip. As described in [39], it is more appropriate to account explicitly for this
singularity by adding radial functions

g1(r, θ) =
√
r sin(θ/2), g2(r, θ) =

√
r cos(θ/2),
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Fig. 11: Basis function enrichment around fracture tips. Red circles indicate
XFEM enrichment, green squares enrichment by radial functions. Left: pure
XFEM enrichment according to [54]. Right: XFEM and radial functions en-
richment as suggested in [39].

multiplied with the standard basis functions bi in Etip. Here, r is the distance
from γ̂tip, while θ indicates the angle with respect to the tangential fracture
direction. This situation is depicted in the right picture of Figure 11.

4 Solvers

In this section, we discuss some issues related with the numerical solution of the
system resulting from numerical discretization. In particular, we present the
problem of ill-conditioning in the presence of very small sub-elements, and the
possibility of using iterative strategies in a domain-decomposition framework
as an alternative to a fully monolithic approach.

4.1 Conditioning

Since we are considering an arbitrary position of the interface with respect to
the underlying grid, it is possible that, when an element E is cut into two sub-

elments E1, E2, the ratio |Ei||E| is very small or even zero for some elements/some

configurations of the interface. The case of |Ei| = 0, corresponding to a fracture
that contains one or two adjacent vertices of the element, is an exception
ruled out by the assumptions of the XFEM method and should be handled
separately, while the case of small sub-elements can lead to ill-conditioned
matrices. In particular, the condition number can degenerate as µ(Thm, γ̂) =

minE∈G mini=1,2
|Ei|
|E| tends to zero, where G denotes the set of elements that are

cut by the interface. This problem has been investigated for the case of a mixed
formulation in [20]. In this work, a numerical experiment is presented, where,
changing the position of a vertical fracture on a structured grid, the authors
obtain smaller and smaller values of µ(Thm, γ̂) and compute the corresponding
maximum and minimum eigenvalue of the matrix C defined as

C =

[
A BT

−B 0

]
,
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arising from the discretization with XFEM of the Darcy problem in the cut
bulk medium. While the maximum eigenvalue is approximately constant, the
minimum decreases with µ. Even if the matrix is not symmetric and positive
definite, the ratio between maximum and minimum eigenvalue

ic(C) =
maxi |λi(C)|
mini |λi(C)|

can be used as an indicator of ill-conditioning. In [20] an optimal preconditioner
P for the problem is presented and tested on the same problem, showing that
ic(P−1C) is constant for all µ. Moreover, a simpler diagonal preconditioner PL
can be used to perform matrix equilibration: in this case the preconditioner is
not optimal with respect to the grid size h, but for a fixed h one still obtains
a constant ratio ic(P−1L C).

4.2 Iterative approaches

The coupled problem of flow in a porous matrix and a fracture has been
interpreted in a domain-decomposition framework in [4] under the assumptions
of pressure continuity across the fracture, i.e. the assumptions of permeable
fractures. It is shown how, in the cases of a fracture that cuts the domain Ω
in two disjoint parts Ωi the problem can be recast as a global equation on
the interface γ̂ for the unknown p̂. In a more recent work, [46], the concept
is generalized to the case of fractures with arbitrary permeability, including
the case of (nearly) impermeable interfaces. Once again the problem can be
formulated as a positive definite problem on the interface γ̂. In particular, in
the case ξ = 1 the problem simplifies again to a problem for only one scalar
unknown p̂,

S1(p̂, f1) + S2(p̂, f2) +∇τ · (λ̂∇τ p̂) = ff . (21)

where S1,2(p̂, f1,2) are the Robin-to-Neumann operators accounting for the
coupling with the flow problem in Ω1,2. The interface equation (21) can then
be solved iteratively. This approach is meant to provide an efficient method
for the solution of the coupled fracture-medium problem: indeed, when consid-
ering a mixed formulation, the system is not positive definite and in realistic
configurations it can be very large. Therefore, it can be convenient to eliminate
some of the unknowns to obtain a problem that is easier to solve.

In the context of non-matching discretizations, an iterative approach for
the solution of the coupled problem is also discussed in [20], where a similar
approach is used, adding more information and numerical evidence about the
convergence of the procedure. In particular, it is proven that the iterative
method converges for some values of a relaxation parameter ω that must satisfy

ω &M2
γ̂

λγ̂

ξ0λ̂
, where Mγ̂ = min

{
1, h

√
max{λ1, λ2}

λγ̂

}
.
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Numerical experiments show that, for small λγ̂/λ̂ ratios the relaxation param-
eter can be very small and convergence is achieved in just few iterations, while
for higher ratios the iterative method converges very slowly.

In the relevant case of a discrete fracture network approximation, namely,
where the rock matrix is supposed to be impervious, an interesting approach is
proposed in [11,12, and references therein] to solve in an efficient way the global
system of equations. The authors consider the continuous coupling conditions
among the fractures, as presented in Section 2.3.1, and a primal formulation
of the problem. In this part, to simplify the notation we assume that the equi-
dimensional domain are the fractures while the one-codimensional domain
are the intersections among the fractures. To decouple the solution on each
fracture, the transmission conditions (10) are imposed in a weak way through
an optimization problem, i.e. naming S a strip of intersecting elements between
two fractures solvemin J(p) = min

∑
S∈S
‖JpKS‖

2
+ 2‖{{u · n}}S‖

2

s.t. p solution in each fracture

where S is the set of all the intersection regions, the norms are defined on
proper spaces and u · n is a suitable reconstruction of the normal flux at the
intersection S. The optimal solution of the minimum problem gives J(p) = 0
and can be computed numerically using a gradient method. With this method
the linear system, which couple all the fractures, has much smaller size than
the aforementioned approaches and the computation of the pressure in each
fracture is completely parallelizable.

5 Conclusion

In this review paper, we presented several mathematical models and numerical
algorithms to simulate single-phase flow in a porous medium containing frac-
tures. Two main challenges are addressed. First, the fractures play a crucial
role in subsurface flows and should be carefully accounted for to achieve re-
liable simulations, however their geometrical and geological data pose several
difficulties from a modeling and discrete point of view. A common approach
which is broadly used in the literature is to consider an hybrid-dimensional
model where the fractures are treated as objects of lower dimension. Second,
the position of the fractures may be unknown and several scenarios are needed
to obtain a representative solution of the problem, or to speed up the simula-
tions: for this reason it is better to allow these fractures to be geometrically
decoupled from the surrounding porous medium. In this case, an XFEM ap-
proach can be a valuable option to overcome this requests. Several geometrical
difficulties have been addressed in this paper, such as the treatment of inter-
sections and tips. To the best of our knowledge, several interesting issues are
still open for further investigation, such as a full three-dimensional setting for
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general networks of fractures with XFEM, a physical derivation of a more ap-
propriate condition at the fracture tip, suitable stabilizations to increase the
robustness of the linear solvers and a deep analysis for the case of vanishing
aperture.
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