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Abstract

In this paper we propose and analyze a Discontinuous Galerkin
method for a linear parabolic problem with dynamic boundary con-
ditions. We present the formulation and prove stability and optimal
a priori error estimates for the fully discrete scheme. More precisely,
using polynomials of degree p ≥ 1 on meshes with granularity h along
with a backward Euler time-stepping scheme with time-step ∆t, we
prove that the fully-discrete solution is bounded by the data and it
converges, in a suitable (mesh-dependent) energy norm, to the exact
solution with optimal order hp + ∆t. The sharpness of the theoretical
estimates are verified through several numerical experiments.

1 Introduction

In this paper we present and analyze a Discontinuous Galerkin (DG) method
for the following linear parabolic problem supplemented with dynamic bound-
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ary conditions on Γ1:
∂tu = ∆u+ f, in Ω, 0 < t ≤ T,
∂nu = −αu+ β∆Γu− λ∂tu+ g, on Γ1, 0 < t ≤ T,
periodic boundary conditions, on Γ2, 0 < t ≤ T,
u|t=0 = u0, in Ω.

(1)

Here the domain Ω and the subsets Γi ⊂ ∂Ω, i = 1, 2, are depicted in
Figure 1, ∆Γ is the Laplace-Beltrami operator, ∂nu denotes the outer normal
derivative of u on Γ1, g is a given function and α, β, λ are suitable non-
negative constants.

Dynamic boundary conditions have been recently considered by physi-
cists to model the fluid interactions with the domain’s walls (see, e.g.,
[11, 12, 19]). Despite the practical relevance of this kind of boundary con-
ditions from a modeling point of view and the intense research activity to
understand their analytical properties, see, e.g., [15, 29, 30], the study of
suitable numerical methods for their discretization is still in its infancy. To
the best of our knowledge, the only work along this direction is [5], where
the authors analyze a conforming finite element method for the approxima-
tion of the Cahn-Hilliard equation supplemented with dynamic boundary
conditions. Motivated by the flexibility and versatility of DG methods, here
we propose and analyze a DG method combined with a backward Euler time
advancing scheme for the discretization of a linear parabolic problem with
dynamic boundary conditions. The main goal of the present work is the
numerical treatment of dynamic boundary conditions within the DG frame-
work. Here we consider just a linear equation. However, our results aim to
be a key step towards the extension to (non-linear) partial differential equa-
tions with dynamic boundary conditions, as, for example, the Cahn-Hilliard
equation. In this context, we mention DG methods have been already proved
to be an effective discretization strategy for the Cahn-Hilliard equation as
shown in [18] where the authors constructed and analyzed a DG method
coupled with a backward Euler time-stepping scheme for a Cahn-Hilliard
equation in two-dimensions, cf. also [31].

The origins of DG methods can be backtracked to [24, 21] where they
have introduced for the discretization of the neutron transport equation.
Since that time, DG methods for the numerical solution of partial differen-
tial equations have enjoyed a great development, see the monographs [25, 14]
for an overview, and [3] for a unified analysis of DG methods for elliptic
problems. In the context of parabolic equations, DG methods in primal
form combined with backward Euler and Crank-Nicholson time advancing
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techniques have been firstly analyzed in [2, 26], respectively. DG in time
methods have also been studied for parabolic partial differential equations,
see, for example, [16, 8, 9, 20] and the reference therein; cf. also [28, 27] for
the hp-version of the DG time-stepping method.

The paper is organized as follows. In Section 2 we introduce some useful
notation and the functional setting. Section 3 is devoted to the introduction
and analysis of a DG method for a suitable auxiliary (stationary) problem.
These results will be then employed in Section 4 to design a DG scheme to
approximate the linear parabolic problem with boundary conditions and to
obtain optimal a priori error estimates for the fully discrete scheme. Finally,
in Section 6 we numerically assess the validity of our theoretical analysis.

2 Notation and functional setting

In this section we introduce some notation and the functional setting.

Let D ⊂ R2 be an open, bounded, polygonal domain with boundary
Γ = ∂D. On D we define the standard Sobolev space Hs(D), s = 0, 1, 2, . . .
(for s = 0 we write L2(D) instead of H0(D)) and endow it with the usual
inner scalar product (·, ·)Hs(D), and its induced norm ‖·‖Hs(D), cf. [1]. We

also need the seminorm defined by | · |Hs(D) = (
∑
|α|=s ‖∂α(·)‖L2(Ω))

1/2.
We next introduce, on Γ, the Laplace-Beltrami operator. We first define
the projection matrix P = I − n ⊗ n = (δij − ninj)

2
i,j=1, where n is the

outward unit normal to D, a⊗b = (aibj)ij is the dyadic product, and δij is
the Kroneker delta. We define the tangential gradient of a (regular enough)
scalar function u : Γ → R as ∇Γu = P∇u. The tangential divergence of
a vector-valued function A : Γ → R2 is defined as divΓ(A) = Tr

(
(∇A)P

)
,

being Tr(·) the trace operator. With the above notation, we define the
Laplace-Beltrami operator as ∆Γu = divΓ(∇Γu).

We next introduce the following Sobolev surface space

Hs(Γ) = {v ∈ Hs−1(Γ) | ∇Γv ∈ [Hs−1(Γ)]2}, s ≥ 1,

cf. [7], with the convention that H0(Γ) ≡ L2(Γ), L2(Γ) being the standard
Sobolev space of square integrable functions (equipped with the usual inner
scalar product (·, ·)Γ and the usual induced norm ‖·‖L2(Γ)). We equipped
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the space Hs(Γ) with the following surface seminorm and norm

|v|Hs(Γ) = ‖∇Γv‖Hs−1(Γ) ∀v ∈ Hs(Γ), s ≥ 1,

‖v‖Hs(Γ) =
√
‖v‖2

Hs−1(Γ)
+ |v|2Hs(Γ) ∀v ∈ H

s(Γ), s ≥ 1,

respectively. In [17, Lemma 2.4] is proved that the above norm is equivalent
to the usual surface norm present in literature [22], which is defined in local
coordinates after a truncation by a partition of unity.

Next, for a positive constant λ, we introduce the space

Hs
λ(D,Γ) = {v ∈ Hs(D) : λv|Γ ∈ Hs(Γ)}, s ≥ 0,

and endow it with the norm

‖u‖Hs
λ(D,Γ) =

√(
‖u‖2Hs(D) + λ‖u|Γ‖2Hs(Γ)

)
.

As before, for s = 0 we will write Hs
λ(D,Γ) instead of H0

λ(D,Γ). Moreover,
to ease the notation, when λ = 1, we will omit the subscript.

Finally, throughout the paper, we will write x . y to signify x ≤ Cy,
where C is a generic positive constant whose value, possibly different at any
occurrence, does not depend on the discretization parameters.

3 The stationary problem and its DG discretiza-
tion

Let Ω = (a, b) × (c, d) ⊂ R2 be a rectangular domain and let Γ1,Γ2 be the
union of the top and bottom/left and right edges, respectively, cf. Figure 1.
We consider the following Laplace problem with generalized Robin boundary
conditions: 

−∆u = f, in Ω,
∂nu = −αu+ β∆Γu+ g, on Γ1,

periodic boundary conditions, on Γ2,
(2)

where α, β are positive constants, and f ∈ L2(Ω), g ∈ L2(Γ1) are given
functions.

Defining the bilinear form a(u, v) : H1(Ω,Γ1)×H1(Ω,Γ1)→ R as

a(u, v) = (∇u,∇v)L2(Ω) + β(∇Γu,∇Γv)L2(Γ1) + α(u, v)L2(Γ1),
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the weak formulation of (2) reads: find u ∈ H1(Ω,Γ1) such that

a(u, v) = (f, v)L2(Ω) + (g, v)L2(Γ1) ∀v ∈ H1(Ω,Γ1). (3)

The following result shows that formulation (3) is well posed.

Theorem 3.1. Problem (3) admits a unique solution u ∈ H2(Ω,Γ1) satis-
fying the following stability bound:

‖u‖H2(Ω,Γ1) . ‖f‖L2(Ω) + ‖g‖L2(Γ1). (4)

Moreover, if f ∈ Hs−2(Ω) and g ∈ Hs−2(Γ1), s ≥ 2, then u ∈ Hs(Ω,Γ1)
and

‖u‖Hs(Ω,Γ1) . ‖f‖Hs−2(Ω) + ‖g‖Hs−2(Γ1). (5)

Proof. The existence and uniqueness of the solution are proved in [17, The-
orem 3.2]. The proof of the regularity results is shown in [17, Theorem
3.3-3.4]. The same arguments used in [17, Theorem 3.3-3.4] apply also in
our case thanks to periodic conditions.

Remark 3.2. We observe that the forthcoming analysis holds in more general-
shaped domains and/or more general type of boundary conditions provided
that the exact solution of the differential problem analogous to (3) satisfies
a stability bound of the form of (4).

3.1 Discontinuous Galerkin space discretization

In this Section we present a discontinuous Galerkin (DG) approximation of
problem (3).
Let Th be a quasi-uniform partition of Ω into disjoint open triangles T such
that Ω = ∪T∈ThT . We set h = max{diam(T ), T ∈ Th}. For s ≥ 0, we define
the following broken space

Hs(Th) = {v ∈ L2(Ω) : v|T ∈ Hs(T, ∂T ), T ∈ Th},

where, as before, H0(Th) = L2(Th). For an integer p ≥ 1, we also define the
finite dimensional space

V p(Th) = {v ∈ L2(Ω) : v|T ∈ Pp(T ), T ∈ Th} ⊂ Hs(Th),

for any s ≥ 0. An interior edge e is defined as the non-empty intersection
of the closure of two neighboring elements, i.e., e = T1 ∩ T2, for T1, T2 ∈ Th.
We collect all the interior edges in the set E0

h. Recalling that on Γ2 ⊂ ∂Ω we
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impose periodic boundary conditions, we decompose Γ2 as Γ2 = Γ+
2 ∪ Γ−2 ,

cf. Figure 1 (left), and identify Γ+
2 with Γ−2 , cf. Figure 1 (right). Then

we define the set EΓ2
h of the periodic boundary edges as follows. An edge

e ∈ EΓ2
h if e = ∂T

−∩∂T+
, where T± ∈ Th such that ∂T± ⊆ Γ±2 , cf. Figure 1

(right). We also define a boundary edge eΓ1 as the non-empty intersection
between the closure of an element in Th and Γ1 and the set of those edges
by EΓ1

h . Finally, we define a boundary ridge r as the subset of the mesh

vertexes that lie on Γ1, and collect all the ridges r in the set RΓ1
h . Clearly,

the corner ridges have to be identified according to the periodic boundary
conditions (cf. Figure 1, right). The set of all edge will be denoted by Eh,
i.e., Eh = E0

h ∪ E
Γ1
h ∪ E

Γ2
h .

Figure 1: Example of a domain Ω and an admissible triangulation Th (left).
On the right, we highlight the edges e ∈ EΓ2

h with red lines.

For v ∈ Hs(Th), s ≥ 1, we define

|v|2Hs(Th) =
∑
T∈Th

|v|2Hs(T ), |v|2
Hs(EΓ1

h )
=

∑
eΓ1
∈EΓ1

h

|v|2Hs(eΓ1
).

Next, for each e ∈ E0
h ∪ E

Γ2
h we define the jumps and the averages of v ∈

H1(Th) as

[v]e = (v+)n+
e + (v−)n−e and {v}e =

1

2
(v+ + v−),

where v± = v|T± and n±e is the unit normal vector to e pointing outward of

T±. For each e ∈ EΓ1
h we define

[v]e = v|e ne, {v}e = v|e, v ∈ H1(Th).

Analogously, for each r ∈ RΓ1
h , we set

[v]r = (v+(r))n+
r + (v−(r))n−r and {v}r =

1

2
(v+(r) + v−(r)),
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where, denoting by e± the two edges sharing the ridge r, v±(r) = v|e±(r)
and n±r is the unit tangent vector to Γ1 on r pointing outward of e±. The
above definitions can be immediately extended to a (regular enough) vector-
valued function, cf. [3]. To simplify the notation, when the meaning will be
clear from the context, we remove the subscripts from the jump and average
operators. Adopting the convention that

(v, w)Eh =
∑
e∈Eh

(v, w)L2(e), (ξ, η)RΓ1
h

=
∑
r∈RΓ1

h

ξ(r)η(r)

for regular enough functions v, w, ξ, η, we introduce the following bilinear
forms

Bh(v, w) =
∑
T∈Th

(∇v,∇w)T − ([v], {∇w})E0
h
− ([w], {∇v})E0

h
+ σ([v], [w])E0

h

− ([v], {∇w})EΓ2
h

− ([w], {∇v})EΓ2
h

+ σ([v], [w])EΓ2
h

and

bh(v, w) = (∇Γv,∇Γw)EΓ1
h

−([v], {∇Γw})RΓ1
h

−([w], {∇Γv})RΓ1
h

+σ([v], [w])RΓ1
h

,

for all v, w ∈ H2(Th). Here σ = γ
h , being γ a positive constant at our

disposal. We then set

Ah(u, v) = Bh(u, v) + α (u, v)L2(Γ1) + β bh(u, v). (6)

The discontinuous Galerkin approximation of problem (2) reads: find
uh ∈ V p(Th) such that

Ah(uh, vh) = (f, vh)L2(Ω) + (g, vh)L2(Γ1) ∀vh ∈ V p(Th). (7)

In the following we show that the bilinear form Ah(·, ·) is continuous and
coercive in a suitable (mesh-dependent) energy norm. To this aim, for w ∈
Hs(Th), we define the seminorm

|||w|||2Bh = |w|2H1(Th) + σ‖[w]‖2
L2(E0

h∪E
Γ2
h )

+
1

σ
‖{∇w}‖2

L2(E0
h∪E

Γ2
h )

and the norm

|||w|||2∗ = |||w|||2Bh + α‖w‖2L2(Γ1)

+ β|w|2
H1(EΓ1

h )
+ βσ‖[w]‖2

L2(RΓ1
h )

+
β

σ
‖{∇Γw}‖2

L2(RΓ1
h )
, (8)
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where we adopted the notation

‖w‖2L2(Eh) =
∑
e∈Eh

‖w‖2L2(e), ‖w‖2
L2(RΓ1

h )
=
∑
e∈RΓ1

h

‖w‖2L2(r).

Reasoning as in [2], it is easy to prove the following result.

Lemma 3.3. It holds

Ah(v, w) . |||v|||∗|||w|||∗ ∀v, w ∈ H2(Th). (9)

Moreover, for γ large enough, it holds

|||v|||2∗ . Ah(v, v) ∀v ∈ V p(Th). (10)

Proof. Let us first prove (9). The term Bh(·, ·) can be bounded by Cauchy-
Schwarz inequality as in [2]. Also the term bh(·, ·) can be handled using the
Cauchy-Schwarz inequality:

|bh(v, w)| =
∣∣∣(∇Γv,∇Γw)EΓ1

h

− ([v], {∇Γw})RΓ1
h

−([w], {∇Γv})RΓ1
h

+ σ([v], [w])RΓ1
h

∣∣∣
.
(
|v|2

H1(EΓ1
h )

+ σ‖[v]‖2
L2(RΓ1

h )
+

1

σ
‖{∇Γv}‖2

L2(RΓ1
h )

)1/2
×(

|w|2
H1(EΓ1

h )
+ σ‖[w]‖2

L2(RΓ1
h )

+
1

σ
‖{∇Γw}‖2

L2(RΓ1
h )

)1/2
,

and (9) follows employing the definition (8) of the norm ||| · |||∗.
We now prove (10). As before the term Bh(·, ·) can be bounded as in [2]:
using the classical polynomial inverse inequality [6] we obtain

|||v|||2Bh . |v|2H1(Th) + σ‖[v]‖2
L2(E0

h∪E
Γ2
h )

. Bh(v, v)

for all v ∈ V p(Th). The term bh(·, ·) can be estimated as follows:

bh(v, v) ≥ |v|2
H1(EΓ1

h )
− 2

∣∣∣([v], {∇Γv})RΓ1
h

∣∣∣+ σ‖[v]‖2
L2(RΓ1

h )
.

Employing the arithmetic-geometric inequality we get:∣∣∣([v], {∇Γv})RΓ1
h

∣∣∣ ≤ ‖σ1/2[v]‖
L2(RΓ1

h )
‖{σ−1/2∇Γv}‖L2(RΓ1

h )

≤ 1

ε
σ‖[v]‖2

L2(RΓ1
h )

+ 4εσ−1‖{∇Γv}‖2
L2(RΓ1

h )
,
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for a positive ε > 0. Finally, estimate (10) follows using the polynomial
inverse inequality

h‖{∇Γv}‖2
L2(RΓ1

h )
. |v|2

H1(EΓ1
h )

∀v ∈ V p(Th)

and choosing γ sufficiently large.

The following result shows that problem (7) admits a unique solution and
that the Galerkin orthogonality property is satisfied. The proof is straight-
forward and we omit it for sake of brevity.

Lemma 3.4. Assume that γ is sufficiently large. Then, the discrete solution
uh of problem (7) exists and is unique. Moreover, formulation (7) is strongly
consistent, i.e.,

Ah(u− uh, v) = 0 ∀v ∈ V p(Th). (11)

For v ∈ Hs(Ω,Γ1), s ≥ 2, let Ihp v be the piecewise Lagrangian interpolant

of order p of u on Th. Note that (Ihp u)|Γ1
interpolates u on the set of degrees

of freedom that lie on EΓ1
h . By standard approximation results we get the

following interpolation estimate.

Lemma 3.5. For all v ∈ Hs(Ω,Γ1), s ≥ 2, it holds

|||v − Ihp v|||∗ . hmin (s−1,p)‖v‖Hs(Ω,Γ1).

Proof. Using the definition (8) of ||| · |||∗ norm and that Ihp v(r) = v(r) for all

r ∈ RΓ1
h , we get

|||v − Ihp v|||
2

∗ = |||v − Ihp v|||
2

Bh
+ α‖v − Ihp v‖2L2(Γ1) + β|v − Ihp v|2H1(EΓ1

h )
. (12)

Expanding the first term at right-hand side and using the multiplicative
trace inequalities

‖v‖2L2(Eh) . h−1‖v‖2L2(Ω) + h|v|2H1(Ω),

‖∇v‖2L2(Eh) . h−1|v|2H1(Ω) + h|v|2H2(Ω),

cf. [25], we get

|||v − Ihp v|||
2

Bh
= |v − Ihp v|2H1(Ω) + σ‖[v − Ihp v]‖2

L2(E0
h∪E

Γ2
h )

+
1

σ
‖{∇(v − Ihp v)}‖2

L2(E0
h∪E

Γ2
h )

. h−2‖v − Ihp v‖2L2(Ω) + |v − Ihp v|2H1(Ω) + h2|v − Ihp v|2H2(Ω).

Using standard interpolation estimates [23] we get the thesis.
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Now we show that the discrete solution uh of (7) converges to the weak
solution of (3).

Theorem 3.6. Let u ∈ Hs(Ω,Γ1), s ≥ 2, be the solution of the problem (3)
and let uh be the solution of the problem (7). Then,

‖u− uh‖L2(Ω,Γ1) + h|||u− uh|||∗ . hmin (s,p+1)‖u‖Hs(Ω,Γ1),

provided γ is chosen sufficiently large.

Proof. By the triangular inequality we have

|||u− uh|||∗ ≤ |||u− I
h
p u|||∗ + |||Ihp u− uh|||∗.

We first bound the second term on the right-hand side. Combining the
Galerkin orthogonality (11) with the continuity and the coervicity estimates
(9)-(10), we obtain:

|||Ihp u− uh|||
2

∗ . Ah(Ihp u− uh, Ihp u− uh)

= Ah(Ihp u− u, Ihp u− uh) +Ah(u− uh, Ihp u− uh)

. |||Ihp u− uh|||∗|||I
h
p u− u|||∗.

Therefore,
|||Ihp u− uh|||∗ . |||I

h
p u− u|||∗,

and
|||u− uh|||∗ . |||u− I

h
p u|||∗.

Then, using Lemma 3.5, we get

|||u− uh|||∗ . hmin (s−1,p)‖u‖Hs(Ω,Γ1). (13)

For the L2 error estimate, we consider the following adjoint problem: find ζ
such that {

−∆ζ = u− uh, in Ω,
∂nζ = −αζ + β∆Γζ + (u− uh), on Γ1,

As u−uh ∈ L2(Ω,Γ1), using Theorem 3.1 yields an unique ζ ∈ H2(Ω,Γ1)
satisfiying the following stability estimate

‖ζ‖H2(Ω,Γ1) . ‖u− uh‖L2(Ω,Γ1).
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Using Lemma 3.5 with p = 1, we get

|||ζ − Ih1 ζ|||∗ . h‖ζ‖H2(Ω,Γ1) . h‖u− uh‖L2(Ω,Γ1). (14)

Since Ah(·, ·) defined in (6) is symmetric, it is easy to see that it holds

Ah(χ, ζ) = (u− uh, χ)L2(Ω) + (u− uh, χ)L2(Γ1) ∀χ ∈ H2(Th). (15)

Next, choosing χ = u − uh in (15) and employing (11) together with (9) ,
we find

‖u− uh‖2L2(Ω,Γ1) = Ah(u− uh, ζ)

= Ah(u− uh, ζ − Ih1 ζ)

. |||u− uh|||∗|||ζ − I
h
1 ζ|||∗.

The thesis follows using (13) and (14).

4 The parabolic problem and its fully-discretization

In this section we employ the results obtained in the previous section to
present and analyze a DG space semi-discretization combined with an back-
ward Euler time advancing scheme for solving the following parabolic prob-
lem: 

∂tu = ∆u+ f, in Ω, 0 < t ≤ T,
∂nu = −αu+ β∆Γu− λ∂tu+ g, on Γ1, 0 < t ≤ T,
periodic boundary conditions, on Γ2, 0 < t ≤ T,
u|t=0 = u0, in Ω,

(16)

where T > 0, α, β, λ are positive constants and f, g, u0 are (regular enough)
given data. The weak formulation of (16) reads: for any t ∈ (0, T ], find u
such that:{

(∂tu, v)L2(Ω) + λ(∂tu, v)L2(Γ1) + a(u, v) = (f, v)L2(Ω) + (g, v)L2(Γ1),

u|t=0 = u0,

(17)
for any v ∈ H1(Ω,Γ1).

It is possible to prove the following result dealing with the existence and
(higher) regularity of the weak solution of (16).
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Theorem 4.1. If u0 ∈ H2(Ω,Γ1), f ∈ H1(0, T ;L2(Ω)) and g ∈ H1(0, T ;L2(Γ1))
and the following compatibility conditions holds

1. u1 := ∆u0 + f(0, ·) ∈ L2(Ω),

2. u1|Γ1
:= β∆Γu0 − ∂nu0 − αu0 + g(0, ·) ∈ L2(Γ1),

then problem (16) admits a unique solution u with

u ∈ C([0, T ];H2(Ω,Γ1)) ∩ C1([0, T ];L2
λ(Ω,Γ1)) ∩H1(0, T ;H1

λ(Ω,Γ1)).

Moreover, if u0 ∈ H2m
λ (Ω; Γ1), dkf

dtk
∈ H1(0, T ;H2m−2k−2(Ω)) and dkg

dtk
∈

H1(0, T ;H2m−2k−2(Γ1)), for k = 0, . . . ,m−1 and the following higher order
compatibility conditions hold for k = 1, . . . ,m

3. u
(k)
1 := ∆u

(k−1)
1 + dk−1

dtk−1 f(0, ·) ∈ L2(Ω)

4. u
(k)
1|Γ1

:= β∆Γu
(k−1)
1|Γ1

− ∂nu(k−1)
1 − αu(k−1)

1|Γ1
+ dk−1

dtk−1 g(0, ·) ∈ L2(Γ1),

where we set u
(0)
1 := u1 and u

(0)
1|Γ1

= u1|Γ1
, then it holds for k = 0, . . . ,m− 1

dku

dtk
∈ C([0, T ];H2m−2k(Ω,Γ1)) ∩ C1(0, T ;H2m−2k−2

λ (Ω,Γ1))

∩ H1(0, T ;H2m−2k−1
λ (Ω,Γ1)). (18)

Proof. See Appendix A.

Employing the DG notations introduced in Section 3.1, the space semi-
discretization of problem (16) becomes: find uh ∈ C0(0, T ;V p(Th)) such
that, for any t ∈ (0, T ],{

(∂tuh, vh)L2(Ω) + λ(∂tuh, vh)L2(Γ1) +Ah(uh, vh) = (f, vh)L2(Ω) + (g, vh)L2(Γ1),

uh|t=0 = uh0,

(19)
for any vh ∈ V p(Th), where uh0 ∈ V p(Th) is the L2-projection of u0 into
V p(Th).
The following result shows the existence of a unique solution uh of problem
(19).

Theorem 4.2. The semi-discrete problem (19) admits a unique local solu-
tion.

12



Proof. As the proof is standard, we only sketch it. Let {φj}Nj=1 be an orthog-
onal basis of V p(Th). The semi-discrete problem (19) is equivalent to solve,
for any t ∈ (0, T ], the following system of ordinary differential equations{

(∂tuh, φj)L2(Ω) + λ(∂tuh, φj)L2(Γ1) +Ah(uh, φj) = (f, φj)L2(Ω) + (g, φj)L2(Γ1),

uh|t=0 = uh0,

(20)
for j = 1, ..., N . Setting uh =

∑N
i=1 ci(t)φi, (20) can be equivalently written

as {
M ċ(t) +Ac(t) = F(t),

c(0) = c0,
(21)

where c(t) = (ci(t))1≤i≤N , c0 =
(
c0
i

)
1≤i≤N with uh0 =

∑N
i=1 c

0
iφi, and, for

i, j = 1, .., N ,

Aij = A(φi, φj), Mij = (φi, φj)L2(Ω) + λ(φi, φj)L2(Γ1),

Fi = (f, φi)L2(Ω) + (g, φi)L2(Γ1).

Since the matrix M is positive definite and F(t) ∈ L2(0, T ;RN ) invoking
the well known Picard-Lindelöf theorem yields the existence and unique-
ness of a local solution c ∈ H1(0, TN ;R), i.e. uh ∈ H1(0, TN ;V p(Th) ⊂
C([0, TN ];V p(Th)) with TN ∈ (0, T ].

The next result shows the stability of the semi-discrete solution of (19).

Lemma 4.3. Let uh be the solution of (19). Then it holds

‖uh(T )‖2L2
λ(Ω,Γ1) +

∫ T

0
|||uh|||2∗dt .

‖uh0‖2L2
λ(Ω,Γ1) +

∫ T

0
(‖f‖2L2(Ω) + ‖g‖2L2(Γ1))dt. (22)

Proof. Choosing vh = uh in (19) and using (10) we get

1

2

d

dt
‖uh‖2L2

λ(Ω,Γ1) + |||uh|||2∗ .
(
‖f‖L2(Ω) + ‖g‖L2(Γ1)

)
‖uh‖L2

1(Ω,Γ1).

Using the arithmetic-geometric inequality and the Poincaré-Friedrichs in-
equality for functions in the broken Sobolev space H1(Th), i.e.,

‖vh‖L2(Ω) .
(
|vh|2H1(Th) + ‖[vh]‖2

L2(Eh∪E
Γ2
h )

)1/2
vh ∈ H1(Th)

‖vh‖L2(Γ1) .
(
|vh|2

H1(EΓ1
h )

+ ‖[vh]‖2
RΓ1
h

)1/2
vh ∈ H1(Th)

13



cf. [4], we obtain

d

dt
‖uh‖2L2

λ(Ω,Γ1) + |||uh|||2∗ . ‖f‖
2
L2(Ω) + ‖g‖2L2(Γ1). (23)

The thesis follows integrating between 0 and T and noting that
‖uh0‖2L2

λ(Ω,Γ1)
. ‖u0‖2L2

λ(Ω,Γ1)
because uh0 is the L2-projection of u0 into

V p(Th).

Finally, we consider the fully discretization of problem (17) by resorting
to the Implicit Euler method with time-step ∆t > 0. Let tk = k∆t, 0 ≤
k ≤ K, with K = T/∆t, and denote by ukh, k ≥ 0,the approximation of
uh(tk). The fully-discrete problem reads as follows: given u0

h = uh0, find
uk+1
h ∈ V p(Th), 0 < k ≤ K − 1, such that(

uk+1
h − ukh

∆t
, vh

)
L2(Ω)

+ λ

(
uk+1
h − ukh

∆t
, vh

)
L2(Γ1)

+Ah(uk+1
h , vh) (24)

= (f(tk+1), vh)L2(Ω) + (g(tk+1), vh)L2(Γ1)

for all vh ∈ V p(Th).

5 Stability and error estimates

This section is devoted to show that the solution of problem (24) converges
with optimal rate to the continuous solution of (16). We first prove the
following stability result.

Lemma 5.1. Let fk = f(tk) and gk = g(tk), k = 1, ...,K. Then it holds

‖uKh ‖2L2
λ(Ω,Γ1) + ∆t

K∑
k=1

|||ukh|||
2

∗

. ‖uh0‖2L2
λ(Ω,Γ1) + ∆t

K∑
k=1

(
‖fk‖2L2(Ω) + ‖gk‖2L2(Γ1)

)
. (25)

Proof. We choose vh = uk+1
h in (24). Using (10), the identity

(z − y, z) =
1

2
‖z‖2 − 1

2
‖y‖2 +

1

2
‖z − y‖2,

14



and the Cauchy-Schwarz inequality, we obtain

‖uk+1
h ‖2L2

λ(Ω,Γ1) − ‖u
k
h‖2L2

λ(Ω,Γ1) + ‖uk+1
h − ukh‖2L2

λ(Ω,Γ1) + ∆t|||uk+1
h |||2∗

. ∆t
(
‖fk+1‖L2(Ω)‖uk+1

h ‖L2(Ω) + ‖gk+1‖L2(Γ1)‖uk+1
h ‖L2(Γ1)

)
.

Employing Young’s inequality, Poincaré-Friedrichs’ inequality and summing
over k we get the thesis.

We next state the main result of this section.

Theorem 5.2. Let u ∈ C([0, T ];Hs(Ω,Γ1))∩H1(0, T ;L2
λ(Ω,Γ1)), s ≥ 2, be

the solution of (17) and let uh be the solution of (24). If ∂tu ∈ L2(0, T ;Hs(Ω,Γ1)),
∂2
t u ∈ L2(0, T ;L2(Ω,Γ1)) and u0

h satisfies

‖u0 − u0
h‖L2

λ(Ω,Γ1) . hmin(s,p+1)‖u0‖Hs(Th), (26)

then

‖uK − uKh ‖2L2
λ(Ω,Γ1) .h

2 min(s,p+1)

(
‖uK‖2Hs

λ(Ω,Γ1) + ‖u0‖2Hs
λ(Ω,Γ1)

+

∫ T

0
‖∂tu(t)‖2Hs

λ(Ω,Γ1) dt

)
+ ∆t2

∫ T

0
‖∂2

t u(t)‖2L2
λ(Ω,Γ1) dt,

and

∆t
K∑
k=1

|||uk − ukh|||
2

∗ . h2 min(s−1,p)

(
∆t

K∑
k=1

‖uk‖2Hs
λ(Ω,Γ1)

+ h2‖u0‖2Hs
λ(Ω,Γ1) + h2

∫ T

0
‖∂tu(t)‖2Hs

λ(Ω,Γ1) dt

)
+ ∆t2

∫ T

0
‖∂2

t u(t)‖2L2
λ(Ω,Γ1) dt,

where uk = u(tk), k = 1, ...,K.

Proof. We first define the elliptic projection P : H2(Ω,Γ1)→ V p(Th) as

Ah(Pw − w, vh) = 0 ∀vh ∈ V p(Th), (27)
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where Ah(·, ·) is defined as in (6). We note (see Theorem 3.6) that P satisfies
the bound

‖Pw − w‖L2
λ(Ω,Γ1) + h|||Pw − w|||∗ . hmin(s,p+1)‖w‖Hs

λ(Ω,Γ1), (28)

for all w ∈ Hs(Ω,Γ1), s ≥ 2. We next write uk−ukh = (uk−Puk)+(Puk−ukh)
and start to focus on the second term. Considering problem (19) at time
tk+1, we easily get(

Puk+1 − Puk

∆t
, vh

)
L2(Ω)

+λ

(
Puk+1 − Puk

∆t
, vh

)
L2(Γ1)

+Ah(Puk+1, vh)

= (f(tk), vh)L2(Ω) +(g(tk), vh)L2(Γ1)− (Ek+1, vh)L2(Ω)−λ(Ek+1, vh)L2(Γ1),

(29)

for all vh ∈ V p(Th), where

Ek+1 = ∂tu(tk+1)− 1

∆t
(Puk+1 − Puk).

Subtracting (24) from (29), we get that ekh = Puk − ukh satisfies(
ek+1
h − ekh

∆t
, vh

)
L2(Ω)

+ λ

(
ek+1
h − ekh

∆t
, vh

)
L2(Γ1)

+Ah(ek+1
h , vh)

= −(Ek+1, vh)L2(Ω) − λ(Ek+1, vh)L2(Γ1),

for all vh ∈ V p(Th). Then, reasoning as in the proof of Lemma 5.1 , we
obtain

‖eKh ‖2L2
λ(Ω,Γ1) + ∆t

K∑
k=1

|||ekh|||
2

∗ . ‖e
0
h‖2L2

λ(Ω,Γ1) + ∆t
K∑
k=1

‖Ek‖2L2
λ(Ω,Γ1). (30)

We bound the first term on the right-hand side of (30) using (26) and (28):

‖e0
h‖L2

λ(Ω,Γ1) = ‖Pu0 − uh0‖L2
λ(Ω,Γ1)

≤ ‖Pu0 − u0‖L2
λ(Ω,Γ1) + ‖u0 − uh0‖L2

λ(Ω,Γ1)

. hmin(s,p+1)‖u0‖Hs(Th). (31)
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In order to bound the second term on the right-hand side of (30) we observe
that it holds:

Ek+1 =

(
∂tu(tk+1)− uk+1 − uk

∆t

)
+

(uk+1 − Puk+1)− (uk − Puk)
∆t

= − 1

∆t

∫ tk+1

tk

(
t− tk

)
∂2
t u(t) dt+

1

∆t

∫ tk+1

tk

∂t
(
u(t)− Pu(t)

)
dt

where we employed Taylor’s formula. Therefore, employing the commuta-
tion of the operators P and ∂t, we have

‖Ek+1‖2L2
λ(Ω,Γ1) .

1

∆t

∣∣∣∣∣∣∣∣∫ tk+1

tk

(
t− tk

)
∂2
t u(t) dt

∣∣∣∣∣∣∣∣2
L2
λ(Ω,Γ1)

+
1

∆t

∣∣∣∣∣∣∣∣∫ tk+1

tk

(
∂tu(t)− P∂tu(t)

)
dt

∣∣∣∣∣∣∣∣2
L2
λ(Ω,Γ1)

.

Using the Cauchy-Schwarz inequality we get∣∣∣∣∣∣∣∣∫ tk+1

tk

(
t− tk

)
∂2
t u(t) dt

∣∣∣∣∣∣∣∣
L2
λ(Ω,Γ1)

≤
(∫ tk+1

tk

(t− tk)2 dt

)1/2(∫ tk+1

tk

‖∂2
t u(t)‖2L2

λ(Ω,Γ1) dt

)1/2

. ∆t3/2
(∫ tk+1

tk

‖∂2
t u(t)‖2L2

λ(Ω,Γ1) dt

)1/2

.

Hence,

1

∆t

∣∣∣∣∣∣∣∣∫ tk+1

tk

(
t− tk

)
∂2
t u(t) dt

∣∣∣∣∣∣∣∣2
L2
λ(Ω,Γ1)

. ∆t2
∫ tk+1

tk

‖∂2
t u(t)‖2L2

λ(Ω,Γ1) dt.
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Employing ∂tu ∈ L2(0, T ;Hs(Th)), s ≥ 2, and (28), we obtain∣∣∣∣∣∣∣∣∫ tk+1

tk

(
∂tu(t)− P∂tu(t)

)
dt

∣∣∣∣∣∣∣∣
L2
λ(Ω,Γ1)

≤
(∫ tk+1

tk

(1)2 dt

)1/2(∫ tk+1

tk

‖∂tu(t)− P∂tu(t)‖2L2
λ(Ω,Γ1) dt

)1/2

. ∆t1/2
(∫ tk+1

tk

‖∂tu(t)− P∂tu(t)‖2L2
λ(Ω,Γ1) dt

)1/2

. ∆t1/2hmin(s,p+1)

(∫ tk+1

tk

‖∂tu(t)‖2Hs
λ(Ω,Γ1) dt

)1/2

.

Hence,

1

∆t

∣∣∣∣∣∣∣∣∫ tk+1

tk

(
∂tu(t)− P∂tu(t)

)
dt

∣∣∣∣∣∣∣∣2
L2
λ(Ω,Γ1)

. h2 min(s,p+1)

∫ tk+1

tk

‖∂tu(t)‖2Hs
λ(Ω,Γ1) dt. (32)

Finally, summing over k we get

∆t
K∑
k=1

‖Ek‖2L2
λ(Ω,Γ1) (33)

. ∆t2
∫ T

0
‖∂2

t u(t)‖2L2
λ(Ω,Γ1) dt+ h2 min(s,p+1)

∫ T

0
‖∂tu(t)‖2Hs

λ(Ω,Γ1) dt,

which concludes the bound for ekh. Finally, the thesis follow employing the
triangle inequality and the bounds (30)-(31) together with (28)-(33).

6 Numerical experiments

In this section we present some numerical results to validate our theoretical
estimates. In the first two examples (cf Sections 6.1 and 6.2) we consider
a test case with periodic boundary conditions and validate our theoretical
error estimates. In the last example (cf Section 6.3) we show that our theo-
retical results seem to hold in the case of more general boundary conditions,
provided the exact solution of problem (16) is smooth enough.
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6.1 Example 1

We consider problem (16) on Ω = (0, 1)2 and choose f and g such that
u = e−10t(1− cos(2πx)) cos(4πy) is the exact solution.
We have tested our scheme on a sequence of uniformly refined structured
triangular grids with meshsize h =

√
2/2`, ` = 2, ..., 7. In those sets of

numerical experiments we have measured the error e(T ) = u(T )− uh(T ) at
the final observation time T = 0.001 in the ‖·‖L2(Ω) and ‖·‖L2(Γ1) norms. We

have also measured the quantity (∆t
∑K

k=1 |||ek|||
2
∗)

1/2, being ek = uk − ukh .
In the first set of experiments we used piecewise linear elements (p = 1)
and the following parameters: σ = 10, ∆t = 10−5, λ = 10, β = 5 α = 2.
The computed errors and the corresponding computed convergence rates
are reported in Table 1. We have repeated the same set of experiments
employing piecewise quadratic elements (p = 2); the results are reported in
Table 2. From the results shown in Table 1 and Table 2, it is clear that the
expected convergence rates are obtained.

h ‖e(T )‖L2(Ω) rate ‖e(T )‖L2(Γ1) rate (∆t
∑K

k=1 |||ek|||
2
∗)

1/2 rate√
2/22 1.836048e-01 - 1.908256e-01 - 2.281359e-01√
2/23 5.455936e-02 1.75 5.035380e-02 1.92 1.186343e-01 0.94√
2/24 1.451833e-02 1.91 1.278655e-02 1.98 5.939199e-02 1.00√
2/25 3.688202e-03 1.98 3.208881e-03 1.99 2.962468e-02 1.00√
2/26 9.258142e-04 1.99 8.028862e-04 2.00 1.480150e-02 1.00√
2/27 2.316573e-04 2.00 2.006754e-04 2.00 7.399580e-03 1.00

Table 1: Example 1. Computed errors, p = 1, σ = 10, ∆t = 10−5, T = 0.001,
λ = 10, β = 5, α = 2.

6.2 Example 2

In the second example, we explore the dependencies of the error on the time-
step ∆t. To this aim, we set f and g as in Section 6.1. In Table 3 we report
the computed errors and convergence rates obtained with piecewise linear
elements (p = 1) and the following parameters: k = 7, σ = 10, T = 0.1,
λ = 10, β = 5, α = 2, h =

√
2/27 and vary the time integration step ∆t.

The numerical results are in agreement with the theoretical estimate.
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h ‖e(T )‖L2(Ω) rate ‖e(T )‖L2(Γ1) rate (∆t
∑K

k=1 |||ek|||
2
∗)

1/2 rate√
2/22 2.470397e-02 - 1.751588e-02 - 5.281897e-02 -√
2/23 3.027272e-03 3.03 2.232268e-03 2.97 1.405198e-02 1.91√
2/24 3.827204e-04 2.98 2.822643e-04 2.98 3.602372e-03 1.96√
2/25 4.797615e-05 3.00 3.539247e-05 3.00 9.081101e-04 1.99√
2/26 5.992844e-06 3.00 4.421683e-06 3.00 2.276766e-04 2.00√
2/27 7.507474e-07 3.00 5.632338e-07 2.97 5.593742e-05 2.02

Table 2: Example 1. Computed errors, p = 2, σ = 10, ∆t = 10−5, T = 0.001,
λ = 10, β = 5 α = 2.

∆t ‖e(T )‖L2(Ω) rate ‖e(T )‖L2(Γ1) rate

0.1× 20 2.682138e-02 - 8.678953e-02 -
0.1× 2−1 1.487984e-02 0.85 4.905898e-02 0.82
0.1× 2−2 7.889826e-03 0.92 2.630006e-02 0.90
0.1× 2−3 4.050365e-03 0.96 1.360794e-02 0.95
0.1× 2−4 2.028095e-03 1.00 6.881036e-03 0.98
0.1× 2−5 9.897726e-04 1.03 3.415646e-03 1.01
0.1× 2−6 4.664660e-04 1.08 1.656678e-03 1.04

Table 3: Example 2. Computed errors, k = 7, p = 1, σ = 10, T = 0.1,
λ = 10, β = 5 α = 2.

6.3 Example 3

Finally, we consider problem (16) on Ω = (0, 1)2 with homogeneous Dirichlet
boundary conditions applied Γ2 and on Γ1. In this case we choose f and
g such that u = t(1 − cos(2πx)) cos(πy) is the exact solution. In Table
4 we report the computed errors and computed convergence rates at the
final time T = 0.1. Those results have been obtained with piecewise linear
elements (p = 1) and with the following choice of parameters: σ = 10,
∆t = 0.001, λ = 10, β = 5 α = 2. We have ran the same set of experiments
employing piecewise quadratic elements (p = 2); the computed results are
shown in Table 5. The results reported in Table 4 and Table 5 clearly confirm
the theoretical rates of convergence even in the cases of Dirichlet boundary
conditions instead of periodic ones, at least whenever the exact solution is
sufficiently smooth (see Remark 3.2).

20



h ‖e(T )‖L2(Ω) rate ‖e(T )‖L2(Γ1) rate (∆t
∑K

k=1 |||ek|||
2
∗)

1/2 rate√
2/22 9.185918e-03 - 1.111234e-02 - 1.347859e-01 -√
2/23 2.704819e-03 1.76 2.849404e-03 1.96 6.413467e-02 1.07√
2/24 7.279868e-04 1.89 7.169369e-04 1.99 3.155837e-02 1.02√
2/25 1.875124e-04 1.96 1.797070e-04 2.00 1.571196e-02 1.01√
2/26 4.745622e-05 1.98 4.501545e-05 2.00 7.847606e-03 1.00√
2/27 1.192746e-05 1.99 1.127502e-05 2.00 3.922783e-03 1.00

Table 4: Example 3. Computed errors, p = 1, σ = 10, ∆t = 0.001, T = 0.1,
λ = 10, β = 5 α = 2.

h ‖e(T )‖L2(Ω) rate ‖e(T )‖L2(Γ1) rate (∆t
∑K

k=1 |||ek|||
2
∗)

1/2 rate√
2/22 1.239177e-03 - 1.607590e-03 - 2.589798e-02 -√
2/23 1.543449e-04 3.01 2.189412e-04 2.88 6.771702e-03 1.93√
2/24 1.911957e-05 3.01 2.788057e-05 2.97 1.715537e-03 1.98√
2/25 2.386211e-06 3.00 3.496808e-06 3.00 4.307186e-04 1.99√
2/26 2.990873e-07 3.00 4.364171e-07 3.00 1.079691e-04 2.00√
2/27 3.777961e-08 2.98 5.420558e-08 3.01 2.621607e-05 2.04

Table 5: Example 3. Computed errors, p = 2, σ = 10, ∆t = 0.001, T = 0.1,
λ = 10, β = 5 α = 2.

A Proof of Theorem 4.1

Proof of Theorem 4.1. As the proof follows is based on standard arguments
(see, e.g., [10, Chapter 7.1]), we only sketch the main steps.

1. Construction of the discrete space. Let {ei}i≥1 be an orthonormal basis
of L2(Ω) such that∫

Ω
∇ei · ∇z = λi

∫
Ω
eiz ∀z ∈ H1(Ω), i ≥ 1,

i.e., λi and ei are respectively the eigenvalues and eigenfunctions of the
weak form of eigenvalue problem −∆e = λe with homogeneous Neumann
and periodic boundary conditions on Γ1 and Γ2, respectively. Reordering
{ei}i≥1 such that λ1 = 0, it is easy to see that there holds∫

Ω
∇ei · ∇ej = 0, for i 6= j and

∫
Ω
|∇ei|2 = λi > 0, for i > 1.
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Let V n = span{ei : i = 1, ..., n}, n ≥ 1, and let un0 be the L2(Ω)- projection
of u0 on V n. Since the domain is regular, the eigenfunctions ei belong to
H2(Ω).

2. Finite-dimensional approximation of (17). We introduce the following
finite dimensional problem: find un ∈ H1(0, T ;V n) such that, for t ∈ (0, T ),{

(∂tu
n, z)L2(Ω) + λ(∂tu

n, z)L2(Γ1) + a(un, z) = (f, z)L2(Ω) + (g, z)L2(Γ1),

un|t=0 = un0 ,

(34)
for all z ∈ V n, In the sequel we prove that problem (34) admits a unique
solution in H1(0, T ;V n). We write

un(t) =
n∑
j=1

uj(t)ej .

The problem (34) is equivalent to find u(t) = (u1(t), ..., un(t))T ∈ H1(0, T ;Rn)
such that, for each t ∈ (0, T ),{

M u̇(t) +Au(t) = F(t),

u(0) = (u0,1, ..., u0,n)T ,

where, for i, j = 1, .., n,

Mij = MΩ + λMΓ1 := δij + λ(ei, ej)L2(Γ1),

Aij = a(ei, ej), Fi = (f, ei)L2(Ω) + (g, ei)L2(Γ1), u0,i = (u0, ei)L2(Ω).

Since the matrix MΓ1 is semi-positive definite, we see that M is positive
definite. In addition, F(t) ∈ L2(0, T ;Rn) and A : Rn → Rn is Lipschitz
continuous. Therefore, by standard existence theory of ordinary differential
equations, there exists a unique solution u(t) for a.e. 0 ≤ t ≤ T .

3. Energy estimates. Taking z = un in (34) and using the Cauchy-Schwarz
inequality, we obtain

d

dt

(
‖un‖2L2

λ(Ω,Γ1)

)
+ ‖∇un‖2L2(Ω) + α‖un‖2L2(Γ1) + β‖∇Γu

n‖2L2(Γ1)

. ‖un‖2L2
λ(Ω,Γ1) + ‖f‖2L2(Ω) + ‖g‖2L2(Γ1) (35)
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for a.e. t ∈ [0, T ]. Using the differential form of the Gronwall’s inequality,
data regularity and Lemma A.1 we obtain

max
0≤t≤T

‖un(t)‖L2
λ(Ω,Γ1) . ‖u0‖2L2

λ(Ω,Γ1)+‖f‖
2
L2(0,T ;L2(Ω))+‖g‖

2
L2(0,T ;L2(Γ1)) ≤ C.

Integrating (35) in [0, T ] and employing the above inequality together with
data regularity and Lemma A.1 we get

‖un‖L2(0,T ;H1
λ(Ω,Γ1)) . ‖u0‖2L2

λ(Ω,Γ1) +‖f‖2L2(0,T ;L2(Ω)) +‖g‖2L2(0,T ;L2(Γ1)) ≤ C.

On the other hand, taking z = ∂tu
n in (34), integrating in t and using the

Cauchy-Schwarz inequality, we obtain, for every τ ∈ (0, T ],

1

2

∫ τ

0
‖∂tun‖2L2

λ(Ω,Γ1) +
1

2
‖∇un(τ)‖2L2(Ω) +

α

2
‖un(τ)‖2L2(Γ1) +

β

2
‖∇Γu

n(τ)‖2L2(Γ1)

≤ 1

2
‖∇un0‖2L2(Ω) +

α

2
‖un0‖2L2(Γ1) +

β

2
‖∇Γu

n
0‖2L2(Ω)

+
1

2

∫ τ

0
‖f‖2L2(Ω) +

1

2λ

∫ τ

0
‖g‖2L2(Γ1),

where the right-hand side of the above inequality can be bounded using
Lemma A.1 and data regularity.

Moreover, differentiating (34) with respect to t and setting ũn := ∂tu
n

we get for any t ∈ [0, T ]

(∂tũ
n, z)L2(Ω) + λ(∂tũ

n, z)L2(Γ1) + a(ũn, z) = (∂tf, z)L2(Ω) + (∂tg, z)L2(Γ1),
(36)

for all z ∈ V n. Testing (36) with z = ũn, it is easy to show that it holds

‖∂tun‖2L2
λ(Ω,Γ1) +

∫ t

0
‖∂tun(s)‖2H1

λ(Ω,Γ1) ds .
∫ t

0
‖∂tf(s)‖2L2(Ω) ds

+

∫ t

0
‖∂tg(s)‖2L2(Γ1) ds+ ‖∂tun(0)‖2L2

λ(Ω,Γ1). (37)

Taking t = 0 in (34), testing with z = ∂tu
n(0), integrating by parts and

employing the Cauchy-Schwarz inequality once more, we obtain

‖∂tun(0)‖2L2
λ(Ω,Γ1) . ‖u

n(0)‖2H2
λ(Ω,Γ1) + ‖f(0, ·)‖2L2(Ω) + ‖g(0, ·)‖2L2(Γ1),

whose right-hand side can be bounded by resorting to compatibility condi-
tions, Lemma A.1 and data regularity assumptions.
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Hence, collecting all the above results, we get

un ∈ C([0, T ];H1
λ(Ω,Γ1)) ∩ C1(0, T ;L2

λ(Ω,Γ1)) ∩H1(0, T ;H1
λ(Ω,Γ1)).

4. Existence of the solution u. Resorting to subsequences {uml}∞l=1 of
{um}∞m=1, passing to the limit for m→∞ and using standard arguments it
is possible to prove that there exists a solution u to problem (17) with

u ∈ C([0, T ];H1
λ(Ω,Γ1)) ∩ C1(0, T ;L2

λ(Ω,Γ1)) ∩H1(0, T ;H1
λ(Ω,Γ1)).

5. Uniqueness of the weak solution. Let u1 and u2 be two solutions of weak
problem (17) and set w = u1−u2. By definition, taking z = w, we get from
(17)

d

dt

(
‖w‖2L2

λ(Ω,Γ1)

)
+ ‖∇w‖2L2(Ω) + α‖w‖2L2(Γ1) + β‖∇Γw‖2L2(Γ1) = 0,

that implies w = 0, or u1 = u2 for a.e. 0 ≤ t ≤ T .
6. Improved regularity. Rewriting (17) as

a(u, v) = (f̃ , v)L2(Ω) + (g̃, v)L2(Γ1),

where f̃ = f − ∂tu ∈ L2(0, T, L2(Ω)) and g̃ = g − ∂tu ∈ L2(0, T, L2(Γ1)).
Employing Theorem 3.1 we get u(t) ∈ H2

λ(Ω,Γ1) for a.e. 0 ≤ t ≤ T .

6. Higher regularity. We prove (18) by induction. From the above discus-
sion the result holds true for m = 1. Assume now the validity of (18) for
some m > 1, together with the associated higher order compatibility and
regularity conditions. Differentiating (16) with respect to t, it is immediate
to verify that ũ = ∂tu verifies

∂tũ = ∆ũ+ f̃ , in Ω, 0 < t ≤ T,
∂nũ = −αũ+ β∆Γũ− λ∂tũ+ g̃, on Γ1, 0 < t ≤ T,
periodic boundary conditions, on Γ2, 0 < t ≤ T,
ũ|t=0 = ũ0, in Ω,

(38)

where f̃ = ∂tf , g̃ = ∂tg, ũ0 = f(0, ·) + ∆u0 in Ω and ũ0|Γ = β∆Γu0 −
∂nu0 − αu0 + g(0, ·) on Γ. Since the pair (f, g) satisfies the higher order
compatibility conditions for k = 1, . . . ,m then the pair (f̃ , g̃) satisfies the
same type of compatibility conditions for k = 1, . . . ,m−1. Hence, it follows
for k = 0, . . . ,m− 1

dkũ

dtk
∈ C([0, T ];H2m−2k(Ω,Γ1)) ∩ C1([0, T ];H2m−2k−2

λ (Ω,Γ1))

∩ H1(0, T ;H2m−2k−1
λ (Ω,Γ1)) (39)
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which immediately implies the validity of (18) for k = 0, . . . ,m.

The following result has been proof in [13, Lemmas 4.4 and 4.5].

Lemma A.1. Let z ∈ Z = {z ∈ H2(Ω) | ∂nz = 0 on Γ1}. If zn is the
L2(Ω)-projection of z on V n, then

‖zn − z‖H1
λ(Ω;Γ1) → 0 when n→∞. (40)

Let V∞ = ∪∞n=1Vn. Moreover, Z and V∞ are dense in H1
λ(Ω; Γ1).
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