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Abstract

In this paper we propose and analyze a novel stream formulation of the Virtual Element
Method (VEM) for the solution of the Stokes problem. The new formulation hinges
upon the introduction of a suitable stream function space (characterizing the divergence
free subspace of discrete velocities) and it is equivalent to the velocity-pressure (inf-sup
stable) mimetic scheme presented in [8] (up to a suitable reformulation into the VEM
framework). Both schemes are thus stable and linearly convergent but the new method
results to be more desirable as it employs much less degrees of freedom and it is based on a
positive definite algebraic problem. Several numerical experiments assess the convergence
properties of the new method and show its computational advantages with respect to the
mimetic one.

1 Introduction

Various approaches to extend finite element methods to non-traditional elements (general
polygons, pyramids, polyhedra, etc.) have been developed over the last period, see e.g.[24,
25, 26, 27]. The construction of basis functions for such elements is a challenging task and
may require extensive geometrical analysis. The mimetic finite difference (MFD) method
[16, 17, 14, 5] works on general polygonal meshes and preserve the fundamental properties
of the underlying physical and mathematical models. Thanks to its great flexibility, the
MFD method has been applied successfully to a wide range of problems, see for instance also
[2, 1, 3, 8, 12] and the review paper [23] for a much longer list. Very recently, a new evolution of

1



MFD was proposed in [7], taking the name of Virtual Element Method (VEM). The VEM takes
the steps from the main ideas of modern mimetic schemes but follows a Galerkin discretization
of the problem, and therefore can be fully interpreted as a generalization of the finite element
(FE) method. Thus, the VEM couples the flexilibity of mimetic methods with the theoretical
and applicative background of FE methods. Since the VEM are very recent, the present
published literature is limited to [7, 18, 6, 11].

A fundamental role in applied problems is represented by the study of reliable and effective
numerical methods for fluids. In particular, the simulation of Stokes flows (characterized by
very small Reynolds number) represents a standalone important problem (e.g. in the context
of the numerical simulation of the blood flow) and a crucial step towards the simulation of
more complex fluids, such as sedimentation processes. FE methods constitute a classical
choice to accomplish this goal, see e.g. [19, 21]. Traditionally, FE methods rely on triangular
(simplicial) and quadrilateral meshes. However, in complex simulations one often encounters
general polygonal and polyhedral meshes (see e.g. [24]). In [8, 9, 10] new MFD methods for
the Stokes problem on polygonal meshes have been introduced and analyzed.

In this paper we propose and analyze a novel stream formulation of the Virtual Element
Method for the solution of the Stokes problem. The new formulation hinges upon the intro-
duction of a suitable stream function space (characterizing the divergence free subspace of
discrete velocities). we show that the VEM velocity-pressure scheme of the Stokes problem
(which is a reformulation of the MFD method introduced in [8]) is equivalent to our VEM
stream formulation. Using general assumptions on the computational domain, we establish
that both schemes are well posed and we prove linear convergence for the methods.

The outline of this article is as follows: In Section 2, we discuss the variational formulation
of the Stokes problem. In Section 3 we recast into the VEM framework the velocity-pressure
(inf-sup stable) mimetic scheme presented in [8]. In Section 4 we introduce our novel stream
formulation and we prove its equivalence with the velocity-pressure virtual element formu-
lation: both schemes are proved to be stable and linearly convergent. Finally, in Section 5
we assess the convergence properties of the new stream method and show its computational
advantages with respect to the original one based on the velocity pressure formulation.

Throughout the paper, we will follow the usual notation for Sobolev spaces and norms
(see e.g. [20]). In particular, for an open bounded domain D, we will use | · |s,D and ‖ · ‖s,D to
denote seminorm and norm, respectively, in the Sobolev space Hs(D), while (·, ·)D will denote
the L2(D) inner product. Often the subscript will be omitted when D is the computational
domain Ω. Moreover, for any subset D ⊆ R

2 and non-negative integer k, we indicate by
Pk(D) the space of polynomials of degree up to k defined on D. Finally, C will be a generic
constant independent of the decomposition that could change from an occurrence to the other.

2 The Stokes Problem

Let Ω ⊂ R
2 be a polygonal domain. We consider the two dimensional Stokes problem





− div(ν∇Su)−∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω,

(1)
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where the symbols div, div ,∇,∇S represent the vector divergence, the divergence, the gradi-
ent and the symmetric gradient operator, respectively. The given external force f is assumed
in [L2(Ω)]2, while the scalar field ν is uniformly bounded and strictly positive on the domain
Ω. As usual, the vector field u represents the velocities and the scalar field p the pressures.

Let L2
0(Ω) denote the space of L2 functions with zero average. Introducing the bilinear

form a(u,v) := (ν∇Su,∇Sv) the variational formulation of the Stokes problem reads





Find u ∈ V := [H1
0 (Ω)]

2, p ∈ Q := L2
0(Ω) such that

a(u,v) + (div v, p) = (f ,v) ∀v ∈ V

(div u, q) = 0 ∀q ∈ Q

(2)

It is well known that problem (2) has a unique solution, see for instance [21].

Let us introduce the space of divergence-free functions

Z = {v ∈ V : div v = 0}

and notice that the solution u ∈ V to problem (2) is determined by solving the following
problem {

Find u ∈ Z such that

a(u,v) = (f ,v) ∀v ∈ Z.
(3)

Under the assumption that Ω is a two-dimensional simply connected domain, it is well known
that for every v ∈ Z there exists a uniquely defined scalar potential function w ∈ H2(Ω)/R
(see for instance [21]) such that:

v = curl w

where curl = ( ∂
∂y ,−

∂
∂x). Setting

Φ = {ϕ ∈ H2(Ω)/R such that curl ϕ = 0}

we can write the solution u of (3) as u = curl ψ where ψ ∈ Φ is solution of the following
problem {

Find ψ ∈ Φ such that

a(curl ψ, curl ϕ) = (f , curl ϕ) ∀ϕ ∈ Φ.
(4)

We will refer to (4) as to the stream function formulation of the Stokes problem (2).

3 VEM for Stokes (I): velocity-pressure formulation

In this section we recast the Mimetic Finite Difference (MFD) method analyzed in [8, 10] for
the numerical approximation of the Stokes problem into the framework of the Virtual Element
Method (VEM) recently introduced in [7].

Let {Th}h be a sequence of decompositions of Ω into elements K, let Vh be the set of
mesh vertexes, Vb

h the set of boundary vertexes and let Eh be the set of edges e of Th. We
assume that for every h, the decomposition Th is made of a finite number of simple polygons (
i.e. open simply connected sets with non-self intersecting boundaries made of a finite number
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of straight line segments). For all e ∈ Eh we associate once and for all a normal unit vector
ne and a tangent unit vector te obtained by an anti-clockwise rotation of ne. Moreover, we
denote by EK the set of edges of K.

The bilinear form a(·, ·) can obviously be split as

a(u,v) =
∑

K∈Th

aK(u,v) ∀u, v ∈ V, aK(u,v) := (ν∇Su,∇Sv)K , (5)

with (·, ·)K representing the L2 scalar product on K.
In the following sections, we will show that for each h > 0 it is possible to build:

1. a couple of spaces (Vh, Qh) with Vh ⊂ V and Qh ⊂ Q;

2. a symmetric bilinear form ah from Vh × Vh to R which can be split as

ah(uh,vh) =
∑

K∈Th

aKh (uh,vh) ∀uh, vh ∈ Vh, (6)

where aKh (·, ·) is a bilinear form on Vh|K × Vh|K ;

3. an element fh ∈ V ′
h and a discrete duality pair 〈·, ·〉h;

in such a way that the resulting discrete problem





Find uh ∈ Vh, ph ∈ Qh such that

ah(uh,vh) + (div vh, ph) = 〈fh,vh〉h ∀vh ∈ Vh

(div uh, qh) = 0 ∀qh ∈ Qh,

has a unique solution uh, ph and exhibits optimal approximation properties.

3.1 Discrete spaces for velocities and pressures

We first construct the local discrete velocity space Vh|K , K ∈ Th. To this aim, we preliminary
introduce the local spaceH(K) ⊂ [H1(K)]2 made of vector functions with constant divergence

H(K) =
{
v ∈ [H1(K)]2 : |K|div v = (

∫

∂K
v · nK

e ds) in K
}
,

being nK
e the outward unit normal to K. Then, we define the finite dimensional space Vh|K

as
Vh|K =

{
v ∈ H(K) : v minimizes ||∇v||2L2(K),v ∈ B(∂K)

}
, (7)

where

B(∂K) =
{
v ∈ [C0(∂K)]2 : v|e · t

K
e ∈ P1(e), v|e · n

K
e ∈ P2(e) ∀e ∈ EK

}
,

where tKe is the tangent vector defined as the counterclockwise rotation of nK
e by 90◦. Note

that the space Vh|K is well defined. Indeed, given a (piecewise polynomial) boundary value

v|∂K ∈ [H1/2(∂K)]2, the associated function v inside the element K is obtained by solving
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Figure 1: Local degrees of freedom for velocities (blue) and pressures (red). The blue dots
represent (vector) point values at vertexes, while the arrows represent the point value of the
normal component at the midpoint of the edge. The square represents the average.

the following well posed Stokes-type problem





Find v ∈ [H1(K)]2, r ∈ L2
0(K) such that

−∆v −∇r = 0 in K

div v = c in K

v assigned on ∂K,

(8)

where the equations are to be intended in the weak sense and the constant c := (
∫
∂Kv ·

nK ds)/|K| is compatible with the boundary conditions.
We remark that the space Vh|K contains H1 vector fields characterized by: (a) linear

tangent component and quadratic normal component on each edge e; (b) constant divergence
value on K; (c) minimum energy. Moreover, we note that, by standard regularity results for
the Stokes problem, the functions in Vh|K turn out to be continuous in K̄.

It is important to observe that, since the functions of Vh|K are uniquely identified by their
boundary values, the dimensions of Vh|K and (Vh|K)

|∂K
are equal, i.e. dim(Vh|K) = 3n, being

n the number of edges of K. This leads to introduce the following 3n degrees of freedom for
the space Vh|K (cfr. the blue symbols in Figure 1):

• the (vector) values of v at the vertexes of K;

• the values of the normal components v · nK
e at the midpoint of each edge of K.

Finally, it is immediate to verify that these degrees of freedom uniquely identify the restriction
to ∂K of the functions belonging to Vh|K .

The global velocity space Vh is obtained by combining the local spaces Vh|K accordingly
to the local degrees of freedom, as is standard in finite elements [20, 15, 13], and considering
the homogeneous boundary conditions. We obtain the space

Vh = {vh ∈ C0(Ω) : vh|K ∈ Vh|K ∀K ∈ Th, vh = 0 on ∂Ω}

with the degrees of freedom given by the (vector) values at all the internal vertexes of Th and
the normal components v · ne at the midpoints of all internal edges e of the mesh.
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The pressure space is simply given by the piecewise constant functions

Qh = {qh ∈ L2
0(Ω) : qh|K ∈ P0(K) ∀K ∈ Th}

and the degrees of freedom are one per element, given by the value of the function on the
element (cfr. the red square in Figure 1).

3.2 Bilinear form and loading term

In this section we will discuss the construction of the local bilinear form appearing in (6). For
simplicity, we assume that the scalar field ν is piecewise constant with respect to the mesh Th
and we denote by νK the restriction of ν to the element K. The more general situation can
be handled by introducing the piecewise approximation νK = (

∫
K ν dx)/|K| of ν.

The local bilinear forms aKh (·, ·) : Vh|K ×Vh|K → R, K ∈ Th, are assumed to be symmetric
and to satisfy the following consistency and stability assumptions.

(A1) Consistency: for all h > 0 and for all K ∈ Th it holds

aKh (p,vh) = aK(p,vh) ∀p ∈ [P1(K)]2,vh ∈ Vh|K . (9)

(A2) Stability: there exist two positive constants α∗ and α∗, independent of h and of K,
such that

α∗ a
K(vh,vh) ≤ aKh (vh,vh) ≤ α∗ aK(vh,vh) ∀vh ∈ Vh|K . (10)

First of all, we observe that the local degrees of freedom allow us to compute exactly
aK(p,vh) for any p ∈ [P1(K)]2 and for any vh ∈ Vh|K . Indeed,

aK(p,vh) = νK

∫

K
∇

Sp : ∇Svh dx

= −νK

∫

K
div(∇Sp) · vh dx+ νK

∫

∂K
((∇Sp)nK

e ) · vh ds,

(11)

with nK
e the outward unit normal to K. Therefore, since div(∇Sp) = 0 and the functions

vh ∈ Vh|K are known explicitly on the boundary, the right hand side of (9) can be computed
exactly without knowing vh in the interior of K.

We note that the practical implementation of the local stiffness matrices associated to
the local bilinear forms ah(·, ·) can be found, for the mimetic framework, in [8] or can be
easily adapted by extending the VE construction of [7] to the present case. Detailing such
a construction is beyond the scope of the present paper. However, we remark that, in order
for condition (10) to hold (h−uniformly), some mesh regularity assumptions are needed. A
possible choice, although not the more general one, is the following [7].

(A3) Mesh regularity: there exists a constant γ > 0 such that for any h > 0 every element
K ∈ Th is star-shaped with respect to a ball of radius ≥ γhK , being hK the diameter
of K. Moreover, we assume that there exists a constant γ′ > 0 such that for any h > 0
and for every K ∈ Th, the distance between any two vertexes of K is ≥ γ′hK .
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We now discuss the construction of the loading term. For every K ∈ Th and vh ∈ Vh|K we set

vK :=
1

n

n∑

i=1

vh(vi), vi = vertexes of K. (12)

We approximate f by a piecewise constant fh and we denote by fK the restriction of fh to K.
For instance, the value fK can be chosen as the average of f on K. This naturally leads to
identify fh with an element of the dual space V ′

h and to introduce the following duality pair

〈fh,vh〉h :=
∑

K∈Th

∫

K
fK · vK dx =

∑

K∈Th

|K|fK · vK . (13)

3.3 Discrete problem

The results of the previous sections allow to introduce the following virtual element method
in velocity-pressure formulation for the approximation of the Stokes problem (1):





Find uh ∈ Vh, ph ∈ Qh such that

ah(uh,vh) + (div vh, ph) =< fh,vh >h ∀vh ∈ Vh

(div uh, qh) = 0 ∀qh ∈ Qh.

(14)

We preliminary remark that the divergence of any function vh in Vh|K is explicitly computable.
Indeed, since div vh|K is constant, we have

div vh|K =
1

|K|

∫

K
div vh dx =

1

|K|

∫

∂K
vh · n

K
e ds, (15)

where the right hand side is computable as the functions in Vh|K are explicitly known on
the boundary. Hence, recalling that the functions in Qh are constant on each element, the
divergence terms appearing in (14) are explicitly computable as there holds

(div vh, qh) =
∑

K∈Th

∫

K
div vh qh dx =

∑

K∈Th

qh|K

∫

K
div vh dx

for all vh ∈ Vh and qh ∈ Qh.
We remark that the VE method (14) is equivalent to the mimetic method for the Stokes

problem introduced in [8, 10]. Therefore, stability and convergence results are easily derived
from the results in [10] combined with the techniques of [7].

Theorem 3.1 Let the assumptions (A1)-(A3) hold for the family of meshes {Th}h>0. Then,
the problems (14) are (uniformly) well posed for all h > 0. Moreover, let (u, p) be the solution
of (2) and (uh, ph) the solution of (14) than it holds

||u− uh||1 + ||p− ph||0 ≤ C h
( ∑

K∈Th

(|u|22,K + |f |21,K)
)1/2

,

where the constant C is independent of h.
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4 VEM for Stokes (II): stream formulation

In this section we present our novel virtual element method in stream formulation for the ap-
proximation of the Stokes problem (1). The stream formulation hinges upon the introduction
of a suitable stream function space (characterizing the divergence free subspace of discrete
velocities) and it is equivalent to the velocity-pressure virtual element scheme (14).

Let us first introduce the following space of discrete divergence-free functions

Zh =
{
vh ∈ Vh :

∫

Ω
div vh qh dx = 0 ∀qh ∈ Qh

}

=
{
vh ∈ Vh : div vh = 0

}
,

where the equality above follows from the fact that Vh has piecewise constant divergence.
Moreover, we define the following (local) space of discrete stream functions

Φh|K :=
{
φ ∈ H2(K) : φ minimizes ‖∇(curl φ)‖2L2(K), φ ∈ B

′(∂K), ∇φ ∈ B
′′(∂K)

}

where
B
′(∂K) =

{
v ∈ C0(∂K) : v|e ∈ P3(e) ∀e ∈ EK

}
,

B
′′(∂K) =

{
v ∈ [C0(∂K)]2 : v|e · n

K
e ∈ P1(e) ∀e ∈ EK

}
.

Note that the space Φh|K is well defined. Indeed, given the values on the boundary ∂K, the
function φ inside the element K is found by solving a fourth order elliptic problem





−∆2φ = 0 in K

φ assigned on ∂K

∇φ · nK
e assigned on ∂K,

and standard regularity results for fourth order elliptic problems yields that the functions of
Φh|K are in C1(K).

It is easy to check that the following constitute a set of degrees of freedom for the space
Φh|K (see Figure 2):

• the point values of φ at the vertexes of K;

• the (vector) values of ∇φ at the vertexes of K.

The global stream function space Φh is obtained by combining the local spaces Φh|K

accordingly to the local degrees of freedom, taking into account the boundary conditions and
enforcing an additional constraint in order to neglect the global constant functions. We obtain
the space

Φh = {φh ∈ C1(Ω) : φh|K ∈ Φh|K ∀K ∈ Th, curl φh = 0 on ∂Ω,

∫

Ω
φh dx = 0}. (16)

We preliminary collect the following result:

Lemma 4.1 For every vh ∈ Zh there exists a unique φh ∈ Φh such that

(curl φh)|∂K = vh|∂K ∀K ∈ Th. (17)
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Figure 2: Local degrees of freedom for the stream space Φh. Green dots represent point values
and red circles denote point values of the gradient.

Proof. Given vh ∈ Zh, we will explicitly build φh ∈ Φh such that (17) holds. Recalling the
degrees of freedom of Φh (see Figure 2), we need to determine the values of φh and ∇φh
at all the mesh vertexes. We preliminary choose an arbitrary vertex ṽ of the mesh and set
φh(ṽ) = C, for some constant C to be chosen later. Then, for any other vertex v̂ in the mesh,
we build an oriented path γh from ṽ to v̂ made of mesh edges and determine the value of φh
at v̂ as follows:

φh(v̂) := φh(ṽ) +
∑

e∈γh

∫

e
vh · n

γh
e ds, (18)

where n
γh
e is the unit normal to edge e that is obtained by a clockwise rotation of the unit

tangent pointing in the direction of the oriented path. We note that the definition (18) is well
posed since φh(v̂) in (18) does not depend on the chosen path. Indeed, div vh = 0 and the
fact that the domain is simply connected imply that the sum in the right hand side of (18) is
zero on any closed path.

As a second step, using the definition of the operator curl , we define the value of ∇φh at
each vertex v̂ by setting:

(curl φh)(v̂) := vh(v̂) ∀v̂ ∈ Vh \ V
b
h

(curl φh)(v̂) := 0 ∀v̂ ∈ Vb
h .

(19)

Finally, the initial constant C is chosen in order to satisfy the zero integral condition in (16).
It is now easy to check that φh satisfies (curl φh)|e = vh|e for all edges e ∈ Eh. Indeed,

let e be an edge with extrema v1 and v2 (ordered in such a way that te points from v1 to v2),
then (18) yields

∫

e
(curl φh) · ne ds =

∫

e
(∇φh) · te ds = φh(v2)− φh(v1) =

∫

e
vh · ne ds. (20)
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To conclude we first observe that vh · ne and curl φh · ne are polynomials of degree 2 on e
and they assume the same values at the two extrema v1, v2 (see (19)) and the same integral
(see (20)); thus they coincide. Finally, vh · te and curl φh · te are equal on e because they are
linear functions taking the same values at the extrema (see (19)). This concludes the main
assertion of the lemma.

The uniqueness follows easily by the same lines and is thus shown briefly. Let curlwh = 0
for some wh ∈ Φh, then the gradient values must vanish at all vertexes in Vh and the same
holds for all differences wh(v1) − wh(v2) evaluated at the extrema v1, v2 of any edge e ∈ Eh.
The latter yields that wh assumes the same constant value; i.e., wh must be constant on Ω.
Finally, this implies that the function wh vanishes due to the zero average condition in the
definition of Φh.

Now, we are ready to prove the following characterization of the space Zh.

Proposition 4.1 It holds

Zh = curl Φh := {curl φh : φh ∈ Φh} .

Proof. For every v̄ ∈ [H1/2(∂K)]2 let us introduce the spaces XK
1 (v̄) and XK

2 (v̄) defined as
follows

XK
1 (v̄) := {v ∈ [H1(K)]2 : div v = 0 and v|∂K = v̄}

XK
2 (v̄) := {curl w : w ∈ H2(K) and (curl w)∂K = v̄} .

Using well known results on the decomposition of two-dimensional vector fields [21, Theorem
3.1] we deduce

XK
1 (v̄) = XK

2 (v̄) ∀v̄ ∈ [H1/2(∂K)]2. (21)

Setting
JK(w) := ‖∇w‖2L2(K) ∀w ∈ [H1(K)]2

and using (21) it is immediate to verify that for every K ∈ Th and for every v̄ ∈ [H1/2(∂K)]2

the following minimization problems admit unique solutions and there holds

min
v∈XK

1
(v̄)
JK(v) = min

curl w∈XK
2
(v̄)
JK(curl w) . (22)

Using the definitions of the spaces Φh and Zh together with equality (22) we can first observe
that given

vh ∈ Vh|K with div vh = 0 and wh ∈ Φh|K

such that (curl wh)|∂K = vh|∂K we have

curl wh = vh in K. (23)

From the definition of the spaces it easily follows that for each wh ∈ Φh it exists a unique
vh ∈ Vh such that (curlwh)|∂K = vh|∂K for all K ∈ Th, and such vh must satisfy div vh = 0.
Therefore, due to (23), we immediately have that curlΦh ⊆ Zh. On the other hand, Lemma
4.1 guarantees that for every vh with div vh = 0 there exists a unique wh ∈ Φh such that
(curl wh)|∂K = vh|∂K for all K ∈ Th. Hence, from (23) there follows curl wh = vh in Ω, i.e.,
curl Φh = Zh.
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In view of Proposition 4.1, the solution uh ∈ Vh of (14) can be written as uh = curlψh where
ψh ∈ Φh solves

{
Find ψh ∈ Φh such that

ah(curl ψh, curl ϕh) =< f , curl ϕh >h ∀ϕh ∈ Φh.
(24)

We will refer to (24) as to the virtual stream-formulation of problem (2).
Note that, as an immediate consequence of Lemma 4.1, the kernel of the curl operator

on the space Φh is given by the trivial space {0}. Therefore the strict positivity of ah(·, ·) on
Vh immediately reflects on the strict positivity of ah(curl ·, curl ·) on Φh. This implies the
invertibility of the discrete linear system in (24). The convergence of the solution uh = curlψh

to u follows immediately from Theorem 3.1 and the equivalence between the two formulations.
Implementation issues. The implementation of the method (24) does not hide any partic-
ular difficulty. One first needs to build the local (element-wise) stiffness matrixes associated
to the bilinear form aKh (·, ·), K ∈ Th, and the local vectors representing the loading term
< fh, · >h on K. This can be done identically to the mimetic method of [8, 10], or follow-
ing the alternative way shown for the Laplace problem in [7]. The local stiffness matrixes
associated to the bilinear form aKh (curl ·, curl ·) are then built by introducing local matrixes
CURLh that represent the curl operator in terms of the degrees of freedom of Vh|K and Φh|K .
For instance, given any ϕh ∈ Φh, the vertex values of vh = curl ϕh ∈ Vh can be immediately
computed using the values of ∇ϕh at the same vertexes (which are, by definition, degrees of
freedom of the space Φh). In a similar way, we observe that the value of vh · ne at the edge
midpoint me of e can be computed as ∂ϕh/∂te(me); recalling that ϕh is a cubic function and
using the Cavalieri-Simpson integration rule yield

∂ϕh

∂te
(me) =

3

2|e|

(
ϕh(v

′)− ϕh(v)
)
−

1

4

(∂ϕh

∂te
(v′) +

∂ϕh

∂te
(v)

)
,

being v, v′ the two (ordered) vertexes that are extrema for edge e. Note that the right-hand
side of the above relation is expressed in terms of the degrees of freedom of Φh; i.e. of the
vertex values of ϕh and ∇ϕh.

Similar arguments apply to the construction of the loading vector.

5 Numerical tests

In this section we test our virtual stream method (24) and compare its numerical perfor-
mance with the one of the classical scheme (14). Both scheme have been implemented using
MATLAB. In the sequel, we consider two different benchmark problems defined on the compu-
tational domain Ω := (0, 1)2 and we employ the following types of mesh (se also Figures 3-4):

• T 1
h : Triangular mesh.

• T 2
h : Structured hexagonal meshes.

• T 3
h : Non-structured hexagonal meshes made of convex hexagons.

• T 4
h : Regular subdivisions of the domain in N ×N subsquares.

11



Figure 3: Sample meshes: T 1
h (left), T 2

h (middle) and T 3
h (right) for h = 1/8.

Figure 4: Sample meshes: T 4
h (left), T 5

h (middle) and T 6
h (right) for h = 1/8.

• T 5
h : Trapezoidal meshes which consist of partitions of the domain into N×N congruent

trapezoids, all similar to the trapezoid with vertexes (0, 0), (12 , 0), (
1
2 ,

2
3), and (0, 13).

• T 6
h : Meshes built from T 1

h considering the middle point of each edge as a new vertex,
that is then moved randomly; note that these meshes contain non-convex elements.

To test the convergence properties of the methods, we introduce the following discrete
maximum norm: for any sufficiently regular function v,

|||v|||0,∞ := max
v∈Vh

|v(v)|∞ (25)

where Vh represents the set of vertexes of Th and | · |∞ denotes the l∞ vector norm. We also
introduce the following discrete H1 like norm:

|||v|||1,2 :=


∑

e∈Eh

he

∥∥∥∥
∂v

∂te

∥∥∥∥
2

0,e




1/2

. (26)

Accordingly, we denote by

Eh
0,∞ := |||u− uh|||∞ Eh

1,2 := |||u− uh|||1,2

12



the corresponding errors and we measure the experimental order of convergence as

R :=
log(E/E′)

log(h/h′)
,

where h and h′ denote two consecutive meshsizes and E and E′ denote the associated errors.

5.1 Stokes problem with analytical solution

The first benchmark problem is taken from [4]. Choosing ν = 1 and the load f as:

f(x, y) =

[
−4π2 cos(2πx) sin(2πy) + 2π2 sin(2πy)− y2

4π2 cos(2πy) sin(2πx)− 2π2 sin(2πx)− 2xy

]
,

the solution (u, p) of problem (2) is given by:

u1(x, y) = − cos(2πx) sin(2πy) + sin(2πy),

u2(x, y) = sin(2πx) cos(2πy)− sin(2πx),

p(x, y) = xy2 −
1

6
.

Table 1 shows the convergence history of the virtual velocity-pressure method (14) applied
to our test problem with five different family of meshes, while Table 2 collects the correspond-
ing results when the virtual stream formulation (24) is applied. The tables include the number
of dofs, the number nnz of nonzero matrix elements, the convergence rates R, the total time
TT(s) in seconds used for computing the approximate solutions, the discrete errors Eh

0,∞ and

Eh
1,2.
We note that the results reported in the tables confirm, for both methods, the first order

convergence rate in the discrete H1 like norm (in agreement with Theorem 3.1) and show a
quadratic rate in the discrete L∞ norm. This holds for all the considered meshes. Moreover,
since the two methods are equivalent, it is not surprising to note that the error values reported
in Table 1 and the corresponding ones of Table 2 are almost identical. The negligible discrep-
ancy is related to the numerical round-off associated to the different sequence of computations
performed by the two methods.

Finally, with the aim of performing a comparison between our novel virtual stream method
and the virtual velocity-pressure method, we remark (see third column in Tables 1 and 2)
that the number of degrees of freedom employed by the virtual stream method (24) is much
smaller than the one used by the original scheme (14). For instance, in the triangular case the
reduction factor is greater than two. Note that the reduction of the dofs has also important
consequences on the number of nonzero elements in the matrixes (see the fourth column in
Tables 1 and 2). Finally, although the comparison may be code depending, we report (last
column in the tables) the total time needed by the two algorithms to assemble and solve the
linear systems. Again the advantage of the virtual stream formulation is clear.

5.2 The lid-driven cavity problem

The second benchmark example is the so called lid-driven cavity problem which is a standard
test problem, for which there is no exact solution, typically employed to validate numerical

13



Table 1: Approximation of the velocity u: convergence analysis of the virtual velocity-pressure
method (14).

Mesh 1/h dof nnz Eh
0,∞ R0,∞ Eh

1,2 R1,2 TT(s)

8 697 11558 8.7465e-2 – 2.3821e-0 – 1.36
16 2952 52321 3.4740e-2 1.33 1.2100e-0 0.98 3.86

T 1

h
32 12012 218947 7.7637e-3 2.16 6.2742e-1 0.95 18.81
64 48899 903116 2.1290e-3 1.87 3.1602e-1 0.99 170.92
128 198496 3690320 5.6025e-4 1.93 1.5800e-1 1.00 2075.83
8 146 3781 7.6563e-1 – 3.7968e-0 – 0.34
16 546 16620 3.9845e-1 0.94 2.1247e-0 0.84 0.59

T 2

h
32 2114 68427 1.4242e-1 1.48 9.2731e-1 1.20 1.56
64 8322 279846 4.0863e-2 1.80 3.7620e-1 1.30 6.53
128 33026 1154059 1.0650e-2 1.94 1.6652e-1 1.18 93.90
8 146 3851 9.2800e-1 – 3.9456e-0 – 0.34
16 546 17117 5.8806e-1 0.66 2.5752e-0 0.62 0.63

T 3

h
32 2114 71887 2.6751e-1 1.14 1.2899e-0 1.00 1.60
64 8322 294709 9.2930e-2 1.53 5.1945e-1 1.31 6.78
128 33026 1193617 2.6568e-2 1.81 2.0835e-1 1.32 57.7
8 275 3960 5.4032e-1 – 3.0340e-0 – 0.43
16 1187 19410 1.8201e-1 1.57 1.2733e-0 1.25 1.00

T 4

h
32 4931 85284 5.0021e-2 1.86 5.4736e-1 1.22 3.71
64 20099 356798 1.2863e-2 1.96 2.5782e-1 1.09 22.6
128 81154 1433296 3.2361e-3 1.99 1.2669e-1 1.03 170.31
8 339 9428 4.8894e-1 – 3.0986e-0 – 0.88
16 1603 49412 1.5073e-1 1.70 1.6231e-0 0.93 1.99

T 6

h
32 6771 218348 4.2964e-2 1.81 8.3954e-1 0.95 7.46
64 27507 904488 1.0800e-2 1.99 4.3331e-1 0.95 54.50
128 111875 3713168 2.3505e-3 2.20 2.1768e-1 0.99 684.78

methods for fluids (see, for instance [22, 28]). The 2D lid-driven cavity problem describes the
flow in a rectangular container which is driven by the uniform motion of one lid.

The problem is set up with the following boundary condition: u = (1, 0) on the top lid
and u = (0, 0) elsewhere, while the source function f is set equal to 0 and the viscosity ν
equal to 1.

Due to the change of boundary conditions, two singularities appears at the top corners of
the domain.

In the sequel, we report the numerical results obtained using the virtual stream formulation
(24), where the following boundary conditions for the stream function ψh have been employed:
∇ψh = (0, 1) on the top lid and ∇ψh = (0, 0) elsewhere; ψh = 0 on the whole boundary.

We first employed a triangular mesh (family T 1
h ) with h = 1/64: Figure 5 reports the first

and second velocity component profile, while Figure 6 shows the velocity field.
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Table 2: Approximation of the velocity u: convergence analysis of the virtual stream method
(24).

Mesh 1/h dof nnz Eh
0,∞ Rh

0,∞ Eh
1,2 Rh

1,2 TT(s)

8 273 5031 8.7466e-2 – 2.3822e-0 – 1.19
16 1212 24102 3.4752e-2 1.33 1.2100e-0 0.98 3.38

T 1

h
32 5040 103140 7.7743e-3 2.16 6.2742e-1 0.95 14.14
64 20739 429867 2.1300e-3 1.87 3.1602e-1 0.99 99.92
128 84633 1765593 5.6141e-4 1.92 1.5800e-1 1.00 1461.64
8 96 2672 7.6296e-1 – 3.7972e-0 – 0.30
16 384 12710 3.9766e-1 0.94 2.1249e-0 0.84 0.55

T 2

h
32 1536 55158 1.4217e-1 1.48 9.2737e-1 1.20 1.38
64 6144 229518 4.0791e-2 1.80 3.7621e-1 1.30 5.43
128 24576 939300 1.0632e-2 1.94 1.6652e-1 1.17 33.65
8 96 2676 9.2770e-1 – 3.9448e-0 – 0.25
16 384 12762 5.8785e-1 0.66 2.5750e-0 0.62 0.42

T 3

h
32 1536 55386 2.6743e-1 1.14 1.2899e-0 1.00 1.15
64 6144 230490 9.2912e-2 1.53 5.1943e-1 1.31 4.16
128 24576 940122 2.6563e-2 1.81 2.0835e-1 1.32 27.03
8 147 2065 5.3945e-1 – 3.0340e-0 – 0.45
16 675 11123 1.8179e-1 1.57 1.2733e-0 1.25 0.88

T 4

h
32 2883 50705 4.9967e-2 1.86 5.4736e-1 1.22 3.03
64 11907 215651 1.2849e-2 1.96 2.5782e-1 1.09 14.09
128 48387 897833 3.2327e-3 1.99 1.2669e-1 1.03 130.76
8 243 6705 4.8976e-1 – 3.0986e-0 – 1.05
16 1179 36765 1.5089e-1 1.70 1.6231e-0 0.93 1.85

T 6

h
32 5031 165843 4.2963e-2 1.81 8.3953e-1 0.95 6.74
64 20535 692937 1.0816e-2 1.99 4.3331e-1 0.96 42.22
128 83715 2856303 2.3514e-3 2.20 2.1768e-1 0.99 495.53

Figure 5: The first and second velocity component profile for the lid-driven cavity problem
obtained with a triangular mesh (family T 1

h , h = 1/64).
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Figure 6: The velocity profile for the lid-driven cavity problem obtained with a triangular
mesh (family T 1

h , h = 1/64).
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The second set of experiments have been run on trapezoidal mesh (family T 5
h ) with

h = 1/64. Figure 7 shows the first and second velocity component profile, and Figure 8
shows the velocity field.
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Figure 7: The first and second velocity component profile for the lid-driven cavity problem
obtained with a trapezoidal mesh (family T 5

h , h = 1/64).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: The velocity profile for the lid-driven cavity problem obtained with a trapezoidal
mesh (family T 5

h , h = 1/64).

The results obtained are in full agreement with those of [22, 28] and show both the stability
and accuracy of our new virtual stream method also in the presence of jumping boundary
conditions.
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