
MOX–Report No. 10/2012

Boundary control and shape optimization for the
robust design of bypass anastomoses under uncertainty

Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





Boundary control and shape optimization for the

robust design of bypass anastomoses under uncertainty

Toni Lassila♯, Andrea Manzoni♯, Alfio Quarteroni♯,†, Gianluigi Rozza♯∗

February 2, 2012

♯ CMCS - Modelling and Scientific Computing,
MATHICSE - Mathematics Institute of Computational Science and Engineering,

EPFL - Ecole Polytechnique Fédérale de Lausanne,

Station 8, CH-1015 Lausanne, Switzerland.

† MOX– Modellistica e Calcolo Scientifico,
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano,
P.za Leonardo da Vinci 32, I-20133 Milano, Italy.

Abstract

We review the optimal design of an arterial bypass graft following either a
(i) boundary optimal control approach, or a (ii) shape optimization formu-
lation. The main focus is quantifying and treating the uncertainty in the
residual flow when the hosting artery is not completely occluded, for which
the worst-case in terms of recirculation effects is inferred to correspond to a
strong orifice flow through near-complete occlusion. Worst-case optimiza-
tion is performed to identify an anastomosis angle and a cuffed shape that
are robust with respect to a possible range of residual flows. We also con-
sider a reduced order modelling framework based on reduced basis methods
in order to make the robust design problem computationally feasible.

Keywords: optimal control, shape optimization, arterial bypass grafts, un-
certainty, worst-case design, reduced order modelling, Navier-Stokes equa-
tions.

Introduction

Atherosclerosis is a pathology of the arterial system which is driven by the ac-
cumulation of fatty materials such as cholesterol in the lumen. As a result the
arterial wall first thickens as the plaque grows and in a subsequent stage nar-
rows, leading to partial or total occlusion. Bypass grafts can provide blood flow
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through an alternative bridging path in order to overcome critically occluded
arteries. One of the most dangerous cases is related to coronary arteries, which
supply the oxygen-rich blood perfusion to the heart muscle. The lack of an ade-
quate blood supply may cause tissue ischemia and myocardial infarctions. Coro-
nary Artery Bypass grafting is a standard surgical procedure to restore blood
perfusion to the cardiac muscle by redirecting blood from the Aorta through a
graft vessel (either artificial or biological) to the downstream of the occluded
coronary artery. The design of the end-to-side anastomosis that connects the
graft vessel to the host vessel is a critical factor in avoiding post-operative re-
currence of the stenosis, since fluid dynamic phenomena such as recirculation,
oscillating or untypically high/low shear rates, and stagnation areas can cause
the growth of another stenosis downstream from the anastomosis. Different kinds
and shapes for aorto-coronaric bypass anastomoses are available, such as Miller
cuffed models or Taylor patches [28, 17]. The connection of the graft to the
coronary artery can be done using an end-to-side or a side-to-side anastomosis;
a detailed survey of the predominant flow features of end-to-side anastomoses is
provided in [28]. The major factors known to strongly influence the recurrence
of intimal hyperplasia are related to Wall Shear Stress (WSS) and vorticity in
the region close to the anastomosis. Hence, a typical attempt to design a bypass
graft is apt at minimizing some cost functionals related to these physical indices
of interest.

Numerical methods of Computational Fluid Dynamics (CFD) can help in
understanding local haemodynamics phenomena and the effect of vascular wall
modification on flow patterns (see e.g. [28]). On the other hand, theoretical
methods of optimal control and shape optimization enable a suitable formula-
tion of the optimal design problem for bypass grafts. Many works [2, 1, 25, 30,
33, 34, 38, 40] have focused in the last decade on the optimal shape design of
end-to-side anastomoses, typically by acting on the wall shape near the anas-
tomosis by local shape variations. The three most significant design variables
in end-to-side anastomoses are [28]: the anastomosis angle, the graft-to-host di-
ameter ratio [23], and the toe shape (see Fig. 1). Also the flow split between
the proximal outflow segment and the distal outflow segment affects greatly the
distribution of WSS [13], as do the viscosity and the Reynolds number. The
effect of the flow profile at or near the inlets must also be taken into account.
The near-complete occlusion of stenotic arteries produces the largest (often tur-
bulent) disturbances in the flow, and has been linked to triggering biochemical
processes such as thrombosis, hemolysis etc. While it is known that the physical
unsteady and pulsatile flow can be replaced with a steady mean flow with the
same Reynolds number for purposes of evaluating the mean WSS distribution
[12, 11], the correct flow profile must be taken into account if accurate WSS
predictions are desireda. In conclusion, it seems clear that in order to design a

aFor example, in [43] the effect of cardiac motion on the flow in a coronary artery was
studied: it was shown that the motion-induced change in the velocity profile could impact the
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bypass graft in a robust way, one must be prepared to take into account all the
various sources of uncertainty that can effect the final optimized design.

Only recently the effect of uncertainty in the design of bypass grafts has
been taken into account. In [40] the bypass configuration was optimized un-
der unsteady flow with an uncertain flow split between the occluded artery and
the graft. The robust design was sought by minimizing a cost functional that
measured the area of low wall shear stress in the downstream region of the anas-
tomosis. To make the design robust, the authors added a penalty term for the
standard deviation of the output due to input uncertainties. The cost of such
an optimization method was reported as quite high, 11 days in the fully 3D
unsteady case on a 18 × 4 cores parallel cluster. In [25] a similar problem was
considered for steady 2D flow, but optimizing the whole shape rather than just
the angle. The computational cost was diminished by introducing a Reduced Or-
der Model (ROM) for the fluid equation based on Reduced Basis (RB) methods,
making the robust design problem computationally feasible. In [33] the bypass
shape was obtained by minimizing the total shear rate, and the sensitivity of
the optimal shape with respect to the uncertain viscosity in a non-Newtonian
rheology was considered. There was no attempt made to find a robust optimal
shape over a range of viscosity values, likely due to prohibitive cost of running
the full-fidelity three-dimensional finite element simulations.

These preliminary works already indicate that in presence of uncertainty
effects the bypass design problem is not yet satisfactorily solved by existing
classical computational approaches, and, furthermore, that some type of ROM
is needed to reduce the computational cost. In particular, a new contribution of
this work is aimed at inserting some uncertainty elements (featuring the nature
of the residual flow in the partially occluded arterial branch) in both an optimal
control and a shape optimization problem, solved within a suitable reduced
framework, in view of simultaneous computational and geometrical reduction.
We also test whether our simplifications affect the robust design obtained with or
without the reduction to a pure boundary control problem, as well as comparing
results between 2D and 3D.

In this work we review some features related to the optimal design of bypass
grafts (Sect. 1) and present two different paradigms based on optimal control and
shape optimization, highlighting key points and difficulties. In the first case, a
simplified 2D boundary control formulation is considered (Sect. 2), incorporating
uncertainty about residual flows through the stenosed artery. In the second case,
a 2D shape optimization problem is considered (Sect. 3), dealing with robust
design under uncertainty. For the sake of computational saving, these problems
are solved within a suitable ROM framework, presented in Sect. 4. Numerical
results, as well as a comparison with simplified 3D configurations, are detailed
in Sect. 5-6, followed by some conclusions in Sect. 7.

WSS values by up to 150%.
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1 Mathematical modelling for bypass optimal design

Haemodynamic factors like flow recirculation or stagnation, as well as high vor-
ticity or dissipation regions, low and oscillatory WSS, play a driving role in the
development of vascular diseases. Hence, meaningful mathematical models and
description of blood flows, together with accurate numerical simulations, can
have useful clinical applications especially in surgical procedures. However, a
rigorous model for blood circulation should take into account (i) the flow un-
steadiness, (ii) the arterial wall deformability, described by suitable structural
models [21] and possibly (iii) complex rheological model to characterize the ag-
gregate nature of the blood [37]. In view of studying optimal control and shape
optimization problems, which entail the repeated simulation of these flow equa-
tions (and the evaluation of the cost functional to be minimized), we cannot
afford the solution of PDE models involving such complex features – computa-
tional costs would be too prohibitive. For these reasons, we model blood flows
adopting steady incompressible Navier-Stokes equations for laminar Newtonian
flow with the velocity field v and pressure field p satisfying





−ν∆v + (v · ∇)v + ∇p = f in Ω
∇ · v = 0 in Ω
v = ubc on Γbc

v = uin on Γin

v = 0 on Γw

−pn + ν
∂v

∂n
= 0 on Γout.

(1)

Here Ω ⊂ Rd for d = 2, 3 is assumed to be piecewise C2 with convex corners,
representing an end-to-side anastomosis (see Fig. 1). The Dirichlet portion ΓD

of the boundary is further divided into the inlet from the stenosed section of the
artery Γin and the bypass inlet Γbc, where we prescribe two inflow profiles uin and
ubc respectively, and the walls, where we prescribe a no-slip boundary condition.
We assume a free-stress boundary condition at the outlet Γout 6= ∅. Moreover,
blood dynamic viscosity is µ = 0.04 g cm−1 s−1, blood density ρ = 1 g cm−3,
thus yielding a kinematic viscosity ν = µ/ρ = 0.04 cm2 s−1 and a Reynolds
number Re = ṽD/ν of order 100. The corresponding weak form of Navier-
Stokes equations (1) reads: find (v, p,η) ∈ Y ×Q× G s.t.

A(v, p,η; z, q,λ) :=a(v, z) + b(p, z)

+b(q,y) + c(v,v, z) + gD(η, z) + gD(u − uD,λ) = 0, (2)

for all (z, q,λ) ∈ Y × Q × G, where the continuous bilinear and trilinear forms
are defined as

a(v, z) := ν

∫

Ω
∇u : ∇z dΩ, b(p, z) :=

∫

Ω
p div z dΩ,
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Figure 1: A schematic view of a bypass graft anastomosis.

c(v,w, z) :=

∫

Ω
(v · ∇)w · z dΩ,

and the bilinear form

gD(v,w) :=

∫

ΓD

v · w dΓ

is used to enforce a Dirichlet boundary condition on Γin ∪ Γw ∪ Γbc =: ΓD ⊂
∂Ω with boundary data uD. The velocity space is chosen as Y := [H1(Ω)]d,
the pressure space as Q := L2(Ω), and the Lagrange multiplier space G :=
[H−1/2(ΓD)]d. We denote Lbc,Lin ∈ Y two divergence-free lifting functions of
the boundary data ubc and uin, such that Lbc|Γbc

= ubc and Lin|Γin
= uin on

Γbc and Γin, respectively. Moreover, in order to have a physically meaningful
problem, we enforce the total conservation of fluxes between the (partially or
totally) occluded branch Γin and the graft inlet Γbc, according to

Qin+Qbc =

∫

Γin

vin·ndΓ+

∫

Γbc

vbc·ndΓ =

∫

Γin

vin·ndΓ =: Qtot (constant). (3)

To show the well-posedness of the inhomogeneous Navier-Stokes equations
(2), we cite a classical stability and uniqueness result under the assumption of
small data (for the proof, see e.g. [41], Chapter 2, Theorem 1.6):

Lemma 1. Assume that uin ∈ [H1/2(Γin)]d, ubc ∈ [H1/2(Γbc)]
d and Ω is of class

C2. The velocity field v ∈ Y defined as the solution of (2) satisfies the stability
estimate

‖v‖1 ≤
2

ν
‖f̃(Lin,Lbc)‖−1,

where

‖f̃(Lin,Lbc)‖
2
−1 :=

∥∥∥∥∥ν△Lin −
d∑

i=1

[Lin]i∂xiLin

∥∥∥∥∥

2

H−1(Ω)

+

∥∥∥∥∥ν△Lbc −
d∑

i=1

[Lbc]i∂xiLbc

∥∥∥∥∥

2

H−1(Ω)

.

In addition, provided that

|c(w,Lin,w)| + |c(w,Lbc,w)| ≤
ν

2
‖w‖2

1 for all w ∈ Y (4)

and
ν2 > 4 Cd ‖f̃(Lin,Lbc)‖−1, (5)
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where Cd > 0 is the Sobolev embedding constant s.t. |c(v,w, z)| ≤ Cd‖v‖1‖w‖1‖z‖1

for all v,w, z ∈ Y, then the solution v is unique and depends continuously on
the boundary data (uin,ubc).

To pose the optimal design problem, several cost functionals depending on
the state solution (v, p) have been proposed in literature for the optimization of
arterial bypass grafts or otherwise regularization of flows where recirculation and
vortex generation are to be minimized. By denoting Ωobs the subdomain where
physical indices of interest are observed, we list some typical choices together
with references to previous works where such functionals have been employed:

1. viscous energy dissipation [25, 33]

J1(v) :=
ν

2

∫

Ωobs

|∇v|2 dΩ or J1(v) :=
ν

2

∫

Ωobs

ε(v) : ε(v) dΩ,

being ε(v) = (∇v + ∇vT )/2 the Cauchy strain tensor;

2. Stokes-tracking type functional [22, 20, 25]

J2(v) :=

∫

Ωobs

|v − vStokes|
2 dΩ,

where vStokes is the solution of (1) obtained after neglecting the term
c(v,v, z);

3. vorticity[2, 4, 22, 25, 38]

J3(v) :=
ν

2

∫

Ωobs

|∇ × v|2 dΩ,

4. Galilean invariant vortex measure for two-dimensional flows [20, 22, 25]

J4(v) :=

∫

Ωobs

max{det(∇v), 0} dΩ or J4(v) :=

∫

Ωobs

g(det(∇v)) dΩ,

where g(z) is a smooth nonnegative function satisfying g(z) = 0 for z ≤ 0
and g(z) = O(z) as z → ∞ [22]. This choice is motivated by the fact
that vortex cores are related to regions where the eigenvalues of ∇v are
complex, and in the two-dimensional case this is equivalent to det(∇v) > 0.

5. wall shear stress gradient [27]

J5(v) :=

∫

Γobs

∇

(
ν

∂v

∂n
· t

)
· t dΩ, (6)

where n and t are the unit normal and tangent vectors respectively.
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All of the above functionals are bounded in [H2(Ω)]d, and the functionals J1-J4

are bounded in [H1(Ω)]d. The energy functionals J1 are analytically the sim-
plest to handle. They are coercive and weakly coercive owing to the Poincaré
and Korn inequalities respectivelyb. The tracking functional J2 is suitable only
for low-Reynolds flows with negligible convective effects. The vorticity func-
tional J3 is the most common choice, but it has the problem that strong shear
boundary layers can have a disproportionate weight compared to the vortices.
The functional J4 is not differentiable and needs to be regularized to make it reg-
ular enough to use the standard optimal control framework. The functional J5

contains second-order derivatives of velocity evaluated on the boundary, which
makes its computation from finite elements approximations difficult. Based on
these considerations, we concentrate in the numerical examples on three cost
functionals: the viscous energy dissipation J1, the vorticity J3, and the vortex
measure J4.

2 A boundary optimal control formulation for

bypass design

A first possible approach for the optimal design of bypass grafts is based on the
solution of a suitable optimal control (OC) problem in the vein of [4, 6, 15, 20, 24],
for which the control function is the Dirichlet boundary condition representing
the flow entering into the artery from the graft on the boundaryc Γbc. Thus the
geometrical properties of the bypass graft are only represented by the velocity
profile ubc ∈ Ubc imposed at the bypass anastomosis, which has to be controlled
in order to minimize a given cost functional. This entails the solution of a
problem on a frozen, fixed domain – the one given by the occluded artery – on
which the state Navier-Stokes equations (now representing a constraint), have
to be solved. For simplicity we refer also to problems following this formulation
as design problems, even if they only involve boundary control.

If the residual flow function uin through the occluded section Γin is known,
the deterministic design (OC) problem can be formulated as follows: given uin,
find the boundary control function ubc solving

min
ubc∈Ubc

J(v;ubc,uin) s.t. (DD-OC)

A(v, p,η; z, q,λ;ubc,uin) = 0, ∀ (z, q,λ) ∈ Y ×Q× G,

where J : Y → R+
0 is a cost functional measuring the graft performance (e.g. one

of the functionals listed in Sect. 1) and A(·; ·;ubc) is the Navier-Stokes operator

bCoercivity holds at least if Ωobs = Ω. If Ωobs ( Ω, as is usually the in practice as we want
to focus the reduction to a subregion near the anastomosis, we do not have analytical results
but typically the convexity and coercivity of the cost functional is preserved as we shall see in
the results section.

c With respect to the general case presented in Sect.1, here Γbc is a (fictitious) boundary
representing the anastomosis (see Fig. 2).
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Figure 2: Domain and boundary segments for the optimal boundary control
formulation

defined in (2). Here the dependence of the state equation and the cost functional
on the control variable ubc and the residual flow uin has been highlighted.

On the other hand, assuming that the patency of the occluded artery (and
the corresponding residual flow uin) is uncertain, we consider the following worst-
case design problem:

Find the bypass control function ubc in such a way that it minimizes
the worst-case value of J(v) over all admissible values of the residual
flow function uin.

To obtain a satisfactory answer to this problem, we study the so-called robust
design problem: find the boundary control function ubc solving the worst-case
optimization problem

min
ubc∈Ubc

max
uin∈Uin

J(v;ubc,uin) s.t. (RD-OC)

A(v, p,η; z, q,λ;ubc,uin) = 0, ∀ (z, q, λ) ∈ Y ×Q× G.

The robust design problem can be understood as a one-shot game, where the
designer of the bypass plays first and chooses the control function ubc to min-
imize the cost functional J . The second player then follows by choosing the
residual flow function uin to maximize the cost function J . The payoff for the
designer is −J and for the second player J . Thus the optimal strategy for the de-
signer is given as the solution of a min-max type of strategy obtained by solving
(RD-OC), while the second player will choose his response by solving another
problem. We call this the complementary uncertainty problem and it is defined
as: given a known boundary control function ubc, find the residual flow function
uin maximizing the cost functional

max
uin∈Uin

J(v;ubc,uin) s.t. (CU)

A(v, p,η; z, q,λ;ubc,uin) = 0, ∀ (z, q, λ) ∈ Y ×Q× G.

Concerning the well-posedness of these problems, a general existence result
for the first optimality problem (DD-OC) can be found in [15] (see Lemma 2.1
and the related proof):
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Theorem 1. Assume that the cost functional J(v)

i) is bounded, i.e. there exists C0 > 0 s.t. J(v) ≤ C0‖v‖
2
1;

ii) is convex, i.e. for any u1,u2 ∈ [H1(Ω)]d and γ ∈ [0, 1] it holds that (1 −
γ)J(u) + γJ(u) ≥ J((1 − γ)u + γu);

iii) satisfies for some constants C1, C2, C3 > 0 the weak coercivity inequality

J(v) ≥ C1‖v‖
2
1 − C2‖v‖1 − C3 for all v ∈ Y. (7)

Let the admissible set Ubc for the control function be a closed and convex subset of
[H1/2(Γbc)]

d. Then the problem (DD-OC) admits at least one optimal solution.

The well posedness of the third problem (CU) is ensured by the following
result:

Theorem 2. Assume that Γin is an open and connected subset of ∂Ω, and that
the cost functional J(v)

i) is bounded (see (i), Thm. 1) ;

ii) is upper semicontinuous, i.e. lim sup
v→v∗

J(v) ≤ J(v∗) for all v∗ ∈ Y.

Let the admissible set Uin ⊆ UC1
be a closed subset of

UC4
:=

{
u ∈ [H2(Γin)]d : ‖u‖2 ≤ C4

}
(8)

for some C4 > 0 small enough such that (4) is satisfied, and furthermore that
the viscosity is large enough to satisfy (5). Then the problem (CU) admits at
least one optimal solution.

Proof. Since Γin is a bounded domain, the embedding H2(Γin) →֒ H1(Γin) is
compact by Rellich’s theorem and Uin is compact in [H1(Γin)]

d. According to
Lemma 1, the solution map uin 7→ v(uin) is continuous in the H1-topology under
our assumptions. Thus the image of UC4

given by the Navier-Stokes resolvant
operator (2) is a compact set in Y. A bounded upper semicontinuous functional
attains its maximum in a compact set.

It is clear that for coercive cost functionals satisfying (7) the maximizer of
(CU) will be found on the boundary of the set of admissible functions Uin. Thus
we expect to find maximizers that become increasingly singular as we increase
C1 in (8). In case a near-complete occlusion is not expected, the admissible set
of residual flow functions can be regularized to rule out extreme singular cases.
In this case we can use the knowledge about the solutions of the (CU) to design
a reasonable set of admissible residual flow functions that still contain some level
of uncertainty while being mathematically better behaved. We return to this
consideration in the numerical examples section.
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Existence of solutions for the worst-case problem (RD-OC) in the infinite-
dimensional case has not been extensively studied. In a recent paper [19], the
authors used the concept of weak lower semi-continuity for set-valued functions
to prove existence results for optimal control problems of PDEs for functionals of
the min-max type. In the case that the admissible set of residual flow profiles Uin

does not depend on the control variable ubc, and therefore a sufficient condition
for the weak lower semi-continuity of

Ĵ(ubc) := sup
uin∈Ubc

J(ubc,uin)

is that J( · ,uin) is weakly lower semi-continuous for all admissible uin ∈ Uin

(Theorem 2.5 of [19]). This assumption of independence does not strictly hold
in our problem, due to the condition (3) inducing a dependence of Uin on ubc, so
further study of the well-posedness of the min-max formulation would be needed.

Several approaches can be used for the solution of the optimal control prob-
lems discussed throughout this section. Standard techniques are based on iter-
ative optimization schemes based on the gradient of the cost functional, such
as the steepest descent method (in this case, at each iteration, the control vari-
able is updated in order to step along the opposite direction of the gradient of
the cost functional). This entails the repeated solution, until convergence of
the procedure, of the PDEs system obtained as first order necessary optimality
conditions Euler-Lagrange system. To obtain this system, we can exploit the
Lagrangian functional approach [14]: by formally differentiating the Lagrangian
and looking for its stationary points, we obtain the simultaneous set of state
equations, adjoint state equations, and the equation expressing the optimality
condition. Indeed, for the numerical solution of optimal control problems, two
different paradigms can be adopted: (i) optimize-then-discretize, where we first
apply the iterative method, then we discretize the various steps of the algorithm,
or (i) discretize-then-optimize, where we first discretize our optimal control prob-
lem and then we apply an iterative algorithm to solve its discrete version. In
any case, the gradient of the cost functional can be replaced by a suitable nu-
merical approximation, and its Hessian by e.g. quasi-Newton approximations
if more advanced nonlinear programming techniques can be exploited. Within
this strategy – employed to obtain the numerical results presented later on – we
just require an efficient tool for evaluating PDE solutions and cost functionals.

3 A robust shape optimization formulation for

bypass design

An alternative approach for the optimal design of bypass grafts relies on the
solution of a shape optimization (SO) problem, for which the control variable
is the shape of the domain Ω itself. This entails the minimization of a cost
functional by finding the optimal shape of the domain where the PDE is defined.
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In general, this problem features more difficulties than OC problems, such as
shape deformation, shape derivatives and the evaluation of shape-dependent
quantities; a crucial aspect is the geometrical treatment of the shapes during the
optimization process too. In an abstract setting, our problem can be formulated
as the following deterministic design (SO) problem:

min
Ω∈Oad

J(v; Ω,uin) s.t. (DD-SO)

A(v, p,η; z, q,λ; Ω,uin) = 0, ∀ (z, q,λ) ∈ Y(Ω) ×Q(Ω) × G(Ω),

where uin is a given residual flow function, Oad ⊆ O denotes a set of admissi-
ble shapes among family of all possible shapes O (to be specified next). The
dependence of the state equation and the cost functional on the domain Ω has
now been made explicit. As in the optimal control case, a second interesting
shape optimization problem is that of a bypass graft design which is robust with
respect to the residual flow uin across the occluded branch. In this case, finding
the optimal shape of the graft in presence of the worst case scenario in terms of
residual flow consists in solving the following robust design (SO) problem:

min
Ω∈Oad

max
uin∈Uin

J(v; Ω,uin) s.t. (RD-SO)

A(v, p,η; z, q,λ; Ω,uin) = 0, ∀ (z, q, λ) ∈ Y(Ω) ×Q(Ω) × G(Ω), (9)

Verifying the well-posedness of shape optimization problems involves additional
assumptions of regularity on admissible shapes and continuity of the state solu-
tion with respect to shape deformations. Provided that in any domain Ω ∈ O
we can solve the state problem uniquely, we can introduce a mapping U that
with any Ω ∈ O associates the state solution U(Ω) = (v, p)(Ω), i.e. U : Ω 7→
U(Ω) ∈ V(Ω). Moreover, let {Ωn}

∞
n=1 ⊂ O be a sequence converging to Ω∗ ∈ O,

Un ≡ U(Ωn) ∈ V(Ωn); denote as well Ωn
τ
→ Ω∗ and Un  U two suitable no-

tions of convergenced (in the latter case convergence involves different functional
spaces, defined on the sequence {Ωn}

∞
n=1). Focusing for the sake of simplicity

on the shape optimization problem (DD-SO), for a given residual flow uin, the
following existence result holds (see for example [18], Theorem 2.10):

Theorem 3. Let G = {(Ω, U(Ω)),∀Ω ∈ Oad} be the graph of the mapping U(·)
restricted to Oad. Assume that

i) G is compact, i.e. for any sequence {(Ωn, U(Ωn)) ∈ G}∞n=1, there exists
a subsequence, denoted with {(Ωnk

, U(Ωnk
)) ∈ G}∞k=1, and an element

(Ω∗, U(Ω∗)) ∈ G, such that Ωnk

τ
→ Ω∗, U(Ωnk

) U(Ω∗) for k → ∞;

ii) the cost functional J(U ; Ω) is lower semicontinuous, i.e. if Ωn
τ
→ Ω∗ and

Un  U∗, then lim infn→∞ J(Un; Ωn) ≥ J(U∗; Ω∗).

Then problem (DD-SO) has at least one solution.

dA possible choice for the topology of O is the set distance topology of Hausdorff.
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We point out that the first assumption of the theorem is usually shown by
proving (i.a) the compactness of Oad in the topology τ and (i.b) the continuity
of the state solution U(Ω) with respect to shape variation, i.e. if Ωn

τ
→ Ω∗ then

U(Ωn) U(Ω∗). Not only, in order to show the continuity of the state solution
w.r.t. shape, additional regularity properties have to be introduced on the set
of admissible shapes; with this respect, a common assumption is to consider
the family O ≡ Oε of domains with a uniformly Lipschitz boundary (or that
equivalently satisfy the so-called uniform ε-cone condition [18]). Additional con-
straints (e.g. on the volume of the admissible domains) might also be imposed.
See e.g. [16] for more details in the Navier-Stokes case. Compactness of the
set Oad can be obtained straightforward if the admissible shapes are obtained
from a reference domain through deformations described by perturbations of
the identity, i.e. if Oθ = {Ω = T (Ω̃) = (I + θ)(Ω̃)} being θ a regular vectorial
field whose norm ‖θ‖W 1,∞ < 1 (see [3], Lemma 6.13); this will be the case of
the Free-Form Deformation (FFD) technique, exploited in the numerical tests
presented in Sect. 6. The numerical solution of a shape optimization problem
can be obtained by the same approach used for optimal control problems. Addi-
tional difficulties arise from shape-dependent quantities: for example, the shape
derivative of the cost functional, which provides the optimality condition and
depends a priori on the shape derivatives of state variables, can be written in
a more simple way by exploiting the adjoint problem. The shape deformation
stage during optimization requires special care, several techniques may be used
in this respect.

4 Computational and geometrical reduction

strategies

In practice, for both optimal control and shape optimization problems the stan-
dard adjoint-based approach will be too computationally expensive. Substantial
computational saving becomes possible thanks to areduced order model (ROM)
which relies on two reduction steps: (i) parametrization of the control variables
and (ii) substitution of the full-order finite element (FE) solution of (2) with a
reduced solution obtained by the reduced basis (RB) method [39]. The approxi-
mation of viscous steady nonlinear flows through RB methods was first pioneered
in [32] and has been analyzed in [7, 8, 35, 42]; more recent applications can be
found e.g. in [29] or in [25], where this approach was applied to a problem of
femoral bypass graft shape optimization under uncertainty.

First of all we express the control functions (either boundary data ubc =
ubc(π) or admissible shapes Ω = Ω(π)) as a set of parametric inputs, depending
on p control parameters π ∈ P ⊂ Rp. This stage is straightforward in the former
case, while in the latter a suitable parametrization of the geometry (as well as
a change of variable) is required. Besides, uncertainty elements are treated as
parametrized quantities too, depending on q additional parameters ω ∈ Q ⊂ Rq.
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In this way, an equivalent parametrized formulation of the deterministic design
problems (DD-OC) or (DD-SO) can be derived as follows:

min
π∈P

J(V (µ);µ) s.t. A(V (µ), W ;µ) = 0, ∀W ∈ V(Ω̃), (10)

where µ = (π, ω) ∈ P ×Q, V (µ) = (v, p,η)(µ), V(Ω̃) is a functional space de-
fined on a reference, parameter independent domain Ω̃ as V(Ω̃) = Y(Ω̃)×Q(Ω̃)×
G(Ω̃). In an optimal control context, Ω ≡ Ω̃, while for a shape optimization prob-
lem the parametrized domain Ω = Ω(π) is obtained by applying a parametric
mapping T (·;π) to the reference domain. In our case, this map will be built
by exploiting the free-form deformation (FFD) technique, in which the defor-
mations of an initial design, rather than the geometry itself, are parametrized
[26, 30]. In the same way, the robust design problems (RD-OC) or (RD-SO) can
be written as follows:

min
π∈P

max
ω∈Q

J(V (µ);µ) s.t. A(V (µ), W ;µ) = 0, ∀W ∈ V(Ω̃). (11)

Then, we replace the expensive, full-order FE solution Vh(µ) of (2) with the
inexpensive RB solution; in the case of deterministic OC/SO problems, following
the discretize than optimize approach, the standard Galerkin FE approximation
of (10) is as follows:

min
π∈P

Jh(Vh(µ);µ) s.t. A(Vh(µ), Wh;µ) = 0, ∀Wh ∈ Vh(Ω̃), (12)

where N = N (h) is the dimension of the FE space, depending on the mesh size
h. The reduced basis method (see [39, 36] for reviews of the method) provides an
efficient way to compute an approximation VN (µ) of Vh(µ) (and related output)
by using a Galerkin projection on a reduced subspace made up of well-chosen FE
solutions, corresponding to a specific choice SN = {µ1, . . . ,µN} of parameter
values. Indicating by VN = span{Vh(µn), n = 1, . . . , N} the RB space, the RB
formulation of (12) is as follows:

min
π∈P

JN (VN (µ);µ) s.t. A(VN (µ), WN ;µ) = 0, ∀WN ∈ VN . (13)

Thanks to the (considerably) reduced dimension N ≪ N of the space obtained
from RB approximation, we can provide rapid responses in terms of input/output
evaluations. This is ensured by an Offline–Online computational strategy and a
rapidly convergent RB space assembling, based on a greedy algorithm [39]. More
precisely, in an expensive Offline stage we prepare a very small RB “database”,
while in the Online stage, for each new µ ∈ D, we rapidly evaluate both the
solution and the output. At the outer level, a suitable iterative optimization
procedure is performed, now involving a very reduced version of the original
problem. On the other hand, the reliability of the RB method is ensured by
rigorous a posteriori estimations for the error in the RB approximation w.r.t.
truth FE discretization [39].
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5 Numerical results: boundary optimal control

In this section we present some numerical results about the optimal design of
aorto-coronary bypass grafts based on the solution of the optimal control prob-
lems analyzed in Sect. 2.

5.1 Two-dimensional boundary control problems

We consider throughout this section a simplified 2D bypass configuration Ω =
(0, 5) × (0, 1), where Γin = {(x, y) : x = 0, y ∈ (0, 1)} and Γbc = {(x, y) :
x ∈ (1, 3/2), y = 1}, respectively, thus considering the graft-to-host diameter
ratio to be fixed at its (near-)optimal value 1.5 as discussed in [23]. In order to
exploit the reduced framework discussed in the previous section, we make the
simplifying assumption that the control functions are parametrized with respect
to the anastomosis angle θ and are given by the following parabolic Poiseuille
profiles for simplicity:

ubc(x; θ, ω) :=
16

9

(
7

6
−

ω

6

) (
x − 1

) (
3

2
− x

) [
(tan θ)−1

−1

]
, (14)

where θ ∈ (θmin, θmax) and 0 < θmin < θmax ≤ π/2 . In this way, the set of ad-
missiblee boundary controls is defined by Ubc := {ubc(x; θ, ω) : θ ∈ [θmin, θmax]},
being in our case θmin = 15◦ and θmax = 85◦. On the other hand, ω ∈ (0, 4) is
the variable controlling the flux split between the graft and the host vessels: if
ω = 0 we have a completely occlusion, while for ω = 4 we have a 50/50 split of
total flux between the graft and the host. The control function ubc is properly
rescaled to satisfy (3).

Thus the control variable in the simplified deterministic design problem is
reduced to the angle θ of the bypass graft. Also the radius of the bypass could
be taken as an optimization variable, in the case that this is under control of
the surgeon performing the operation, but in general more complex geometrical
properties such as cuff shapes cannot be incorporated into our model problem.
Clearly, we are interested in the minimization of the cost functionals J1 – J4

in the downfield subregion Ωobs where a vortex may occur, leading to possible
occlusions after grafting and plaque formation; here Ωobs = {(x, y) ∈ Ω : (x, y) ∈
(1, 4) × (0, 1)} (see Figs. 1-2). The resulting problem is discretized with 14,260
and 1,827 dofs for velocity and pressure, respectively, using P2/P1 finite elements;
the dimension of the computed reduced basis space is N = 54, thus yielding the
possibility to solve a Navier-Stokes problem in a real time way (averaged time
over 1,000 evaluations is 0.19 seconds). Parametric optimization problems are
solved through a Sequential Quadratic Programming (SQP) technique (see [31]).

eConcerning the existence results provided in Sect. 2, it is clear that the admissible set
Ubc given by the control functions (14) is closed in H1/2(∂Ω). To see that it is also convex,
note that ϕ(θ) = 1/ tan θ is a continuous function in θ ∈ [θmin, θmax] and its image is a closed
interval, therefore convex.
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5.1.1 Deterministic design optimal control problem

As a first approximation we assume that the residual flow profile is parabolic,
in particular it is defined as uin(y;ω) := ωy(1− y)e1. This is a typical choice in
numerical simulations of arteries yet its justification or effect on the outcomes
seems to be rarely considered. We have solved the (DD-OC) problem for 7 dif-
ferent values of ω ∈ [0, 3] and for 6 different values of the Reynolds number
Re ∈ (15, 90) considered as a further input parameter in the formulation (1);
nevertheless, for the sake of simplicity we report here the results for the maxi-
mum value experimented, Re = 90. Within the reduced framework illustrated,
the solution of 42 optimal control problems takes about 3 hours of CPU timef,
each of them implying about 10 ÷ 15 iterations of the optimization procedure.

The optimal angle θ∗ obtained by solving the problem (DD-OC) decreases
as the magnitude of the residual flow increases. The specific behavior and val-
ues of the four cost functionals varies, however, leading to different ranges for
θ∗ = θ∗(ω). In particular, the vorticity functional J3 and the Stokes tracking
functional J2 (see Fig. 3) exhibit a stronger convexity and lead to smaller val-
ues of the optimal angles: θ∗ ∈ (29◦, 43◦) for J3 and θ∗ ∈ (27◦, 30◦) for J2,
respectively, which are very close to values usually treated as optimal for a graft
anastomosis [28, 40]. On the other hand, minimization of functionals J1 and J4

yields larger values of the optimal angles, perhaps due to their weaker convexity.
In Fig. 4 the flows corresponding to the optimal angles for the functional J3 and
ω = 0, ω = 1 are represented. We point out that in the case of total occlusion
the main vortex core in the heel region can never be totally eliminated.

5.1.2 Complementary uncertainty optimal control problem

Since the residual flow profile in the (partially) occluded artery might play an
important role in the fluid dynamics of a bypass model, instead of using the
parabolic profile uin we are interested in finding the profile of the worst residual
flow so that the optimized graft is robust not just to the magnitude of this flow,
but also to its profile. To this aim, we solve a relaxed version of the (CU)
problemg, by considering parametrized control functions uin under the form

uin(y; π) =

6∑

i=1

πiφi(y)e1

being φ1 the parabolic profile already introduced, φ2 = exp(−100(y − 0.5)2),
φ3 = exp(−100(y − 0.25)2), φ4 = exp(−100(y − 0.75)2) three gaussian profiles
centered at the points 0.25, 0.5 and 0.75, and φ5 = y(1−y)(y−0.25), φ6 = y(1−
y)(y − 0.75) two cubic profiles, where the control parameters {πi}

6
i=1 are such

that the flux of uin is constant. By solving the relaxed (CU) problem, we find

fComputations involving RB approximations have been executed on a personal computer
with 2 × 2GHz Dual Core AMD Opteron (tm) processors 2214 HE and 16 GB of RAM.

gThe full RB adjoint-based method for the solution of (CU) is unavailable at this time.
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Figure 3: Functionals J1, J2, J3, and J4 in the subdomain as a function of
the anastomosis angle θ for different values of the residual parameter ω with
parabolic residual flow.

Figure 4: Flow in the optimal configuration for the cost functional J3, ω = 0
(top) and ω = 1 (bottom), with parabolic residual flow.

that the worst case corresponds to the gaussian profile centered at the midpoint
of the occluded section y = 0.5, thus corresponding to a severe occlusion in the
host artery. The function uin = ω exp(−100y2)e1 will be the boundary condition
on Γin from now on.
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Figure 5: Optimal anastomosis angles as a function of the residual parameter ω
for the functionals J1 – J4, for the parabolic residual flow (left) and the gaussian
residual flow (right).

Figure 6: Flow in the optimal configuration for the cost functional J3, ω = 0
(top) and ω = 1 (bottom), with gaussian residual flow.

5.1.3 Robust design optimal control problem

We can now solve the robust design (RD-OC) problem by considering the same
setting as in the (DD-OC) case and the residual flow uin given by the gaussian
profile obtained by solving the complementary uncertainty (CU) problem. First
of all, we consider the deterministic design (DD-OC) problem with a gaussian
residual flow: the results, concerning the behavior of the vorticity functional J3

w.r.t. θ and ω, as well as the optimal angles obtained with the four functionals
J1 – J4, are reported in Fig. 5 for both the parabolic and gaussian residual
inflows. The results follow the same trends in both cases, even if flow patterns
are remarkably different if the residual flow profile changes. In particular, the
gaussian profile induces two secondary vortices near the occlusion, and a more
complex vorticity pattern in the anastomosis region.

Two major sources of vorticity can be observed from the streamlines. First,
the primary vortex behind the incoming jet, which is generated by the inter-
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action between the fast and slow flows coming into contact at the anastomosis
exit. This vortex tends to disappear as we increase θ and/or ω. Secondary
vortices are generated by the peak residual flow on both sides of the entry from
the occluded branch. However, due to the choice of the observation subdomain,
which considers only the flow downstream from the anastomosis, their effect is
removed from the vorticity measure: this explains why the results, in terms of
optimal angles, are very similar. In Fig. 6 the flows corresponding to the optimal
angles for the functional J3 and ω = 0, 1 are represented.

Finally, the robust design problem (RD-OC) has been solved for the four
cost functionals J1 – J4, providing the results listed in Table 1 (dealing with the
most significant J3 and J2 cases). Each of these four problems takes approxi-
mately 500 ÷ 700 seconds to be solved, requiring about 110÷ 150 input/output
evaluations, depending on each case. The robust angles are about the same as
the ones obtained as solutions of the deterministic design (DD-OC) problem in
the case ω = 0. Hence, the most challenging situation for the minimization of
vorticity appears to be the case of total or near-total occlusion of the stenosed
branch.

dimension profile ω = 0 ω = 1 ω = 2 ω = 3 robust

J3 2D uin parabolic 43.6 37.9 33.4 28.9 -
2D uin gaussian 42.8 38.5 33.2 28.5 42.6

J2 2D uin parabolic 29.9 29.2 28.9 27.5 -
2D uin gaussian 30.1 28.9 28.8 27.1 30.0

J3 3D uin gaussian 45.8 43.8 41.4 38.0

Table 1: Optimal angles and robust angles θ∗ obtained through the (DD-OC)
and (RD-OC) problems, vorticity functional J3 and Stokes tracking functional
J2, both in 2D and 3D.

5.2 Comparison with three-dimensional steady flow

The three-dimensional effects in a steady flow through a bypass anastomosis were
considered in [10] and found to be highly significant when it comes to the WSS
distribution, especially at higher Reynolds numbers. To test the relevance of 3D
effects on the optimal anastomosis angle in our simplified setup, we consider a
3D problem which is assumed plane symmetric along the centerline of the vessel
– thus only the half-width of the configuration needs to be meshed. The length
and radius of the channel and the bypass are kept the same as in the 2D case,
as well as the inflow profiles, which are chosen to be radially symmetric:

uin(y, z;ω) := ω exp
[
−100

(
y2 + z2

)]
,

ubc(x, z; θ, ω) :=

(
7

6
−

ω

6

) [
1 −

16

9

(
x −

7

4

)2

+ 4z2

] [
(tan θ)−1

−1

]
.
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We also choose the viscosity in such a way that the Reynolds number is com-
parable to the highest possible one used in the 2D case, i.e. Re ≈ 80. This
is obtained correspondingly to ν = 0.0125 cm2 s−1. The resulting problem is
discretized with 196,041 and 65,347 dofs for velocity and pressure, respectively,
using P1/P1 finite elements with an interior penalty stabilization scheme [5].
The nonlinear problem (1) is solved starting from the steady Stokes solution
and performing pseudo-time stepping until convergence to a steady solution has
been achieved. No model reduction was applied in this case and as a result each
solution took roughly 20 minutes on 24 parallel 2.66 GHz cores of an Intel Xeon
Nehalem cluster.

In Fig. 7(a) we display the obtained value of the vorticity functional J3 for
different values of the parameter ω (other functionals are less meaningful in 3D
and are omitted here). optimal angle is located around 45◦, but as ω increases the
optimal angle θ∗ decreases. The qualitative behavior of the vorticity functional
J3 resembles that of the 2D case even if the 3D flow exhibits much more complex
flow phenomena, which we will attempt to explain in the following.
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Figure 7: (a) Vorticity J3 in the subdomain Ωobs as a function of the anastomosis
angle θ for different values of the residual parameter ω in the 3D bypass case.
(b) Streamlines of steady flow and transversal velocities at x = 2.5, x = 3.5, and
x = 4.5 for the case θ = 25◦, ω = 1.

Visualizations of the 3D flow field are reported in Fig. 7(b)–9. Three major
sources of vortices can be observed – primary and secondary vortices already
remarked for the 2D case, and a tertiary vortex structure. As before, the primary
vortex tends to disappear as we increase θ and/or ω (see Fig. 8); of course, in
the case of total occlusion, ω = 0, the primary vortex can never be totally
eliminated. This fact is demonstrated in Fig. 9, where we display the flow at
the maximum angle θ = 85◦ but with two different residual flows, ω = 0 (total
occlusion) an ω = 1 (strong occlusion). Only in the first case can the primary
vortex be observed.
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Secondary vortices are generated as in the 2D case by the peak residual
flow on both sides of the entry from the occluded branch. Tertiary transversal
vortices, the so-called Dean vortices, appear downstream of the anastomosis at
moderate Reynolds numbers. While these structures appear exclusively in the
3D flow, it seems their effect on the vorticity functional is an order of magnitude
less when compared to the primary vortex, and thus they do not alter the con-
clusions we obtained earlier based on 2D simulations. The vorticity functional
J3 therefore measures and attempts to control mainly the primary vortex.

In particular, we can remark a strong similarity on the primary and secondary

Figure 8: Streamlines of the steady flow and transversal velocities at x = 2.5,
x = 3.5, and x = 4.5 for the case θ = 30◦ (left) and θ = 50◦ (right) with ω = 1.
For sufficiently large angles θ the primary vortex disappears, while the secondary
and tertiary vortices remain.

Figure 9: Streamlines of the steady flow and transversal velocities at x = 2.5,
x = 3.5, and x = 4.5 for the case θ = 85◦ with ω = 0 (left) and ω = 1 (right).
In the case of total occlusion, the primary vortex is present even with very large
angles.
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vortex structures between the 2D and the 3D case, as we can remark in Fig. 10,
obtained for the same values of θ and ω already considered in Fig. 7(b)–9. For
ω ≤ 1 a very strong primary vortex is generated for small angles θ, causing a
strongly convex behavior in the functional J3 as a function of the angle, while
for ω ≥ 3 the value of the vorticity functional becomes rather insensitive to the
choice of the anastomosis angle. Thus we are able to conclude that – similarly to
the 2D case – the most challenging situation for the minimization of vorticity is
the case of total or near-total occlusion of the stenosed branch. We did not test
the effect of the residual flow profile uncertainty on the 3D case as the results in
the 2D case already highlighted the need to consider a “worst-case” flow profile
in order to obtain robust results. In Table 1 we also include the estimated
optimal angles in the 3D case for reference with the 2D results presented before.
These were obtained by cubic spline interpolation of the curves in Fig. 7(a). For
ω = 0 the optimal angle is very close to the one obtained for the 2D problem,
while a divergence of results occurs as ω is increased; the optimal angles in the
3D case tend to be somewhat larger. However, if the robust angle is assumed
to correspond in both cases to the optimal angle for ω = 0, we can state that
the solution of the robust design problem in 2D gives a good indication to the
choice of a robust angle in the more realistic 3D problem.

The remaining question to be answered is, whether the similarity of the 2D
and 3D problems in the context of vorticity minimization extends also to the
more difficult case of WSS-related functionals, such as J5 given by (6). It is likely
that the tertiary vortices have some effect on the downstream WSS, thus poten-
tially changing the situation between the 2D and 3D cases. While some works
on direct minimization of WSS-related quantities have been attempted [9, 40], a
rigorous mathematical framework for the minimization of quantities depending
on higher derivatives of velocity especially in the uncertainty quantification or
robust design context seems beyond the reach of current methodology.

6 Numerical results: shape optimization

Next we present results on the robust design problem using the shape optimiza-
tion formulation. We consider a parametrized framework based on Free-Form
Deformation (FFD), which enables the definition of a set of admissible shapes
as diffeomorhpic images of a reference graft shape Ω̃ through a parametrized
map T (·;π) depending on a set of control points acting as shape design param-
eters. The reference configuration Ω̃, represented in Fig. 11, has already been
employed for the solution of shape optimization problems with Stokes flows in
[30]. In the present case, the FFD parametrization is built on a 5 × 6 lattice of
control points on the rectangle D = [−1, 3] × [−0.6, 0.4]; active control points
and their displacements are selected in order to describe a wide family of shapes
in terms of the three influential geometrical features already highlighted, i.e. the
anastomosis angle, the graft-to-host diameter ratio, and the toe shape.
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Figure 10: Streamlines of the 2D steady flow for the cases (from top to bottom,
from left to right): θ = 25◦ with ω = 0, ω = 1; θ = 30◦, θ = 50◦ with ω = 0;
θ = 85◦ with ω = 0, ω = 1.

In the end we use a parametrization with p = 8 design parameters, which
represent the vertical/horizontal displacements of selected control points. These
parameters vary in the range (−α, α), α = 0.15, for the vertical displacements
and in the range (0, β), β = 0.6, for the horizontal displacements of the control
points depicted in red/blue in Fig. 11. As before, we consider an observation
subregion close to the heel, given here by Ωobs = {x̃ = (x̃1, x̃2) ∈ Ω̃ : x̃1 ∈ (1, 2)}.
In this way, indicating as P = {π = (π1, . . . , π8) ∈ R8 : πi ∈ (−α, α) ∀ i 6=
5, π5 ∈ (0, β)} and V = |D|, the set of admissible shapes is

Oad =
{

Ω ⊂ D ⊂ R2 : Ω = T (Ω̃; π), π ∈ P, Γin ∪ Γbc ∪ Γout is fixed
}

.

Figure 11: Reference domain Ω and FFD setting. Control points depicted in
red/blue can be moved in vertical/horizontal direction.

Concerning inflow profiles, we consider a Poiseuille profile on the inflow Γbc

(graft) and a parametrized gaussian profile uin = ωφ(y)e1 on the inflow Γin

(occluded artery), being ω ∈ Q = [0, ωmax] the uncertainty parameter tuning
the degree of occlusion. In particular, the dependence of the two flows on ω is
such that the downfield flowrate is constant, with a flow split ranging from 1/0
(complete occlusion of the host artery, for ω = 0) to 2/1 (flowrate across the
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occluded artery equal to one half of the flowrate across the graft, for ωmax = 20).
The resulting problem is discretized with 33,330 and 4,269 dofs for velocity and
pressure, respectively, using P2/P1 FE spaces; the corresponding RB approxi-
mation is defined on spaces of dimension N = 36, thus yielding the possibility to
solve a Navier-Stokes problem in a very rapid way (1.84 seconds, averaged time
over 1,000 evaluations). As in the OC case, parametric optimization problems
are solved through an SQP technique.

Figure 12: Optimal shapes in the cases ω = 0 (left) and ω = ωmax (right) for the
vorticity J3, the Stokes tracking J2 and the Galileian invariant J4 functionals
(from top to bottom).

In Fig. 12 the velocity fields within the optimal shapes for the vorticity J3,
Stokes tracking J2 and Galileian invariant J4 functionals are represented, in the
cases ω = 0 (complete occlusion) and ω = ωmax (maximum residual flow), re-
spectively. Similarly as in the OC case, the condition leading to the strongest
development of vorticity cores is the presence of a complete occlusion, for which
the flow through the bypass starts creating a strong and complex vorticity pat-
tern close to the heel. The minimum values of the three cost functionals are
decreasing functions with respect to ω, an indication that the case ω = 0 is the
most difficult one concerning shape optimization (see Table 2); reduction in the
cost functionals ranges from 24% to 70% for the different cases. The vorticity
cores are clearly observable also in the optimal configuration in presence of a
complete artery blockage; moreover, although we obtain a clear reduction of
vorticity also in this case, the vorticity cores never disappear completely. In the
end, as for the OC case, we remark that the anastomosis angle decreases as the
residual flow increases, since optimal shapes obtained in the case ω = ωmax (see
Fig. 12) show a more elongated heel.
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J∗(ω=0)
J∗(ω=ωmax) ∆J # I/O evals # I/O evals

(ω = 0 , ω = ωmax) (ω = 0 , ω = ωmax) (robust)

J3 1.257 26.3% , 24.2% 125 , 27 389
J2 1.924 63.2% , 55.3% 99 , 64 416
J4 1.267 65.4% , 70.7% 183 , 63 973

Table 2: Results for shape optimization (DD-SO) in the cases ω = 0 and ω =
ωmax and robust shape optimization (RD-SO) problems.

Concerning the solution of the robust design (RD-SO) problem, the robust
configurations correspond to the optimal shapes computed for ω = 0 in the
previous case. In particular, the solution of the robust (shape) optimization
problem requires about O(103) input/output evaluations, thus entailing a CPU
time which is at least one order of magnitude larger than a (shape) optimization
problem (see Table 2), ranging from 1 ÷ 4 hours for the latter case to 13 ÷ 35
hours for the former case. This indicates that a design that is robust over the
entire range ω ∈ [0, ωmax] must be tuned mainly for the case of total occlusion.

7 Conclusion

We have reviewed the state-of-the art for optimal shape design of arterial bypass
grafts. Using mathematical theory of optimal control and shape design, we have
proposed two different worst-case optimization formulations to solve the problem
of bypass design under uncertainty: (i) a boundary control formulation, which
simplifies away the geometry and treats only the angle of the anastomosis as
a boundary control variable, and (ii) a shape optimization formulation using a
parametrized geometry to represent the anastomosis shape. We applied model
reduction in the form of reduced basis methods to reduce the computational
costs of solving the robust optimization problems.

We have performed numerical tests to confirm the robustness of the obtained
anastomosis angle with respect to the unknown residual incoming flow from the
occluded artery. Four different cost functionals taken from literature and pro-
posed for the reduction of downstream vorticity were studied. The optimal anas-
tomosis angle was found to depend strongly on the choice of the cost functional
and on the total residual flow from the occluded branch, but not very strongly
on the particular shape of the flow profile. We validated our simplified boundary
control model by comparing the results obtained against a 3D boundary control
problem as well as a 2D shape optimization problem. Three dimensional effects
were found not to have a large impact on the total downstream vorticity for
moderate Reynolds numbers. The largest vorticity was observed for the case of
total occlusion in the host artery. Therefore a robust bypass shape should be
one that is tailored for that particular situation.
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