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Abstract

Degradable materials have found a wide variety of applications in the biomed-

ical field ranging from sutures, pins and screws for orthopedic surgery, local drug

delivery, tissue engineering scaffolds, and endovascular stents. Polymer degra-

dation is the irreversible chain scission process that breaks polymer chains down

to oligomers and, finally, to monomers. These changes, which take place at the

molecular scale, propagate through the space/time scales and not only affect the

capacity of the polymer to release drugs, bu also hamper the overall mechanical

behavior of the device, whose spatial scale is denoted as macro-scale. A bottom-

up multiscale analysis is applied to model the degradation mechanism which takes

place in PLA matrices. The macroscale model is based on diffusion-reaction equa-

tions for hydrolytic polymer degradation and erosion while the microscale model

is based on atomistic simulations to predict the water diffusion as a function of the

swelling degree of the PLA matrix. The diffusion coefficients are then passed to

the macroscale model. In conclusion, the proposed multiscale analysis is capable

to predict the evolution with time of several properties of water/PLA mixtures,

according to the change of relevant indicators such as the extent of degradation

and erosion of the PLA matrix.

1 Introduction

Biodegradable materials offer tremendous potential for the development of implantable

devices and systems for treating disease. Currently, biodegradable polymers are used
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in diverse applications ranging from absorbable sutures [24], orthopedic implants [37],

drug delivery devices [23], scaffolds for tissue engineered constructs [1], medicated

and biodegradable stents [42]. When applications involve either negligible or well-

known design requirements, the design of these classes of implants are greatly facili-

tated. However, in situation where the requirements are more complex, either in im-

plants featuring complex geometries or in implants under conditions that influence the

course of degradation and erosion, the design process is usually inhibited by the lack of

rational models of biodegradable material behavior [42, 32]. In order to advance from

prototype status to a reliable human-implant devices, device designers must therefore

rely on a combination of intuition and trial-and-error approaches that often fail due to

two major reasons: (i) the lack of models able to describe the evolution of the material

as it degrades and erodes, and (ii) the difficulty to collect reliable experimental data

quantifying and characterizing this behavior. Theoretical models to predict polymer

degradation and erosion would seem to be important tools for a number of different

applications. If drug elution is to be part of the therapy, drug delivery profiles should

be programmable at the design stage. For load bearing implants, mechanical properties

and structural integrity of the implant as well as their evolution should be accounted for.

Because the implant is ultimately absorbed, structural breakdown and loss of function

must be predicted and carefully designed for.

Polymer degradation is the deleterious change in properties of the material due to

irreversible changes in its chemical structure. A biodegradable polymer is a polymer in

which the degradation is mediated at least partially by a biological system [35]. More

precisely, polymer degradation is the chain scission process that breaks polymer chains

down to oligomers and finally to monomers, ultimately resulting in a decrease of molec-

ular weight. Polymers degrade by several different mechanisms, depending on their

inherent chemical structure and on the environment conditions to which they are sub-

jected. The prevailing mechanism of biological degradation for synthetic biodegradable

aliphatic polyesters (the most commonly employed biodegradable polymers in the med-

ical such as polyglycolic acid and polylactic acid [16]) is scission of the hydrolytically

unstable backbone chain by passive hydrolysis. By tailoring the polymer backbone

with hydrolysable functional groups, the polymer chains become labile to an aqueous

environment and their ester linkages are cleaved by absorbed water. There are two key

factors that influence: (i) co-polymer composition and (ii) water uptake. Water adsorp-

tion, the first step of degradation is dependent on polymer hydrophilicity.

The diffusion of water into the polymer bulk and the chain scission reaction compete

against each other in the process of polymer erosion. Erosion is caused by degradation

and is the process of dissolution or wearing away of degradation byproducts, result-

ing in mass loss from the polymer bulk. Erosion is by far much more complex than

degradation inasmuch as the number of parameters that potentially might influence the

process is considerably larger. Two main modes of erosion can be systematized from

widely established empirical evidence [7]. If degradation is fast, the diffusing water is

absorbed quickly by hydrolysis and is hindered from penetrating deep into the polymer

bulk. In this case, degradation and consequently erosion are restricted to the surface

of the polymer, a phenomenon referred to as heterogeneous or surface erosion [45].
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This type of erosion changes if degradation is slower than the rate of diffusion of wa-

ter through the polymer. In this case, water cannot be absorbed quickly enough to be

hindered from reaching deep into the polymer and the reaction takes place through its

entire swollen bulk, a behavior which has been termed homogeneous or bulk erosion

[45]. Nevertheless, surface or bulk erosion modes are two extremes and the erosion of

a polymer usually shows characteristics of both.

Hydrolysis is a very intricate process that occurs at the molecular level, as a va-

riety of different scission pathways can occur simultaneously and concurrently [48].

Although the reactivity of each bond might be equal when considered individually,

the large number of repeating units and their inherent steric environment, weak links,

and branches may influence locally the rate of reaction. Ultimately, experiments with

gel permeation chromatography provide data to model the mechanism of degradation

[33, 34], and kinetic parameters are obtained from the evolution of experimentally ob-

tained molecular weight distributions. An approach pioneered by Kuhn [22] and Mon-

troll and Simha [31] employs combinatorial statistic to derive analytical solutions of

the evolution of molecular weight distribution assuming that bond scission can be de-

scribed with a known probability density function (e.g. equiprobable random scission,

central Gaussian, or parabolic) and only for some limited simple initial conditions. Un-

fortunately, the applicability of such elegant exact solutions to real systems is limited

essentially due to simplifying assumptions necessary for the analytical treatment of the

problem. A second technique to model polymer degradation relies on the system of dif-

ferential equations which describe the depolymerization rates of individual bonds that

upon integration yield the time evolution of the molecular weight distribution [4]. How-

ever, the complete kinetic scheme that includes all the individual rate constents for each

reacting bond could represent an enormous number of coupled differential equations

even for modest size macromolecules. A third common method employs Monte Carlo

simulations applied to populations of polymer chains [21, 9, 6], a versatile approach

that can technically overcome the simplifying assumptions needed on the others, but

realistic simulations may require an excessive amount of computational resources, re-

sults are usually subjected to large statistical errors, and may be in fact unnecessary

when compared with simpler approaches.

Erosion is a much more complex phenomenon to model, not only because of the in-

terplay between different physical mechanisms as well as due to the dramatic changes

that occur in the polymer as it erodes. The choice of effective modeling tools is, how-

ever, not straightforward, and two main approaches can be currently identified: models

based on differential equations that consider the erodible material as a continuum and

stochastic models that describe degradation and erosion as a probabilistic event (cf. [40]

for comprehensive review). In the scope of the deterministic approach, Heller and Baker

[17] pioneered with a simple model for degradation from bulk eroding polymers con-

sisting of steady state water diffusion coupled with a reaction equation describing the

kinetics of the degradation mechanism. Lee [25] proposed a simplified model for sur-

face erosion and drug release from polymer films based on the movements of two fronts,

a diffusion front and an erosion front. Thombre, Joshi, and Himmelstein [47, 20, 46]

proposed a comprehensive theory for drug release, water penetration, and erosion and
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corroborated the theoretical findings with experimental results. Similar methods based

on diffusion equations that account degradation and erosion in more complex systems

have been developed since [5, 26, 36]. On the other hand, stochastic models comple-

mented with Monte Carlo simulations to simulate surface or bulk eroding polymers

have been developed (cf. Zygourakis [50] and Gopferich and co-workers [13, 12, 14]).

Erosion is described as being a probabilistic event and the polymer bulk as a grid of pix-

els. By removing eroded pixels from the grid, the stochastic evolution of a polymeric

matrix was obtained and experimentally measurable parameters, such as porosity and

weight loss, were calculated. Erosion fronts and a distinction between erosion modes

were inferred from the results and their fit to experimental data allowed the determi-

nation of erosion rate constents. Although such models have shown good performance

because of their versatility to account a multitude of phenomena occurring due to degra-

dation and erosion (e.g. the formation of voids inside the polymer bulk as well as in the

treatment of moving erosion fronts), their associated computational cost is generally

much larger than with the solution of partial differential equations. Nonetheless, the

common difficulties associated with erosion modeling are still present: (i) the necessity

of choosing a priori the mode of erosion to model for, (ii) the difficulty arising from

modeling preferential degradation of the amorphous phase, and (iii), the most difficult

aspect, the incorporation of changes in the microstructure caused by erosion , which are

usually specified within phenomenological reasoning. While the first two aspects have

been tackled to some extent, the latter is still an open problem that will need a huge

amount of insightful theoretical modeling and careful experimental characterization.

The authors have introduced a general class of mixture models to study water up-

take, degradation, erosion, and drug release from degradable polydisperse polymeric

matrices [43]. The model is comprehensive starting from individual polymer scission

reaction all the way up to the macro-scale diffusion, allows for the systematic charac-

terization of the mass loss during the erosion process, and unifies both bulk and surface

extremes of the erosion mode spectrum. The mixture is characterized by a finite num-

ber of constituents describing the polydisperse polymeric system, i.e. each representing

collection of chains whose size belongs to a finite interval of degree of polymeriza-

tion. In order to account for water uptake and drug release, two additional constituents

(water and drug) constitute the mixture. Our approach is based on basic and widely es-

tablished physical laws: (i) constituents diffuse individually accordingly to Fick’s law

of diffusion, (ii) hydrolysis is accounted as chemical reactions that result in the pro-

duction/destruction of polymeric chains and water consumption, and (iii) balances of

mass of constituents yield coupled partial differential equations that govern the reaction-

diffusion system. Constitutive relationships characterizing the diffusivity of each con-

stituent and the scission reaction rates must be specified; once known, the problem is

closed and can be solved given initial and boundary conditions. Previously, we have

proposed several broad assumptions in the derivation of phenomenologically reasoned

constitutive relationships; nonetheless, their sufficient generality resulted in a general

class of mathematical models that describe the polymer degradation and erosion. Our

approach truly unified the behaviors of surface and bulk erosion and the nondimension-

alization of the governing equations allowed the identification of the Thiele modulus,
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the ratio between characteristic timescales of diffusion and reaction, which is a key pa-

rameter in conferring the shift between bulk or surface erosion behavior to the solution

of the equations.

Our model would have immediate direct impact in the design of biodegradable im-

plants if these phenomenologically derived general constitutive behaviors were better

characterized in regard to particular polymeric systems of interest. One possible strat-

egy would be to perform an unprecedented series of experiments with the goal of char-

acterizing the diffusivity of each constituent (water, drug, monomers, oligomers, etc) in

a changing media (as the network degrades and erodes). To overcome this unfeasible

plan, we have developed a coupling between the macroscale of the biodegradable poly-

mer bulk, which is governed by the reaction diffusion system, and the microscale of

chemical reactions and molecular diffusion, which with the aid of atomistic simulations

characterizes locally the diffusion of constituents in the polymer bulk accordingly to

its changing microstructure. Atomistic or molecular dynamics simulations cannot yet

provide further insight into the rates of reactions taking place, but on the other hand,

have been able to characterize the diffusion coefficient of molecules in a polymeric net-

work with quite success (cf. [18] and references therein). With these new tools, we

are able to provide unique information into the macroscale model in the specification

of the local diffusivities of mixture constituents. More precisely, the macroscale model

provides local molecular configurations (i.e. set of polymer chains and water ) as input

for the microscale model, which then outputs the local diffusivities of the constituents

at the macroscale level. Unfortunately, molecular dynamics simulations are extremely

expensive computationally, and hence this dynamic coupling strategy would not result

in a practical solution. To this end, we developed lumping strategies to parametrize the

range of local molecular configurations and statically couple both scales.

2 A mixture model for water uptake, degradation and ero-

sion from polymeric matrices

Following the lines of [43], we develop a general tridimensional model for the degra-

dation of PLA upon water absorption and subsequent hydrolysis. First, we describe the

nature of the model and its governing equations and then complement it with specific

initial and boundary conditions. The main difficulty consists in the definition of suitable

constitutive laws for the model coefficients. The novelty of the present work consists

in the application of atomistic simulation to estimate the most significant properties of

PLA along degradation, giving rise to a multiscale description of the material.

2.1 Macroscale governing equations for a polymer mixture

We describe a polydisperse polymeric network as a collection of different linear chains

of repeating units. Each chain is characterized by its degree of polymerization, x, de-

fined as the number of repeating units. The system is discretized into N number of

constituents by defining N mutually exclusive equidistent partitions Pi = [x̄i− x̄1/2, x̄i +
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x̄1/2[, for i = 1, . . . ,N, of length x̄1 of the degree of polymerization spectrum. Each

partition Pi represents the class of chains whose average degree of polymerization is x̄i.

Diffusion driven by negative density gradients is the driving force for mass trans-

port. To account for diffusion, we introduce a spatial coordinate x characterizing the

location of a particle of the mixture with volume dV . At each particle, water, drug, and

N polymeric constituents coexist. Since the mascroscale spans over the entire length

of the polymer matrix, external boundaries have to be taken into account. In this re-

spect, an open system is considered as water penetrates into the polymer matrix from

the outside aqueous environment and polymeric mass is lost to the exterior. The mass

balances for each individual constituent yield the system of reaction-diffusion equations

constituting the mathematical model.

Let ρi = ρi(x, t) be the partial density of chains of average degree of polymerization

x̄i in a representative control volume, dV , that corresponds to point x at time t and let

wi = ρi/∑i ρi be the weight fraction of chains of length x̄i. Let ρw(x, t) be the partial

density of water. We also denote with ρ̃ = ∑i ρi the partial density of all polymer

sub-fractions and with ρ = ρw + ∑i ρi the total density of the mixture. Finally, for

the forthcoming description, we denote with ϒ = (ρw,ρ1, . . . ,ρN) the vector of partial

densities of each component that completely identifies the state of the mixture, i.e. this

is the state space of the macroscale model. For notation cleanliness, we shall omit the

dependence on space and time (x and t) of partial densities.

Mass can be neither created nor destroyed, but in the present case, polymer chains

and water can diffuse in/out of dV through its boundary. Moreover, polymeric con-

stituents interconvert from one to another due to scission reactions. The mass balance

of each constituent in dV states that the time rate of change of mass existing in dV is

equal to the divergence of the diffusive flux plus time rates of production and/or destruc-

tion in chemical reactions. As dV → 0, mass balances of each polymeric constituent

yield the system of N reaction-diffusion equations

∂tρi = ∇ · (Di∇ρi)+
N

∑
j=1

Ai jρ j, for i = 1, . . . ,N (1)

where Di is the diffusivity of chains of average degree of polymerization x̄i and coeffi-

cients Ai j are the reaction coefficients corresponding to chain cleavage due to hydrol-

ysis. More precisely, a chain of average degree of polymerization x̄i can be cleaved at

j = 1, . . . , i−1 different scission locations (each composed of x̄1 individual polymeric

bonds) to yield chains of smaller average degree of polymerization, x̄ j and x̄i− j. All

i−1 possible outcomes of scission of a chain of degree of polymerization x̄i are

x̄i

ki, j
−→ x̄ j + x̄i− j, for i = 1, . . . ,N, j = 1, . . . , i−1

The depolymerization kinetics of populations of individual molecules can be described

by means of a system of ordinary differential equations (cf. [33, 34]). Let ni = ni(t)
denote the number of chains of average degree of polymerization x̄i existing at time t.

As dV → 0, the relationship between partial density ρi and number of molecules ni is
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ρi(x, t) = ni(x, t)x̄iM0/dV , where M0 is the molecular mass of one monomeric unit and

x̄iM0 is the molecular weight of polymer subfractions of length x̄i. In a closed system,

the rate of change of ni is given by,

ṅi = −
i−1

∑
j=1

ki, jni +
N

∑
j=i+1

(k j,i + k j, j−i)n j, for i = 1, . . . ,N.

Then, equation (1) is complemented by the following expressions:

Ai j =











0 if j < i

−∑
i−1
m=1 ki,m if j = i

(k j,i + k j, j−i)
x̄i

x̄ j
if j > i

The combination of equation (1) and (2) results in a multiscale description of polymer

degradation and erosion, as it combines a molecular description of chain scission at the

molecular level (second term on the right hand side of (1)) with macroscopic Fick’s law

of diffusion (first term of the right hand side of (1)).

Water diffuses in the polymeric matrix and hydrolysis is accounted as a sink of

water, i.e.

∂tρw = ∇ · (Dw∇ρw)− fw (2)

where ρw = ρw(x, t) and Dw are the partial density and the diffusivity of water. Reaction

term fw > 0 accounts for water consumption: one water molecule is consumed with

each scission reaction, i.e.

x̄1 ·

[

bond of scission

location j of chain x̄i

]

+H2O
ki, j
−→ scission event

The rate ki, j is the rate of reaction of scission location j composed of x̄1 bonds, hence

the rate of water consumption in the scission event is ki, j/x̄1. The rate of change of the

number of water molecules nw = nw(x, t) in a representative volume dV is given by

ṅw = −
N

∑
i=1

i−1

∑
j=1

ki, j

x̄1

ni

which, with the relationship between nw and ρw as dV → 0, ρw = nwMw/dV (where

Mw is the molecular mass of water), yields the water consumption due to the chemical

reaction in Eq.(6)

fw =
N

∑
i=1

i−1

∑
j=1

ki, j

Mw

M0x̄1

ρi

x̄i

2.2 Initial and boundary value problem

Boundary and initial conditions depend on the application that one has in mind. In

our case, we aim to model the coating of a medicated stent, which is a thin polymer
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layer covering the surface of a cardiovascular stent. For this reason, the geometry of the

polymer matrix can be thought of as a thin slab. Then, the governing equations can be

reduced to one spatial dimension, z, the coordinate across the thickness (z∈ [0,L] where

L is the coating thickness). The polymer network starts out dry, i.e. ρw(z,0) = 0 and the

initial state of the polydisperse polymeric system is homogeneous, i.e. independent of z,

and is characterized by an initial degree of polymerization distribution w0 = w0(x) and

an initial total (dry) polymer density ρ0 . The initial weight fraction of chains of average

degree of polymerization x̄i,wi are obtained with Eq. (1) and the initial conditions of

the polymeric constituents densities are set as ρi(z,0) = w0
i ρ0 for i = 1, . . . ,N. In what

follows, indexes 0 and ∞ will refer to the state of the mixture at t → 0 and t → ∞,

respectively.

At z = 0 we apply impermeable boundary conditions

∂zρw|z=0 = 0, ∂zρi|z=0 = 0

with the meaning that any constituent is not able to leave from the polymeric matrix

and penetrate the stainless steel bulk of the stent. At z = L, the polymer contacts sur-

rounding water or biological tissue. Water permeates through the interface according to

the following law,

−Dw∂zρw|z=L = πw(ρw|z=L −A)

where πw is the permeability of the interface to water molecules and A is a partition

coefficient (with A ∈ [0,1]), which accounts that water uptake increases as the polymer

erodes, leading to an eventual total replacement of the swollen network with a mixture

solely composed of pure water.

Proceeding similarly, boundary conditions for polymeric constituents are

−Di∂zρi|z=L = πiρi|z=L

The permeability πi of the polymer matrix to different polymer sub-fractions at the

interface with aqueous outside will be defined later on in order to make sure that the

boundary conditions for polymeric constituents shift from an approximation of a per-

fect sink condition for the smaller chains towards a no-flux condition for the larger

molecules. More precisely, smaller chains are readily dissolved in the surrounding wa-

ter or absorbed by the tissue when they reach the boundary, i.e. ρ1(L, t) ≃ 0, t > 0,

whereas the longer chains are unable to diffuse due to their size and entanglements in

the polymeric matrix; hence ∂zρN(L, t) ≃ 0, t > 0. In between, a shift occurs gradually

with both terms of −D∂zρi = πiρi having the same relevance for species of medium

degree of polymerization.

2.3 Constitutive laws

Constitutive relationships for the diffusivity of each constituent and for the reaction

rates must be specified. The mechanisms of diffusion and reaction are the only physical

mechanisms that need constitutive specification and once known, the model is closed

and can be solved.
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Diffusion depends on the nature of the constituent in question and on the local

characteristics of the mixture on which is diffusing. In the most general case this is

taken into account by the following expressions

Dw = Dw(ρw,ρ1, . . . ,ρN), Di = Di(ρw,ρ1, . . . ,ρN)

In the forthcoming sections, we will apply atomistic simulations of molecular diffusion

into a polymer mixture in order to provide a simplified characterization of such models.

To describe the permeability of the mixture at the interface with the external medium,

we assume that permeability and diffusivity are proportional. Then, the permeability

πw,πi are given by
πw

π0
w

=
Dw

D0
w

,
πi

π0
i

=
Di

D0
i

where π0
w and and D0

w represent the permeability and the diffusivity of water in a non-

degraded mixture, which will be provided by atomistic simulations. To determine the

reference permeability π0
i we apply again the proportionality between permeability and

diffusivity,

π0
i

π0
w

=
D0

i

D0
w

that combined with the previous expression gives,

πi = Di

π0
w

D0
w

The saturation of non degraded mixture with respect to water is modeled by condi-

tion is determined by A0 < 1 (that will be later determined according to data taken by

[18]). As erosion of the polymer at the interface leads to a decrease in the total polymer

density, denoted with ρ̃ = ∑i ρi, we propose the linear relationship

A = 1− (1−A0)
ρ̃|z=L

ρ∞
w

such that A → 1 when ρ̃|z=L → 0, which at saturation equilibrium results in a mixture

characterized by ρw → ρ∞
w and ρi → 0 for all i = 1, . . . ,N, i.e. the network was replaced

by pure surrounding fluid.

We finally take into account hydrolysis. One common tool to describe the local-

ization of the scission event along large chains is a scission probability density func-

tion, which distinguishes the likelihood of scission among scission locations in a chain

of average degree of polymerization x̄i, i.e. the relationships among ki, j with i fixed

and j ∈ 1,2, . . . , i−1. Some frequently encountered scission probability density func-

tions are: random, parabolic, and central scission (cf. [20, 21] for details). Aliphatic

polyesters degrade by passive hydrolysis and are usually characterized by random scis-

sion events. Random scission is defined with a constent probability density function
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along the length of the chain, i.e. ki,1 = ki,2 = · · ·= ki,i−1, for all i = 2, . . . ,N. Consider-

ing k as the rate of hydrolysis of the particular type of polymeric bond, all ki, j are given

by

ki, j = kx̄1, for i = 2, . . . ,N and j = 1, . . . , i−1

Hydrolysis happens due to the presence of water, hence its rate depends on the partial

density ρw. Because water might not be homogeneously distributed over the network,

the rate of reaction depends implicitly on space and leads to inhomogeneous degrada-

tion. Following similar studies (cf. [40]), random hydrolysis is a 1st order reaction with

water, i.e. the polymeric bond has reaction rate that follows a linear relationship with

partial density of water such that

k = k(ρw) = k̄ρw

where k̄ is a constent reaction rate. In such way, bilinear terms (each featuring ρw and

one ρi) appear in the reaction terms of Eqs. (1) and (2). Autocatalysis, i.e. when the

rate of scission depends on the presence of residual monomer, is not accounted with

this constitutive specification.

3 Molecular diffusion into polymeric networks

We aim to apply a protocol based on atomistic simulations to predict the water and poly-

mer diffusion as a function of the composition of the water/polymer mixture, charac-

terized by the coordinates in the state space ϒ = (ρw,ρ1, . . . ,ρN) previously introduced.

The diffusion coefficients are then passed to the macroscale model.

3.1 Generation and equilibration of the atomistic models of PLA

To generate atomistic models of PLA we have applied Materials Studio 4.4 (Accelrys,

Inc.) and the COMPASS force field [44]. The repeating unit of PLA is available as

standard model in Materials Studio. The polymeric chains with the desired length are

generated starting from the repeating units using the Build Polymers tool of Materials

Studio. Finally, we generate solvated amorphous bulk models containing PLA and

water using the Amorphous Cell tool of Materials Studio. The polymeric chains are

solvated in a periodic box with a total atom number varying from 6,000 atoms (for

quasi-dry systems) to 35,000 atoms (for highly solvated systems), as depicted in Figure

1

The initial geometries of the bulk models are refined following the procedure which

consists in a series of MD calculations at different temperature and ensembles in or-

der to obtain chain redistribution within the periodic cell [18, 10, 19, 11]. Specifically,

we perform a preliminary minimization followed by a sequence of nine MD simula-

tions (see Table 1). MD molecular dynamics simulations are carried using the Discover

module and the COMPASS force field implemented in Materials Studio. Nonbonding

interactions are computed using a cutoff for neighbor list at 1 nm, with a switching

function between 0.85 and 0.95 nm for Van der Waals and Coulomb interactions.
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Figure 1: Atomistic bulk model of quasi-dry PLA matrix (water molecules in blue

color).

We carefully checked that the potential energy, temperature, pressure and density

reached a stable value after each step of the equilibration procedure. The latest (#9)

simulation has been employed to validate the models by comparing the average density

during the NPT dynamics with the experimental one.

Finally, in order to obtain water and polymer diffusivity by means of an atom-

istic model of the polymer mixture, we select an ensemble of M (water or polymer)

molecules in the model and we compute their mean square displacement MSD(t). De-

noting with

〈r(t)2〉 =
1

M

M

∑
m=1

rm(t)2

the averaging over all the particles, the mean square displacement is defined as

MSD(t) = 〈|r(t)− r(0)|2〉

The diffusion coefficient D of water/polymer molecule is then calculated using Ein-

stein’s relation

D = lim
t→∞

MSD(t)/(6t)

Manipulating Einstein’s formula one easily obtain that for sufficiently large times log(6D)+
log(t) = log

(

MSD(t)
)

. Then, the realm of normal diffusion (also known as Fickian dif-

fusion) is reached when log
(

MSD(t)
)

is a linear function of time with unit slope. The

validity of this fundamental property is equivalent to say that the application of Fick’s

law to derive equation (1) and (2) is correct.
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Table 1: Summary of the simulation protocol applied to obtain equilibrated bulk model

of PLA matrices.

Simulation Ensemble Time Time step Temperature Pressure

#1 NVT 0.2 ps 0.1 fs 300 K -

#2 NVT 2 ps 1 fs 600 K -

#3 NVT 100 ps 1 fs 300 K -

#4 NPT 60 ps 1 fs 300 K 0 GPa

#5 NVT 20 ps 1 fs 750 K -

#6 NVT 20 ps 1 fs 600 K -

#7 NVT 20 ps 1 fs 450 K -

#8 NVT 100 ps 1 fs 300 K -

#9 NPT 100 ps 1 fs 300 K 0 GPa

4 Multiscale analysis

We formulate here different strategies for the interaction of the micro and the macro-

scale models. We start from the algorithms that most tightly couple the two models and

we progressively simplify them, in order to balance the accuracy of the methodology

with a reasonable computational cost.

4.1 Input/Output description of the models

According to the previous derivation, the macroscale model for polymer mixtures is not

computable, because it needs to determine water and polymer diffisivities in the mixture

to close governing equations and boundary conditions. More precisely, the input/output

structure of the macroscale model can be described as follows:

Input: given Dw(ρw,ρ1, . . . ,ρN) and Di(ρw,ρ1, . . . ,ρN)

Compute: for any (z, t) solve the following problem































∂tρw = ∇ ·
(

Dw∇ρw

)

− k̄ Mw

M0x̄1
∑

N
i=1

i−1
i

ρwρi,

∂tρi = ∇
(

Di∇ρi

)

− (i−1)k̄x̄1ρwρi +2k̄x̄1ρw ∑
N
j=i+1

i
j
ρ j,

∂zρw|z=0 = 0, −Dw∂zρw|z=L = πw(ρw|z=L −A)

∂zρi|z=0 = 0, −Di∂zρi|z=L = πiρi|z=L

ρw(z,0) = 0, ρi(z,0) = w0
i ρ̃0

(3)

Output: determine the mixture partial densities: ρw(t,z),ρ1(t,z), . . . ,ρN(t,z) that can

be further post-processed to compute other indicators that characterize the mix-

ture composition.

Reminding that ϒ = (ρw,ρ1, . . . ,ρN) denotes the state variables of the model, the

macroscale model can be described by means of the following input-output scheme:

Dw(ϒ),Di(ϒ)
macro
=⇒ ϒ(t,z)
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Concerning the microscale model, we observe that, since the dimension of the state

space ϒ(t,z) = (ρw(t,z),ρ1(t,z), . . . ,ρN(t,z)) is considerably large, namely N + 1, it

would be a challenging task to design an ensemble of atomistic simulations sufficient to

characterize constitutive laws of type Dw = Dw(ρw,ρ1, . . . ,ρN), Di = Di(ρw,ρ1, . . . ,ρN).
By consequence, we first introduce a lumped state space, identified by a vector valued

function F : R
N+1 → R

M with M ≤ N +1, such that it is possible to initialize an atom-

istic PLA model on the basis of F (ϒ) solely. This assumption will remarkably simplify

the interacton between the micro and the macro scale models. According to the results

reported in the forthcoming sections, we select a the follwing lumped state space with

M = 2:

1. the degree of swelling,

F1(ϒ(t,z)) = φw(ϒ(t,z)) =
ρw(t,z)

ρw(t,z)+∑
N
i=1 ρi(t,z)

which describes the ratio of water in the entire mixture.

2. the (weight) average degree of polymerization,

F2(ϒ(t,z)) = x̄(ϒ(t,z)) =
N

∑
i=1

wi(t,z) · x̄i

which describes the average size of polymeric chains in the mixture and always

satisfies x̄1 ≤ F2 ≤ x̄N .

We notice that this simplification involves some loss of information. On one hand,

according to degradation of polymeric chains, a polymer mixture is generally polydis-

perse, i.e. it is composed by a collection of several sub-fractions. On the other hand,

the selected lumped state space is not able to represent polydispersity and it replaces a

given distribution of sub-fractions with monodisperse mixture of equivalent average de-

gree of polymerization. Mathematically speaking, this corresponds to say that function

F is surjective, for any M < N +1. In this framework, we sketch below the input/output

description of the microscale model:

Input: given (φw, x̄) generate the corresponding atomistic model of PLA.

Compute: select some tracers molecules (either water or polymer) to evaluate molec-

ular diffusion. Then, perform MD simulations to compute their trajectories r(t)
over a sufficiently large time span. Finally perform the mean square displace-

ment analysis combined with Einstein’s relation in order to estimate the molecu-

lar diffusivity Dw(φw, x̄), Di(φw, x̄) of the water or polymer tracers in a given PLA

mixture.

Output: the model provides the molecular diffusivity of water and polymer molecules,

i.e. independent values Dw(φw, x̄), Di(φw, x̄), into a given PLA/water mixture.

13



A synthetic input/output relation for the microscale model reads as follows:

F (ϒ)
micro
=⇒ Dw(F (ϒ)), Di(F (ϒ))

that will be complemented with the application of the macroscale model in the lumped

state space,

Dw(F (ϒ)), Di(F (ϒ))
macro
=⇒ ϒ =⇒ F (ϒ)

We finally notice that the set up of the microscale model is pointwise or local, that is it

applies to any single point (t,z) of the macroscale domain.

4.2 Multiscale coupling strategies

First, we address a fully coupled algorithm, that best exploits the interaction among

micro and macro-sacles. Let tn the time levels corresponding to time discretization of

the macroscale model, and let z j ∈ [0,L] the nodes associated to space discretization.

For any (tn,z j), the algorithm consists in the following iterative steps for k = 1, . . .:

1. Set a guess for the state of the system i.e. ϒ(0)(tn,z j).

2. Solve the microscale model:

F (ϒ(k−1)(tn,z j))
micro
=⇒ D

(k)
w (tn,z j),D

(k)
i (tn,z j)

3. Solve the macroscale model:

D(k)(tn,z j), D
(k)
i (tn,z j)

macro
=⇒ ϒ(k)(tn,z j)

Then, compute F (ϒ(k)(tn,z j)).

Reminding that the computational cost of a single solution of the microscale model

is considerable, because of the complexity of a polymeric network, this algorithm is

not yet affordable with standard computational devices. Furthermore, we notice that

the cost of this algorithm exponentially increases with the number of space dimen-

sions accounted by the macroscale model. Indeed, realistic applications in three space

dimensions would be practically unachievable. For this reason, we consider the fol-

lowing simplification, which can be classified as a time staggered and space averaged

coupled algorithm. As it will be discussed later on, such simplification is acceptable

for bulk eroding polymers, where spatial gradients of densities are almost negligible,

i.e. ∇xϒ(t,x) ≃ 0 for any t > 0 and for any x ∈ Ω. Let us define the following spatial

average for F :

F (ϒ(t,z)) =
∫ L

0
F (ϒ(t,z))dz

Then, given the initial state of the system i.e. ϒ(t0,z), for any n > 0 we perform the

following steps:
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1. Solve the microscale model at time tn−1:

F (ϒ(tn−1,z))
micro
=⇒ Dw(tn−1),Di(t

n−1)

2. Advance in time and solve the macroscale model at time tn:

Dw(tn−1),Di(t
n−1)

macro
=⇒ ϒ(tn,z j)

Then, compute F (ϒ(tn,z)).

We notice that this algorithm considerably reduces the number of calls to the microscale

model and makes it independent on the number of space dimensions of the macroscale

equations.

In alternative to the previous algorithms, which turn out to be computationally

expensive in any case, we propose the following static coupling strategy to feed the

macroscale model with data provided by microscale sumulations. For the sake of sim-

plicity, we only refer to a generic diffusivity D(ϒ) that stands for either Dw(ϒ) or Di(ϒ).
Let {ϒp}

P
p=1 be different mixture configurations and let D = {D(F (ϒp))}

P
p=1 be the

vector defined as follows,

F (ϒp)
micro
=⇒ D(F (ϒp))

We aim to determine a function D(F (ϒ)) that suitably approximate its discrete analog

D ∈ R
P. First, a parametrization for D with polynomials is obtained by defining as

q ∈ N
M=2 a multi-index with q = ∑k=1,2 q and

D(F ) = D
a
(

Q

∑
q=0

aqF
q1

1 F
q2

2

)

where a is the vector of coefficients {aq}
Q
q=1. For the well posedness of the forthcoming

algorithm we have to make sure that P ≥ Q. Then we introduce a vector function

Da : R
Q → R

P defined as Da = {Da(F (ϒp))}
P
p=1 such that,

Da(F (ϒp)) = D
a
(

Q

∑
q=0

aqF
q1

1 (ϒp)F
q2

2 (ϒp)
)

Then, the optimal parameters a such that Da best fits the data D are determined as

follows,

a∗ = argmina‖D−Da‖2

In such way we determine an explicit representation of functions Dw(ϒ) and Di(ϒ)
representing a closure of the macroscale model (3) that is now completely solvable.
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Table 2: Density of the water/polymer mixture in g/cm3 for different average degree of

polymerization, x̄, (colums) and % of water content, φw, (rows).

φw

0% 20% 40% 60% 80% 100%

x̄i

600 1.1703 1.1424 1.0836 1.0566 1.0177 0.9871

300 1.1763 1.1415 1.0984 1.0623 1.0161 0.9871

150 1.1634 1.1419 1.0976 1.0582 1.0168 0.9871

75 1.1677 1.1482 1.1033 1.0536 1.0170 0.9871

30 1.1815 1.1422 1.0953 1.0570 1.0175 0.9871

1 1.0497 1.0196 1.0071 0.9953 0.9866 0.9871

5 Computational analysis of polymer degradation

5.1 Computational results of the microscale model

The diffusion of water in PLA matrices is modeled considering monodisperse systems

with different level of PLA degradation and swelling (i.e., water content). We generated

30 different molecular models of PLA matrices, characterized by different degree of

polymerization (monodisperse systems with 600, 300, 150, 75, 30 and 1 monomers per

chain, respectively) (see Fig. 2) and different degree of swelling (with 2%, 20%, 40%,

60% and 80% of water). Additionally, we studied a system containing pure water for

validating reasons.

Figure 2: Sketch of the quasi-dry PLA matrices (2% water) studied in this work, from

non degraded matrix (A) to partially degraded (B and C) and highly degraded (D).

As a preliminary validation of the atomistic models we analyze the density of the

quasi-dry PLA matrices, see Table 2, showing that the predicted density (≃ 1.18g/cm3)

is close to experimental density of PLA (1.24g/cm3). On the other hand, the final

density of the pure water systems (0.98g/cm3) well matches the water density. For the

systems with intermediate water content the density decrease linearly from the density

of quasi-dry PLA to the density of pure water.

We then proceed with the calculation of the water diffusivity in PLA matrices by
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Table 3: Diffusion coefficient of water (10−6cm2/s) with respect to monomers per chain

(colums) and % of water content (rows).

φw

2% 20% 40% 60% 80% 100%

x̄i

600 0.41 3.39 13.5 24.2 36.8 42.0

300 0.42 4.97 13.2 24.5 33.9 42.0

150 0.40 4.56 13.8 22.2 35.6 42.0

75 0.47 2.79 12.0 23.9 34.7 42.0

30 0.39 3.56 12.3 24.2 35.8 42.0

1 0.51 4.38 16.4 25.9 36.8 42.0

means of in silico experiments run for a simulated time of 7 ns. As a validation of

the approach we calculated the self diffusion coefficient of water, obtaining a value of

42.0 · 10−6cm2/s, close to the experimental value (22.7 · 10−6cm2/s). The analysis of

the water diffusivity values in PLA (see Table 3) shows that the diffusivity coefficient

spans two orders of magnitude (from 10−7 to 10−5cm2/s) and is mainly affected by

the water content. Indeed, the diffusion coefficient increases almost linearly with the

degree of swelling, while it is little or no affected by the degree of polymerization. It

is important to observe that the Einstein relation holds only if the regime of normal

diffusion is reached. Reminding that normal diffusion is reached when log(MSD(t))
is an affine linear function with respect to log(t) with unit slope, we observe that the

normal diffusion of water is reliably reached during the data production runs of 7 ns,

since the aforementioned slope ranges from 0.87 to 1.00. Consequently, the diffusivity

coefficients obtained for water transport in the polymer matrix can be assumed to be

reliable.

As similar procedure may be applied to calculate Di(φw, x̄), resorting to a Table

similar to 3 for any i = 1, . . . ,N. Although all aforementioned simplifications, this task

requires a large number of microscale simulations. To fulfill this task with a moderate

computational cost, we have initially performed the simpler investigation of calculating

the matrix of values Di(φw, x̄i). This corresponds to estimate the diffusivity of a polymer

chain of length x̄i into a mixture of the same average degree of polymerization.

The results (see Table 4) show that the polymer diffuses much less than water due to

its larger molecular weight. The exceptions are the systems with single PLA monomers

(highly degraded matrices) for which a much higher PLA diffusion constant is obtained.

This is likely due to the low molecular weight of PLA monomers. The analysis of the

results for PLA diffusivity shows that the polymer diffusion coefficient depends on

the swelling, while it is not affected by the polymer degradation, showing a behavior

similar to water transport. This consideration allows us to assume that the diffusivity of

polymer sub-fractions of length x̄i into a mixture of average degree of polymerization

x̄ 6= x̄i may be very similar to the sub-fraction of length x̄i in itself. In practice, we

conclude that Di(φw, x̄i) ≃ Di(φw, x̄) for any x̄1 ≤ x̄ ≤ x̄N . This is equivalent to say that
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Table 4: Diffusion coefficient (10−8cm2/s) of PLA chains of length x̄i into themselves

(columns) with respect to % of water content (rows).

φw

2% 20% 40% 60% 80% 100%

x̄i

600 0.33 1.3 3.5 3.7 42.5 -

300 0.50 1.5 5.2 4.8 35.2 -

150 0.45 0.8 8.4 6.8 38.6 -

75 0.37 1.2 5.0 6.8 24.0 -

30 0.51 1.6 3.8 6.8 27.6 -

1 480 530 540 590 650 -

Table 4 represents the diffusivity of polymer subfraction x̄i in all possible water/polymer

mixtures.

Finally, we must note that normal diffusion is not reached for the polymer diffu-

sivity, since the slope of log(MSD(t)) presents values below 1 (with the exception of

PLA monomers, for which the normal diffusion is instead reached). This shows that

nanoseconds time scales are insufficient to reach the normal diffusion regime for large

molecules. Consequently, the PLA diffusivity coefficients can only be assumed as trend

indicators or top range values, since coefficients calculated out of the normal diffusion

regime provide higher values.

5.2 Results and validation for the macroscale model

As proposed in [43] to perform numerical simulations it is convenient to rewrite prob-

lem (3) in non dimensional form. First, the longest PLA chains that we consider feature

x̄N = 600 monomers,the shortest x̄1 = 15 units and the entire spectrum is subdivided

into N = 40 classes. To this purpose, we select the polymer thickness L = 10µ m as

the characteristic length, τ = k̄ρ∞
w s as the characteristic time, D0

w = 4.1× 10−7 cm2/s

as reference diffusivity and finally ρ∞
w = 0.98, ρ0 = 1.18 g/cm3 as the density of pure

water and non degraded PLA respectively. Then, without change of notation, the non-

dimensional form of equations (3) reads as follows,































∂tρw = Λ∇ ·
(

D∇ρw

)

−K ∑
N
i=1

i−1
i

ρwρi,

∂tρi = Λ∇
(

Di∇ρi

)

− (i−1)x̄1ρwρi +2x̄1ρw ∑
N
j=i+1

i
j
ρ j,

∂zρw|z=0 = 0, −Dw∂zρw|z=L = Γπw(ρw|z=L −A)

∂zρi|z=0 = 0, −Di∂zρi|z=L = Γπiρi|z=L

ρw(z,0) = 0, ρi(z,0) = w0
i ρ̃0

(4)
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where the diffusivity of water and polymer are determined by atomistic simulations, as

previously described, while the non-dimensional numbers

Λ =
D0

w

L2k̄ρ∞
w

, K =
Mwρ0

M0x̄1ρ∞
w

, Γ =
Lπ0

w

D0
w

, (5)

We estimate the Thiele number as Λ = 7× 104, where k̄ = 5× 10−2 day−1 is taken

from [43] and references therein, which confirms that PLA is a bulk eroding polymer,

Γ = 10−3 with the assumption π0
w/D0

w = 1, K = 0.0042 with x̄1 = 15, M0 = 90, Mw =
18g/mol are the molecular weights of PLA and water respectively. Finally, the satura-

tion of water into dry polymer is estimated by [41] as 1g water/g PLA, i.e. A0 = 0.5%.

For the estimation of the diffusivity of water and polymer with respect to the degree

of swelling φw and the average degree of polymerization x̄, we have applied the static

multiscale coupling strategy previously described. In particular, for water we obtain,

Dw(φw, x̄) = −3.524+92.974φw +0.0137x̄−0.115φwx̄+17.540φ 2
w

−0.0000213x̄2 +0.0916φ 2
wx̄+0.000183φwx̄2 −0.000142φ 2

wx̄2

For the diffusivity Di we have considered a slightly different approach. Denoting with

Di the data-set relative to Table 3 and with Da
i the parametrized function to be estimated,

we have solved the following least square problem,

a∗ = argmin
a

‖ log(Da
i −Di)‖

As a result of that we obtain,

Di(φw, x̄) = exp(−4.531+5.483φw +0.000642x̄−0.00074φwx̄−0.693φ 2
w

−0.00000115x̄2 +0.002φ 2
wx̄−0.000004φwx̄2 +0.000005φ 2

wx̄2)

that ensures that Di(φw, x̄) is always positive. A visual comparison of the interpolants

Dw(φw, x̄),Di(φw, x̄) with the corresponding control points, that are entries of Tables 3

and 4 respectively, is reported in Figure 3.

The solution of problem (4) is provided by numerical approximation schemes. In

particular, we have exploited Lagrangian finite elements for the space discretization,

by resorting to a semi-discrete problem that has been fully discretized with backward

finite difference schemes to advance in time. For further details, we refer to [39, 15].

The main difficulty in the approximation of the problem at hand consists in the efficient

solution of the nonlinear system of equations arising from the fully discrete scheme. To

this aim, we have applied the damped Newton method proposed in [8].

The results of numerical simulations for

ρw(t,z), ρ̃(t,z) = ∑
i

ρi(t,z), ρ40
31 =

40

∑
i=31

ρi(t,z), ρ10
1 =

10

∑
i=1

ρi(t,z)

are reported in Figure 4. Depending on the value of the Thiele modulus, Λ, different

modes of degradation and erosion occurred. For PLA Λ = 17000 diffusion occurs at a
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Figure 3: A visual comparison of Dw(φw, x̄),Di(φw, x̄) with the entries of Tables 3 and

4 respectively. The control points are visualized with dots.

much faster rate than the chemical reaction and water have saturated the polymer across

the entire thickness before significant scission takes place (Figure 4 top-left). Polymeric

byproducts are produced almost homogeneously across the thickness of the coating and

their consequent diffusion is responsible for conferring bulk erosion characteristics to

the behavior of the reaction-diffusion system (Figure 4 bottom-left). Polymeric density

ρ̃ decreases in a homogeneous fashion across the coating as smaller chains diffuse away

(Figure 4 top and bottom-right). Such qualitative interpretation of polymer degradation

can be profitably complemented with the analysis of the evolution of the system in the

lumped state space (φw, x̄), reported in Figure 5. It shows that, because of fast water

absorption and subsequent hydrolysis, the average degree of polymerization x̄ quickly

decreases and the water content of the mixture φw progressively increases. At the end

of the process, most of the polymer in the mixture is in the range of small sub-fractions

as confirmed by Figure 4 bottom-left.

Further information is obtained by analyzing how the mean value of the partial

density of water and polymer, respectively defined as follows,

ρ̄w(t) =
1

L

∫ L

0
ρw(t,z)dz, ¯̃ρ =

1

L

∫ L

0
ρ̃(t,z)dz

For a bulk eroding polymer such diagrams are expected to feature a sigmoid shape as

confirmed by the results, reported in Figure 6.

Finally, we observe that the combination of microscale with macroscale models

allows us to perform a quantitative validation, which is based on the comparison of

the total density of the water/polymer mixture along the degradation process. On one

hand, the microscale model provides, beside diffusivity, the total density of the mixture

for different configurations of the system in the lumped state space, i.e. for different

combinations of (φw, x̄). The results are reported in Table 2. On the other hand, the

macroscale model is capable to represent how the mean value of total mixture density
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Figure 4: The non-dimensional partial densities ρw(t,z), ρ̃(t,z) = ∑i ρi(t,z) are re-

ported on top, while ρ10
1 = ∑

10
i=1 ρi(t,z), ρ40

31 = ∑
40
i=31 ρi(t,z) are depicted at the bottom.

The abscissa represents the non-dimensional coordinate along the coating thickness, z,

and the time evolution is indicated with the arrows on the right of each picture.

evolves in the lumped state space, that is

ρ̄(φw, x̄) =
∫ L

0
ρ
(

φw(t,z), x̄(t,z)
)

dz

Such micro and macro-scale data are only indirectly correlated, because the macroscale

model was fitted on the diffusivity provided by atomistic simulations. By consequence,

their comparison represents a significant and quantitative indicator of the multiscale

model capability to represent polymer degradation. In Figure 7, we represent on the left

a biquadratic interpolation of the density dataset of Table 2 where the control points are

depicted with dots. On this surface, we superpose the evolution of ρ̄(φw, x̄) computed

with the macroscale model. The agreement is rather satisfactory, as also confirmed by

the transverse section at x̄300 of Figure 7 (left), which is reported on the right.
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