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Abstract

We consider incompressible flow problems with defective boundary con-
ditions prescribing only the net flux on some inflow and outflow sections of
the boundary. As a pradigm for such problems, we simply refer to Stokes
flow. After a brief review of the problem and of its well posedness, we
discretize the corresponding variational formulation by means of finite ele-
ments and looking at the boundary conditions as constraints, we exploit a
penalty method to account for them. We perform the analysis of the method
in terms of consistency, boundedness and stability of the discrete bilinear
form and we show that the application of the penalty method does not af-
fect the optimal convergence properties of the finite element discretization.
Since the additional terms introduced to account for the defective bound-
ary conditions are non local, we also analyze the spectral properties of the
equivalent algebraic formulation and we exploit them to set up an efficient
solution strategy. In contrast to alternative discretization methods based
for instance on Lagrange multipliers accounting for the constraints on the
boundary, the present scheme is particularly effective because it only mildly
affects the computational cost of the numerical approximation. Indeed, it
does not require neither multipliers nor sub-iterations or additional adjoint
problems with respect to the reference problem at hand.
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1 Introduction

Many fluid dynamics problems arise in unbounded domains, but the application
of numerical approximation techniques often require to restrict to a bounded
region. For this reason, artificial boundaries and artificial boundary conditions
must be introduced, as illustrated in the seminal work by Heywood, Rannacher
and Turek [1]. This difficulty arises for a wide spectrum of engineering appli-
cations, in particular we mention computational hemodynamics [2, 3, 4, 5, 6].
In this context, one of the effective techniques to provide artificial boundary
conditions consists to prescribe the net flux on the inflow and outflow sections
of the truncated domain. Such conditions are defective because the full velocity
profile may not be available on these sections. As a result of that, to obtain
a well posed problem, additional conditions on the stresses are mandatory. In
alternative, see [1, 2], one could prescribe the mean pressure over the artificial
sections. Although the variational formulation of the defective net flux problem
can be easily casted into a standard framework [1], such non standard boundary
conditions require a special numerical treatment. Since this difficulty does not
arise for the mean pressure problem, see [2], we restrict here to the net flux
conditions.

Following the seminal work of Babuska for the alternative treatment of essen-
tial conditions for second order elliptic problems, see [7], an effective possibility
proposed and analyzed in [2] and later in [3, 4] consists in accounting for the
constraints at the artificial boundaries by means of Lagrange multipliers. It has
been proved that this technique is very flexible for the purposes of computational
hemodynamics, but it considerably increases the computational cost of the nu-
merical approximation, see in particular [3]. More recently, a new strategy based
on the satisfaction of the boundary constraints by means of a control problem
has been proposed in [6]. This approach seems to be extremely general and
flexible, but it involves the iterative solution of the reference problem with an
adjoint problem. As a consequence of that, the overall cost of the computation
might increase remarkably.

Getting inspiration from the case of elliptic equations with essential boundary
conditions, we address the application of the classical method by Nitsche, i.e. the
penalty method, see [8, 9, 10], to Stokes problem with net flux defective boundary
conditions. We will show that this technique, applied in the framework of the
finite element method, leads to a well posed discrete problem that is consistent,
stable and convergent with the optimal convergence properties of the selected
finite elements. We will also analyze the spectral properties of the corresponding
algebraic problem, propose a convenient solution strategy and finally show that
at the computational level the penalty method turns out to be more effective
than the application of the Lagrange multipliers, because the computational cost
of the former is almost equivalent to the solution of a Stokes problem with full
essential (Dirichlet) boundary data.

Although not addressed here, the present technique can be straightforwardly
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applied to Oseen or Navier-Stokes equations in the steady or time dependent
cases. From a wider perspective, it could also be useful to set up multiscale
methods, designed for instance to account of the arterial peripheral resistances
by means of lumped or one-dimensional reduced models, see [2, 5].

2 Problem setting

Let Ω ⊂ R
d be a possibly convex polygon/polyhedron with d = 2, 3. We aim to

prescribe only the average of the velocity field u on a finite number of subsets
of the boundary that is denoted by Γk ⊆ ∂Ω with measure |Γk|, where k =
1, . . . , N and Γ = ∪N

k=1Γk. For simplicity, we address the case of homogeneous
Dirichlet boundary conditions on ∂Ω\Γ, but the present treatment can be easily
generalized to include Neumann conditions. To avoid confusion, we denote with
L2(Ω) := [L2(Ω)]d and H1(Ω) := [H1(Ω)]d the usual Sobolev spaces for vector
valued functions.

Following [1], the Stokes problem with vector defective boundary conditions is
defined as follows: given f ∈ L2(Ω) and N vectors Uk ∈ R

d such that
∑N

k=1(Uk ·
n)|Γk| = 0 to satisfy mass balance, we aim to find a couple of functions (u, p)
and N vectors ck ∈ R

d such that






−∇2u + ∇p = f , ∇ · u = 0, in Ω,

u = 0, on ∂Ω \ Γ,
1

|Γk|

∫
Γk

u = Uk, pn −∇u · n = ck on Γk, k = 1, . . . , N,

(1)

where (·) denotes both the standard scalar product and the matrix-vector mul-
tiplication, while n is the outer unit normal vector with respect to ∂Ω. The
more usual formulation with scalar defective boundary conditions will be briefly
discussed later on. In the case of non homogeneous boundary data on Γk, we
introduce suitable lifting vector functions wk ∈ H1(Ω) with ∇·wk = 0 such that

1
|Γk|

∫
Γk

wk = 1,
∫
Γk

wj = 0 for k 6= j and wk = 0 on ∂Ω \ Γ, being 1 ∈ R
d the

vector with unit components and 0 the null vector. To address the vatiational
formulation of (1) we apply divergence-free spaces. More precisely, we define

V :={v ∈ H1(Ω) : v|∂Ω\Γ = 0},

V0 :={v ∈ V :

∫

Γk

v = 0, ∀k},

V0
div :={v ∈ V0 : ∇ · v = 0}.

Let us multiply (1) by v ∈ V0
div and integrate over Ω. By means of Green’s

formula we obtain,
∫

Ω
∇u : ∇v +

∑N
k=1

∫

Γk

(pn −∇u · n) · v =

∫

Ω
f · v, ∀v ∈ V0

div,

∫

Γk

(pn −∇u · n) · v =

∫

Γk

ck · v = ck ·

∫

Γk

v = 0, ∀v ∈ V0
div.
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Then, applying the change of variable u0 = u − w, being w(i) =
∑N

k=1 U
(i)
k w

(i)
k

with i = 1, . . . , d, the variational formulation of problem (1) requires to find
u0 ∈ V0

div such that

a(u0,v) :=

∫

Ω
∇u0 : ∇v = F (v) :=

∫

Ω
f · v −

∫

Ω
∇w : ∇v, ∀v ∈ V0

div. (2)

2.1 Existence and uniqueness of a solution

Let ‖v‖0,Σ, ‖v‖1,Σ and |v|1,Σ be the L2 norm, H1 norm and seminorm on Σ,
respectively, where Σ is a d or (d − 1)-dimensional subset of Ω. We also denote
with (u,v)Σ the L2 inner product over Σ. Furthermore, for the ease of notation
we introduce a symmetric bilinear operator and its corresponding seminorm,

〈u,v〉Σ :=
1

|Σ|

( ∫

Σ
u
)
·
( ∫

Σ
v
)
, 〈v〉2Σ := 〈v,v〉Σ .

For the analysis of problem (2) we proceed by means of the Lax-Milgram
Lemma. In this context, we will make use of the following Poincaré-Friedrichs
inequality that we address here for vector valued functions, for notational con-
venience.

Property 2.1 For all v ∈ H1(Ω), Γ ⊆ ∂Ω with |Γ| > 0 there exists a positive
constant CPF such that

‖v‖2
0,Ω ≤ CPF

(
|v|21,Ω + 〈v〉2Γ

)
. (3)

Owing to (3), we prove that (2) is well posed independently of the conditions
enforced on the complementary part of Γ. We will first prove the existence of a
velocity field in u ∈ V0

div. The existence of a corresponding pressure p ∈ Q :=
L2

0(Ω) := {q ∈ L2(Ω) :
∫
Ω q = 0} follows from standard arguments, for which we

refer to [13].

Corollary 2.2 Problem (2) admits a unique solution.

Proof We verify that a(·, ·) is coercive in V0
div, endowed with the H1 norm,

a(v,v) = |v|21,Ω +
∑N

k=1 〈v〉
2
Γk

≥ 1
2 min

[
1, 1

CPF

]
‖v‖2

1,Ω, ∀v ∈ V0
div.

Owing to the Cauchy-Schwarz inequality, it is straightforward to show that a(·, ·)
is continuous and that F (·) is a linear and bounded functional in H1(Ω). The
result follows from the application of the Lax-Milgram Lemma in V0

div. �
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2.2 Additional properties

We notice that problem (2) can be equivalently reformulated for velocity-pressure
couples. Let W := V ×Q and W0 := V0 ×Q be the natural spaces for the weak
solution of (1), where Q := L2

0(Ω) denotes the subspace of functions q ∈ L2(Ω)
with zero mean value over Ω. Let us introduce c±

(
(u, p) , (v, q)

)
such that

c±
(
(u, p) , (v, q)

)
:= a(u,v) + b(p,v) ± b(q,u),

b(p,v) := − (p,∇ · v)Ω , ∀(u, p), (v, q) ∈ W.

Then, setting K(v, q) := F (v) for any (v, q) ∈ W0, problem (2) is equivalent to
find (u0, p) ∈ W0 such that,

c±
( (

u0, p
)
, (v, q)

)
= K(v, q), ∀(v, q) ∈ W0, (4)

where the sign (+) or (−) in c± (·, ·) is indifferent with respect to the well
posedness of (4), but it determines the following properties that will be useful
in the sequel.

Lemma 2.3 The bilinear form c+ (·, ·) is symmetric and c− (·, ·) is semi-definite
in W.

Proof Since a(·, ·), defined in (2) is symmetric, it is straightforward to verify
that c+

(
(u, p) , (v, q)

)
= c+

(
(v, q) , (u, p)

)
. Finally, owing to Corollary 2.2, we

obtain c−
(
(v, q) , (v, q)

)
≥ C‖v‖2

1,Ω, i.e. c− (·, ·) is semi-definite in W. �

Lemma 2.3 confirms that problem (1) is self-adjoint. To conclude, we assume
that problem (4) is regularizing.

Hypothesis 2.4 Given g ∈ L2(Ω), let (u0
g , pg) be the solution of (4) with

K(v, q) := (g,v)Ω. Then (u0
g , pg) ∈

(
H2(Ω) ∩ V0

)
×

(
H1(Ω) ∩ Q

)
and the

following a-priori estimate holds,

|||(u0
g , pg)|||∗ . ‖g‖0,Ω, ∀g ∈ L2(Ω), |||(u0

g , pg)|||
2
∗ := ‖u0

g‖
2
2,Ω + ‖pg‖

2
1,Ω. (5)

Given g ∈ L2(Ω), let (z0
g , rg) ∈ W0 be the weak solution of the adjoint problem

with respect to (4), that is the solution of

c+
(
(v, q) ,

(
z0

g , rg

) )
= (g,v)Ω , ∀(v, q) ∈ W0. (6)

The following result will be useful in the sequel.

Lemma 2.5 If assumption 2.4 holds true, then problem (6) is also regularizing.

Proof The result is straightforward since problem (4) with c+(·, ·) is self-adjoint
and regularizing. �
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Remark We notice that there exists a similar (but not equivalent) formulation
of problem (1). It consists to prescribe only the flow rates on Γk, instead of the
mean value of the velocity vector. By consequence, it leads to scalar defective
boundary conditions. The corresponding Stokes problem is defined as follows:
given f ∈ L2(Ω) and N constants Uk such that

∑N
k=1Uk|Γk| = 0, we aim to find

a function u and N constants ck,






−∇2u + ∇p = f , ∇ · u = 0, in Ω,

u = 0, on ∂Ω \ Γ,
1

|Γk|

∫
Γk

u · n = Uk, pn −∇u · n = ckn on Γk, k = 1, . . . , N.

(7)

Proceeding as in the case of vector defective conditions, the variational formu-
lation of problem (7) requires to define V̂0

div := {v ∈ V : ∇ · v = 0,
∫
Γk

v · n =

0, ∀k} and to find û0 ∈ V̂0
div such that

a(û0,v) = F (v), ∀v ∈ V̂0
div. (8)

However, when ∂Ω \ Γ = ∅, problem (8) might be ill-posed. Indeed, we observe
that (3) would not be true if only the normal component of v were accounted
on Γ. This is easily seen by considering a constant field vx = 0, vy = 1 for
(x, y) ∈ (0, 1) × (0, 1) with Γ1 := {x = 0} × (0, 1), Γ2 := {x = 1} × (0, 1) such
that

|v|21,Ω + 〈v · n〉2Γ = 0, ‖v‖2
0,Ω > 0.

This shows that the scalar defective conditions are not sufficient to ensure the
positivity of problem (8). To this purpose, it is mandatory to set up a Dirichlet
condition on ∂Ω\Γ, such that the positivity of the bilinear form follows from the
application of the standard Poincaré inequality. Owing to these observations, we
proceed to investigate the case of vector defective conditions, keeping in mind
that the forthcoming numerical discretization scheme could be straightforwardly
applied to problem (8), provided it is well posed. �

Remark As previously mentioned, an alternative formulation of problem (1)
arises from the interpretation of the boundary conditions as constraints that are
accounted by means of Lagrange multipliers. Precisely, we aim to find u ∈ V,
p ∈ Q and N vectors λk ∈ R

d such that,






a(u,v) + b(p,v) +
∑N

k=1 〈λk,v〉Γk
= (f ,v)Ω , ∀v ∈ V,

b(q,u) = 0, ∀q ∈ Q,

〈µk,u〉Γk
= 〈µk,Uk〉Γk

, ∀µk ∈ R
d, k = 1, . . . , N.

(9)

We refer to [2, 3] for the analysis and the numerical approximation of prob-
lem (9). This alternative problem is often addressed as mixed formulation for
the defective boundary conditions, or also augmented formulation, because the
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presence of the multipliers λk increases the number of unknowns of the original
problem. As highlighted in [3, 4], this is an expensive but yet effective formula-
tion to approximate problem (2) by means of a standard Galerkin discretization
method. Later on, we will compare the discretization of (9) obtained by means
of finite elements, with the forthcoming alternative numerical scheme. �

3 Numerical approximation

Owing to the constraints at the boundary, the definition of a finite element
subspace of V0

div is a non trivial task. Indeed, for the numerical approximation
of (2) we aim to apply standard finite elements. To this purpose, we consider
a family of conforming triangulations Th of affine simplexes K in Ω. Let Th be
shape regular and quasi-uniform and let h be the mesh characteristic parameter
with the assumption h ≪ 1. We notice that we do not strictly need Th to be
quasi-uniform, but this assumption reduces the technical aspects of the analysis
without affecting the generality of the approach.

Our discrete approximation spaces for the velocity and pressure respectively
are given by

Vr
h := {vh ∈ V : vh|K ∈ P

r(K), ∀K ∈ Th},

Qs
h := {qh ∈ Q : qh|K ∈ P

s(K), ∀K ∈ Th}, r, s ∈ N.

By exploiting standard penalization techniques for Dirichlet boundary condi-
tions we could also remove the constraint vh = 0 on ∂Ω \ Γ. This alternative
formulation will be applied in the forthcoming numerical experiments. However,
the corresponding changes to the discrete scheme do not affect what will be
presented here.

3.1 The penalty method for defective boundary conditions

To start the derivation of the penalty method we multiply problem (1) by test
functions v ∈ V and apply Green’s formula,

∫

Ω

(
∇u : ∇v − p∇ · v

)
+

N∑

k=1

∫

Γk

(pn −∇u · n) · v =

∫

Ω
f · v, ∀v ∈ V,

∫

Γk

(pn −∇u · n) · v =

∫

Γk

ck · v =
1

|Γk|

( ∫

Γk

(pn −∇u · n)
)
·
( ∫

Γk

v
)

= 〈pn −∇u · n,v〉Γk
, ∀v ∈ V.
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Reminding that 1
|Γk|

∫
Γk

u = Uk, that is 〈u − Uk,v〉Γk
= 0 for all v ∈ V, we

conclude that the weak solution u of (1) also satisfies

∫

Ω

(
∇u : ∇v − p∇ · v

)

+
N∑

k=1

[
γh−1 〈u,v〉Γk

+ 〈pn −∇u · n,v〉Γk
+ 〈qn −∇v · n,u〉Γk

]

=

∫

Ω
f · v +

N∑

k=1

[
γh−1 〈Uk,v〉Γk

+ 〈Uk, qn −∇v · n〉Γk

]
, ∀v ∈ V, q ∈ Q. (10)

The second term on the first row is a penalty term and γh−1 is a penalty pa-
rameter, that is suitably scaled with respect to h in order to ensure optimal
approximation properties of the finite element method. The third term is re-
sponsible for the consistency with respect to (1), while the fourth term has been
introduced artificially to maintain the symmetry of the problem. Aiming to
approximate (10), we define

ah(uh,vh) := (∇uh,∇vh)Ω

+
∑N

k=1

[
γh−1 〈uh,vh〉Γk

− 〈∇uh · n,vh〉Γk
− 〈∇vh · n,uh〉Γk

]
,

bh(ph,vh) := − (p,∇ · vh)Ω +
∑N

k=1 〈p,vh · n〉Γk
,

Fh(vh) := (f ,v)Ω +
∑N

k=1

[
γh−1 〈Uk,vh〉Γk

− 〈Uk,∇vh · n〉Γk

]
,

Gh(qh) :=
∑N

k=1 〈Uk · n, qh〉Γk
.

To sum up, in order to approximate Stokes problem with defective boundary
conditions we aim to find uh ∈ Vr

h and ph ∈ Qs
h such that






ah(uh,vh) + bh(ph,vh) = Fh(vh), ∀vh ∈ Vr
h,

bh(qh,uh) = Gh(qh), ∀qh ∈ Qs
h.

(11)

Remark We notice that equation (10) is not the only possibility to set up
a penalty method for net flux boundary conditions. In alternative, follow-
ing [11] we might exploit the skew-symmetric formulation, where the terms
〈qn −∇v · n,u − Uk〉Γk

are subtracted rather than added to the bilinear form.
In this case, we could basically perform the same analysis, with weaker require-
ments on the penalty terms. However, we would loose the symmetry of the
problem, that is exploited to retrieve an a priori error estimate in the L2 norm,
but is even more important to define an efficient the numerical solution strategy
for the linear system of equations corresponding to the discrete scheme. �
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3.2 A priori error estimates

We now aim to establish suitable error estimates for problem (11), showing that
the penalty approximation of the defective conditions does not affect the optimal
convergence properties of the standard finite element method. A fundamental
tool for the forthcoming analysis is given by the Jensen’s inequality.

Property 3.1 For any v ∈ L2(Σ) we have

( ∫

Σ
v
)2

≤ |Σ|

∫

Σ
v2 or equivalently 〈v〉2Σ ≤ ‖v‖2

0,Σ, ∀v ∈ L2(Σ). (12)

The combination of (3) and (12) allows us to define a suitable norm for the
analysis of the discrete problem.

Lemma 3.2 For any fixed, quasi-uniform mesh Th, the application H1(Ω) → R

defined as,
‖v‖2

1,h,Ω := |v|21,Ω + h−1∑N
k=1 〈v〉

2
Γk

,

is a mesh dependent norm on H1(Ω) equivalent to ‖ · ‖1,Ω. More precisely, it
satisfies

‖v‖1,Ω . ‖v‖1,h,Ω . h− 1

2 ‖v‖1,Ω.

Here and in the sequel, the symbol . denotes an inequality involving a
positive constant C independent of the characteristic size of the mesh elements.

Proof The Poincaré-Friedrichs inequality implies that ‖v‖2
1,Ω . ‖v‖2

1,h,Ω, while

Jensen’s and the standard trace inequality ensure that 〈v〉2Γk
. ‖v‖2

0,Γk
. ‖v‖2

1,Ω

for any k = 1, . . . , N . As a consequence of that ‖v‖2
1,h,Ω . h−1‖v‖2

1,Ω. �

We will also make use of the following inverse inequalities, see [12], that hold
true for any Σ ⊆ ∂Ω, provided that Th is shape regular and quasi-uniform,

h‖∇vh‖0,Ω . ‖vh‖0,Ω, h
1

2 ‖vh‖0,Σ . ‖vh‖0,Ω, ∀vh ∈ Vr
h. (13)

First we address the basic properties of ah(·, ·) that are summarized in the
following results.

Lemma 3.3 Choosing γ large enough, the bilinear form ah(·, ·) is positive in
the norm ‖ · ‖1,h,Ω. Precisely,

‖vh‖
2
1,h,Ω . ah(vh,vh), ∀vh ∈ Vr

h.

Proof It is straightforward to verify that

ah(vh,vh) = |vh|
2
1,Ω +

∑N
k=1

[
γh−1 〈vh〉

2
Γk

− 2 〈∇vh · n,vh〉Γk

]
,
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where the last term on the right hand side admits the following upper bound,
owing to (12) and (13)

| 〈∇vh · n,vh〉Γk
| ≤ ǫh 〈∇vh · n〉2Γk

+ (4hǫ)−1 〈vh〉
2
Γk

. ǫh‖∇vh · n‖2
0,Γk

+ (4hǫ)−1 〈vh〉
2
Γk

. ǫ|vh|
2
1,Ω + (4hǫ)−1 〈vh〉

2
Γk

.

Combining the previous estimates we obtain,

ah(vh,vh) & (1 − ǫ)|vh|
2
1,Ω +

∑N
k=1

(
γ − 1

4ǫ

)
h−1 〈vh〉

2
Γk

& ‖vh‖
2
1,h,Ω, ∀vh ∈ Vr

h,

for a sufficiently small ǫ and γ large enough. �

A suitable choice of γ will be discussed in section 4. Concerning the bilinear
form bh(·, ·), we proceed as in [13] and we assume that the discrete spaces Vr

h

and Qs
h are inf-sup compatible.

Hypothesis 3.4 For any qh ∈ Qs
h there exists vh ∈ Vr

h ∩H1
0(Ω) such that

(qh,∇ · vh)Ω = ‖qh‖
2
0,Ω, ‖vh‖1,Ω . ‖qh‖0,Ω.

It is well known that 3.4 is satisfied by the high-order Taylor-Hood elements,
see [14], corresponding to r ≥ 2, s = r − 1. Since vh ∈ H1

0(Ω) we conclude that
the additional boundary terms of bh(·, ·), arising from the penalty formulation,
do not interfere with the inf-sup stability of the method.

Corollary 3.5 Under assumption 3.4, for any qh ∈ Qs
h there exists vh ∈ Vr

h ∩
H1

0(Ω) such that

bh(qh,vh) & ‖qh‖
2
0,Ω, ‖vh‖1,Ω = ‖vh‖1,h,Ω . ‖qh‖0,Ω. (14)

Let us now reformulate problem (11) for the couple (uh, ph) ∈ Wh := Vr
h×Qs

h,
where Wh is endowed with the norm |||(vh, qh)|||2h := ‖vh‖

2
1,h,Ω + ‖qh‖

2
0,Ω. For

any (uh, ph), (vh, qh) ∈ Wh we also define

c±h
(
(uh, ph) , (vh, qh)

)
:= ah(uh,vh) + bh(ph,vh) ± bh(qh,uh),

K±
h (vh, qh) := Fh(vh) ± Gh(qh).

Then, problem (11) is equivalent to find (uh, ph) ∈ Wh such that

c±h
(
(uh, ph) , (vh, qh)

)
= K±

h (vh, qh), ∀(vh, qh) ∈ Wh. (15)

Lemma 3.6 Let (u0, p) ∈ W0 be the solution of problem (4), let u = (u0+w) ∈
W be the weak solution of (1) and let (uh, ph) ∈ Wh be the solution of (15). Then
c±h

(
(u, p) , (v, q)

)
= Kh(v, q) for all (v, q) ∈ W and c±h

(
(u − uh) , (vh, qh)

)
= 0

for all (vh, qh) ∈ Wh.
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Proof We observe that problem (15) is conformal with (10) that is satisfied for
any (v, q) ∈ W, provided that (u, p) ∈ W is the weak solution of problem (1).
�

Moreover, since c+
h (·, ·) is symmetric and problem (4) is self-adjoint, we imme-

diately obtain the following adjoint consistency property.

Corollary 3.7 Let (z0
g , rg) ∈ W0 be the solution of problem (6).

Then c+
h

(
(v, q) ,

(
z0

g , rg

) )
= (g,v)Ω for all (v, q) ∈ W.

Lemma 3.8 The bilinear forms c±h (·, ·) are bounded. Precisely they satisfy,

c±h
(
(uh, ph) , (vh, qh)

)
. |||uh, ph|||h|||vh, qh|||h, ∀(uh, ph), (vh, qh) ∈ Wh.

Proof Concerning the terms of ah(·, ·), owing to the Cauchy-Schwarz inequality
we immediately get

(∇uh,∇vh)Ω+γh−1∑N
k=1 〈uh,vh〉Γk

≤ |uh|1,Ω|vh|1,Ω+γh−1∑N
k=1 〈uh〉Γk

〈vh〉Γk
,

while for the consistency and symmetry terms, owing to (12) and (13), we obtain

| 〈∇uh · n,vh〉Γk
| ≤

(
h

1

2 〈∇uh · n〉Γk

)(
h− 1

2 〈vh〉Γk

)

.
(
|uh|1,Ω

)(
h− 1

2 〈vh〉Γk

)
.

As regards bh(·, ·) we easily see that | (ph,∇ · vh)Ω | . ‖ph‖0,Ω|vh|1,Ω and

| 〈ph,vh · n〉Γk
| .

(
h

1

2 〈ph〉Γk

)(
h− 1

2 〈vh · n〉Γk

)

.
(
h

1

2 ‖ph‖0,Γk

)(
h− 1

2 〈vh · n〉Γk

)

. ‖ph‖0,Ω

(
h− 1

2 〈vh〉Γk

)
.

The desired result follows from the combination of the previous estimates. �

Since Kh(vh, qh) is a linear and continuous functional in Wh, the well posed-
ness of problem (15) is ensured by the following result (see [15], Ch.2., Th.
2.22).

Theorem 3.9 Provided that 3.4 is satisfied and under assumptions of Lemma
3.3, for any (uh, ph) ∈ Wh there exists (wh, sh) ∈ Wh such that

c−h
(
(uh, ph), (wh, sh)

)
& |||(uh, ph)|||2h, |||(wh, sh)|||h . |||(uh, ph)|||h. (16)

Proof For any (uh, ph) ∈ Wh let us choose (wh, sh) = (uh, ph) + δ(vh, 0) where
vh ∈ Vr

h ∩H1
0(Ω) refers to Corollary 3.5. Combining the following estimates,

c−h
(
(uh, ph), (uh, ph)

)
& ‖uh‖

2
1,h,Ω,

c−h
(
(uh, ph), (vh, 0)

)
& ‖ph‖

2
0,Ω − ‖uh‖1,h,Ω‖vh‖1,h,Ω

& (1 − ǫ)‖ph‖
2
0,Ω −

1

ǫ
‖uh‖

2
1,h,Ω,

11



where we have exploited ‖vh‖1,h,Ω = ‖vh‖1,Ω since vh ∈ H1
0(Ω). Then, we easily

obtain that

c−h
(
(uh, ph), (wh, rh)

)
&

(
1 − C

δ

ǫ

)
‖uh‖

2
1,h,Ω + δ(1 − ǫ)‖ph‖

2
0,Ω.

We complete the proof observing that

|||(wh, sh)|||2h = ‖uh‖
2
1,h,Ω + ‖vh‖

2
1,Ω + ‖ph‖

2
0,Ω . ‖uh‖

2
1,h,Ω + ‖ph‖

2
0,Ω.

�

Then, we address the approximation properties of Wh in the norm |||·|||h.

Lemma 3.10 Assume u ∈ Hr+1(Ω) and p ∈ Hs+1(Ω) with r, s > 0. Then it
holds,

inf
vh∈V

r
h

‖u − vh‖1,h,Ω . hr|u|r+1,Ω, inf
qh∈Qs

h

‖p − qh‖0,Ω . hs+1|p|s+1,Ω. (17)

Proof For the first estimate we remind that, owing to Jensen’s inequality we
have

‖v‖2
1,h,Ω . |v|21,Ω + h−1∑N

k=1‖v‖
2
0,Γk

.

To obtain the desired result, we combine the trace inequality with the approxi-
mation properties of Vr

h, [12],

‖v‖2
0,Γk

. h−1‖v‖2
0,Ω + h|v|21,Ω, ‖u − vh‖0,Ω + h|u − vh|1,Ω . hr+1|u|r+1,Ω.

The second estimate is straightforward owing to the approximation properties
of Qs

h. �

Theorem 3.11 Let (u, p) ∈ W be the weak solution of (1), and let (uh, ph) ∈
Wh be the solution of (15). Under the assumptions of Theorem 3.9 and Lemma
3.6, we obtain,

|||(u − uh, p − ph)|||h . inf
(vh,qh)∈Wh

|||(u − vh, p − qh)|||h. (18)

In particular when r ≥ 2, s = r − 1 with u ∈ V ∩ Hr+1(Ω), p ∈ Hr(Ω) we get,

|||(u − uh, p − ph)|||h . hr
(
‖u‖r+1,Ω + ‖p‖r,Ω

)
. (19)

Proof For the proof of (18) let us decompose the error (u − uh, p − ph) in two
parts

u − uh := eπ + eh := (u − vh) + (vh − uh),

p − ph := yπ + yh := (p − qh) + (qh − ph), ∀(vh, qh) ∈ Wh.

12



Using Theorem 3.9 and Lemmas 3.6, 3.8 we get,

|||(eh, yh)|||h|||(wh, sh)|||h . c−h ((eh, yh), (wh, sh))

. c−h ((eπ, yπ), (wh, sh))

. |||(eπ, yπ)|||h|||(wh, sh)|||h. (20)

We combine (20) with the triangle inequality,

|||(u − uh, p − ph)|||h . |||(eh, yh)|||h + |||(eπ, yπ)|||h . |||(eπ, yπ)|||h

and exploiting the generality of (vh, qh), we obtain (18). Estimate (19) is recov-
ered combining (18) with (17). �

We conclude with the analysis on the approximation properties of (11) in
the L2 norm for the velocity.

Theorem 3.12 Let (u, p) ∈ W be the weak solution of (1) satisfying assumption
2.4, and let (uh, ph) ∈ Wh be the solution of (15). Under the assumptions of
Theorem 3.11 we have,

‖u − uh‖0,Ω . h|||(u − uh, p − ph)|||h. (21)

Proof Let (z0
g , rg) ∈

(
H2(Ω)∩V0

)
×

(
H1(Ω)∩Q

)
be the solution of (6). First,

owing to the adjoint consistency, i.e. Corollary 3.7, we notice that

‖v‖0,Ω = sup
g∈L2(Ω)

(g,v)Ω
‖g‖0,Ω

= sup
g∈L2(Ω)

c+
h

(
(v, q) ,

(
z0

g , rg

) )

‖g‖0,Ω
, ∀(v, q) ∈ W. (22)

Then, we choose v = u − uh and q = p − ph and exploiting the Galerkin
orthogonality, i.e. Lemma 3.6, and the continuity of c+

h (·, ·), we obtain

c+
h

(
(u − uh, p − ph) ,

(
z0

g , rg

) )
= c+

h

(
(u − uh, p − ph) ,

(
z0

g − zh, rg − rh

) )

. |||(u − uh, p − ph)|||h|||(z
0
g − zh, rg − rh)|||h, ∀(zh, rh) ∈ Wh. (23)

Owing to Lemma 3.10 with r = 1 and s = 0 and (5) we have,

inf
(zh,rh)∈Wh

|||(z0
g − zh, rg − rh)|||h . h|||(z0

g , rg)|||∗ . h‖g‖0,Ω. (24)

The desired result is obtained combining (22), (23) and (24). �

3.3 Algebraic properties of the penalty method

Let Mv = dim(Vr
h) be the dimension of Vr

h and let {ϕi}
Mv

i=1 be its Lagrangian

finite element basis. Proceeding similarly for Qs
h = span

(
{φi}

Mp

i=1

)
, we set uh =

13



∑Mv

j=1 ujϕj , U = {uj}
Mv

j=1, ph =
∑Mp

j=1 pjφj , P = {pj}
Mp

j=1 and we define the
following matrices,

Ah,ij = ah(ϕj , ϕi), Bh,ij = bh(φi, ϕj), Fh,i = Fh(ϕi), Gh,i = Gh(φi).

We easily see that problem (11) is equivalent to the following algebraic saddle
point system, [

Ah BT
h

Bh 0

]
·

[
U

P

]
=

[
Fh

Gh

]
. (25)

We aim to show that, although system system (25) is indefinite, it can be solved
resorting to the Schur complement of matrix Ah, that is RhP = Jh where Rh :=
BhA−1

h BT
h and Jh = BhA−1

h Fh−Gh. Let σ(M) be the spectrum of a real valued
square matrix M and let R(M), K(M) be its range and nullspace respectively.
If M is symmetric positive definite, we denote with X (M) its spectral condition
number. We also remind the following property, where d is the number of space
dimensions of Ω.

Property 3.13 Provided that Th is shape-regular and quasi-uniform, for each
vh =

∑Mv

j=1 vjϕj ∈ Vr
h, V = {vj}

Mv

j=1 ∈ R
Mv endowed with the Euclidean norm

‖V‖Mv
, we have,

hd‖V‖2
Mv

. ‖vh‖
2
0,Ω . hd‖V‖2

Mv
. (26)

We refer to [16], Proposition 6.3.1 for a proof. Then, we are ready to prove the
following fundamental properties of Ah and Bh.

Lemma 3.14 Under assumption 3.4, the following properties are satisfied,

hd . σ(Ah) . hd−2, X (Ah) . h−2; R(Bh) = R
Mp or K(BT

h ) = {0}. (27)

As a result of that, matrix Rh is symmetric positive definite (SPD).

Proof For the lower bound of the spectrum of Ah we combine the positivity of
ah(·, ·) with the lower bound of Lemma 3.2,

hd‖V‖2
Mv

. ‖vh‖
2
0,Ω . ‖vh‖

2
1,Ω . ‖vh‖

2
1,h,Ω . ah(vh,vh) = VT AhV.

Concerning the upper bound, we first observe that inequalities (12), (13) ensure
that

‖vh‖
2
1,h,Ω . |vh|

2
1,Ω + h−1∑N

k=1‖vh‖
2
0,Γk

. h−2‖vh‖
2
0,Ω + h−1∑N

k=1‖vh‖
2
0,Γk

. h−2‖vh‖
2
0,Ω,

that can be combined with the boundedness of ah(·, ·) to complete the proof of
the first part of (27),

VT AhV = ah(vh,vh) . ‖vh‖
2
1,h,Ω . h−2‖vh‖

2
0,Ω . hd−2‖V‖2

Mv
.
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The inf-sup condition (14) ensures that R(Bh) = R
Mp and K(BT

h ) = {0}
directly follows from the Orthogonal Decomposition Theorem. Finally, since Ah

is SPD, then A−1
h is also SPD, that is WT A−1

h W > 0 for any W ∈ R
Mv with

W 6= 0. Restricting to those W such that W = BT
h Q, and observing that W 6=

0 for any Q 6= 0 because K(BT
h ) = {0}, we conclude that QT BhA−1

h BT
h Q > 0

for any Q 6= 0, i.e. Rh is SPD. �

As a consequence of Lemma 3.14, matrix Rh can be solved by means of the
conjugate gradient method (CG). In the case of inf-sup stable finite elements
with standard boundary conditions this strategy is also optimal, because the
Schur complement matrix is spectrally equivalent to the pressure mass matrix,
whose condition number is uniformly bounded with respect to h. By conse-
quence, the CG algorithm is an efficient strategy provided that an efficient solver
for the velocity stiffness matrix, Ah, is available. However, in the case of system
(25) this approach features some additional difficulties.

First, we notice that the application of the penalty method to defective
boundary conditions significantly affects the sparsity pattern of matrix Ah, be-
cause the boundary terms of ah(·, ·) that lie on Γk are non local. More precisely,
let us split Ah into different parts Ah = A +

∑N
k=1

(
Qh,k − Nk

)
where

Aij := a(ϕj , ϕi),

Nij,k :=
〈
∇ϕj · n, ϕi

〉
Γk

+
〈
∇ϕi · n, ϕj

〉
Γk

,

Qh,k := γh−1
〈
ϕj , ϕi

〉
Γk

.

Matrix Qh,k couples together all the degrees of freedom belonging to each section
Γk, while matrix Nk couples all the degrees of freedom that belong to elements
whose edges lie on Γk. For instance, if Γ = ∂Ω the bandwidth of Ah can easily
be equal to Mv although Ah is still sparse, as illustrated in figure 1. As a result
of that, direct methods for linear systems do not seem to be easily applicable
to Ah, because of excessive fill-in. Simultaneously, since Lemma 3.14 imply that
X (Ah) = O(h−2), for realistic problems any iterative solver for Ah needs a pre-
conditioner. Unfortunately, for the aforementioned reasons, the computational
cost to construct matrix preconditioners derived from incomplete factorizations
of Ah increases with respect to the usual case. Nevertheless, we notice that the
minimum and maximum eigenvalues of Ah scale with respect to h as the ones
of any finite element stiffness matrix. By consequence, for any problem with
Dirichlet boundary conditions on ∂Ω \Γ 6= ∅, one may think to apply to Ah any
preconditioner that is suitable to problem (1) complemented with homogeneous
Neumann conditions on Γ and Dirichlet conditions on ∂Ω\Γ. More precisely, let
A be the finite element matrix corresponding to a(·, ·) and let P = HHT be the
incomplete Cholesky factorization of A. By formally replacing AhU = F with
H−1AhH−TV = H−1F, V = HTU, we apply matrix P as a preconditioner for
Ah into the conjugate gradient algorithm. We notice that the sparsity pattern

15



Figure 1: The sparsity pattern of different parts of Ah = A +
∑N

k=1

(
Qh,k −Nk

)

for r = 2.
A

∑N
k=1Qh,k

∑N
k=1Nk

of A is not affected by the drawbacks relative to Ah and the forthcoming exper-
iments will show that this preconditioning strategy is equally effective to both
A and Ah.

Second, because of the penalty technique, the condition number of the Schur
complement matrix Rh depends on h−1. By consequence, the number of itera-
tions necessary to approximate RhP = Jh by means of the CG algorithm, will
be proportional to h−1/2. To prove this statement, we introduce the following
notation. Reminding the equivalence between vh ∈ Vr

h and V ∈ R
Mv , qh ∈ Qs

h

and Q ∈ R
Mp we introduce the following discrete norms,

‖U‖∗,Mv
= sup

V∈RMv

(U,V)Mv

‖vh‖1,Ω
, ‖U‖∗,h,Mv

= sup
V∈RMv

(U,V)Mv

‖vh‖1,h,Ω
,

where (U,V)Mv
denotes the Euclidean scalar product on R

Mv . Owing to these
definitions, the basic properties of ah(·, ·) and bh(·, ·) can be straightforwardly
reinterpreted as follows.

Corollary 3.15 Lemma 3.3 and Corollary 3.5 are respectively equivalent to

‖vh‖1,h,Ω . ‖AhV‖∗,h,Mv
, ‖qh‖0,Ω . ‖BT

h Q‖∗,Mv
, ∀(vh, qh) ∈ Wh. (28)

Lemma 3.8 is equivalent to

‖AhV‖∗,Mv
. h− 1

2 ‖vh‖1,h,Ω, ‖BT
h Q‖∗,h,Mv

. ‖qh‖0,Ω, ∀(vh, qh) ∈ Wh.
(29)

Proof Lemma 3.3 can be reformulated as follows,

‖vh‖1,h,Ω .
ah(vh,vh)

‖vh‖1,h,Ω
=

(AhV,V)Mv

‖vh‖1,h,Ω
. sup

W∈RMv

(AhV,W)Mv

‖wh‖1,h,Ω
, ∀vh ∈ Vr

h,

16



that is ‖vh‖1,h,Ω . ‖AhV‖∗,h,Mv
. Proceeding similarly for Corollary 3.5, there

exists vh such that

‖qh‖0,Ω .
bh(qh,vh)

‖vh‖1,Ω
=

(
BT

h Q,V
)
Mv

‖vh‖1,Ω
. ‖BT

h Q‖∗,Mv
, ∀qh ∈ Qs

h.

Concerning Lemma 3.8, we observe it is equivalent to,

ah(vh,wh) . ‖vh‖1,h,Ω‖wh‖1,h,Ω, bh(qh,vh) . ‖qh‖0,Ω‖vh‖1,h,Ω.

Then, we obtain

(AhV,W)Mv
= ah(vh,wh) . h−1/2‖vh‖1,h,Ω‖wh‖1,Ω, ∀vh,wh ∈ Vr

h(
BT

h Q,V
)
Mv

= bh(qh,vh) . ‖qh‖0,Ω‖vh‖1,h,Ω, ∀(vh, qh) ∈ Wh,

that is ‖AhV‖∗,Mv
. h− 1

2 ‖vh‖1,h,Ω and ‖BT
h Q‖∗,h,Mv

. ‖qh‖0,Ω. �

We are now ready to prove the following statement.

Lemma 3.16 Under assumptions of Lemma 3.3, 3.8 and Corollary 3.5, the
spectrum of matrix Rh satisfies the following properties,

hd+1 . σ(Rh) . hd, and X (Rh) . h−1.

Proof Let λm ∈ R
+ be the minimum eigenvalue of Rh and let Qm ∈ R

Mp be
the corresponding eigenvector. We introduce V = BT

h Qm ∈ R
Mv and W =

A−1
h V ∈ R

Mv such that V = AhW. Then, exploiting (28) and (29) we obtain,

λm‖Qm‖2
Mp

= (RhQm,Qm)Mp
=

(
A−1

h BT
h Qm, BT

h Qm

)
Mv

=
(
A−1

h V,V
)
Mv

,
(
A−1

h V,V
)
Mv

= (W, AhW)Mv
& ‖wh‖

2
1,h,Ω,

h−1‖wh‖
2
1,h,Ω & ‖AhW‖2

∗,Mv
= ‖V‖2

∗,Mv
.

Combining the previous inequalities and exploiting Property 3.13 we easily ob-
tain,

λm‖Qm‖2
Mp

& h‖BT
h Qm‖2

∗,Mv
& h‖qh,m‖2

0,Ω & hd+1‖Qm‖2
Mp

, i.e. λm & hd+1.

Then, we consider the maximum eigenvalue λM ∈ R
+ of Rh, being QM ∈ R

Mp its
own eigenvector. Proceeding as in the previous case, we set V = BT

h QM ∈ R
Mv

and W = A−1
h V ∈ R

Mv and we obtain,

λM‖QM‖2
Mp

= (RhQM ,QM )Mp
=

(
A−1

h BT
h QM , BT

h QM

)
Mv

=
(
A−1

h V,V
)
Mv

,
(
A−1

h V,V
)
Mv

= (W,V)Mv
. ‖V‖∗,h,Mv

‖wh‖1,h,Ω,

‖wh‖1,h,Ω . ‖AhW‖∗,h,Mv
= ‖V‖∗,h,Mv

,

from which we easily obtain,

λM‖QM‖2
Mp

. ‖BT
h QM‖2

∗,h,Mv
. ‖qh,M‖2

0,Ω . hd‖QM‖2
Mp

, i.e. λM . hd.

Since Rh is SPD, the conclusion X (Rh) . h−1 is straightforward. �
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3.4 Numerical approximation of the augmented formulation

In this paragraph we briefly review the numerical approximation and the alge-
braic counterpart of the augmented problem (9), with the aim to compare its
computational cost with the penalty formulation (11), or equivalently (25) in
algebraic form. The numerical discretization of problem (9) by means of finite
elements requires to find uh ∈ Vr

h, ph ∈ Qs
h and N vectors λh,k ∈ R

d such that,






a(uh,vh) + b(ph,vh) +
∑N

k=1 〈λh,k,vh〉Γk
= (f ,vh)Ω , ∀vh ∈ Vr

h,

b(qh,uh) = 0, ∀qh ∈ Qs
h,〈

µh,k,uh

〉
Γk

=
〈
µh,k,Uk

〉
Γk

, ∀µh,k ∈ R
d, k = 1, N.

(30)
To set up the algebraic counterpart of (30), we collect the multipliers relative to
each section Γk into a single column vector Λ := [λh,1, . . . ,λh,N ]T ∈ RMλ being

Mλ = Nd. Let {µi}
Mλ

i=1 be a basis of RMλ and let µi,k ∈ R
d be the restriction of

µi to the degrees of freedom associated to Γk, such that µi = [µi,1, . . . ,µi,N ]T .
Then, given the following matrices and vectors,

Aij := a(ϕj , ϕi), Bij := b(φi, ϕj),

Fi := (f , ϕi)Ω , Dij :=
∑N

k=1

〈
µi,k, ϕj

〉
Γk

, Υi =
∑N

k=1

〈
µi,k,Uk

〉
Γk

,

problem (30) is equivalent to find U ∈ R
Mv , P ∈ R

Mp , Λ ∈ R
Mλ such that,




A BT DT

B 0 0
D 0 0



 ·




U

P

Λ



 =




F

0

Υ



 . (31)

We observe that (31) is a saddle point problem with a nested structure featuring
two sets of multipliers, namely the pressure accounting for the divergence free
constraint and the vectors λh,k accounting for the defective boundary conditions.
For the solution of system (31) we apply the reduction to the Schur complement
form. To this aim, it is convenient to condense the Stokes system into the matrix
S, resorting to the following equivalent reformulation of (31),

[
S DT

D 0

]
·

[
X

Λ

]
=

[
K

Υ

]
; S =

[
A BT

B 0

]
; X =

[
U

P

]
; K =

[
F

0

]
. (32)

In [2] it is shown that the matrix DS−1DT is symmetric positive definite, by con-
sequence we determine Λ solving DS−1DTΛ = DS−1K−Υ by means of the con-
jugate gradient algorithm. Then, X is given by the solution of SX = K−DTΛ.
We notice that each time the matrix S−1 is invoked, we need to solve a generic
Stokes problem SX = K. In this case, we resort again to the Schur complement
matrix, determining first the vector P such that BA−1BTP = BA−1F and then
the corresponding velocity U given by AU = F−BTP. Provided that assump-
tion 3.4 is satisfied, all these subsystems can be again solved by means of the
conjugate gradient method.
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We finally notice that in the forthcoming numerical tests we apply a penalty
method for the Dirichlet boundary conditions ∂Ω \Γ. In this case, owing to the
argument described in Lemma 3.16, we observe that the condition number of
the Stokes Schur complement depends on h, namely X (BA−1BT ) ≃ h−1.

In the following section we will compare the computational cost of the present
solution strategy, with the one coming from (25).

3.5 Extension to the time dependent case

Since net flux defective boundary conditions are particularly significant for com-
putational hemodynamics and blood flow is typically transient, more precisely
pulsatile, we aim show that the penalty method and all its fundamental proper-
ties can be straightforwardly extended to the time dependent case.

We start from the time dependent version of problem (1): given f(t), the flow
rates Uk(t) and the initial state u0, for any t ∈ (0, T ) we aim to find (u(t), p(t))
and the vectors ck(t) such that,






∂tu − ν∇2u + ∇p = f(t), ∇ · u = 0, in Ω × (0, T ),

u = 0, on
(
∂Ω \ Γ

)
× (0, T ),

u = u0, on Ω × {t = 0},
1

|Γk|

∫
Γk

u = Uk(t), pn − ν∇u · n = ck(t) on Γk × (0, T ), k = 1, N,

(33)

where the viscosity coefficient ν is positive and bounded away from zero, i.e.

ν ≥ ν0 > 0. Setting u0(t) = u(t) − w(t), where w(i)(t) =
∑N

k=1 U
(i)
k (t)w

(i)
k for

i = 1, . . . , d, for any t ∈ (0, T ) the weak counterpart of problem (33) requires to
find (u0(t), p(t)) such that

{(
∂tu

0,v
)
Ω

+ aν(u0,v) + b(p,v) = F ν(t,v), ∀v ∈ V0,

b(q,u0) = 0, ∀q ∈ Q,
(34)

where aν(u,v) :=
∫
Ω ν∇u : ∇v and F ν(t,v) :=

∫
Ω f(t) · v −

∫
Ω ∂tw(t)v −∫

Ω ν∇w(t) : ∇v. For the space discretization of problem (34) we exploit the
penalty method (11). According to the definitions of aν(u,v) and F ν(t,v) we
set,

aν
h(uh,vh) := (ν∇uh,∇vh)Ω

+
∑N

k=1

[
γh−1 〈νuh,vh〉Γk

− 〈ν∇uh · n,vh〉Γk
− 〈ν∇vh · n,uh〉Γk

]
,

F ν
h (t,vh) := (f(t),v)Ω +

∑N
k=1

[
γh−1 〈νUk(t),vh〉Γk

− 〈Uk(t), ν∇vh · n〉Γk

]
,

Gh(t, qh) :=
∑N

k=1 〈Uk(t) · n, qh〉Γk
.

For the time discretization of problem (34), we apply the classical θ−method.
Precisely, given a sequence of times tn = nτ , being n ∈ N and τ > 0 a fixed time
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step, and given u0
h = πr

hu0 being πr
h the finite element interpolator from V onto

Vr
h, the fully discrete scheme requires to find a sequence of discrete functions

(un
h, pn

h) ∈ Wh, approximating (u(tn), p(tn)) ∈ W, given by

un
h,θ := θun

h + (1 − θ)un−1
h , pn

h,θ := θpn
h + (1 − θ)pn−1

h ,

with 0 < θ ≤ 1, where the auxiliary variables (un
h,θ, p

n
h,θ) satisfy the following

discrete problem,





1
θτ (un

h,θ,vh)Ω + aν
h(un

h,θ,vh) + bh(pn
h,θ,vh) = Fn,ν

h,θ (vh) + 1
θτ (un−1

h ,vh)Ω, ∀vh ∈ Vr
h,

bh(qh,un
h,θ) = Gn

h,θ(qh), ∀qh ∈ Qs
h,

(35)
being Fn,ν

h,θ (vh) := θF ν
h (tn,vh) + (1 − θ)F ν

h (tn−1,vh), Gn
h,θ(qh) := θGh(tn, qh) +

(1 − θ)Gh(tn−1, qh).
It is straightforward to see that problem (35) with θ 6= 0 inherits all the

fundamental stability and algebraic properties that we have previously proved
for (11), with the exception of Lemma 3.16. This is shown introducing the
bilinear form aν,η

h (uh,vh) := η(uh,vh)Ω +aν
h(uh,vh) with η ≥ 0 and 0 < ν0 ≤ ν,

which satisfies the following properties,

aν,η
h (vh,vh) & ν0‖vh‖

2
1,h,Ω, aν,η

h (uh,vh) . max(η, ν)‖uh‖1,h,Ω‖vh‖1,h,Ω.

Then, proceeding as in Corollary 3.15, matrix Aν,η
h,ij := aν,η

h (ϕj , ϕi) is such that

ν0‖vh‖1,h,Ω . ‖Aν,η
h V‖∗,h,Mv

, ‖Aν,η
h V‖∗,Mv

. max(η, ν)h− 1

2 ‖vh‖1,h,Ω.

Let us now address for simplicity the typical case of time dependent blood flow
problems, i.e η > 1 > ν such that max(η, ν) = η. Mimicking the proof of Lemma
3.16 we get,

λm & η−2ν0h
d+1, λM . ν−1

0 hd.

As a result of that, the time dependent pressure matrix Rν,η
h := Bh(Aν,η

h )−1BT
h

is such that X (Rν,η
h ) . η2ν−2

0 h−1. In conclusion, when ν0 → 0 or η → ∞,
the time dependent pressure matrix is ill conditioned and the contribution of
the coefficient h−1, arising from the penalty method, is of minor importance
with respect to the weight of η2ν−2

0 . For the specific preconditioning techniques
to address this drawback, we remand to [17]. Since the penalized finite element
matrices Ah, Bh enjoy spectral properties that are similar to the case of standard
finite elements, see Lemma 3.14, we expect that the classical preconditioners
for the time dependent Stokes problem, such as the Chaouet-Chabard matrix
[18], could be also effective in the present case. Concerning the approximation
properties, it is well known that (35) with the choice θ = 1

2 coincides with the
Cranck-Nicholson time advancing scheme. By consequence, setting r = 2 and
s = 1 for the space discretization, we conclude that our discrete scheme with
θ = 1

2 is second order accurate with respect to both τ and h. In what follows,
we will apply the present scheme for the approximation of a classical benchmark
of computational hemodynamics, i.e. the pulsatile Womersley flow.
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Table 1: Approximation errors of (11) with r = 2 and s = 1, i.e. P
2 − P

1

elements for velocities and pressures respectively.

h |||(u − uh, p − ph)|||h order(h) ‖u − uh‖0,Ω order(h)

0.1250 1.229440e-02 −− 2.084650e-04 −−
0.0833 5.394320e-03 2.032 6.448340e-05 2.894
0.0625 3.013920e-03 2.023 2.784980e-05 2.918
0.0500 1.919490e-03 2.022 1.447930e-05 2.931

4 Numerical results and applications

We address here the numerical validation of the stability, approximation and
algebraic properties of (11). To this purpose we consider different reference
problems whose solutions exactly satisfy the additional condition on the stresses,
namely pn − ∇u · n = ck. This is easily achieved selecting steady or time
dependent flow problems that satisfy the following properties p = p(t, x), ux =
ux(t, y), uy = 0 on rectangular domains. However, this may lead to the false
impression that the defective boundary conditions can always exactly replace
the information on the full inflow profile. This is not true and in general such
conditions are inexact when the normal stresses are not constant over the inflow
or outflow sections.

4.1 Validation of the approximation properties of the penalty

method

In order to verify the results obtained in section 3.2, we consider problem (1) on
the unit square Ω = (0, 1) × (0, 1), where we impose defective conditions on the
vertical sides, namely Γ1 = {x = 0} × (0, 1) and Γ2 = {x = 1} × (0, 1). Setting
U1 = U2 = [2/π, 0] and f = [π2 sin(πy), 0], we obtain that u(x, y) = [sin(πy), 0],
p(x, y) = 0 is an exact solution of (1). Concerning the choice of γ, it is shown
in [19] that a convenient value is proportional to the constants of the inverse
inequalities (13) that scale as r2 on a shape regular mesh. To ensure a reasonable
stability margin we set γ = 4r2 = 16.

First, we verify that the numerical scheme satisfies estimates (19) and (21).
The corresponding results are reported in table 1 and confirm that the theoretical
order of convergence is closely respected. Additional numerical simulations show
that the accuracy of the augmented formulation, i.e. problem (30), is almost
equivalent. In fact, only negligible differences are perceived in the corresponding
errors that for this reason are not reported.
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4.2 Validation of the spectral properties and of the computa-

tional costs

First, we study the spectral properties of Ah and Rh. As previously mentioned,
all the linear systems corresponding to formal matrix inversions are addressed
by means of the CG method up to a tolerance 10−8 on the relative residuals. We
remind that the asymptotic rate of convergence of the CG algorithm applied to a
matrix M is inversely proportional to

√
X (M). By consequence, denoting with

N.iter(M−1) the number of iterations needed by the CG algorithm to converge
up to the given tolerance, we have N.iter(M−1) ≃

√
X (M).

For the present numerical experiments, we address the Poiseuille flow on the
unit square with defective conditions on the vertical sides Γ1 = {x = 0} × (0, 1)
and Γ2 = {x = 1} × (0, 1). Indeed, setting U1 = U2 = [1/6, 0] and f = 0,
problem (1) is satisfied by the non trivial solution u(x, y) = [y(1 − y), 0], p =
−2x + 1 and λ1 = λ2 = [−1, 0] when the augmented formulation is applied.

Owing to Lemmas 3.16 and 3.14, we expect that N.iter(R−1
h ) ≃ h−1/2 and

N.iter(A−1
h ) ≃ h−1. These estimates are readily verified by the results of ta-

ble 2. Furthermore, we notice that the heuristic approach to exploit the in-
exact Cholesky factorization of A, namely P = HHT computed with drop
tolerance equal to 10−2, as a preconditioner for Ah turns out to be very ef-
fective. Indeed, denoting with Ch = H−1AhHT the preconditioned matrix, we
notice that N.iter(C−1

h ) is remarkably reduced with respect to N.iter(A−1
h ) and

N.iter(C−1
h ) is also less sensitive with respect to h.

Then, we aim to analyze and quantify the computational cost of systems
(25) and (32). To analyze system (25) we report in table 2 the number of CG
iterations needed solve the Stokes Schur complement system relative to matrix
(BhA−1

h BT
h ). This invokes the multiplication by matrix A−1

h a number of times
(denoted with N.call(A−1

h )), which is performed again by means of CG, involving
in average N.iter loops. Neglecting the fixed costs needed to compute the initial
residuals and to recover the final velocity and pressure, the computational cost
to solve (25), quantified by the corresponding CPU time, is proportional to the
indicator

T = N.call(A−1
h ) × N.iter(A−1

h ) ≃ 2N.iter((BhA−1
h BT

h )−1) × N.iter(A−1
h ).

We proceed similarly for system (32). First, we report the number of CG
iterations relative to (DS−1DT )−1. As previously mentioned, this involves the
multiplication by (BA−1BT )−1, that is invoked (N.call) times, while the solu-
tion of the corresponding CG algorithm requires in average (N.iter) loops. As
illustrated in the previous case, this is translated into the repeated multiplication
by A−1. As a consequence of that, the computational cost of (32) is quantified
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Table 2: Computational costs for the solution of system (25) corresponding to
the penalty method.

(25)
`

BhA−1

h BT
h

´

−1
A−1

h

h N.iter N.call N.iter CPU(s)

0.25 7 17 27.06 0.350
0.125 20 43 54.88 3.380
0.0625 33 69 108.4 34.20
0.0312 39 81 216.5 276.9

(25)
`

BhA−1

h BT
h

´

−1
C−1

h

h N.iter N.call N.iter CPU(s)

0.25 7 17 8.41 0.33
0.125 22 47 12.64 1.59
0.0625 34 71 17.63 9.81
0.0312 40 83 33.17 71.89

by,

T = N.call(A−1) × N.iter(A−1)

≃
(
N.call((BA−1BT )−1) × 2N.iter((BA−1BT )−1)

)
× N.iter(A−1)

≃
(
2N.iter((DS−1DT )−1) × 2N.iter((BA−1BT )−1)

)
× N.iter(A−1)

which is expected to be directly related to the CPU time needed to solve (32).
Under the assumption that the additional costs introduced by the penalty tech-
nique are negligible, this analysis anticipates that the augmented formulation is
less efficient than the penalty method, because the former requires to solve the
Stokes system, namely to multiply by (BA−1BT )−1, two times for each iteration
of the CG algorithm applied to (DS−1DT )−1. In conclusion, the more iterations
are needed to determine the multipliers Λ, the more problem (32) is inefficient
with respect to (25).

We compare the penalty with the augmented formulations in tables 2 and 3.
As expected, the penalty formulation is considerably more convenient than the
augmented one. Indeed, the gain in terms of CPU times (reported in seconds)
can be quantified by a factor 10. This can be interpreted observing that the
augmented formulation requires 3 CG iterations to solve the 4×4 system for the
multipliers and it involves 9 calls to the Stokes Schur complement. Surprisingly,
we also notice that the subproblems related to the augmented formulation seem
to be more stiff than the ones in the penalty case. In particular, the average
number of CG iterations needed to multiply by A−1 is considerably higher than in
the case of A−1

h . However, this contribution has a minor effect on the costs needed
to determine the multipliers. This is confirmed by the additional tests where we
apply the aforementioned incomplete Cholesky factorization of A, namely P =
HHT , as a preconditioner for A and Ah. This is formally equivalent to replace
A−1 with C−1 = (H−1AH−T )−1 and A−1

h with C−1
h = (H−1AhH−T )−1. The
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Table 3: Computational costs for the solution of system (32) corresponding to
the augmented formulation.

(32)
`

DS−1DT
´

−1 `

BA−1BT
´

−1
A−1

h N.iter N.call N.iter N.call N.iter CPU(s)

0.25 3 9 16.33 320 41.37 5.53
0.125 3 9 28.67 542 79.80 43.96
0.0625 3 9 33.89 636 152.5 318.9
0.0312 3 9 36.56 684 294.26 2188.8

(32)
`

DS−1DT
´

−1 `

BA−1BT
´

−1
C−1

h N.iter N.call N.iter N.call N.iter CPU(s)

0.25 3 9 16.56 324 5.81 2.40
0.125 3 9 28.56 540 8.83 10.66
0.0625 3 9 33.78 634 15.42 62.25
0.0312 3 9 36.00 674 28.77 410.82

corresponding results are reported on the bottom of tables 2 and 3. We notice
that the preconditioner P is effective to both cases, but the computational cost
associated to C−1 is now smaller than the one of C−1

h . Nevertheless, the penalty
method is still considerably more convenient than the augmented formulation.
Indeed, our conclusions are confirmed.

4.3 Application to the transient case. Simulation of the Wom-

ersley flow.

The Womersley flow, i.e. the flow in a two dimensional or cylindrical channel
with a uniform but oscillating pressure gradient, is a simple yet effective bench-
mark for computational hemodynamics, addressed for instance in [2, 3, 4]. In
such conditions, it is possible to retrieve the exact solution of the time dependent
Stokes or Navier-Stokes equations by separation of variables, see [20].

We address here the two dimensional case and we consider the unit square,
Ω = (0, 1) × (0, 1), with inflow and outflow sections Γ1 = {x = 0} × (0, 1) and
Γ2 = {x = 1} × (0, 1), respectively. First, we notice that the classical periodic
Womersley flow, adapted here to the unit square, i.e.

p(t, x, y) = (1 − 2x) sin(ωt), ux(t, x, y) =
∞∑

i=0

γ2i+1(t) sin((2i + 1)πy), uy = 0,

γi =
4

(πi)(ν2π4i4 + ω2)

(
νπ2i2 sin(ωt) − ω cos(ωt)

)
,

is a solution of the time dependent Stokes problem with prescribed inflow and
outflow profiles. Exploiting the properties p = p(t, x), ux = ux(t, y), uy = 0,
we can easily see that it is also a solution of (33), provided that the flow rates
U1(t) = U2(t) are defined accordingly.
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Figure 2: Numerical simulation of the Womersley flow (solid line) compared with
the exact solution (dots). The computed axial velocity profiles are reported at
different times t = 0.1, 0.2, 0.3, 0.4, 0.5 on the left. On the right, we show the
velocity field at time t = 0.3.
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For the numerical experiments we set ν = 3 × 10−2 and ω = 2π into the
Womersley solution, such that the viscosity and the oscillation period are similar
to the ones of blood flow. As initial condition for the numerical simulation we
prescribe the finite element interpolate of the exact solution at t = 0 and we
set h = τ = 0.05. In figure 2 we report the axial component of the computed
solution at the inflow x = 0 for different times (solid lines) compared with the
exact solution evaluated on the finite element nodes (dots). On the left, we show
the complete velocity field at time t = 0.3. The tangential component of the
flow, namely uy, turns out to be equal to zero up to the computational tolerance
and the numerical solution turns out to be independent of the axial coordinate,
i.e. the velocity profiles do not change at different axial locations. Such results
confirm the efficacy of the penalty method in the approximation of defective net
flux conditions.

5 Concluding remarks

We have shown that the application of penalty techniques turns out to be an ef-
fective strategy for the discretization of the Stokes system with defective bound-
ary conditions. Indeed, such technique allows us to set up a finite element dis-
cretization of the problem at hand with negligible additional computational costs
with respect to the standard case of Dirichlet boundary conditions. Simultane-
ously, the accuracy of the selected finite elements is not affected. The proposed
method can also be straightforwardly extended to more significant models such
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as the time dependent Oseen or the Navier-Stokes equations, with interesting
applications in the field of computational hemodynamics.
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