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Abstract

The field of statistics is at the cusp of a revolution in the way data is
collected by measuring instruments. Massive information is retrieved in
real-time and/or spatially-referenced, hence producing new kind of data:
functional data. Statistical inference for functional data is particularly
challenging as it is an extreme case of high-dimensional data for which, no
matter how large the sample is, information will always be insufficient to
fully characterize the underlying model. In detail, after a historical excursus
over the test statistics introduced for approaching the problem of testing
the mean, we provide a generalization of Hotelling’s T 2 on any functional
Hilbert space, naturally dubbed functional Hotelling’s T 2. We discuss a
nonparametric permutational framework that enables statistical testing for
the mean function of a population as well as for the difference between the
mean functions of two populations. Within this framework, we show how
a number of state-of-the-art test statistics can be seen as approximations
of functional T 2 statistic hereby proposed.
Keywords: Hotelling’s T square, Functional Data, Inference, Permutation
Test.

1 State of the art

The tremendously fast technological developments pertaining to measuring in-
struments have brought the field of Statistics at the cusp of a revolution, with
real-time and/or spatially-referenced continuous information as the elementary
datum to be analyzed. Various constraints (time, economical or ethical issues)
on the other hand often prevent data analysts from collecting large samples.
This brings the statistician out of his comforting zone where enough informa-
tion is available to fully characterize all the variables under study and urges the
demand for new inferential procedures that make the most out of the available
information to provide the best possible inference. Traditionally, the number
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of variables under study is referred to as the dimension of the problem and of-
ten denoted p, while the number of observations of these variables is referred
to as the sample size and often denoted n. Hence, traditional samples with
more observations than variables are termed small p large n data while modern
samples with more variables than observations are termed large p small n data.
Functional data is an extreme case of large p small n data with p → ∞. In
this paper, we propose a chronological overview and evolution of the statistical
approach to the inference for the mean from the early works of De Moivre and
Gauss back at the beginning of the XX century to the most recent advances.
We will show how this evolution is tightly related to the sample characteristics
and we will address this specific problem for functional data (extreme case of
high-dimensional setting) by introducing a new test statistic.

z-test. In the XIX century, the German mathematician and astronomer
Carl Friedrich Gauss, while trying to measure distances between stars, realized
that he could not obtain perfectly reproducible measurements (Gauss 1809).
Rather, his measurements were clustered around a central value, with more
frequently close to this value and less frequently further away. He named this
distribution of measurements the Normal distribution, also named after his name
nowadays. As a matter of fact, this distribution was introduced 60 years before
by the French mathematician Abraham de Moivre in the privately circulated
pamphlet “Approximatio ad summam terminorum binomii (a + b)n in seriem
expansi” (De Moivre 1733) in response to the Bernoulli brothers’ paper 23 years
earlier where he derived a simple approximation to the Bernoulli distribution.
In this work, de Moivre unveils the mathematical expression of the Normal
distribution curve, well known as the “Bell curve”. French mathematician and
astronomer Pierre-Simon Laplace further formalized the introduction of the Nor-
mal distribution in the “Théorie analytique des probabilités” (Laplace 1820).

Almost a century later, the English statistician and geneticist Sir Ronald
Aylmer Fisher publishes “Statistical methods for research workers” (Fisher 1925b),
in which he formalizes the use of the Normal distribution for statistical infer-
ence using elementary one-dimensional data. Let (x1, . . . , xn) be a sample of n
independent measurements following the Normal distribution with mean µ and
standard deviation (SD) σ. Fisher interprets the area under de Moivre’s curve
as a measure of probability. Hence, if σ is known and the hypothesis µ = µ0

is formulated, he defines the so-called z-score z0 = σ−1(x− µ0)/
√
n, where x is

the sample mean and shows that z0 follows a centered Normal distribution with
unit standard deviation under the null hypothesis. Subsequently, he argues that
the farther away from 0 the z-score z0, the more evidence there is against the
hypothesis µ = µ0 since it implies that the occurrence of such a z-score was very
unlikely under this assumption. This is the basis of the z-test, which enables for
the first time to make inference for the mean of one-dimensional data.

However, most of one-dimensional data are not normally distributed and the
above theory relies on the cornerstone that z0 follows a centered Normal dis-
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tribution with unit SD. The validity of this assumption is somehow guaranteed
by the Central Limit Theorem (CLT). Hence, most of the inferential procedures
proposed in the early 1900s pertain to large samples. We refer to this period as
the 1 = p < n = +∞ age of Statistics (see Figure 1).

Figure 1: Timeline of the principal results on statistical inference for the mean.

t-test. Eventually, in many fields of applied statistics, it turned out that
large samples were not feasible, mainly for time, economical or ethical reasons.
This became problematic for applying the z-test for two reasons: (i) the SD of
the measurement distribution is never known in practical situations but large
sample theory provides an unbiased estimator of it, which is not accurate for
small finite sample sizes and (ii) the measurement distribution is rarely Normal
but large sample theory ensures that the sample mean is Normal (CLT), which
is not guaranteed anymore in the small finite sample size setting.

The English statistician William Sealy Gosset was the first scientist to ac-
knowledge this fact. At that time, as reported in Fisher Box (1981, 1987), he was
working on a study about breweries and had only a few observations for making
inference. Hence, he circumvented this issue by introducing the t-distribution
under the pen-name Student in his work “The Probable Error of a Mean” (Gos-
set 1908). He accounted for the variability of the sample standard deviation in
the z-statistic, which becomes non-negligible at low sample sizes. To avoid con-
fusion, he labels it as the t-statistic and characterizes its distribution under the
assumption of normality of the data. Fisher further studies the t-distribution in
“Applications of ‘Student’s’ distribution” (Fisher 1925a).
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Jointly working together, Gosset and Fisher thus introduced the Student’s
t-distribution and formulated the corresponding t-test, which enables inference
for the mean of one-dimensional Normal data using small samples. We refer to
this period as the 1 = p < n < +∞ age of Statistics (see Figure 1).

Hotelling’s T 2 test. A few years later, a growing interest arose in study-
ing multiple features (variables) associated to the same underlying statistical
unit (observation). A simple example of this can be formulated as the following
question: what are the averaged height and weight of the US population? One
can obviously treat the two questions separately but would not account for the
obvious correlation between the two variables by doing so. In other words, the
scientific community was in need of inferential procedures for jointly distributed
multi-dimensional data. Building on Indian statistician Prasanta Chandra Ma-
halanobis’s work “Analysis of Race Mixture in Bengal” (Mahalanobis 1927)
where the distance named after him is introduced, American statistician Harold
Hotelling introduces the T 2-statistic as a multivariate generalization of the t-
statistic in “The generalization of Student’s ratio” (Hotelling 1931). In essence,
the T 2-statistic is the Mahalanobis distance between the multivariate sample
mean and a multivariate hypothesized mean. Hotelling derives the statistical
distribution of the T 2-statistic under the assumption of multivariate normality
with dimension p smaller than the sample size n, which provided the scientific
community with adequate inferential procedures for simultaneously testing for
the mean of multiple features.

Hotelling thus introduced the T 2-statistic, which follows a Fisher distribu-
tion under the assumption of multivariate normality with p < n. We refer to
this period as the 1 < p < n < +∞ age of Statistics (see Figure 1).

High-dimensional tests. At the end of the XX Century, probably one
of the most dramatic changes of paradigm in the history of modern statistics
occurred. So far, due to technological limitations, it was a luxury to be able to
measure multiple features at the same time (and so p easily remained smaller
than n). The major breakthroughs that measuring instruments underwent dur-
ing the second half of the XX century yielded data with more features than
observations (and thus it became usual that p exceeds n at least by an order of
magnitude). In other words, statistical research translated from a world with
enough information to fully characterize the features of interest (p < n) to a
world with insufficient information to do so (p ≥ n). DNA micro-arrays for
gene expression are one of the most famous examples of such data. They are
characterized by thousands of variables being evaluated on only a few replicates.

Due to the increasing number of such large p small n data, many efforts have
been made to extend Hotelling’s result to the p > n case for enabling inference
for the mean of multi-dimensional data which dimension exceeds the sample size.
The work of Srivastava (2007) is pioneering in this direction. He proposes a gen-
eralized T 2-statistic and shows that it follows a Fisher distribution for each n
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and p, with n < p < +∞, under the assumption of multivariate normality and of
proportionality of the variance-covariance matrix to the identity (which implies
the independence among components). In Secchi et al. (2013), a generalized
T 2-statistic is presented in a less stringent framework, i.e., without relying on
the assumption of independence among components (even though still requiring
multivariate normality). Under some conditions on the trace of the variance-
covariance matrix, they show that it follows a χ2 distribution with n−1 degrees
of freedom in the p → ∞ regime. We refer to this period as the 1 < n < p < +∞
age of Statistics (see Figure 1).

Functional tests. Some areas of applied statistics are interested in a par-
ticular kind of data: they aim at making inference for a single variable acquired
in a continuous fashion by cutting-edge measuring instruments. The occurrence
of such functional data is growing rapidly in these areas and raises the demand
for appropriate inferential tools. Functional data analysis (FDA) has been one
of the focuses of statisticians in the XXI century (Ramsay and Silverman 2002,
2005; Ferraty and Vieu 2006). The curve describing the continuous variable can
be viewed as an infinity of points, or variables, and is thus the obvious extreme
case of large p small n data. In addition, each “variable” describing a given
point on the observed curves cannot be assumed independent from the other
points on the same curves. We are thus entering in a new age of Statistics at the
antipodes with respect to the beginning of the XX century that we shall refer
to as the 1 < n < p = +∞ age of Statistics.

A commonality between the different inferential procedures provided during
the last two centuries is the normality assumption of the data. This yielded para-
metric tests that are particularly appealing because (i) they generally achieve
great statistical power and (ii) they only require the computation of a single test
statistic, which is computationally easy and the comparison with tabulated crit-
ical values. In contrast, nonparametric approaches to the problem of inference,
such as permutation tests, also introduced during the XX century (Fisher 1936),
were not widely used because available technologies back in these days could not
cope with the high computational burden that these procedures generated.

This was not really a concern during the 1 = p < n = +∞ age. Indeed,
after Russian mathematician Aleksandr Mikhailovich Lyapunov proved the CLT
under very wide assumptions in the “Nouvelle forme du théoreme sur la limite de
probabilité” (Lyapunov 1901), the z-test could be easily applied to non-normal
data. During the 1 = p < n < +∞ age, even though asymptotic normality of
the sample mean was not sufficient anymore to ensure that the t-statistic follows
the t-distribution, inferential procedure for testing the assumption of normality
of one-dimensional data already existed and was thus not a debated point.

Debates really started with the 1 < p < n < +∞ age. Indeed, Hotelling’s T 2

test strongly relies on the assumption of multivariate normality, which can be
assessed in the bivariate case but becomes more and more challenging to assess as
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the dimension p increases. This is known as the “curse of dimensionality” (Hastie
et al. 2009). These concerns grew even more during the 1 < n < p < +∞ age as
most statistical procedures proposed for their analysis, such as the tests proposed
in Srivastava (2007); Secchi et al. (2013), also strongly rely on the assumption of
multivariate normality and, in addition, have been shown not to be robust with
respect to violation of this assumption (Secchi et al. 2013). Similar concerns
remain now that we enter the 1 < n < p = +∞ age with FDA.

Consequently, in this work, following the approach pioneered by Fisher (Fisher
1936), we propose a nonparametric permutational framework for the inference
on the mean of functional data. This framework does not rely on either mul-
tivariate normality or pre-specified variance-covariance structures. As such, it
offers an appealing alternative to parametric procedures, the validity of which
remains unclear in the new settings we find ourselves into.

In detail, in the present work, we propose a L2 generalization of the Hotelling’s
T 2 statistic. We refer to it as functional Hotelling’s T 2. We define the statistic
and discuss its properties in Section 2. In Subsection 2.3 we discuss how to
compute the functional Hotelling’s T 2, and show how its finite-dimensional ap-
proximation is related with the multivariate large p small n generalization of T 2

provided in Secchi et al. (2013). In Section 3 we discuss a possible application of
the functional Hotelling’s T 2 statistic to the problem of inference for the mean
in FDA, by means of nonparametric permutation tests. In Section 4 we compare
it with other L2-based test statistics presented in literature to test for functional
data. Finally, in Section 5 we extend functional Hotelling’s T 2 to any functional
Hilbert space. All proofs are reported in the Appendix.

2 Hotelling’s T
2 in L

2

2.1 Theoretical Framework

Let (Ω,F ,P) be a probability space on the space L2(T ) of all real-valued squared-
integrable functions on the domain T (where T is an interval of R of the form
(a, b)). The space L2(T ), endowed with its natural inner product (ξ1, ξ2) =∫
T ξ1(t)ξ2(t)dt for any ξ1, ξ2 ∈ L2(T ), and associated norm ‖ξ‖L2 =

√∫
T ξ2(t)dt

(for any ξ ∈ L2(T )), is a Hilbert space. Let E denote the integration with respect
to the probability measure P. The elementary datum in functional data anal-
ysis (FDA) is a random function of which we shall give a proper mathematical
definition. Following (Tarpey 2003), we state:

Definition 2.1. Given a probability space (Ω,F ,P), a random L2-function, or
L2-valued random variable, is a measurable surjective map from the sample space
Ω to L2(T ).

Note that, unlike Tarpey (2003), we here require the random function to be
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a surjective map from Ω to L2(T ). This assumption means that the random
function is nondegenerate, in the sense that it covers the whole L2(T ) space.

Similarly to real-valued one-dimensional (resp., multi-dimensional) variables,
for a given random L2-function ξ, we can define the concepts of mean and
dispersion around the mean. In traditional discrete cases, the former is a real
one-dimensional (resp., multi-dimensional) vector and the latter is summarized
by the variance (resp., variance-covariance matrix). The mean of a random L2

function on the other hand is a function and its dispersion is characterized by a
covariance operator. They are given by the following.

Definition 2.2. Let ξ be a random L2-function. The mean function µ : TtoR
and covariance operator V : L2(T ) → L2(T ) of the random L2-function ξ are:
respectively given by:

µ(t) = E[ξ(t)], and (V f) (t) =

∫

T
σ(t, s)f(s)ds,

where σ : T × T → R is the covariance function of ξ:

σ(t, s) = E [(ξ(t)− µ(t))(ξ(s)− µ(s))] , for any (t, s) ∈ T × T .

In the current work, similarly to (Horváth and Kokoszka 2012; Bosq 2000),
we restrict ourselves to random L2-functions with finite total variance, i.e., such
that:

E
[
‖ξ‖2L2

]
< +∞ (finite total variance).

This covers a huge number of practical situations and confers convenient prop-
erties to the covariance operator such as the spectral theorem decomposition.
Indeed, the covariance function σ can then be shown to belong to L2(T ×T ). As
a result, the covariance operator V is an Hilbert-Schmidt operator, i.e., it belongs
to the subspace HS(L2(T )) of the space of limited linear operators L(L2(T )) on
L2(T ) (Arveson 2002).

At this point and for the rest of the paper, we will assume that we collected
a random sample of n independent and identically distributed (iid) random L2-
functions ξ1, . . . , ξn, with common mean function µ and covariance operator V ,
satisfying the finite total variance assumption.

Unbiased estimators for µ and V are given by the following

Definition 2.3. The sample mean function ξ : T → R is an unbiased estimator
of the mean function µ and is given by:

ξ(t) =
1

n

n∑

i=1

ξi(t) .

The sample covariance operator V̂ : L2(T ) → L2(T ) is an unbiased estimator of
the covariance operator V and is given by:

(
V̂ f
)
(t) =

∫

T
S(t, s)f(s)ds,
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where S is the sample covariance function defined as:

S(t, s) = 1

n− 1

n∑

i=1

(ξi(t)− ξ(t))(ξi(s)− ξ(s)) for any (t, s) ∈ T × T .

The proof of unbiasness of these random variables as estimators of the mean
function and covariance operator respectively is straightforwardly obtained by
replicating the proof of unbiasness of their multivariate counterparts. Note that
ξ is a random L2-function and V̂ is a random HS(L2)-operator.

2.2 Definition of Hotelling’s T
2 in L

2

Similarly to the multivariate case, it is possible to break down the total variance
in the original functional dataset into two components, one of which only depends
on the data. The following theorem states such a decomposition of variance and
introduces some useful operators.

Theorem 2.1. Consider a sample of n iid random functions with mean µ,
covariance operator V s.t. E[‖ξi‖2L2 ] < +∞. Then, the following variance de-
composition holds:

(n− 1)V̂ + nV̄ = Ṽ ,

or, equivalently, ∀g ∈ L2(T ):

(n− 1)(g, V̂ g) + n(g, V̄ g) = (g, Ṽ g),

where:

• V̂ is the sample covariance operator, with kernel S, that describes the dis-
persion of data ξi around the sample mean ξ̄;

• V̄ is the random operator with kernel
(
ξ̄(t) − µ(t)

)(
ξ̄(s) − µ(s)

)
, that de-

scribes the distance between the sample mean ξ̄ and the mean µ;

• Ṽ is the random operator with kernel
∑n

i=1

(
ξi(t)−µ(t)

)(
ξi(s)−µ(s)

)
, that

describes the dispersion of data ξi around the mean µ.

The random operators V and V̂ introduced in Theorem 2.1 are the key
concepts for generalizing Hotelling’s T 2 statistic to the functional case. The
following definition formally introduces this statistic:

Definition 2.4. The functional Hotelling’s T 2-statistic is defined as the L2 dis-
tance between the sample mean function and the true mean function “standard-
ized” to the sample covariance operator. Similarly to the multivariate case, it
reads:

T 2 = n max
g∈Im(V̂ )

(g, V g)

(g, V̂ g)
. (1)
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The functional T 2-statistic has a number of desirable properties that makes
it particularly appealing for inferential purposes:

T 2 is a semi-distance between µ and ξ. It is important to keep in mind
that, although the formulation of the functional T 2-statistic proposed in Def-
inition 2.4 is closely related to the multivariate T 2-statistic that one can find
in many textbooks on introduction to multivariate analysis, the two statistics
fundamentally differs in their mathematical implications. The multivariate T 2-
statistic is defined as the maximum of the squared t-statistics associated to all
possible one-dimensional projections of the multi-dimensional data. Differently,
the functional T 2-statistic is defined as the maximum over the space Im(V̂ )
spanned by the sample covariance operator V̂ , which is an (n − 1)-dimensional
random subspace of L2(T ). As a result, T 2 is a distance between µ and ξ in the
random space Im(V̂ ) but is only a semi-distance in L2(T ), for which the identity
of indiscernibles does not hold.

T 2 is invariant under similarity transformations. Functional Hotelling’s
T 2-statistic is invariant under similarity transformations of the data, i.e., under
affine transformations ξ 7→ aOξ+f , where a ∈ R+, f ∈ L2(T ) and O is an orthog-
onal linear limited operator on L2(T ), i.e., O satisfies (Og1, Og2)L2 = (g1, g2)L2

for any g1, g2 ∈ L2(T ). Lehmann and Romano (2006) have shown that this
type of invariance is the largest family of invariance transformations that one
can achieve in the framework p ≥ n. In this sense, the functional T 2-statistic is
invariant-optimal.

T 2 “marginal” distributions under functional normality are known.

The notion of functional normality has been introduced in Tarpey (2003) and
stipulates that a random L2-function is normally distributed if and only if, for all
u ∈ L2(T ), the real-valued one-dimensional random variable (ξ, u) is normally
distributed. If we further assume functional normality of our dataset, Theorem
2.1 combined with Cochran’s Theorem yields the following (see Proposition .1
in the Appendix):

n
(g, V g)

(g, V̂ g)
∼ F (1, n− 1) . (2)

Equation 2 provides the distribution of the ratios involved in the T 2 statistic.
However the distribution of its maximum over all functions of Im(V̂ ) is not
easy to elicit without introducing very strong assumptions on the covariance
operator V . In addition, functional normality may be too stringent for many
applications and hard to defend and/or prove. For all these reasons, we will
tackle the problem of inference for the mean function within a nonparametric
permutational framework, based on minimal distributional assumption.
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2.3 A Finite-Dimensional Approximation of Hotelling’s T
2 in L

2

With Definition 2.4, we gave a formal definition of functional Hotelling’s T 2

statistic. However, expressed as a maximization problem, T 2 is of little practical
interest here. Indeed, permutation tests rely on the evaluation of a sufficient
statistic over an enormous number of permuted datasets, which might become
computationally too heavy if, for each evalution, a maximization problem has
to be solved. Furthermore, in practical scenarios, analytic expressions of the
observed functions ξi’s are often not provided. Rather, finite high-dimensional
approximations are available.

Let us consider a countable set of basis functions {φk}k≥1 of L2(T ). It is
possible to project the original n observed functions onto the first p elements
of such a basis. Let ξi = ((φ1, ξi), . . . , (φp, ξi)) be the vector of the scores of
the i-th observed function ξi projected onto the first p elements of the basis.
Then, we can define the p-dimensional random vector ξ as the sample mean of
the individual scores and the p× p matrix S as their sample variance-covariance
matrix. Similarly, the mean function µ can be projected into a p-dimensional
vector µ of mean scores. At this point, the finite-dimensional approximation of
functional Hotelling’s T 2 can be computed directly without solving any maxi-
mization problem, as shown by the following.

Theorem 2.2. Consider a sample of n iid random functions with mean µ,
covariance operator V s.t. E[‖ξi‖2L2 ] < +∞. Let {φk}k≥1 be a countable set of
basis functions of L2(T ). Then, for any p ≥ 1, the following identity holds:

T 2
p = n max

g∈Im(V̂ )∩{φ1,...,φp}

(g, V g)

(g, V̂ g)
= n(ξ − µ)⊤W 1/2S+W 1/2(ξ − µ) , (3)

where W ∈ Rp×p is the matrix of inner products between the basis functions
[W ]i,j = (φi, φj) and S+ is the Moore-Penrose generalized inverse (Rao and
Mitra 1971) of the sample variance-covariance matrix S. In addition:

T 2
p

a.s.−−−→
p→∞

T 2 .

Theorem 2.2 states that, if the basis used to project the data is orthonormal
(i.e., W = I), if we limit the search for the maximum in the functional T 2

definition to those functions in Im(V̂ ) that are spanned by the first p elements
of any basis of L2(T ), then the resulting maximum can be formulated as a high-
dimensional T 2 statistic as introduced in (Secchi et al. 2013). In the case of
non-orthonormal basis, this finite-dimensional approximation is still related to
the high-dimensional generalization provided in (Secchi et al. 2013), but the
generalized inverse of the covariance matrix is rescaled, by considering the inner
products between the basis functions. In addition, as p → ∞, the sequence of
such statistics converges almost surely to the functional T 2 statistic.

Note that, with the basis of principal components of V̂ , we have the equality
T 2 = T 2

n−1, i.e., the functional Hotelling’s T
2 can be exactly evaluated by means

of the first n− 1 sample principal components.
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3 Permutation test in L
2 based on Hotelling’s T

2

The problem of inference for functional data has been addressed in the liter-
ature from both a parametric and a nonparametric perspective. The former
approach commonly relies on distributional assumptions on functional data and
on asymptotic results (Horváth and Kokoszka 2012; Spitzner et al. 2003; Cuevas
et al. 2004; Fan and Lin 1998; Schott 2007). The latter approach relies instead on
permutation or bootstrap techniques, which are computationally intensive (Hall
and Tajvidi 2002; Cardot et al. 2007; Cuesta-Albertos and Febrero-Bande 2010;
Pini and Vantini 2013; Hall and Van Keilegom 2007). The method that we
propose for testing functional data relies on this latter approach.

in detail, we now show how functional Hotelling’s T 2 can be used in nonpara-
metric permutation procedures for making inference on the mean of a random L2

function (Section 3.1) and on the difference between the means of two random
L2 functions (Section 3.2).

3.1 One-Population Test

Let (ξ1, . . . , ξn) be n i.i.d. random L2-functions with mean function µ and covari-
ance operator V that satisfy the finite total variance assumption (E[‖ξi‖2L2 ] <
+∞, for all i ∈ {1, n}).

Assuming that we want to test the following null hypothesis on the mean
function:

H0 : µ = µ0, vs. H1 : µ 6= µ0 , with µ0 ∈ L2(T ) , (4)

one can compute, under the null hypothesis H0, the functional T
2 statistic (Def-

inition 2.4):

T 2
0 = n max

g∈Im(V̂)

(g, V0g)

(g, V̂ g)
, (5)

where V0 is the random operator with kernel σ0(t, s) = (ξ(t)−µ0(t))(ξ(s)−µ0(s))
for any t, s ∈ T and V̂ is the sample covariance operator with kernel S.

One can use the T 2
0 statistic in a permutational framework for testing the

null hypothesis H0. Instead of the normality assumption often required in this
framework (see for instance Horváth and Kokoszka 2012), we make in a per-
mutation framework the much weaker assumption of symmetry of the distri-
bution of the data around the mean. Then, a permutation test can be con-
structed by evaluating the test statistic (5) over all possible reflections of data
with respect to the center of symmetry under H0, i.e., the transformations
ξi(t) 7→ ξ∗i (t) = µ0(t) + (−1)ci(ξi(t) − µ0(t)), with i = 1, ..., n, and ci ∈ {0, 1}.
The p-value of test (4) is the proportion of permuted T 2

0 (ξ
∗
1 , ξ

∗
2 , ..., ξ

∗
n) exceeding

the value T 2
0 (ξ1, ξ2, ..., ξn) evaluated on the original data set.
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3.2 Two-Population Test

Let (ξ11, . . . , ξn11) and (ξ12, . . . , ξn22) be two independent samples of size n1 and
n2 respectively. Let (ξ11, . . . , ξn11) be i.i.d. random L2-functions with mean
function µ1 and covariance operator V and let (ξ12, . . . , ξn22) be i.i.d. random
L2-functions with mean function µ2 and covariance operator V . In addition, we
assume that the assumption of finite total variance is met in the two samples.

Assuming that we want to test the following null hypothesis:

H0 : µ1 = µ2, vs. H1 : µ1 6= µ2 , (6)

one can compute, under H0, the functional T 2 statistic (Definition 2.4):

T 2
0 =

(
1

n1
+

1

n2

)−1

max
g∈Im(V̂pooled)

(g, V0g)

(g, V̂pooledg)
, (7)

where V0 is the random operator with kernel

σ0(t, s) =
[
ξ1(t)− ξ2(t)

[ [
ξ1(s)− ξ2(s)

]
, for any t, s ∈ T

with ξ1 and ξ2 being the sample mean functions of the first and the second
populations respectively and V̂pooled is the pooled sample covariance operator
with pooled covariance function Spooled defined as:

Spooled(t, s) =
1

n1 + n2 − 2

[
n1∑

i=1

(
ξi1(t)− ξ1(t)

) (
ξi1(s)− ξ1(s)

)

+

n2∑

i=1

(
ξi2(t)− ξ2(t)

) (
ξi2(s)− ξ2(s)

)
]
, for any t, s ∈ T .

A permutation test can then be constructed by evaluating the test statistic
(7) over all permutations of the data over the sample units (ξ11, ..., ξn11, ξ12, ..., ξn22) 7→
(ξ∗11, ..., ξ

∗
n11

, ξ∗12, ..., ξ
∗
n22

). The p-value of the corresponding test is then the
proportion of T 2

0 (ξ
∗
11, ..., ξ

∗
n11

, ξ∗12, ..., ξ
∗
n22

) exceeding T 2
f,0(ξ11, ..., ξn11, ξ12, ..., ξn22)

evaluated on the original data set.

4 Other L
2-based test statistics

To perform a permutation test on the mean of one functional population (or
two functional populations), we only need to define a distance or semi-distance
between the sample mean function (or difference between the sample mean func-
tions) and the mean function under the null hypothesisH0 (or difference between
the two sample mean functions). In the literature of permutation testing, the
following distances have been proposed for random L2 functions:
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The L2 distance.

∆2
L2 =

∫

T

(
ξ(t)− µ(t)

)2
dt .

This test statistic and associated permutation test have been proposed in Hall
and Tajvidi (2002); Hall and Van Keilegom (2007). It is also possible to derive
parametric or asymptotic tests based on the same statistic under the assumption
of functional normality (see for instance Horváth and Kokoszka 2012). The
statistic ∆L2 can be expressed as the norm of an appropriate operator in L2 as:

∆2
L2 = n max

g∈L2(T )

(g, V g)

(g, g)
.

Hence, ∆2
L2 can be seen as an approximation of the functional Hotelling’s T 2,

where the sample covariance operator V̂ is assumed to be the identity operator.
Note that this statistic neither accounts for the point-wise variance of the data
nor its covariance structure. It instead gives equal weight to equally-long inter-
vals of the domain T .

The standardized L2 distance. (i.e., the L2 distance between standard-
ized data)

∆2
L2
t
=

∫

T

(
ξ(t)− µ(t)

)2

S(t, t) dt ,

where S(t, t) is the point-wise sample variance. This test statistic has been
introduced in Hall and Tajvidi (2002) and can be seen as a weighted version of
the L2 statistic. Similarly to the L2 statistic, the statistic ∆2

L2
t

can be expressed

as the norm of an appropriate operator in L2 as:

∆2
L2
t
= n max

g∈L2(T )

(g, V g)

(g,Dσg)
.

Hence, ∆2
L2
t

can be seen as a more sophisticated approximation of the functional

Hotelling’s T 2 statistic. The sample covariance operator is indeed assumed to
be “diagonal” and reads (Dσg) (t) = S(t, t)g(t). The ∆2

L2
t

statistic thus makes

use of the point-wise estimates S(t, t) of the variance of the data but does not
account for its auto-correlation structure S(t, s).

Note that, unlike the functional T 2 statistic, the ∆2
L2 and ∆2

L2
t

statistics are

distances in L2(T ) (and not semi-distances). On the other hand, they share
no commonality with traditional test statistics used for null hypothesis statisti-
cal testing in multivariate analysis and they are not invariant under similarity
transformations.
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5 Hotelling’s T
2 in functional Hilbert spaces

In the previous sections we presented the functional Hotelling’s T 2 in the L2

geometry as the natural extension of finite-dimensional Euclidean geometry to
the space L2(T ). Nevertheless, functional Hotelling’s T 2 can be extended to
every functional Hilbert space. Indeed, its definition only requires the evaluation
of mean function and covariance operator, which directly derive from the notion
of inner product.

In particular, let H be a functional Hilbert space, endowed with the inner
product (·, ·)H and associated norm ‖ · ‖H . Let (ξ1, . . . , ξn) be n i.i.d. H-valued
random variables with mean µ ∈ H and covariance operator V ∈ L(H). A
sample estimate of the mean inH is the Fréchet mean: ξ̄ = argminξ∈H

∑n
i=1 ‖ξi−

ξ‖2H . Hence, functional Hotelling’s T 2 can be defined in the space H as:

T 2 = n max
g∈Im(V̂ )

(g, V̄ g)H

(g, V̂ g)H
. (8)

where:

• V̂ ∈ L(H) is the sample covariance operator in the space H, (defined
according to the scalar product in H), describing the dispersion of data ξi
around the Fréchet mean ξ̄. Indeed, V̂ is such that (g, V̂ g)H is the sample
variance of the scores of the orthogonal projections of ξi on g, with respect
to the inner product in H.

• V̄ ∈ L(H) is a random operator associated to the distance between the
Fréchet mean ξ̄ and the mean µ. Indeed, V̄ is such that (g, V̄ g)H is the
square distance between the scores of the orthogonal projections of ξ̄ and
µ over g, with respect to the inner product in H.

In the following, we report two concrete examples of geometry where we
explicit the definition of these operators: (i) the Sobolev space Hk(T ) of k-
differentiable squared-integrable real functions with squared-integrable deriva-
tives (Section 5.1) and (ii) the Bayes linear space B2(T ) of non-negative real
functions on T with squared-integrable logarithm (Boogaart et al. 2014) (Section
5.2).

5.1 Example: Hotelling’s T
2 in Sobolev Spaces

Consider the Sobolev spaceHk(T ), that is, the space of k-differentiable functions
g ∈ L2(T ) such that, for j ≤ k, Djg ∈ L2(T ) (where Djg denotes the j-th
derivative of g). The space Hk(T ) is a Hilbert space, endowed with the following
inner product:

(f, g)Hk =

k∑

j=0

(Djf,Djg)L2 =

k∑

j=0

∫

T
(Djf)(t) · (Djg)(t)dt . (9)
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Let (ξ1, . . . , ξn) be n i.i.d. Hk(T )-valued random variables with mean µ ∈
Hk(T ) defined as µ = argminm∈Hk(T ) E

[
‖ξi −m‖2

Hk

]
. The functional Hotelling’s

T 2 in Hk(T ) then reads:

T 2 = n max
g∈Im(V̂ )

(g, V g)Hk

(g, V̂ g)Hk

, (10)

where the operators V̂ and V can be explicitly defined using the inner product
in Hk(T ) given by Eq.(9). In details,

• the operator V̂ ∈ L(Hk) is defined as:

(
V̂ f
)
(t) =

∫

T

k∑

j=0

S0j(t, s)D
jf(s)ds,

where Slj(t, s) is the sample covariance between lth and jth derivatives
of data ξi: Slj(t, s) =

1
n−1

∑n
i=1(D

lξi(t) −Dlξ̄(t))(Djξi(s) −Dj ξ̄(s)), and

ξ̄(t) is the Fréchet mean of the ξi, defined as ξ̄ = argminm∈Hk

∑n
i=1 ‖

ξi −m ‖2
Hk ;

• the operator V̄ ∈ L(Hk) is defined as:

(
V̄ f
)
(t) =

∫

T

k∑

j=0

(ξ̄(t)− µ(t))(Dj ξ̄(s)−Djµ(s))Djf(s)ds.

To have a better insight into the interpretation of Hotelling’s T 2 in the
Sobolev space Hk(T ), we can rely on the following identities (Lemma .1 of the
Appendix):

(g, V̂ g)Hk = V̂ ar [(g, ξ1)Hk , . . . , (g, ξn)Hk ] ;

(g, V̄ g)Hk = ((g, ξ̄ − µ)Hk)2.

These identities show that Hotelling’s T 2 in Hk(T ) can be interpreted as the
maximum over all elements in the image space of V̂ of the ratio between: (i)
the squared distance between the scores of the orthogonal projections of ξ and µ
on g, with respect to the inner product in Hk(T ); and (ii) the sample variance
of the scores of the orthogonal projections of the ξi’s on g, with respect to the
inner product in Hk(T ).

5.2 Example: Hotelling’s T
2 in the Bayes Linear Space

Another example of functional Hilbert space recently introduced in the Func-
tional Data Analysis literature is the Bayes linear space B2(T ), that is, the space
of absolutely continuous density functions on the compact set T with squared-
integrable logarithm. The interested reader can find detailed descriptions of
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Bayes spaces in Egozcue et al. (2006); Egozcue and Pawlowsky-Glahn (2006);
Menafoglio et al. (2013); Boogaart et al. (2014); Hron et al. (2014). As shown by
Egozcue et al. (2006), B2(T ) is a functional Hilbert space when proper addition
⊕, scalar multiplication ⊙ and inner product (·, ·)B2 operations are defined. In
details, for any f, g ∈ B2(T ) and α ∈ R:

(f ⊕ g)(t) =
f(t)g(t)∫

T f(s)g(s)ds
, (α⊙ f)(t) =

f(t)α∫
T f(s)αds

,

(f, g)B2 =
1

2|T |

∫∫

T×T
ln

f(t)

f(s)
ln

g(t)

g(s)
dtds ,

(11)

where |T | is the measure of the compact set T .
An isometric isomorphism betweenB2(T ) and L2(T ) is defined by the centred

log-ratio (clr) transformation (Boogaart et al. 2014; Menafoglio et al. 2013):

clr(f)(t) = ln f(t)− 1

|T | ln f(s)ds. (12)

Using both the Hilbert geometry conferred from the addition, scalar multipli-
cation and inner product proposed by Egozcue et al. (2006) and the isomorphism
in Eq.(12), we can provide a functional Hotelling’s T 2 statistic in B2(T ) useful for
making inference on the mean of populations of density functions on a compact
support.

Let (ξ1, . . . , ξn) be n i.i.d. B2(T )-valued random variables with mean µ ∈
B2(T ) defined as µ = argminm∈B2(T ) E

[
‖ξi −m‖2B2

]
. The functional Hotelling’s

T 2 in Hk(T ) then reads:

T 2 = n max
g∈Im(V̂ )

(g, V g)B2

(g, V̂ g)B2

, (13)

where the operators V̂ and V can be explicitly defined using the inner product
in B2(T ) given by Eq.(11) and the isomorphism given by Eq.(12). In details,

• the sample covariance operator V̂ ∈ L(B2) is defined as:

(
V̂ f
)
(t) = clr−1

(∫

T
Sc(t, s)clr(f)(s)ds

)
,

where clr−1 is the inverse centered log-ratio transformation, and Sc(t, s) is
the sample covariance between clr-transformed data:
Sc(t, s) =

1
n−1

∑n
i=1

(
clr(ξi)(t)− clr(ξ̄)(t)

) (
clr(ξi)(s)− clr(ξ̄)(s)

)
.

• the operator V̄ ∈ L(B2) is defined as:

(
V̄ f
)
(t) = clr−1

(∫

T

(
clr(ξ̄)(t)− clr(µ)(t)

) (
clr(ξ̄)(s)− clr(µ)(s)

)
clr(f)(s)ds

)
,

where ξ̄(t) is the Fréchet mean of the ξi, defined as ξ̄ = argminm∈B2

∑n
i=1 ‖

ξi −m ‖2B2 .
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Similarly to we did in Sobolev spaces, to have a better insight into the in-
terpretation of Hotelling’s T 2 in the Bayes space B2(T ), we can rely on the
following identities (Lemma .2 of the Appendix):

(g, V̂ g)B2 = V̂ ar[(g, ξ1)B2 , . . . , (g, ξn)B2 ]

(g, V̄ g)B2 = ((g, ξ̄ − µ)B2)2

Hence, Hotelling’s T 2 in B2(T ) is the the maximum over all elements in the
image space of V̂ of the ratio between: (i) the squared distance between the
scores of the orthogonal projections of ξ and µ on g, with respect to the inner
product in B2(T ); and (ii) the sample variance of the scores of the orthogonal
projections of the ξi’s on g, with respect to the inner product in B2(T ).

6 Conclusions

After a historical excursus on how the problem of inference for the mean evolved
in the statistical research, from the early works of De Moivre and Gauss back
at the beginning of the XX century to the most recent advances, we presented a
generalization of Hotelling’s T 2 (functional Hotelling’s T 2) in functional Hilbert
spaces, and demonstrated how it can be used for hypothesis testing for the mean
of functional data within a permutational framework.

The functional Hotelling’s T 2 is presented as a natural extension of Euclidean
geometry to the functional L2 space. It is a semi-distance based on a semi-
metric in L2. In essence, the functional T 2 statistic maximizes the ratio of
an operator that assesses the distance between the sample mean of an i.i.d.
functional dataset and its actual mean to another operator that assesses the
variability of such a functional dataset around its sample mean. We presented
a practical way of computing this statistic without resorting to optimization
algorithms by projecting the dataset onto any basis of the image space of the
sample covariance operator.

For inferential purposes, we set up a permutational framework for making
inference on the mean (or difference between means) of functional data. We dis-
cussed the advantage of our proposed functional T 2 statistic, which, unlike all
other statistics proposed in the literature, fully accounts for the covariance struc-
ture of the input data. Moreover, we showed that already existing test statis-
tics recently presented in the literature are in fact approximations of functional
Hotelling’s T 2, where the variance and/or correlation of the data is ignored.

Finally, even though we presented functional Hotelling’s T 2 in the L2 geom-
etry, as the natural functional extension of Euclidean geometry, we also showed
how our functional T 2 statistic can be defined and used in virtually any Hilbert
space. Examples included in this work are the Sobolev spaces Hk(T ) and the
Bayes linear space B2(T ).

An interesting and challenging future development of this work would be the
extension of T 2 to the larger family of functional metric spaces (e.g., Banach
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spaces), following the direction of some lively and very recent areas of statisti-
cal research, such as object-oriented data analysis and shape analysis (see for
instance Marron and Alonso 2014). This extension requires a definition of T 2

exclusively based on a metric that relies neither on the notion of inner product
nor on the one of vector space.

Appendix: Proofs

Proof. [Theorem 2.1] Note that, by their definition, these 3 operators have respectively
1, n− 1 and n degrees of freedom. Moreover, we have that, ∀ω ∈ Ω, ∀t, s ∈ T :

(n− 1)S(ω)(t, s) =
n∑

i=1

(
ξi(ω)(t)− ξ̄(ω)(t)

)(
ξi(ω)(s)− ξ̄(ω)(s)

)

=

n∑

i=1

[(
ξi(ω)(t)− µ(t) + µ(t)− ξ̄(ω)(t)

)

×
(
ξi(ω)(s)− µ(s) + µ(s)− ξ̄(ω)(s)

)]

=

n∑

i=1

(
ξi(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)

+

n∑

i=1

(
ξ̄(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)

−
n∑

i=1

(
ξi(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)

−
n∑

i=1

(
ξ̄(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)

=
n∑

i=1

(
ξi(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)

− n
(
ξ̄(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)
.

Hence, we have:

(n− 1)S(ω)(t, s) + n
(
ξ̄(ω)(t)− µ(t)

)(
ξ̄(ω)(s)− µ(s)

)

=

n∑

i=1

(
ξi(ω)(t)− µ(t)

)(
ξi(ω)(s)− µ(s)

)
, (14)

and the thesis follows. �

Proposition .1. Consider a sample of n iid random functions ξ1, ..., ξn with
mean µ, covariance operator V s.t. E[‖ξi‖2L2 ] < +∞, and Im(V ) = L2(T ). Let
the random functions be normally distributed, i.e., ∀u ∈ L2(T ), (ξ, u) is a real
univariate gaussian random variable. Then, we have:

n
(g, V̄ g)

(g, V̂ g)
∼ F (1, n− 1).
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Proof. Let g ∈ Im(V̂ ). Under the normality assumption we have:

• (g, Ṽ g) ∼ (g, V g)χ2(n);

• n(g, V̄ g) ∼ (g, V g)χ2(1).

Indeed, for the first one, we have:

(g, Ṽ g) =

n∑

i=1

(∫

T

(
ξi(t)− µ(t)

)
g(t)dt

)2

We know that the random functions ξi − µ, i = 1, . . . , n, are independent and identi-
cally distributed as N∞(0, V ) (Gaussian random function with mean 0 and covariance
operator V ). Thus, the random variables

∫

T

(
ξi(t)− µ(t)

)
g(t)dt, i = 1, . . . , n

are independent and identically distributed as N1

(
0, (g, V g)

)
, thanks to the definition

of gaussian random function. The thesis follows immediately by definition of the χ2

distribution.
The second statistic can be written:

n(g, V̄ g) =
(∫

T

√
n
(
ξ̄(t)− µ(t)

)
g(t)dt

)2

Similar arguments give the distribution of N(g, V̄ g).
This result put us in the conditions to use Cochran’s theorem (J. and Wichern 2007).

It leads then to

• (n− 1)(g, V̂ g) ∼ (g, V g)χ2(n− 1);

• n(g, V̄ g) and (n− 1)(g, V̂ g) are independent.

These 2 points carry with them the following consequence: given V̂ , ∀g ∈ Im(V) ∩
Im(V̂), i.e., ∀g ∈ Im(V̂),

n
(g, V̄ g)

(g, V̂ g)
∼ F (1, n− 1) (15)

Finally, we know that Ker(V̂ ) has null measure in L2(T ). Hence, P[g 6∈ Im(V̂ )] = 0.

This last condition leads to the thesis. �

Proof. [Theorem 2.2] For the first part of the statement it is sufficient to note that
T 2
p is a monotonic increasing sequence which converges to the functional statistic T 2

f

defined in (1), as the basis {φk}k≥1 is dense in L2.
Now, at p fixed, we aim at finding the expression of T 2

p . It requires first to write
the decomposition of each function involved on the basis {ek}k≥1, and project them on
the space generated by the first p basis components. We have:

g =

p∑

k=1

gkφk ξi,p =

p∑

k=1

ξikφk ξ̄p =

p∑

k=1

ξ̄kφk µp =

p∑

k=1

µkφk.

Note that we are now working with finite-dimensional approximations ξi,p, ξ̄p, µp of
the functions ξi, ξ̄, µ, and that all approximations converge to the respective function
for p → ∞.
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Now, the projection of the quantity (g, V̄ g) in the p-dimensional space generated by
the first p φk can be written as:

(g, V̄ g)p =
(∫

T

(
ξ̄p(t)− µp(t)

)
g(t)dt

)2
=
(∫

T

p∑

k=1

p∑

l=1

(ξ̄k − µk)glφk(t)φl(t)dt
)2

At this point, note that, by definition:

∫

T

φk(t)φl(t)dt = Wkl

Thus, we obtain:

(g, V̄ g)p =
( p∑

k=1

p∑

l=1

(ξ̄k − µk)Wklgl

)2
=
(
(ξ̄ − µ)′Wg

)2
=
(
(ξ̄ − µ)′W 1/2W 1/2g

)2
,

where

g = (g1, . . . , gp)
′

ξ̄ − µ = (ξ̄1 − µ1, . . . , ξ̄p − µp)
′

Similarly, we have:

(n− 1)(g, V̂ g)p =

n∑

i=1

(∫

T

(
ξi,p(t)− ξ̄p(t)

)
g(t)dt

)2

=

n∑

i=1

(∫

T

p∑

k=1

p∑

l=1

(ξik − ξ̄k)glφk(t)φl(t)dt
)2

=

n∑

i=1

( p∑

k=1

p∑

l=1

(ξik − ξ̄k)Wlkgl

)2
= (n− 1)g′W 1/2SW 1/2g,

where

S =
1

n− 1

n∑

i=1

(ξi − ξ̄)(ξi − ξ̄)′

ξi − ξ̄ = (ξi1 − ξ̄1, . . . , ξip − ξ̄p)
′

Thus, we obtain the following:

T 2
p = n max

g∈Im(S)

(
(ξ̄ − µ)′W 1/2W 1/2g

)2

g′W 1/2SW 1/2g
.

It can be written in another interesting way thanks to the Maximization Lemma in
J. and Wichern (2007). We get the final representation:

T 2
p = n(ξ̄ − µ)′W 1/2S+W 1/2(ξ̄ − µ),

where S+ is the Moore-Penrose inverse of S.

�
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Lemma .1. Let {ξi}i=1,...,n a set of random elements of Hk(T ), with common
mean µ, and let V̂ and V̄ be the two Hk operators defined in Subsection 5.1.
The two operators V̂ and V̄ are such that, for any g ∈ Hk:

• (g, V̂ g)Hk = V̂ ar[(g, ξi)Hk ];

• (g, V̄ g)Hk = ((g, ξ̄ − µ)Hk)2.

Proof. For any g ∈ Im(V̂ ), we have:

(g, V̂ g)Hk =

k∑

l=0

(Dlg,Dl(V̂ g))L2

=
k∑

l=0

∫

T

Dlg(t)Dl



∫

T

k∑

j=0

S0j(t, s)D
jg(s)ds


 dt

=
k∑

l=0

∫

T

Dlg(t)

∫

T

k∑

j=0

∂l
tS0j(t, s)D

jg(s)dsdt

=
k∑

l=0

k∑

j=0

∫∫

T×T

Dlg(t)Slj(t, s)D
jg(s)dsdt,

where in the last equality, we used the fact that:

∂l
tS0j(t, s) = ∂l

t

1

n− 1

n∑

i=1

(ξi(t)− ξ̄(t))(Djξi(s)−Dj ξ̄(s))

=
1

n− 1

n∑

i=1

(Dlξi(t)−Dlξ̄(t))(Djξi(s)−Dj ξ̄(s)) = Slj(t, s).

Furthermore, we have:

k∑

l=0

k∑

j=0

∫∫

T×T

Dlg(t)Slj(t, s)D
jg(s)dsdt

=
k∑

l=0

k∑

j=0

∫∫

T×T

Dlg(t)
1

n− 1

n∑

i=1

(Dlξi(t)−Dlξ̄(t))(Djξi(s)−Dj ξ̄(s))Djg(s)dsdt

=
1

n− 1

n∑

i=1

k∑

l=0

k∑

j=0

(∫

T

Dlg(t)(Dlξi(t)−Dlξ̄(t))dt

)(∫

T

Djg(t)(Djξi(t)−Dj ξ̄(t))dt

)

=
1

n− 1

n∑

i=1

(
k∑

l=0

∫

T

Dlg(t)(Dlξi(t)−Dlξ̄(t))dt

)2

=V̂ ar

[
k∑

l=0

∫

T

Djg(t)Djξi(t)dt

]

=V̂ ar[(g, ξi)Hk ],

i.e., (g, V̄ g)Hk is the sample variance of the scores of the orthogonal projections of ξi on

g, V̂ ar[(g, ξi)Hk ].
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In the same way, for any g ∈ Hk, we have:

(g, V̄ g)Hk =

k∑

l=0

(Dlg,Dl(V̄ g))L2

=
k∑

l=0

∫

T

Dlg(t)Dl



∫

T

k∑

j=0

(ξ̄(t)− µ(t))(Dj ξ̄(s)−Djµ(s))Djg(s)ds


 dt

=

k∑

l=0

∫

T

Dlg(t)

∫

T

k∑

j=0

∂l
t(ξ̄(t)− µ(t))(Dj ξ̄(s)−Djµ(s))Djg(s)dsdt

=
k∑

l=0

k∑

j=0

∫∫

T×T

Dlg(t)(Dlξ̄(t)−Dlµ(t))(Dj ξ̄(s)−Djµ(s))Djg(s)dsdt

=

k∑

l=0

k∑

j=0

(∫

T

Dlg(t)(Dlξ̄(t)−Dlµ(t))dt

)(∫

T

Djg(t)(Dj ξ̄(t)−Djµ(t))dt

)

=

(
k∑

l=0

∫

T

Dlg(t)(Dlξ̄(t)−Dlµ(t))dt

)2

=
(
(g, ξ̄ − µ)Hk

)2
,

that is, (g, V̄ g)H is the square distance between the scores of the orthogonal projections

of ξ̄ and µ over g. �

Lemma .2. Let {ξi}i=1,...,n a set of random elements of B2(T ), with common
mean µ, and let V̂ and V̄ be the two Hk operators defined in Subsection 5.2.
The two operators V̂ and V̄ are such that, for any g ∈ B2(T ):

• (g, V̂ g)B2 = V̂ ar[(g, ξi)B2 ];

• (g, V̄ g)B2 = ((g, ξ̄ − µ)B2)2.

Proof. For any g ∈ Im(V̂ ), exploiting the isomorphism (12), we have:

(g, V̂ g)B2 = (clr(g), clr(V̂ g))L2

=

(
clr(g),

∫

T

Sc(t, s)clr(g)(s)ds

)

L2

=

∫∫

T×T

clr(g)(t)Sc(t, s)clr(g)(s)dsdt

= (clr(g), V̂cclr(g))L2 ,

where V̂c ∈ L(L2) is the integral operator of kernel Sc(t, s). Finally, we have:

(clr(g), V̂cclr(g))L2 = V̂ ar((clr(ξi), clr(g))L2)

= V̂ ar((ξi, g))B2).
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In the same way, for any g ∈ B2(T ):

(g, V̄ g)B2 = (clr(g), clr(V̄ g))L2

=

(
clr(g),

∫

T

(clr(ξ̄)(t)− clr(µ)(t))(clr(ξ̄)(s)− clr(µ)(s))clr(g)(s)ds

)

L2

=

∫∫

T×T

clr(g)(t)(clr(ξ̄)(t)− clr(µ)(t))(clr(ξ̄)(s)− clr(µ)(s))clr(g)(s)dsdt

= (clr(g), V̄cclr(g))L2 ,

where V̄c ∈ L(L2) is the integral operator of kernel (clr(ξ̄)(t) − clr(µ)(t))(clr(ξ̄)(s) −
clr(µ)(s)). Finally, we have:

(clr(g), V̄cclr(g))L2 =
(
(clr(ξ̄)− clr(µ), clr(g))L2

)2

=
(
(ξ̄ − µ, g)B2

)2
.

�
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