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ABSTRACT

Multimorbidity in older adults is common, heterogeneous, and highly dynamic, and it is strongly associated with disability and
increased healthcare utilization. However, existing approaches to studying multimorbidity trajectories are largely descriptive
or rely on discrete-time models, which struggle to handle irregular observation intervals and right-censoring. We developed
a continuous-time hidden multistate modeling framework to capture transitions among latent multimorbidity patterns while
accounting for interval censoring and misclassification. A simulation study compared alternative model specifications under
varying sample sizes and follow-up schemes, and the best-performing specification was applied to longitudinal data from the
Swedish National Study on Aging and Care–Kungsholmen (SNAC-K), including 2,716 multimorbid participants followed for up
to 18 years. Simulation results showed that hidden multistate models substantially reduced bias in transition hazard estimates
compared to non-hidden models, with fully time-inhomogeneous models outperforming piecewise approximations. Application
to SNAC-K confirmed the feasibility and practical utility of this framework, enabling identification of risk factors for accelerated
progression toward complex multimorbidity and revealing a gradient of mortality risk across patterns. Continuous-time hidden
multistate models provide a robust alternative to traditional approaches, supporting individualized predictions and informing
targeted interventions and secondary prevention strategies for multimorbidity in aging populations.

Introduction
The global population is aging at an unprecedented rate, with projections indicating that by 2050, individuals aged 60 and over
will outnumber younger age groups in many regions of the world1. This demographic shift brings profound implications for
public health, as aging is increasingly associated with complex, dynamic, and heterogeneous health trajectories. Such patterns
challenge traditional approaches that focus on single diseases, linear aging processes, or short-term clinical outcomes, and
highlight the need for models capable of capturing interdependent and evolving health changes. To address this complexity,
there is a growing need for advanced statistical frameworks that can represent the intrinsic heterogeneity of aging processes
over time. These tools are essential for studying geriatric syndromes, which inherently reflect the multifactorial and systemic
nature of aging. Among them, multimorbidity—defined as the co-occurrence of multiple chronic conditions2—has emerged
as the most prevalent and impactful health issue in older adults3. Multimorbidity serves as a paradigmatic example of the
aging process itself, capturing the cumulative, interacting, and individualized patterns of health decline that characterize
later life. Multimorbidity has significant clinical relevance. Among older adults, 10–15% experience physical frailty4, 20%
will receive a diagnosis of dementia5, and 15–20% will become dependent in activities of daily living6. Multimorbidity
significantly drives healthcare utilization, accounting for the majority of general practitioner consultations and increasing the
risk of hospital admissions7. A defining feature of multimorbidity is that multiple diseases do not occur independently, but
instead co-occur in patterns that exceed random chance8. These clusters can arise from shared environmental exposures, causal
relationships between conditions, adverse effects of treatments, or common genetically determined mechanisms9. Since simple
disease counts fail to reflect the complexity of multimorbidity, pattern-based approaches are increasingly used to identify more
homogeneous subgroups. These patterns have shown predictive value for outcomes such as mortality10, 11 frailty4, disability,
institutionalisation, and hospitalizations10, supporting their potential use in guiding targeted prevention and care strategies.
While pattern-based approaches have advanced our ability to stratify older populations and predict adverse outcomes, they
remain largely static and cross-sectional. A major challenge in the field is how to move beyond these snapshots to characterize



the trajectories of multimorbidity over time, thereby capturing its dynamic and evolving nature12, 13. Understanding these
trajectories is crucial for (1) identifying risk factors that drive progression toward more clinically complex multimorbidity
patterns, and (2) recognizing homogeneous longitudinal paths with shared prognoses and care needs. However, the main barrier
to generating such evidence is the absence of tailored statistical modeling frameworks capable of addressing these longitudinal
and multidimensional research questions. In the realm of longitudinal methods for studying multimorbidity, multistate modeling
offers a promising approach to capture how disease patterns evolve over time13. These models extend survival analysis by
allowing transitions across a set of intermediate states and an absorbing state, typically death. However, traditional multistate
models often assume that these states are directly observable, which is rarely the case in multimorbidity research, where
disease patterns are latent and prone to misclassification. To address this limitation, we propose a flexible framework based
on continuous-time Hidden Markov Models (HMMs). This approach retains the strengths of multistate models—such as
handling irregular observation times, incorporating covariates, and modeling time-varying transition risks—while explicitly
accounting for uncertainty in state classification. It also remains parsimonious in terms of parameter estimation, making it
suitable for complex longitudinal data. We illustrate the utility of this framework through a simulation study that explores how
different model specifications perform under varying study designs and data conditions. Finally, we apply the methodology to
real-world data from the Swedish National Study on Aging and Care–Kungsholmen (SNAC-K), examining how socioeconomic
and lifestyle factors influence transitions to more severe multimorbidity states. This application demonstrates the practical
relevance of continuous-time HMMs as a robust tool for modeling multimorbidity trajectories in aging research.

Methods
We begin by introducing the multistate modeling framework in the context of chronic disease research, which serves to
highlight the key challenges and distinctive features of applying such models in this domain. We then extend the framework to
accommodate transitions across latent multimorbidity patterns, which represent clusters of co-occurring diseases. Figure 1
presents an overview of the proposed methodology and conceptual framework, offering a graphical summary of our approach.

Multistate Modeling Framework
A multistate model describes a stochastic process, S(t), t > 0, that records subjects’ moving across a set of discrete health
states, S 14, 15, over time. S contains a number of transient states, reflecting different health-living states, and "Death" as the
absorbing state, i.e. subjects cannot exit this state and transition to others. Time is treated as a continuous variable, allowing
transitions between states to occur at any moment—a realistic assumption when modeling medical and biological processes.
Specifically, the timescale used in the multistate models considered here is the individual’s age. Consequently, each subject
may have a different time origin in the model, corresponding to their age at study entry.

In the context of ageing and the development of chronic conditions, it is highly unlikely that transitions between health
states are recorded at the exact moment they occur. Only acute health events typically allow for precise timing of state changes.
More commonly, individuals are assessed at discrete intervals—such as during routine medical visits or scheduled health
surveys—and transitions are inferred from these periodic observations. This observation mechanism results in panel data,
characterized by intermittent observation and interval censoring: while it is known that a transition occurred between two
observation points, the exact timing remains unknown. In addition, unlike continuous monitoring, which captures every state
transition in real time, panel data provide only snapshots of an individual’s health status at specific time points. As a result,
the complete sequence of states occupied during the observation period is often partially observed, and some transitions may
go undetected. Traditional multistate models, however, assume continuous observation and precise tracking of state changes,
which may not align with the realities of such data.

To address this, our work employs multistate modeling approaches specifically designed for panel data, which account
for the intermittent nature of observations during parameter estimation. Importantly, we assume that observation times are
non-informative—that is, the timing of measurements is independent of the underlying multistate process. Additionally, we
adopt the Markov assumption, meaning that the probability of transitioning to a future state, and the timing of that transition
depend solely on the current state and the individual’s current age:

Pr[S(t +h) = y | S(r) = s(r), r ≤ t] = Pr[S(t +h) = y | S(t) = S(t)], ∀h > 0. (1)

A multistate model is uniquely defined by a set of transition intensity functions, qi j(t,x), which represent the instantaneous
probability at each time t of moving between each pair of states i and j, for i, j ∈ S . In the continuous-time case, the transition
intensities can be represented in a nxn matrix Q, with n total number of states, whose rows sum to zero. The Kolmogorov
Forward Equations (Chapman-Kolmogorov Differential Equations) are used to describe the evolution of probabilities over
time in a Continuous Time Multistate Models (CTMM). These equations provide a mathematical framework to calculate the
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probability of being in a specific state at any given time. Let P(t) represent the n×n matrix of state probabilities, where pi j(t)
is the probability of being in state j at time t, given that the process started in state i at time 0. The Kolmogorov Forward
Equation is given by:

dP(t)
dt

= P(t) ·Q (2)

For each state pair (i, j), the derivative d pi j(t)
dt represents the instantaneous rate of change of the probability of being in state

j at time t, starting from state i. In the context of ageing and chronic diseases, the matrix, Q(t), of the transition intensities
needs to be allowed to vary with time, allowing the probability of transitions across the state to vary as the individual ages. As a
result, the solution of the Kolmogorov Forward Equations (KFEs) becomes more complex as it requires integration over time.
Direct integration requires the use of numerical solvers16, which can be more computationally intensive and time-consuming.
Alternatively, a numerical approximation that uses a piecewise constant version of the Q(t) matrix can be used to simplify
computations. To approximate the solution in the time-inhomogeneous case, the time interval [0, t] can be divided into small
subintervals [ti, ti+1], where ∆t = ti+1 − ti is the step size. The transition intensity matrix Q(t) is approximated as piecewise
constant within each interval. This leads to the following approximation of the solution:

P(t)≈ P(t0) ·
n−1

∏
i=0

e∆t·Q(ti) (3)

A crucial step in the modeling process involves selecting a parametric form for the intensity function. We adopt the
proportional hazards model due to its interpretability and widespread use in clinical research. While alternative parametric
families could theoretically be considered, this study focuses on the Gompertz distribution, which reflects the natural tendency
of transition intensities—such as progression to greater disease burden or death—to change monotonically with age. This choice
aligns with well-documented patterns in health and disease progression17–19. According to this parametric proportional-hazard
model, covariates x associated with transition intensities are assumed to have a multiplicative effect, and each transition i → j
can have a different set of covariate effects. The transition intensities take the form:

hi j(t|x) = λi je
αi jt+β T

i j x (4)

where λi j is the baseline rate parameter in exponential form for the transition from state i to j, αi j the shape parameter for
the transition from state i to j, x the vector of covariates and βij the vector of regression coefficients. When α < 0, the hazard
decreases over time, whereas α > 0 characterizes an increasing hazard with age. For α = 0 t, the Gompertz model reduces to
the exponential model, i.e. a time-homogeneous model.

Hidden Multistate Models for Latent Multimorbidity Patterns
Multimorbidity states are conceptualized as latent constructs—unobservable directly but inferred from a set of categorical
disease indicators, denoted as Y (t) = (Y1(t),Y2(t), . . . ,YR(t)), where each Yr(t) indicates the presence or absence of a specific
chronic condition at age t. The probability that an individual belongs to a particular multimorbidity pattern, conditional on the
diseases developed by time t, is given by P(Ck(t) = c | Y (t)), where c ∈ {1,2, . . . ,C}. This probability can be estimated using
existing unsupervised learning techniques, such as Latent Class Analysis (LCA) or other soft-clustering methods.

Based on the observed values yr(t), an individual can be assigned to the most likely pattern using this probability, resulting
in the observed state W (t). However, when analysing transitions between latent multimorbidity states, it is important to
recognise that only W (t) is observed, not the true latent state C(t). This problem can be framed as a hidden multistate model
that extends the classical framework by explicitly modeling the generation of the observed states from the latent (hidden) ones20.
For each individual k, at observation time tkn, the observed states W are generated conditionally on the latent states C via an
emission matrix E. This is an n×n matrix, where the entry (i, j) represents the probability of observing state j given that the
hidden state is i. These probabilities can be obtained as:

ei, j = P(W (tkn) = j |C(tkn) = i) =
P(C = i |W = j) ·Ni

∑
c
k=1 P(C = i,W = k) ·Nk

(5)

Since exact states are unknown, subject k’s contribution to the likelihood21 needs to be calculated over all possible paths of
underlying states Ck1, . . . ,Cknk :
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Lk = Pr(wk1, . . . ,wknk) = Pr(wk1, . . . ,wknk |Ck1, . . . ,Cknk)Pr(Ck1, . . . ,Cknk) (6)

Assuming that the observed states are conditionally independent given the values of the underlying states and the Markov
property, the contribution Lk can be decomposed into sums over each underlying state. The sum is accumulated over the
unknown first state, the unknown second state, and so on until the unknown final state:

Lk = ∑
Ck1

. . . ∑
Cknk

Pr(Wk1 |Ck1)Pr(Ck1) ·Pr(Wk2 |Ck2)Pr(Ck2 |Ck1) · · ·Pr(Wknk |Cknk)Pr(Cknk |Cknk−1), (7)

where Pr(Wkn |Ckn) is the emission probability from the hidden state Ckn to the observed state Wkn. The term Pr(Ck, j+1 |Ck j)
is the (Ck j,Ck, j+1)-th entry of the Markov chain transition probability matrix P(t), evaluated at t = tk, j+1 − tk j. If the hidden
state is death, measured without error, whose entry time is known exactly, then the contribution to the likelihood is summed
over the unknown state at the previous instant before death.

Figure 1. Conceptual and analytical pipeline for modeling multimorbidity trajectories. Chronic disease diagnoses are
first aggregated using Latent Class Analysis to identify multimorbidity patterns (Steps 1–2). Individuals are assigned pattern
membership at each visit (Step 3), and transitions across latent states—including progression to death—are modeled using a
continuous-time hidden multistate model that accounts for misclassification and interval censoring (Step 4). LCA: Latent Class
Analysis; MM: Multimorbidity. Created in BioRender.

Simulation Study
Simulation studies use pseudo-random sampling to generate data. They constitute an invaluable tool for statistical research,
particularly for the evaluation of new methods and for the comparison of alternative methods. By simulating data under
known conditions, the data-generating mechanism is defined by the researchers, making it possible to observe if the analysed
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methods are able to recover such a "ground truth". In the following, we use the ADEMP structure22 to present the details of the
simulation study considered in this work.

The goal of this simulation study is to 1) verify the need to consider the latent nature of the states when modeling transition
among multimorbidity patterns and, 2) compare different specifications of HMMs under different scenarios (e.g. study type,
sample size).

Data-generating Mechanism
All key simulation parameters—including the cohort’s age range, disease prevalences, number of latent classes, types and
number of simulated diseases, minimum and maximum ages at study entry, and intervals between follow-up visits—are
informed by the application data. This approach is taken to ensure that the data-generating process closely reflects realistic
conditions. Figure 2 presents the three main components of the data-generating process along with the four simulation scenarios
considered. A detailed step-by-step description of the data generation procedure is provided in the supplementary materials.
For each scenario, 100 datasets are generated. The scenarios differ in terms of sample size (3,000 vs. 10,000 individuals per
dataset) and observation scheme (studies with regular vs. irregular follow-ups ).

Different sample sizes 

(individuals per dataset): 

• 3000

• 10,000

• Draw age at entry, time in 

study.

• Draw the three baseline 

covariate values.

Observations scheme: 

• Population Study (PS):

3-6 years intervals between 

follow-ups.

• Irregular Follow-ups (IF): 

follow-up distributed according 

to a Weibull distribution.

• Simulate multimorbidity 

trajectories according to the 

model below.

• Simulate prevalent and 

incident diseases conditioned 

on the latent state.

POPULATION 
COMPOSITION

CHRONIC DISEASES 
GENERATING MECHANISM STUDY DESIGN 

What is the composition of the 
population?

How do chronic diseases develop over 
time?

How do we observe individuals? 

Figure 2. Overview of the data-generating mechanism used in the simulation study. The process integrates population
composition, chronic disease development, and observation schemes, with scenarios varying by sample size (3,000 vs. 10,000)
and follow-up structure (regular population-based intervals vs. irregular visits). Transitions among multimorbidity states and
death follow a Gompertz-based continuous-time process.

It is important to note that for illustrative purposes, the simulation study is conducted in a simplified setting in which
chronic diseases are grouped into two different multimorbidity states: multimorbidity pattern A and multimorbidity pattern B.
In addition to these states, an absorbing state representing "Death" is included, with the exact time of transition to this state
assumed to be known. Consequently, the data-generating multistate model comprises three states: (1) Multimorbidity Pattern
A, (2) Multimorbidity Pattern B, and (3) Death. The model allows for three possible transitions: from Pattern A to Pattern B
(Transition 1), from Pattern A to Death (Transition 2), and from Pattern B to Death (Transition 3).

Transition intensities between states are modeled using a Gompertz distribution. Three covariates are included in the
simulation, although only two are specified to influence the transition intensities. The hazard function for the Gompertz
distribution, which governs the transition rates, is defined as follows:

qi j(t) = λi j exp(αi jt)exp(βi j.1x1 +βi j.2x2) (8)

And the loglinear formulation:

lnqi j(t|x) = ln(λi j)+αi jt +βi j.1x1 +βi j.2x2 (9)

The parameter values are reported in Table 1 according to the loglinear formulation.
Prevalent conditions at baseline are simulated conditionally on the individual’s initial multimorbidity pattern. Incident

diseases are then simulated from the set of conditions not yet developed by the individual, based on the state toward which
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Transition Rate log(λ ) Shape α β x1 β x2 β x3

1 -14.79613 0.1556735 -0.1957039 -0.2403646 0
2 -11.90339 0.1088540 0.1405208 -0.4468561 0
3 -11.55569 0.1071397 0.1860589 -0.3101002 0

Table 1. True multistate model parameters from which the simulated data are generated from.

they are transitioning. If the next transition is to the absorbing state of death, incident diseases are simulated conditionally
on the current state instead. Additionally, we assume the presence of a subset of rare diseases (with a theoretical baseline
prevalence of less than 2%) that occur independently of the multimorbidity patterns. Following disease simulation, study design
schemes—such as population-based sampling or irregular follow-ups—are applied to mimic the data collection process in
real-world longitudinal studies. As a result, disease onset is only recorded at the first follow-up visit after the actual onset,
reflecting the interval-censored nature of observational data.

Analysis of the simulated data
The following models are presented and compared in the simulation study:

1. A non-hidden multistate model with approximate Gompertz baseline (ApproxTIMM). A piece-wise constant baseline
hazard function is used to approximate the time-inhomogeneous Gompertz baseline. The baseline hazard function is
calculated over a set of time points covering the desired age range. The shape and rate parameters are then determined
using linear interpolation. The model accounts for interval-censored data, where the exact timing of a transition is
unknown but is known to have occurred within a specific time window between follow-up visits. The model is fitted with
the R package msm21.

2. Hidden multistate model with approximate Gompertz baseline (ApproxTIHMM). This model extends the ApproxTIMM
by considering that the states are latent. The model is fitted with the msm package.

3. Non-hidden Time-inhomogeneous multistate model and Gompertz baselines (TIMM). TIMM uses direct numerical
solutions of the system of differential equations to compute the likelihood, providing a more precise and accurate
representation of the transition dynamics. However, the computational demands are significantly higher due to the
complexity of solving differential equations numerically. It is implemented with nhm R package23.

4. HTIMM. Hidden Time-inhomogeneous multistate model with Gompertz baseline. This model extends the TIMM by
incorporating latent states. Implemented with nhm R package.

Model performance is evaluated against a benchmark model (REF), which serves as a hypothetical best-case comparator.
This model reflects an idealised scenario—unattainable in real-world settings—in which latent states are fully observable and
exact transition times are known. The benchmark model employs a Gompertz hazard function, consistent with the specification
used in the data-generating process, and is estimated using the flexsurv package24.

The performance of the methods in estimating model parameters is evaluated based on bias, empirical standard error, and
the coverage of confidence intervals.

To validate the data-generating mechanism of the simulation, we first evaluated the performances of the benchmark model
(REF), which assumes exact knowledge of both transition times and states. As expected, this model correctly recovers the
true parameters, as illustrated in Table 2, Table 3, and Table 4, confirming the validity of the data-generating mechanism.
Furthermore, as the sample size of subjects in the datasets increases, so does the accuracy of the estimates for the benchmark
model, while their bias decreases.

Table 3 and Table 4 show that all models’ specifications adequately recovered the covariate effects for Transition 2 and 3
into the absorbing non-latent state (Death, state 3). However, performance measures decreased for transitions between the
two states of multimorbidity (Table 2), where misclassification can occur due to the latent nature of the states. In these cases,
the hidden Markov models (ApproxTIHMM and TIHMM) outperformed their non-hidden counterparts (ApproxTIMM and
TIMM), showing lower bias and higher coverage.

When comparing different study designs, the irregular visits scenario (median number of follow-ups per subject: 6,
interquartile range: 3-10) exhibits lower bias but also reduced coverage compared to the population-based study scenario
(median number of follow-ups per subject: 2, interquartile range: 2-3). This seemingly paradoxical outcome arises from a
decrease in standard errors, while small biases persist, ultimately leading to slight undercoverage. A similar pattern can be
observed when comparing scenarios with varying sample sizes. For instance, in simulations with a larger number of individuals
(Nsim = 10,000), model estimates show reduced coverage due to the same reduction in standard error.
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Regarding the estimation of the baseline transition hazard parameters (shape and rate), the fully time-inhomogeneous
models (TIMM and TIHMM) demonstrate better performance than those using piecewise constant approximation of the
baseline. The latter showed more variability and scenario-dependent behavior (see supplementary material), indicating that
such approximations may inadequately capture the true underlying hazard dynamics in time-varying settings.

Overall, simulation results indicate that the fully time-inhomogeneous model (TIHMM), which integrates interval censoring
and the latent nature of the states, is better suited to accurately modeling transitions among latent multimorbidity patterns.

Table 2. Simulation study results for Transition 1

PS
n=3000 n=10000

Model Estimate Bias S.E. Bias Coverage Estimate Bias S.E. Bias Coverage
βx1

REF -0.246 -0.006 0.009 0.95 -0.243 -0.003 0.004 0.95
ApproxTIMM -0.187 0.054 0.009 0.87 -0.176 0.065 0.005 0.74
ApproxTIHMM -0.212 0.028 0.01 0.92 -0.2 0.04 0.006 0.85
TIMM -0.192 0.048 0.009 0.88 -0.182 0.058 0.005 0.77
TIHMM -0.205 0.035 0.009 0.9 -0.193 0.048 0.005 0.85

βx2
REF -0.192 0.003 0.012 0.96 -0.197 -0.002 0.007 0.96
ApproxTIMM -0.143 0.053 0.013 0.9 -0.136 0.059 0.006 0.84
ApproxTIHMM -0.17 0.026 0.016 0.91 -0.158 0.038 0.008 0.93
TIMM -0.14 0.056 0.013 0.9 -0.134 0.062 0.006 0.84
TIHMM -0.151 0.044 0.014 0.91 -0.143 0.053 0.007 0.84

βx3
REF -0.007 -0.007 0.008 0.97 -0.002 -0.002 0.004 0.97
ApproxTIMM -0.005 -0.005 0.009 0.97 -0.004 -0.004 0.005 0.92
ApproxTIHMM -0.007 -0.007 0.01 0.96 -0.005 -0.005 0.006 0.92
TIMM -0.005 -0.005 0.009 0.97 -0.004 -0.004 0.005 0.92
TIHMM -0.004 -0.004 0.009 0.96 -0.004 -0.004 0.006 0.92

IF
n=3000 n=10000

Model Estimate Bias S.E. Bias Coverage Estimate Bias S.E. Bias Coverage
βx1

REF -0.246 -0.006 0.009 0.95 -0.243 -0.003 0.004 0.95
ApproxTIMM -0.183 0.058 0.008 0.87 -0.176 0.064 0.004 0.73
ApproxTIHMM -0.194 0.047 0.009 0.86 -0.188 0.052 0.005 0.81
TIMM -0.183 0.058 0.008 0.87 -0.177 0.064 0.004 0.73
TIHMM -0.189 0.051 0.009 0.86 -0.183 0.058 0.005 0.76

βx2
REF -0.192 0.003 0.012 0.96 -0.197 -0.002 0.007 0.96
ApproxTIMM -0.14 0.056 0.012 0.89 -0.131 0.065 0.007 0.8
ApproxTIHMM -0.149 0.047 0.014 0.9 -0.14 0.056 0.007 0.85
TIMM -0.14 0.055 0.012 0.89 -0.131 0.065 0.007 0.8
TIHMM -0.147 0.048 0.013 0.91 -0.137 0.059 0.007 0.82

βx3
REF -0.007 -0.007 0.008 0.97 -0.002 -0.002 0.004 0.97
ApproxTIMM -0.01 -0.01 0.008 0.98 -0.006 -0.006 0.005 0.95
ApproxTIHMM -0.01 -0.01 0.009 0.98 -0.009 -0.009 0.005 0.96
TIMM -0.01 -0.01 0.008 0.97 -0.006 -0.006 0.005 0.95
TIHMM -0.01 -0.01 0.008 0.98 -0.006 -0.006 0.005 0.95
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Table 3. Simulation study results for Transition 2

PS
n=3000 n=10000

Model Estimate Bias S.E. Bias Coverage Estimate Bias S.E. Bias Coverage
βx1

REF -0.462 -0.015 0.012 0.96 -0.453 -0.006 0.006 0.97
ApproxTIMM -0.475 -0.028 0.014 0.94 -0.469 -0.022 0.007 0.94
ApproxTIHMM -0.481 -0.034 0.015 0.93 -0.476 -0.029 0.007 0.94
TIMM -0.461 -0.014 0.014 0.94 -0.455 -0.008 0.007 0.95
TIHMM -0.465 -0.018 0.014 0.95 -0.458 -0.011 0.007 0.95

βx2
REF 0.136 -0.005 0.016 0.95 0.135 -0.006 0.008 0.95
ApproxTIMM 0.127 -0.014 0.018 0.94 0.127 -0.013 0.009 0.96
ApproxTIHMM 0.125 -0.016 0.019 0.94 0.122 -0.019 0.009 0.96
TIMM 0.136 -0.005 0.018 0.94 0.135 -0.006 0.009 0.96
TIHMM 0.137 -0.004 0.019 0.94 0.134 -0.007 0.009 0.96

βx3
REF 0.022 0.022 0.014 0.93 0.001 0.001 0.006 0.96
ApproxTIMM 0.012 0.012 0.016 0.93 0.002 0.002 0.007 0.99
ApproxTIHMM 0.011 0.011 0.017 0.92 0 0 0.008 0.98
TIMM 0.011 0.011 0.016 0.92 0.001 0.001 0.007 0.99
TIHMM 0.01 0.01 0.017 0.9 0 0 0.007 0.99

IF
n=3000 n=10000

Model Estimate Bias S.E. Bias Coverage Estimate Bias S.E. Bias Coverage
βx1

REF -0.462 -0.015 0.012 0.96 -0.453 -0.006 0.006 0.97
ApproxTIMM -0.469 -0.022 0.014 0.96 -0.453 -0.006 0.008 0.95
ApproxTIHMM -0.47 -0.023 0.015 0.96 -0.458 -0.011 0.008 0.96
TIMM -0.469 -0.023 0.014 0.96 -0.453 -0.006 0.008 0.95
TIHMM -0.47 -0.023 0.014 0.97 -0.454 -0.008 0.008 0.96

βx2
REF 0.136 -0.005 0.016 0.95 0.135 -0.006 0.008 0.95
ApproxTIMM 0.137 -0.003 0.018 0.95 0.127 -0.014 0.009 0.97
ApproxTIHMM 0.137 -0.003 0.018 0.95 0.125 -0.015 0.009 0.97
TIMM 0.137 -0.003 0.018 0.95 0.126 -0.014 0.009 0.97
TIHMM 0.138 -0.003 0.018 0.95 0.125 -0.015 0.009 0.97

βx3
REF 0.022 0.022 0.014 0.93 0.001 0.001 0.006 0.96
ApproxTIMM 0.016 0.016 0.016 0.91 0.001 0.001 0.007 0.99
ApproxTIHMM 0.015 0.015 0.017 0.91 0.001 0.001 0.007 0.98
TIMM 0.017 0.017 0.016 0.91 0.001 0.001 0.007 0.99
TIHMM 0.015 0.015 0.017 0.91 0 0 0.007 0.98
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Table 4. Simulation study results for Transition 3

PS
n=3000 n=10000

Model Estimate Bias S.E. Bias Coverage Estimate Bias S.E. Bias Coverage
βx1

REF -0.305 0.005 0.014 0.93 -0.312 -0.002 0.007 0.96
ApproxTIMM -0.321 -0.01 0.014 0.96 -0.323 -0.013 0.007 0.97
ApproxTIHMM -0.321 -0.011 0.014 0.97 -0.325 -0.015 0.007 0.96
TIMM -0.312 -0.002 0.014 0.96 -0.316 -0.006 0.006 0.97
TIHMM -0.312 -0.002 0.014 0.97 -0.317 -0.007 0.007 0.97

βx2
REF 0.153 -0.034 0.018 0.93 0.186 0 0.01 0.95
ApproxTIMM 0.134 -0.052 0.019 0.97 0.167 -0.019 0.009 0.98
ApproxTIHMM 0.132 -0.054 0.019 0.95 0.165 -0.021 0.01 0.97
TIMM 0.138 -0.048 0.018 0.97 0.171 -0.015 0.01 0.98
TIHMM 0.138 -0.049 0.018 0.96 0.171 -0.015 0.01 0.98

βx3
REF -0.004 -0.004 0.015 0.95 0.006 0.006 0.008 0.93
ApproxTIMM 0.013 0.013 0.015 0.95 0.004 0.004 0.008 0.94
ApproxTIHMM 0.015 0.015 0.016 0.97 0.005 0.005 0.008 0.94
TIMM 0.013 0.013 0.015 0.95 0.004 0.004 0.008 0.93
TIHMM 0.014 0.014 0.015 0.95 0.005 0.005 0.008 0.93

IF
n=3000 n=10000

Model Estimate Bias S.E. Bias Coverage Estimate Bias S.E. Bias Coverage
βx1

REF -0.305 0.005 0.014 0.93 -0.312 -0.002 0.007 0.96
ApproxTIMM -0.322 -0.012 0.014 0.95 -0.328 -0.018 0.007 0.93
ApproxTIHMM -0.323 -0.012 0.015 0.95 -0.328 -0.018 0.007 0.94
TIMM -0.322 -0.012 0.014 0.94 -0.328 -0.018 0.007 0.93
TIHMM -0.325 -0.015 0.015 0.95 -0.329 -0.019 0.007 0.93

βx2
REF 0.153 -0.034 0.018 0.93 0.186 0 0.01 0.95
ApproxTIMM 0.143 -0.043 0.017 0.94 0.174 -0.012 0.009 0.97
ApproxTIHMM 0.141 -0.045 0.018 0.93 0.169 -0.017 0.009 0.97
TIMM 0.145 -0.041 0.018 0.93 0.175 -0.011 0.009 0.97
TIHMM 0.142 -0.044 0.018 0.93 0.175 -0.011 0.009 0.97

βx3
REF -0.004 -0.004 0.015 0.95 0.006 0.006 0.008 0.93
ApproxTIMM 0.007 0.007 0.015 0.93 -0.001 -0.001 0.008 0.94
ApproxTIHMM 0.009 0.009 0.015 0.93 0 0 0.008 0.94
TIMM 0.007 0.007 0.015 0.92 -0.001 -0.001 0.008 0.94
TIHMM 0.008 0.008 0.015 0.93 0 0 0.008 0.94
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Application to the SNAC-K Cohort

SNAC-K is one of the four sites of the Swedish National study on Aging and Care (SNAC)25. SNAC is a longitudinal study on
the elderly population, aimed at increasing knowledge about aging and health trends and providing a better basis for developing
preventive measures and elder care25. At each follow-up, SNAC-K participants undergo a five-hour-long comprehensive clinical
and functional assessment carried out by trained physicians, nurses, and neuropsychologists. Physicians collect information on
diagnoses via physical examination, medical history, examination of medical charts, self-reported information, and/or proxy
interviews. Clinical parameters, lab tests, drug information, and inparticipant and outparticipant care hospitalization records?

are also used to identify specific conditions. Information on participants’ deaths is derived from death certificates provided by
Statistics Sweden, the Swedish government statistics agency. All diagnoses are coded in accordance with the International
Classification of Diseases, 10th revision (ICD-10)26. For the analysis conducted in this study, 60 chronic disease categories
derived by a clinically driven methodology reported in Calderon-Larranaga et al.11 are used. The analysis is conducted on a
subset of SNAC-K data, consisting of longitudinal records collected between 2001 and 2019 from participants enrolled at the
start of the study (cohort 1). Follow-ups are carried out every 6 years for participants aged 60 to 78, and every 3 years for those
aged 78 and older. At baseline, cohort 1 includes 3,363 individuals. For this analysis, only participants with multimorbidity (≥
2 chronic conditions) at the first visit are included (N = 3,268). Participants with only one recorded visit (no follow-ups) or with
missing data are excluded, resulting in a final sample of 2,716 individuals and a total of 9,085 observations. Over the 18-year
follow-up period, 1,488 participants (55%) died. The mean age at death is 85 years for men (sd=8.7) and 89 years for women
(sd=8.0). At baseline, women represent 63% of the total sample. Participants undergo between two and seven visits, with a
median of 3 (IQR: 2-5) follow-ups per individual.

Figure 3. Alluvial diagram of observed transitions across multimorbidity states in the SNAC-K cohort. Each stream
represents an individual’s assigned multimorbidity pattern over time (mild: light blue; complex: dark blue), with transitions to
death shown in grey. Patterns are based on posterior membership probabilities from the latent class model and illustrate
increasing movement toward complex multimorbidity with age.

Similarly to the simulation study, an illness-death multistate model is considered, containing two patterns of multimorbidity
and death. The two patterns of multimorbidity are derived from Latent Class Analysis, which has been previously used
to identify multimorbidity patterns in this population. The "mild multimorbidity" pattern presents a higher prevalence of
cardiovascular risk factors (hypertension, diabetes, dyslipidemia and obesity), asthma and sleep disorders; which have a lower
risk of hospitalization and disability. On the other hand, the pattern denoted as"complex multimorbidity" is characterized by
higher prevalence for cardiac diseases (heart failure, bradycardias conduction disease, atrial fibrillation, and anemia), dementia
and sensory impairment diseases (deafness, hearing loss, blindness, and visual loss). The diseases characterizing the complex
group are known to have greater dependency on care and are associated with poorer physical and cognitive function. Based
on this classification, individuals’ transitions across multimorbidity states are modeled using the hidden multistate model
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implemented in the nhm R package, which demonstrated the best performance in the simulation study. We include in the
analysis a set of potential lifestyle and socio-economic risk factors that may increase the risk of transitioning towards the
complex multimorbidity state, as well as death. Specifically, baseline covariates included in the multistate model are sex, level
of education, physical activity, living alone, alcohol consumption, smoking, and manual occupation.

Out of the 2,716 participants, at baseline 1,864 (69%) individuals are assigned to the mild multimorbidity state and 852
(31%) to the complex multimorbidity state. The alluvial plot shown in Figure 3 describes how individuals in the SNAC-K
cohort transition among the three multimorbidity states over the older age course. As participants grow older, transitions toward
complex multimorbidity become increasingly frequent. Moreover, individuals in the complex multimorbidity state exhibit
higher mortality rates than those in the mild state of the same age.

Hazard ratios for the transition from mild to complex multimorbidity, as estimated by the hidden multistate model,
are presented in Figure 4a. Sedentary and male behavior is associated with a higher hazard of transitioning to complex
multimorbidity. Figure 4c illustrates how these findings translate into the predicted probability of transitioning to complex
multimorbidity, comparing males versus females (right panel) and sedentary versus non-sedentary behavior (left panel) from
age 60, while holding other exposures at their cohort mean values. In both panels, the higher-risk group exhibit a greater
probability of progressing to the complex multimorbidity state up to around age 85, after which the increasing risk of death
reduces the observed differences. Finally, the predicted probability of dying from the two different multimorbidity states is
compared in Figure 4b, confirming the higher mortality associated with progression to complex multimorbidity.

Discussion
In this work, we investigated the use of continuous time Hidden Markov Models (HMMs) to study transitions between
multimorbidity patterns. Through a comprehensive simulation study, we demonstrated the potential of these models across
various scenarios. Additionally, by applying the model to real world data, we illustrated its practical utility in multimorbidity
research. The current literature on transitions across multimorbidity patterns primarily relies on discrete time approaches. For
instance, Roso Llorach, Vetrano et al.27 employed discrete time Hidden Markov models to investigate transitions between
multimorbidity clusters in the SNAC K dataset. A key distinction from our approach is that their analysis stratified participants
by baseline age group, fitting separate discrete time models for each group. Although this method captures age related
heterogeneity, it prevents the use of age as a continuous timescale and complicates interpretation, as different cluster sets
may arise for the same age group at different follow up times. Moreover, their approach does not allow the estimation of
covariate effects, limiting the identification of risk profiles associated with different transition patterns. Zacarias Pons et
al.28 applied Latent Transition Analysis (LTA)29 to self reported multimorbidity data from the SHARE study. LTA enables
modeling transitions between latent classes and incorporating covariates, but transition probabilities must be re estimated for
each interval, making the method less suitable for datasets with many time points or irregular follow ups. Importantly, in both
approaches right censoring and survival processes cannot be modeled according to survival analysis standards. In contrast, the
continuous time framework proposed in this study addresses these limitations and is better suited to complex longitudinal study
designs. Hidden multistate models naturally handle irregular follow up intervals, time to death and censoring mechanisms,
and allow modeling of time varying transition hazards. They also enable the estimation of covariate effects on transitions
— a key feature for identifying risk factors for progression within multimorbidity trajectories. Our simulation study served
a dual purpose: it enabled both the comparison of different model specifications and the evaluation of the reliability of the
proposed framework. The results underscored the importance of incorporating the latent nature of the states and a fully time
inhomogeneous baseline hazard. In some scenarios, confidence-interval coverage fell below nominal levels. This likely reflects
limitations of Hessian-based variance estimation, suggesting that bootstrap methods may provide more robust uncertainty
quantification. Beyond the simulation setting, the application to the SNAC K cohort confirmed that the modeling framework can
deliver clinically meaningful insights in real world epidemiological settings. By integrating latent multimorbidity patterns with
continuous time transition modeling, the analysis identified relevant sociodemographic and behavioral factors associated with
progression to complex multimorbidity, and highlighted the marked differences in mortality risk between patterns. Although
we focused on two multimorbidity states—since the aim of this paper is to demonstrate the applicability of the method rather
than provide novel substantive evidence in the context of multimorbidity—the modeling framework is inherently flexible and
capable of accommodating more than two states. This scalability will be crucial in future epidemiological studies applying
this method. It is also important to note that this framework relies on two key assumptions. First, a well defined clustering
or latent model must be available to ensure that the states represent clinically meaningful and homogeneous multimorbidity
patterns. Second, the set of states must encompass all relevant patterns that may appear over time. Therefore, when using this
methodology it is essential to identify clinically meaningful multimorbidity patterns in a sample that is representative of all age
groups of interest before applying the hidden multistate model. This aligns with current recommendations in the multimorbidity
trajectory literature13, 30.
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Conclusion
In this work, we presented a modeling strategy that integrates latent multimorbidity patterns with continuous-time hidden
multistate models to study the dynamic evolution of multimorbidity. The simulation study demonstrated that accounting for both
the latent nature of the states and time-inhomogeneous transition hazards is essential for reliable inference, and the application
to the SNAC-K cohort illustrated how this framework can yield clinically meaningful insights in real-world settings. Although
motivated by multimorbidity, the framework is broadly applicable to longitudinal processes characterized by latent constructs,
irregular observation schedules, and heterogeneous progression dynamics. Many ageing-related phenomena—such as cognitive
decline, disability progression, frailty, or evolving care needs—share these features. As such, the proposed approach provides a
general and versatile tool for modeling complex health trajectories, with the potential to support risk stratification and inform
preventive strategies in ageing research.
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(a) Hazard ratios with 95% confidence intervals for transitioning from mild
to complex multimorbidity, estimated using the hidden multistate model.

(b) Predicted probability of death from age 60 by
multimorbidity state, showing higher mortality risk for
individuals in the complex state; all exposures are fixed at
their cohort mean values.

(c) Predicted probability of progressing to complex multimorbidity from age 60, comparing males vs. females (left panel) and sedentary vs.
non-sedentary behavior (right panel), with all other covariates held at cohort mean values.
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Data availability
The simulated data were generated using the code available at https://github.com/ARCbiostat/SimAgingData.
git, and the code used for the analysis is available at https://github.com/ARCbiostat/CTHMM_multimorbidity.
Access to original SNAC-K data is available to the research community upon approval by the SNAC-K data management and
maintenance committee. Applications for accessing these data can be submitted through the website (https://www.snac-k.se/).
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