
MOX-Report No. 09/2025

Combining physics-based and data-driven models: advancing the

frontiers of research with Scientific Machine Learning

Quarteroni, A.; Gervasio, P.; Regazzoni, F.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

Combining physics–based and data–driven models: advancing

the frontiers of research with Scientific Machine Learning

Alfio Quarteroni1, Paola Gervasio2, Francesco Regazzoni3

1 Politecnico di Milano (Professor Emeritus), piazza Leonardo da Vinci, 32, Milan, 20133, Italy and
Ecole Polytechnique Fédérale de Lausanne (Professor Emeritus), Station 8, Lausanne, 1015, Switzerland

alfio.quarteroni@polimi.it

2 DICATAM, University of Brescia, via Branze 43, Brescia, 25123, Italy
paola.gervasio@unibs.it

3 MOX, Department of Mathematics, Politecnico di Milano, piazza Leonardo da Vinci, 32, Milan, 20133, Italy
francesco.regazzoni@polimi.it

Abstract

Scientific Machine Learning (SciML) is a recently emerged research field which combines physics–
based and data–driven models for the numerical approximation of differential problems. Physics–
based models rely on the physical understanding of the problem at hand, subsequent mathematical
formulation, and numerical approximation. Data–driven models instead aim to extract relations
between input and output data without arguing any causality principle underlining the available data
distribution. In recent years, data–driven models have been rapidly developed and popularized. Such
a diffusion has been triggered by a huge availability of data (the so–called big data), an increasingly
cheap computing power, and the development of powerful machine learning algorithms. SciML
leverages the physical awareness of physics–based models and, at the same time, the efficiency of data–
driven algorithms. With SciML, we can inject physics and mathematical knowledge into machine
learning algorithms. Yet, we can rely on data–driven algorithms’ capability to discover complex and
non–linear patterns from data and improve the descriptive capacity of physics–based models. After
recalling the mathematical foundations of digital modelling and machine learning algorithms, and
presenting the most popular machine learning architectures, we discuss the great potential of a broad
variety of SciML strategies in solving complex problems governed by partial differential equations.
Finally, we illustrate the successful application of SciML to the simulation of the human cardiac
function, a field of significant socio–economic importance that poses numerous challenges on both
the mathematical and computational fronts. The corresponding mathematical model is a complex
system of non–linear ordinary and partial differential equations describing the electromechanics,
valve dynamics, blood circulation, perfusion in the coronary tree, and torso potential. Despite the
robustness and accuracy of physics–based models, certain aspects, such as unveiling constitutive
laws for cardiac cells and myocardial material properties, as well as devising efficient reduced order
models to dominate the extraordinary computational complexity, have been successfully tackled by
leveraging data–driven models.

Keywords. Scientific Computing, Approximation of PDEs, Machine Learning, Artificial Neural
Networks, Scientific Machine Learning

Accepted for publication in Mathematical Models and Methods in Applied Sciences (M3AS) https://www.

worldscientific.com/worldscinet/m3as

1

https://www.worldscientific.com/worldscinet/m3as
https://www.worldscientific.com/worldscinet/m3as

Contents

1 Introduction 3

2 Digital models 5
2.1 Mathematical models . 5
2.2 Numerical models . 7

3 Data–driven models 11
3.1 Artificial Intelligence . 11
3.2 Machine Learning . 12

3.2.1 Machine Learning Tasks . 15
3.2.2 Machine Learning Experience . 16
3.2.3 Machine Learning Performance measurement . 16
3.2.4 Machine Learning Models . 17
3.2.5 Setting of supervised learning and error analysis 22
3.2.6 Optimization methods for training . 27
3.2.7 Backpropagation . 35
3.2.8 Penalty–based regularization . 36
3.2.9 Tuning of hyperparameters . 37

3.3 A quick glance at Deep Learning models . 38
3.3.1 Model components . 39
3.3.2 Architectures . 41
3.3.3 Ultimate generation hardware: GPUs and TPUs 50

3.4 Topics related to Machine Learning not covered in this paper 52

4 Scientific Machine Learning 52
4.1 Surrogate modelling of high–fidelity DM . 56
4.2 Physics–Informed learning . 59

4.2.1 Physics–Informed Neural Networks (PINNs) . 61
4.2.2 Variational PINNs (VPINNs) . 67
4.2.3 Deep Ritz Method (DRM) . 68
4.2.4 Optimizing a DIscrete Loss (ODIL) . 68

4.3 Operator learning . 70
4.3.1 Deep Operator Networks (DeepONet) . 71
4.3.2 Neural Operators . 72
4.3.3 Operator learning for time–dependent problems . 74
4.3.4 Intrinsic or hidden dynamics discovery . 78
4.3.5 Space-time operator learning . 81
4.3.6 Foundation models for operator learning . 83

4.4 Topics related to Scientific Machine Learning not covered in this paper 87

5 SciML for the iHeart simulator 87
5.1 The integrated heart model . 87
5.2 Multifidelity PINNs for the estimation of ionic parameters 93
5.3 Physics–aware NNs for the inverse problem of electrocardiography 95
5.4 Learning the microscopic dynamics in the framework of a coupled multiscale problem . . 97
5.5 Time-dependent operator learning for a multiphysics coupled problem 101
5.6 NN–based surrogate models for global sensitivity analysis 104
5.7 NN–based surrogate models for Bayesian parameter estimation 105
5.8 Latent Dynamics Networks to accelerate electrophysiology simulations 107

6 Some final thoughts and concluding remarks 108

2

1 Introduction

The twentieth century has been a pivotal era in scientific progress, driven by a phenomenological ap-
proach and focus on a physical understanding of phenomena. This included experimentation, formulating
theories, obtaining numerical results through computer simulations, and validating mathematical and
numerical models.

When considering problems from basic sciences (physics, chemistry, biology, etc.) and applied sciences
(engineering, medicine, society, etc.), solving them through physics–based models consists first of all of
formulating the fundamental principles underlying the problem at hand. Subsequently, these principles
are translated into mathematical models that then need to be analysed. Whenever the mathematical
model is well posed, its solution exists and, under certain assumptions, is also unique and continuously
dependent on the problem data. However, mathematical models of real–life problems are generally
very complex and their solutions can seldom be achieved by paper–and–pen. Resorting to appropriate
approximate models is therefore essential. This involves approximating the mathematical models using
numerical methods, which in turn are translated into algorithms and then into computer programs.
Ultimately, the final computational solution undergoes both verification and validation processes. The
physics–based approach, sometimes also called digital or computational modelling (see the left column
of Fig. 1), is the most widely used strategy suitable to solve complex problems.

Physical
Problem

Training set
Test set

Validation set

ML Algorithms

Scientific
Machine Learning

Digital Twin

Digital Models

data-drivenphysics-based

pr
ob

le
m

 s
et

tin
g

al
go

rit
hm

s

Mathematical Model

Figure 1: The abstract framework.

On the other hand, Artificial Intelligence has gained momentum over the last two decades. In
particular, we can refer to algorithms empowered by data–trained artificial neural networks. Three
triggering factors have contributed to such a rapid development: (i) relatively cheap computing power,
offered especially by cloud services, and GPUs which can carry out very fast computations; (ii) the
availability of vast datasets from diverse sources, often referred to as big data; (iii) the development
of powerful machine learning algorithms for automatic learning. Among the latter, a prominent role is
played by deep artificial neural networks inspired by networks of biological neurons.

As a consequence of this extraordinary development, machine learning algorithms can now be adapted
to solve relevant and complex problems arising from both basic and applied sciences. Indeed, a new strat-
egy is emerging as an alternative to physics–based modelling. Physical principles are being replaced by
data generated from measurements, clinical images, or a series of experiments. In addition, computa-
tional models are being replaced by machine learning algorithms.

More precisely, first, available data are partitioned into the training and testing sets. Then, artificial
neural networks, which represent the core algorithms empowering machine learning (see the right column
of Fig. 1), are built upon these training sets. This strategy, which we have called for the sake of
brevity data–driven, is meant to build the input–output function that maps data to solutions. Data–
driven algorithms aim to extract relations between input and output data without inferring any causality

3

principle whatsoever.
These approaches (physics–based and data–driven) could run independently and alternatively, al-

though with a different degree of accuracy, interpretability and trustworthiness. However, more interest-
ingly, they can be combined jointly, giving rise to a more effective strategy which has recently been called
Scientific Machine Learning (SciML). SciML is a flexible framework that adapts to various goals and
requirements, taking different forms as needed. Digital models can be exploited to make machine learn-
ing algorithms more accurate, conversely, machine learning algorithms can enhance the computational
efficiency of digital models. For instance, we can use digital models to regularize the loss function in
artificial neural networks (to avoid overfitting), to augment data if missing or scarce in the training pro-
cess, or even to learn hidden mathematical operators (sometimes even in symbolic form). On the other
hand, machine learning can be used to improve digital models, for instance, to find constitutive laws in
the case of new materials, accelerate scientific computing algorithms, estimate and calibrate parameters,
solve optimal control problems depending on lots of parameters, or perform sensitivity analysis.

Generally speaking, SciML allows us to inject physics and mathematical knowledge into machine
learning algorithms. At the same time, we can exploit data–driven algorithms’ ability to uncover complex
patterns from data, to enhance the descriptive capability of physics–based models. In this way, we can
open up new paths to leverage the causality principle of physics–based models and the efficiency of
data–science algorithms. SciML is also prodromic to the realization of digital twins when a real–time
dialogue between the physical asset and its digital model is essential.

In this paper, we discuss the great potential of SciML in solving complex problems governed by
Partial Differential Equations (PDEs) in general. Before entering this discussion, we provide some basic
material to illustrate the mathematical foundation of machine learning algorithms from a mathematical
perspective.

Additionally, in the final part of the paper, the previous discussion is adapted to an application of
considerable relevance which is the numerical simulation of the human cardiac function. The heart is
a very sophisticated and complex machine that is the engine of life. Its functioning is the harmonious
result of the interaction of different processes. These include the generation and propagation of electrical
signals in cardiac tissue, the contraction and relaxation of the myocardium, the motion of blood in the
ventricles and atria, the opening and closing of heart valves which are perfectly synchronized with heart
mechanics and blood dynamics, and blood supply to the myocardium through perfusion of the coronary
arteries. All these processes obey fundamental and general physical principles such as Newton’s laws,
thermodynamics, chemical kinetics, Navier-Stokes’ equations, and Maxwell’s equations. The mathemat-
ical model that formalizes this complex system is a set of non–linear ordinary and partial differential
equations that, once solved, can simulate the human heart function both in physiological and patho-
logical conditions. It is worth noting that solving this highly complex and huge system of equations
cannot be achieved simply by pen–and–paper, but requires supercomputers to step into action and play
an irreplaceable role.

The Integrated Heart Model (IHM) [75] allows us to return helpful qualitative and quantitative infor-
mation to cardiologists and cardiac surgeons to understand, diagnose and treat heart disease. The great
potential of mathematical models consists in being universally valid and independent of the particular
context to which they are applied. More specifically, the IHM can be used to simulate the cardiac func-
tion of any individual, regardless of age, weight, or clinical history (to give some examples), relegating
all these peculiarities to the data.

An essential feature is that data are needed to feed models. Those required by the IHM can be the
geometric shape of the patient’s heart, which can be obtained using medical images such as computerized
tomography or magnetic resonance imaging. Furthermore, the initial and boundary conditions for the
differential equations are necessary data, which, however, are seldom available as they would require
invasive clinical examinations on patients. Other data include the parameters characterizing material
properties, which are very difficult to recover accurately and even when they are available are often
affected by noise. It is worth noting that the greater the complexity of the model, the more parameters are
needed to accurately solve the model itself. To compensate for data scarcity and inaccuracy, we can resort
to parameter identification, variational techniques for data assimilation, and uncertainty quantification.
In particular, the latter is a very powerful tool to understand how uncertainty propagates along the
computational process from input to output.

However, despite the robustness and accuracy of physics–based models, certain aspects, such as
constitutive laws for cardiac cells and myocardial material properties, remain poorly understood. Data–

4

driven algorithms can bridge these gaps, enabling more accurate and efficient modelling of the heart’s
intricate processes.

We believe that the IHM is an ideal and particularly challenging test bed for the development and
evaluation of several approaches falling in the general field of SciML.

The outline of the paper is as follows. In Section 2, the basic concepts of digital models are presented.
Section 3 introduces the mathematics behind machine learning algorithms, specifically those grounded
on artificial neural networks. Section 4 presents the basics of SciML and the most popular and emerging
approaches in the field. In Section 5, we briefly illustrate the Integrated Heart Model and how SciML
has been called into play. Finally, in Section 6, we wrap up the paper with some concluding thoughts
and reflections on both Machine Learning and SciML.

2 Digital models

In the field of applied sciences, Digital Models (DM) enable solving complex problems that can be
formulated using the language of mathematics and which are rarely solvable analytically. Indeed, in
general, the mathematical solution of complex problems can seldom be expressed explicitly: this is e.g.
the case of non–linear equations or systems (algebraic, differential or integral) for which no solution
formulas are known. In other cases, the explicit form, although known, cannot be practically used to
determine quantitative values of the solution itself, either because it would require a prohibitive amount
of operations, or because it is in turn expressed through other mathematical entities (such as integrals
or series developments) for which a quantitative evaluation would be difficult to achieve.

The resolution of problems of applied interest involves several phases:

(a) the qualitative and quantitative understanding of the problem;

(b) the modelling through mathematical equations, which can be algebraic, functional, differential, or
integral, this is the so–called mathematical model;

(c) the identification of numerical analysis methods suitable for approximating this mathematical
model;

(d) the implementation of these numerical approximation methods on a computer.

DMs correspond to phases (c) and (d) of the process, and the choice of these approaches requires
a thorough understanding of the qualities of the mathematical model’s solution and a clear vision of
the original problem’s phenomenology. Therefore, the use of the term “digital models” is justified as
an alternative to “digital methods”. Digital modelling represents an interdisciplinary field of research
that combines mathematics, computer science, and applied sciences. Its progress has been remarkable in
recent decades thanks to the advanced development of computers and algorithms, along with an increased
awareness of the crucial role of scientific computing in simulating complex problems. These problems
range from scientific and theoretical domains to industrial, environmental, and social spheres.

We denote by uph the solution to the original problem, here called the physical problem for brevity,
even though problems from all fundamental and applied sciences (not just physics) can be considered,
such as chemistry, biological and medical sciences, engineering, economics, etc.

2.1 Mathematical models

Mathematical models translate the first principles of “physics” into mathematical terms, which often
describe its fundamental characteristics, such as conservation laws (of mass, momentum, energy). These
models, expressed in the form of equations, encode an extraordinary and unique body of knowledge,
generated by luminaries of the past such as Kepler, Galileo, Newton, Pascal, Bernoulli, Laplace, Einstein,
Maxwell, and Schrödinger, to name just a few [226].

The mathematical model that describes the physical problem can be expressed in the compact form

F (u, d) = 0, (1)

where it is assumed that d describes the set of data, u the solution, and F is the functional relation
(algebraic, integral, differential, to name a few examples) that links data and solution. Various and

5

(i)
Physical Problem

(iv)
Computational model

(ii)
Mathematical model

(iii)
Numerical model

Figure 2: Problems, solutions, and errors in digital models

diversified mathematical problems can be formulated in this abstract way. Consider, for instance, the
definite integration of a function, the problem of finding the roots of an algebraic, trigonometric, or
exponential equation, Cauchy problems for ordinary differential equations, boundary value problems for
partial differential equations, and linear and non–linear algebraic systems. See, for example, [12, 71, 85,
142, 193].

To fix ideas, an instance of the abstract equation (1) could be the following Initial Boundary Value
Problem (IBVP): let Ω ⊂ Rd (with d = 1, 2, 3 denoting the space dimension) an open and bounded set
and (t0, T) ⊂ R a bounded interval, we look for the function u = u(x, t) : Ω× (t0, T)→ Rm (with m ≥ 1
denoting the number of components of the solution u) satisfying

∂u

∂t
+ Lu +N (u) = f in Ω× (t0, T)

boundary conditions on ∂Ω× (t0, T)

u = u0 in Ω× {t0},

(2)

where L is a linear differential operator and N a non–linear one, both only involving derivatives with
respect to space variables, while F , u0, and other parameters (or functions) hidden in the definition of
the operators L and N constitute given data.

The IBVP (2) can represent the abstract form of several real–life problems. For instance, if we want
to simulate the electrophysiology of the heart, i.e., the result of chemical and electrical processes taking
place from subcellular to the whole organ scale, then u will be a multicomponent function including the
transmembrane potential of the myocytes (the cells of the heart) through the myocardium as well as
the concentration of some ionic species, such as sodium, potassium, and calcium inside the myocytes.
If instead, we want to simulate the deformations of the cardiac muscle during a heartbeat, u will be
the displacement of each cell of the myocardium induced by a force field, in its turn generated by the
transmembrane potential. We could also be interested in simulating both the electrophysiology and
the heart mechanics, in this case (2) should take into account both the physics and we would speak
about a multiphysics coupled problem. For all these examples, the data set d includes suitable external
forces, boundary conditions associated with the differential operators and initial conditions for the time–
dependent unknowns.

Many other mathematical models are of interest in computational modelling and can be reformulated
in the abstract framework (1). Consider, for example, the problem of representing curves and surfaces,
the numerical treatment of images and signals, the minimization of free or constrained functionals, the
numerical regularization and resolution of inverse problems, integro–differential problems, as well as the
control of differential, integral, or stochastic systems. The relevance of these models in the analysis and

6

simulation of mechanical processes (e.g., in fluid dynamics, structural analysis, bioengineering), physical
processes (in neutronics, microelectronics, wave propagation), economic processes (in deterministic or
statistical systems for describing macroeconomic systems, or in investment processes with options), etc.,
is significant and destined to grow over time.

The mathematical model aims to link quantities of physical interest through mathematical relations,
often simplified compared to the complexity of the original problem. The solution u of the mathematical
model will consequently differ from the solution uph of the physical problem under consideration, and
the distance between these to solutions em = ∥uph − u∥, measured in a suitable norm, will account for
both the significance (and reasonableness) of the simplifying assumptions made and the accuracy with
which the real physical quantities have been represented by the set d of the model’s data. The error em
is therefore intrinsic to the process and it is named model error (see Fig. 2).

2.2 Numerical models

The first phase of digital modelling consists of approximating the mathematical model (1) with a nu-
merical model

Fh(uh, dh) = 0, (3)

which depends on a parameter h whose meaning varies according to the family of problems considered,
but which can always be thought of as referring to the richness of the numerical solution’s representation:
the smaller h, the more representative the numerical solution. In this context, dh is an approximation
of d, Fh a discretisation of the functional relation F , and uh the numerical solution, approximation of u.

Why do we need to discretise a mathematical problem? If we refer to the Initial Boundary Value
Problem (IBVP) (2), the fundamental reason is that its exact solution u belongs to an infinite dimensional
space V and digital computers can approximate such a solution only by functions belonging to suitable
finite–dimensional spaces. Indeed, because a digital computer is not able to compute exact derivatives and
integrals, and everything that requires passing to a limit, we find ourselves having to approximate these
operations. Typically, space and time derivatives are approximated separately, although simultaneous
space–time discretisation methods could be considered as well.

Space approximation. Space approximation methods aim to approximate space derivatives and reduce
the IBVP into a set of Ordinary Differential Equations (ODE) (or Initial Value Problem – IVP). Many
different paradigms can be adopted to achieve this goal, one of them is the Galerkin method [191] which
consists of projecting the weak form of the IBVP at any time t on a finite–dimensional subspace Vh of
the functional space V which the weak exact solution belongs to.

If, for instance, we choose the Galerkin Finite Element (FE) method [191, 72, 37], the first step
consists of partitioning the space domain Ω into elements or cells that are triangles or quadrilaterals
when d = 2, and tetrahedra or hexahedra when d = 3, and whose characteristic size is h (the so–called
mesh–size of the partition). The finite–dimensional space Vh is made of piecewise polynomial functions
defined on such a partition and we denote by Nh its finite dimension. Denoting by {φj , j = 1, . . . , Nh}
a suitable basis of the space Vh, for any t ∈ (t0, T) we look for a function uh(x, t) ∈ Vh (approximating
u(x, t)) that takes the form

uh(x, t) =

Nh∑
j=1

uh,j(t)φj(x). (4)

For any t ∈ (t0, T), let uh(t) = [uh,1(t), . . . , uh,Nh
(t)]t be an array in RNh so that, after taking into

account the expansion (4), we can write the semidiscrete problem M
duh

dt
(t) + Luh(t) + N(uh(t)) = f(t) in (t0, T)

uh(t0) = u0,h,
(5)

where L ∈ RNh×Nh and N : RNh → RNh are suitable linear and non–linear operators related to the
operators L and N introduced in (2), respectively, and arising from the Galerkin projection, while
M ∈ RNh×Nh such that Mij =

∫
Ω
φj φi is the so–called mass matrix, and u0,h is the array containing

the values of u0 at the mesh nodes.

7

Notice that, when the unknown u is a vector field and/or (2) collects the solutions of more than one
differential equation, the vector function uh and the formulation (5) will have to take into account all
the components of the unknown solution and all the equations of the model.

Time discretisation. To discretise the time derivative of the problem (5) we need to introduce a
partition of the time interval [t0, T] into Nt sub–intervals of size ∆t (for sake of clearness we consider
uniform partitions) that induces a set of nodes tn = t0 + n∆t for n = 0, . . . , Nt with the property
that tNt = T . discretising (5) by classical finite differences schemes means approximating the time
derivative by finite ratios, so that, at each tn, we look for the real values unh,j approximating uh,j(tn)

(for any j = 1, . . . , Nh). Then we set un = [unh,1, u
n
h,2, . . . , u

n
h,Nh

]t for any n = 1, . . . , Nt. Other time–
discretisation methods can be obtained by approximating the integrals (instead of derivatives) arising
from the integral form of an ordinary differential equation [142].

For the sake of simplicity, let us consider the Backward Euler scheme [190] and apply it to the problem
(5). For n = 0, . . . , Nt − 1, we look for un+1 satisfying the fully discrete system

1

∆t
Mun+1 + Lun+1 + N(un+1) =

1

∆t
Mun + f(tn+1), n = 0, . . . , Nt − 1

u0 = u0,h.
(6)

The choice of the mesh–size h and time–step–size ∆t strongly affects the accuracy of the approximation
as well as the computational effort: typically the smaller h and ∆t, the more accurate the approximation,
but the larger the dimension Nh of the space Vh and the number Nt of time–steps, i.e., the larger the
computational cost in computing {u1, . . . ,uNt}.

Problems (6) are in general non–linear algebraic systems that can be solved, e.g., by Newton or other
iterative methods [172, 190]. At each iteration of the Newton method, a linear system of size Nh (whose
matrix is given by the sum of the Jacobian of the non–linear operator, or a suitable approximation of
it, the linear operator L, and the mass matrix divided by ∆t) has to be solved and, typically, the larger
Nh, the larger the condition number of the system. It is extremely common to find ourselves having to
solve ill–conditioned systems that may generate inaccurate solutions and, if solved by iterative methods,
can require many iterations to reduce the residual even of few orders.

To overcome these shortbreaking, suitable preconditioners and/or scaling matrices must be applied
to the linear system. We say that a preconditioner is optimal for a given linear system if the iterative
condition number of the preconditioned matrix (that is the ratio between the maximum and minimum
moduli of the eigenvalues of the matrix) is quite smaller than the original matrix one and it is independent
of both the discretisation parameters. A unique optimal preconditioner for all classes of linear systems is
not available, although a great effort has been reserved in recent years for the design of preconditioners
for matrices arising from the approximation of PDEs [250]. Another desirable property for a good
preconditioner is scalability, i.e. the preconditioner should offer excellent performance even on parallel
computers and allow solving linear systems in fewer computation times when more cores are used;
ideally, the computation time should decrease proportionally with the number of cores. We cite, among
others, Algebraic and Geometric Multigrid methods [1, 238, 228, 256, 138, 6] and Additive Schwarz
preconditioners [237, 257, 20].

After solving (6), the numerical solution un
h ∈ Vh at time tn will be reconstructed at each point x of

the computational domain Ω by the expansion

un
h(x) =

Nh∑
j=1

unh,jφj(x). (7)

When (2) models multiphysics systems, the size of (5), that is, its number of equations (and unknowns),
could be huge, making its resolution by computers in acceptable times practically impossible. In such
cases, the monolithic formulation, i.e. the one expressed by a unique system like (2) that aims at solving
all the equations of the multiphysics model simultaneously [82], can be replaced by a system of “simpler”
IBVPs that interact one each other, obtained by applying operator splitting methods and/or domain
decomposition techniques [61].

Operator splitting methods allow us to advance in time by taking sub–steps of the complete time–step.
At each sub–step only a part of the complex system is solved implicitly, while the others are treated
explicitly so that we speak about staggered algorithms. Typically, the staggered parts correspond to

8

the different physics making the multiphysics problem. For instance, if the multiphysics model includes
both electrophysiology and mechanics that strongly interact, at each time step, we can first advance the
mechanics, and then the electrophysiology.

Operator splitting methods allow us to reduce the computational complexity of the monolithic sys-
tem, their implementation is often easy, and they respond to the non–intrusive requirement, that is the
possibility to use yet available solvers specific for the single sub–problems only with a little effort. Oper-
ator splitting methods are also very helpful in solving multiphysics problems characterized by different
time and spatial scales, by allowing us to choose different finite element spaces and ad–hoc discretisation
in both time and space for the specific scale. However, these methods may introduce errors due to the
staggered advance of the sub–problems and be less accurate than the monolithic approach.

Domain decomposition techniques allow us to solve multiphysics coupled problems in which different
physics govern the phenomena in distinct parts of the computational domain [192, 237]. An example
is given by the Fluid–Structure–Interaction (FSI) problem modelling the interplay between fluid dy-
namics (blood flow in a heart chamber) and structural mechanics (displacement of the myocardium).
Domain decomposition techniques let us work with non–conforming discretisation at the interfaces be-
tween adjacent subdomains [64, 63, 29, 23, 252] and they feature the same computational advantages as
operator–splitting methods when the monolithic approach is prohibitive.

Convergence. The fundamental property that we ask a numerical model to satisfy is convergence,
meaning that (in an appropriate metric) limh→0 uh = u. A necessary condition for this to occur is
that Fh (that, in the example below, takes into account both space and time discretisation) correctly
translates the functional law F , that is, Fh(u, d) → 0 as h → 0, with d being an admissible datum for
the mathematical model and u the corresponding solution. This property, known as consistency, is not
sufficient to guarantee the convergence of the numerical solution to the exact one: for this purpose, the
numerical model must also be stable. To define stability, we recall that a mathematical model is said
well–posed if it admits a unique solution and if small perturbations in the data result in controllable
variations in the solution. The same property, rewritten for the numerical problem, will ensure its
stability, provided that the ratio between the distance of the solutions and that of the data, in suitable
norms, can be uniformly bounded, i.e., with a constant that does not depend on the discretisation
parameters (the mesh–size h and the time–step ∆t).

The error introduced by approximating the mathematical solution u by the numerical one uh is the
numerical error eh = ∥u−uh∥ and it takes into account all the discretisation processes used in designing
our numerical model (see Figure 2). The ultimate goal of analysing the error eh of the numerical model
is to demonstrate that it tends to zero as the discretisation parameters h and ∆t tend to zero. For
instance, in the case that the differential problem is time–independent (so that no discretisation in time
is required), one seeks estimates of the type:

∥u− uh∥ ≤ C(u, d)hp (8)

for a suitable norm depending on the specific problem. The exponent p (i.e., the infinitesimal order of the
error with respect to h) is named convergence order of the numerical model with respect to h. Similar
arguments apply to time discretisation methods.

The demonstration technique that allows for obtaining error estimates like (8) is based on the analysis
of the well–posedness of the mathematical model and the stability of the numerical model. This is
called a–priori analysis, as it can be performed before actually implementing the numerical model. The
constant C(u, d) depends on the problem’s data, as well as on u and its derivatives (assuming they
exist), up to an appropriate order, dependent on p. Quantifying this constant numerically is generally
very difficult. Consequently, the above estimate is incomplete: it allows for predicting the error decay
trend for vanishing h but does not provide an accurate numerical quantification for a fixed h.

It is the task of a–posteriori analysis to fill this gap. Based on the solution uh computed in
correspondence with a certain value of the discretisation parameter h and the value of the residual
∥rh∥ = ∥F (uh, d)∥ (that is an indirect measure of the deviation of uh from u), a–posteriori analysis
allows us to establish whether the error is or not below a pre–established tolerance. If this is not true,
an adaptive algorithm indicates how to improve the discretisation (providing a criterion for modifying
uh) to guarantee a reduction in the error. See, for example, [189].

Almost always, mathematical models require the knowledge of physical parameters that strongly affect
the solution, but which are difficult or even impossible to observe. For instance, material parameters for

9

the Integrated Heart Model (such as electrical conductivity, or elastic properties of the myocardium) are
not easy to obtain for specific patients due to the difficulty of producing ad hoc measurements.

Parameters identification is a critical process aimed at determining the values of such parameters to
improve the agreement between the mathematical model output and observed data. Under the hypothesis
that the observed data are available and “exact”, this process requires solving inverse problems, namely
problems of which we know the output but not some inputs (parameters), by leveraging optimal control
theory and numerical optimization techniques [149, 159]. But very often, observed data are not “exact”,
instead, they are affected by experimental errors (e.g., when a quantity is not correctly measured) or
it is not possible to measure some values at all. In this case, we speak about “Epistemic uncertainty”.
Other times, data may depend on the variability between individuals (think, e.g., to patient–specific
measurements) or the stochasticity of the considered samples. In this latter case, we speak of “Aleatory
uncertainty”.

Uncertainty Quantification (UQ) mathematical techniques aim to characterize and reduce Epistemic
uncertainties in model predictions through two processes: forward UQ, which deals with the propagation
of the parameters uncertainty on the outputs of the model, and backward UQ, which studies how the
measurement errors on the outputs affect the estimation of the parameters. In particular, in the broad
field of UQ, Sensitivity Analysis investigates how variations in model inputs affect the outputs. It helps
to identify which inputs are most important in determining the output behaviour and is commonly used
in model validation, calibration, and optimization to understand and prioritize which inputs to focus on.

The parameter identification process is very computationally expensive because it requires the solution
of many instances of the same mathematical model which differ one each other for the setting of some
parameters. Such an issue is typically faced by Reduced Order Models (ROM). Let us denote by µ ∈ P ⊂
Rp a set of parameters on which the solution of the IVBP (2) depends and, after space discretisation,
rewrite the semidiscrete form (5) by making the dependence on µ explicit: given µ ∈ P , for any t ∈ (t0, T)
look for the solution uh(t;µ) of M(µ)

duh

dt
(t;µ) + L(µ)uh(t;µ) + N(uh(t, µ);µ) = f(t;µ) in (t0, T)

uh(t0;µ) = u0,h(µ).
(9)

Because all the solutions of (9) corresponding to any possible choice of the parameters µ ∈ P belong to
a manifold Mh = {uh(t;µ) : t ∈ (t0, T), µ ∈ P}, the idea of ROM consists in: (i) evaluating a database
of discrete solutions in Mh, named snapshots, corresponding to different values of the parameters µ in
P ; (ii) selecting a subset of N linearly independent snapshots that span a linear subspace VN of Mh

(the aim is to take N ≪ Nh where Nh is the dimension of the finite element space Vh); (iii) given a new
parameter µ, computing the corresponding solution u(t;µ) by the Galerkin projection of the equation
(9) onto the subspace VN .

If we denote by WN the matrix whose columns contain the degrees of freedom of the finite element
basis functions computed at step (ii) and set MN (µ) = WT

NM(µ)WN , LN (µ) = WT
NL(µ)WN , and

fN (µ) = WT
N f(t, µ), the step (iii) may be written as follows: for any t ∈ (t0, T) find the solution

uN (t;µ) ∈ VN of
MN (µ)

duN

dt
(t;µ) +LN (µ)uN (t;µ)

+WT
NN(WNuN (t, µ);µ) = fN (t;µ) in (t0, T)

uN (t0;µ) = u0(µ).

(10)

Different strategies can be adopted for step (ii), the most widely used are greedy approaches and Proper
Orthogonal Decomposition (POD) methods [53, 106, 188]. More precisely, when the problem is station-
ary, the basis functions are the first N snapshots selected by the greedy algorithm or the first N singular
vectors of the snapshots matrix whether POD is used. When the problem is time–dependent, the param-
eter space can still be sampled by one of the two techniques mentioned, whereas POD is usually exploited
to reduce trajectories of the system over the time interval. Typically, step (i) requires the solution of
many problems like (5) in the original finite element space and it is very expensive, however, if the
differential problem is linear and M(µ), L(µ), and F(t;µ) depend on µ in affine way, the computation
is carried out once for all (offline), jointly with the step (ii). On the contrary, step (iii) is generally

10

very cheap (its dimension N is very small compared to the dimension Nh of the finite element space
Vh) and is carried out (online) to compute the solution corresponding to each new parameter µ that
comes into play, e.g., in the uncertainty quantification process. Whenever the problem is non–linear or
the dependence on the parameters is not affine, the whole process is more involved and hyper–reduction
strategies must be adopted [73].

Computer implementation. The numerical model must be implemented on computers using appro-
priate algorithms. Consequently, instead of the numerical solution uh, we end up with the computational
solution uc, and new errors ea are generated attributable to the finite arithmetic used by computers to
represent real numbers and perform elementary algebraic operations. The sum of the numerical error
eh with the finite arithmetic error ea provides the computational error ec, which represents the distance
between the computed solution uc and u. The overall error e, which measures the difference between the
physical solution uph and the computed solution uc, will result from the combination of the two errors,
em and ec.
Digital modelling should guarantee that the error ec is small and controllable (reliability) with the least
possible computational cost (efficiency). Computational costs refer to the amount of resources (com-
putation time, memory usage) needed to compute the solution uc. Reliability is a crucial requirement
of a computational model: the analysis aims to find estimates in a suitable norm of the error ec as
a function of the problem’s data and the discretisation parameters, ensuring that it remains below a
certain predetermined threshold. To this end, it is reasonable to employ adaptive algorithms that use a
feedback procedure, based on the results already obtained, to adjust the discretisation parameters and
improve the quality of the solution. Numerical methods that implement an adaptive strategy for error
control are known as adaptive computational models.
Under the optimal assumption that the algorithmic error ea is controllable within the desired tolerance,
the computational error ec will behave like eh and will tend to zero with respect to h (see Figure 2).

3 Data–driven models

Data–driven models exploit data from measurements, imaging, or whatever experiments, to obtain a
solution to the problem through machine learning algorithms, typically artificial neural networks.

Data–driven discoveries are not a prerogative of the 21st century, just think of Kepler and Newton
who derived their milestone laws to predict planets’ orbits starting from astronomical data and combining
them with the analytical approach [39]. The novelty of modern data–driven models consists of employing
Machine Learning (ML), instead of analytical approaches, to draw conclusions.

In introducing Digital Models (DM), we highlighted that they are based on computational sciences,
and more precisely: (i) on the knowledge of the theory (we think to equations and more in general
mathematical models), (ii) the availability of experiments needed to validate the models, and (iii) the
numerical simulations. Today, Artificial Intelligence (AI) could be reasonably regarded as the fourth
pillar of the setting.

3.1 Artificial Intelligence

Many different definitions of AI have been given so far, starting with the very first by John McCarthy
in 1955, who defined AI as “the science and engineering of making intelligent machines”. Successively,
many definitions have followed the evolution of AI itself, up to the definition most shared today accord-
ing to which AI is the set of techniques enabling computers to mimic human intelligence. By intelli-
gence, we mean the ability to acquire knowledge and apply it in several contexts: reasoning, learning,
problem–solving, perception, linguistic intelligence, social intelligence, decision–making, just to mention
the perhaps most relevant.

In the broad realm of AI we find Large Language Models, Natural Language Understanding, Text and
Image generation, Dialog Systems, Robotics, and more, which can be applied across a wide range of fields
including healthcare, environment, energy, manufacturing, agriculture, finance, retail, transportation,
entertainment, security, and many others.

Over the last thirty years, we have witnessed an exponentially growing interest in artificial intelligence
even from scientists from outside the computer science field. Three main factors stand behind this

11

explosion:

(i) the availability of increasingly powerful computers equipped with numerous central processing
units (CPUs), graphics processing units (GPUs), and Tensor Processing Units (TPU) capable of
executing heavy computations with large amounts of data very quickly and relatively cheaply;

(ii) the availability of huge amounts of data from many different sources, stored on either the cloud or
our own storage devices at low costs, and transferred at a very high speed;

(iii) the availability of powerful Machine Learning (ML) algorithms, especially those based on deep
artificial neural networks (NN).

We can identify three main software tasks that have driven the AI revolution:

– discriminative: the goal is data categorization, also known as data classification, which is the
process of organizing data into specific categories or clusters based on shared characteristics or
predefined criteria;

– generative: the scope is generating new information (texts, images, sounds, etc). This task is the
one that has contributed most to the recent development of AI thanks to Large Language Models
(LLM) like GPT–3 and GPT–4 of OpenAI, or T5 and Gemini developed by Google. The list,
however, is incomplete and subjected to change very rapidly, due to the tremendous momentum in
the LLM field;

– rewards–maximization: it refers to the process of training an AI agent to make decisions that max-
imize the cumulative reward over time. This concept stands at the core of various AI applications,
including game–playing, robotics, and autonomous systems.

For discriminative tasks, whose goal is to construct a mathematical classifier that assigns a label to
a given data point, starting from a dataset where the class labels are known, two different approaches
are typically followed.

The first one leverages Statistical Learning [122] and is characterized by the total availability of
datasets, generated by a prescribed probability distribution, which is used to make the machine learn
during a training phase. Then, in a successive testing phase the machine is put to the test. Two
mathematical issues arise in this context: the first one consists of characterizing the learnability of the
algorithm, i.e., the capability of the algorithm to learn from data and specifically how well it can generalize
from a given dataset to unseen data. The second one consists of characterizing the computational
complexity of finite learning problems, i.e., how much an algorithm is feasible and efficient in practice.
These concepts were introduced in the seminal paper of Valiant in 1984 [241].

The second approach, named Online Learning, is characterized by a continuous stream of training
data generated, e.g., from markets, sensors, social media, etc., so that learning models are updated
as soon as new data become available and consequently the train–test paradigm of statistical learning
becomes unsuitable. The mathematical theories modelling this approach are connected to game theory,
more precisely to the theory of repeated games started by James Hannan and David Blackwell in the
fifties of the last century [98, 31]. The learning process behind this approach is based on adversarially
chosen sequences of training datasets for which, given a learner and an adversary, (i) the adversary
selects the next couple of input–output training data (xt,yt) and reveals the input xt to the learner; (ii)
the learner outputs a randomized prediction; (iii) the adversary reveals the output yt to the learner.

3.2 Machine Learning

Among the several facets of AI, our interest is above all in Machine Learning (ML), for which many
definitions have been proposed so far. Perhaps the simplest one was provided in an apocryphal quote by
Arthur Samuel, often attributed to his article on ML for the game checkers1 [217]: “Machine Learning
is the field of study that gives computers the ability to learn without being explicitly programmed.”

In 2015, M.I. Jordan and T.M. Mitchell provided the following definition of ML: “’Learning’ is
the process of transforming information into expertise or knowledge; ’machine learning’ is automated

1A. Samuel (1901–1990) created the first checkers program with IBM’s first commercial computer, the IBM 701. IBM’s
stock rose 15 points overnight on Wall Street.

12

learning”. Here, the ML process takes the form of an algorithm that takes information as input and
produces knowledge as output.

A laconic alternative definition was adopted in a more recent report of The Royal Society (of London)
of 2017 [224]: “Machine Learning is a technology that allows computers to learn directly from examples
and experience in the form of data.”

A large subset of ML is represented by artificial neural networks (ANNs, often abbreviated simply
as NNs), which are computing systems made of layers of artificial neurons and are loosely inspired by
biological neural networks that constitute the human brain. Then, in the set of NNs, we point out the
subset of deep neural networks (DNNs), which are NNs with many hidden layers of neurons.

ML algorithms have been proven very successful in several contexts such as Autonomous Driving,
Natural Language Processing, Playing Games, Image analysis and generation. Two are the common
elements behind the success of ML algorithms in these fields: first, the availability of large volumes of
data, and second the fact that developers know the truth, that is, they know the context well enough
to validate the results, often even during model training. Both these elements are essential to train the
algorithm.

However, there are many other sectors in which these two favourable conditions do not ever occur,
so ML algorithms do not work so well. For instance, ML is not particularly effective when:

– datasets are sparse and partial. This is usually the case when data acquisition is expensive, like in
medicine, when data are generated by clinical images or exams that could be invasive or extremely
costly;

– training datasets are not available,
– high–consequence decisions require human–interpretable models or outputs.

In these cases, the training of the algorithms might be limited, and what they have learned is not enough
to allow them to apply successfully to more general situations.

To better investigate ML, let us start with the definition Tom Mitchell gave in his book in 1997 [167]:

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T , as measured by P , improves
with experience E.”

We will clarify this statement through two simple examples.

Example 3.1. Consider the following task T : “given a picture (identified by the variable x), write a
program returning the result y = 1 if it portrays a dog, y = 0 otherwise”, i.e., we want to put a label on
the picture. This is an instance of classification tasks.

Following a traditional programming approach, to solve this task, we would write a computer program
that implements the decision rules imposed by the human programmer. Instead, a machine learning
approach would proceed as follows:

1. experience a collection of training data (x̂i, ŷi) for i = 1, . . . , N , i.e., a set of pictures x̂i with the
corresponding labels ŷi ∈ {0, 1};

2. select a set of candidate models y = f(x;w) written as functions that depend on an input datum
x (the picture) and some suitable unknown parameters that are the entries of the array w ∈ RM ;

3. define the loss function (or objective function, or again cost function)

L(w) =
1

2

N∑
i=1

[d(ŷi, f(x̂i;w))]2 + regularization, (11)

which measures the distance d (e.g. the Euclidean distance), between the targets ŷi furnished by
the training set and the values f(x̂i;w) predicted by the model;

4. choose a metric (i.e., an indicator) to monitor and measure the performance of the model (which
generally coincides with the loss function, although this is not mandatory, see Remark 3.1 and
Sect. 3.2.3);

13

5. train the model by optimizing the loss function L, i.e., find

w∗ = argmin
w∈RM

L(w) (12)

and define the “optimal” model f(·;w∗);

6. measure the performance of f(·;w∗) by evaluating the metric chosen in step 4 on different data
than those used in step 5 (the so–called test data).

The regularization term in (11) can serve multiple purposes, as will be seen later in this paper.
Indeed, if L is not convex, it could show more than one (local) minimizer.

Remark 3.1. The primary purpose of the loss function is to guide the optimization process during
training, while a metric is a measure used to evaluate the performance of a ML model. Unlike loss
functions, metrics are used purely for evaluation purposes and do not influence the training process.

The metric introduced in step 4 does not necessarily coincide with the loss function L. Indeed, while
the metric is not required to be differentiable with respect to the parameters w, the loss function is. This
is because gradient–like optimization algorithms that are invoked during the training phase require the
loss function to be sufficiently regular, together with their gradients that are used to update the model
parameters.

In Example 3.1, we observe the typical characteristics of a ML approach to a classification prob-
lem. Rather than relying on prior knowledge about the context, such as how a dog looks, the method
instead depends on a large dataset of images, referred to as the training set, and allows the program
to autonomously identify the features that distinguish each class. A crucial element of this approach is
the availability of sufficient and representative data, which enables the algorithm to extract meaningful
information and achieve accuracy on unseen data. Equally important is the choice of candidate mod-
els, which must be expressive enough to capture the complexity of the input–output relationship being
learned.

As a second example, let us examine an application of least–squares linear regression. While this
method is quite old – its first application dates back to 1795 and is attributed to Gauss [227], long
before the term ”Machine Learning” was coined – it can still be interpreted as a learning process. This
example, although deliberately simplified compared to the complexity of ML models commonly used
in real–world applications, remains valuable from a pedagogical perspective as an introduction to ML
concepts, particularly for those with a background in applied mathematics and scientific computing. We
will elaborate more on analogies and differences between ML and least–squares algorithms in Sec. 6.

Example 3.2. Consider the following task: “Predict house prices y based on the data x including the
following information: square footage, number of bedrooms, number of bathrooms, the presence of brick
construction, the number of offers received, and the neighbourhood in which each house is located.” This
is an example of regression tasks.

In analogy with the procedure in Example 1, a ML strategy could be set up as follows:

1. set up the experience, by collecting a set of training data x̂i, ŷi (houses’ information and the
corresponding prices) for i = 1, . . . , N ,

2. select a set of candidate models of the form

y = f(x;w) = m · x + q, with w = [m, q] (13)

which states a correlation between the input x and the output y;

3. define the loss function

L(w) =
1

2

N∑
i=1

(ŷi − (m · x̂i + q))2; (14)

4. choose a metric to monitor and measure the performance of the model (see Remark 3.1 and Sect.
3.2.3);

14

5. train the model by optimizing the loss function L, i.e., solve the problem

w∗ = argmin
w∈RM

L(w) (15)

and define the “optimal” model f(·;w∗);

6. measure the performance of f(·;w∗) by evaluating the metric chosen in the step 4.

Since the loss function L (14) is convex, it features a unique minimizer w∗ that is the unique solution
of the first–order optimality condition ∇L(w) = 0. In particular, in the simpler case when x ∈ R (let us
rewrite it x), so that the unknown parameters stored in w are the real values m and q, the gradient of
the loss function reads

∇L =

 ∂L
∂m

∂L
∂q

 =

−

N∑
i=1

(ŷi − (mx̂i + q))x̂i

−
N∑
i=1

(ŷi − (mx̂i + q))

 ,

and solving ∇L = 0 is equivalent to solving the so–called normal equations
N∑
i=1

x̂2
i

N∑
i=1

x̂i

N∑
i=1

x̂i N

 m

q

 =

N∑
i=1

x̂iŷi

N∑
i=1

ŷi

 ,

i.e., a 2×2 linear system whose unknowns are the two parameters m and q of the linear model f(x;m, q) =
mx + q.

In Example 3.2, the training process, i.e., the solution of the minimization problem (15), reduces to
solving a linear system. This simplification stems from two key choices: first, the model (13) is linear
in the parameters w; second, the loss function (14) is quadratic in the errors. These two characteristics
are the hallmarks of the linear least–squares regression method, which is computationally efficient, as it
requires only solving a linear system rather than engaging in an iterative optimization process. However,
choosing a polynomial of degree 1 as our model imposes a significant prior on the input–output rela-
tionship. In ML applications, much richer model classes are typically favoured over simple low–degree
polynomial functions. While such an enrichment introduces substantial algorithmic and computational
challenges, it enables the representation of far more complex input–output relationships than those
achievable with basic models like straight lines or polynomials.

Although Example 3.2 can formally be considered a learning process, typical ML problems differ in
the following ways:

1. the size n of data x is often very large, implying severe memory space limitations;

2. the number M of free parameters (i.e., the size of the array w) is typically very large. Notice
that the larger the number of free parameters, the greater the complexity in minimizing the loss
function L;

3. the model f(x;w) is often non–linear with respect to the parameters w (this implies that manual
differentiation is very tricky and should be replaced by automatic differentiation) so that ∇L is
not linear. Consequently, iterative optimization algorithms, like, e.g, gradient descent, stochastic
gradient descent, Newton, Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods [190] should be
invoked;

3.2.1 Machine Learning Tasks

ML encompasses various tasks that can be broadly categorized as follows based on the type of learning
and the goals of the algorithm. Here are the major tasks in ML:

15

Regression: predict a continuous–valued vector y ∈ Rm starting with a training set composed of pairs
of an input signal and a ground–truth value. Examples include image recognition and medical
diagnosis of continuous quantities of interest.

Classification: assign a label from a finite set {1, . . . , C} (indicating a class) to any given objects belong-
ing to a predefined category, for instance, the label y of an image x. The training set is composed
of pairs of an input signal and a ground–truth value (or a label). Although the output should be an
integer or a label, typically, the standard approach consists of predicting, for each potential class,
a score (which is a real value) or a probability of belonging to that class, so that the correct class
has the maximum score. Examples include image classification, spam filters, and fraud detection.

Clustering: partition a set of items into subsets by finding similarities and differences. Examples include
image segmentation and community detection in biology, social sciences, and economics.

Association: find the probability of the co–occurrence of items in a collection. Examples include recom-
mendation systems and market basket analysis.

Density estimation: unveal the common pattern of a population. Possible applications are in anomaly
detection and the generation of realistic scenarios.

Dimensionality reduction: provide a compact (low–dimensional) description of complex (high–dimensional)
data and it can be applied to tackle multi–query problems and data compression.

3.2.2 Machine Learning Experience

The ML tasks listed above can be categorized based on the type of learning, according to this classifica-
tion.

Supervised Learning: both inputs x̂i and outputs ŷi are provided in the training set. ML tasks that fall
here are regression and classification.

Unsupervised Learning: only inputs x̂i are provided in the training set and we do not know what the
result could be. Instances of this type of learning are: clustering, associations, density estimation,
and dimensionality reduction.

Reinforcement Learning: (special kind of supervised learning) the training set is not fixed a–priori, but it
changes dynamically, and the learning machine itself explores the input space. It involves an agent
that learns to make decisions by performing certain actions and receiving rewards or penalties.
The agent learns to maximize cumulative rewards over time. Examples include game playing and
robotic control.

A further approach is sometimes called Semi–supervised Learning and occurs when only a small
subset of the original training set is actually labelled.

In all cases, ML algorithms aim at learning and predicting results starting from data, by unearthing
the patterns and relationships that hide beneath them. In the next sections, we limit our essay to the
supervised learning situation.

3.2.3 Machine Learning Performance measurement

To evaluate the ability of an ML model to succeed, we can evaluate a performance measurement P ,
expressed by a metric. Typically, P depends on the task the model has to achieve. A general form of P
is

P =
1

N

N∑
i=1

dM (ŷi,yi), (16)

where ŷi ∈ Rm are the target values (or labels), yi = f(x̂i;w) ∈ Rm are the predicted values computed
by the model f : Rn → Rm starting from the known inputs x̂i ∈ Rn, and dM : Rm×Rm → R is a suitable
distance. The most used metrics are:

16

Mean Square Error (MSE): dM in (16) is the euclidian distance

dM (ŷi,yi) =
1

m
∥ŷi − yi∥22 =

1

m

m∑
j=1

((ŷi)j − (yi)j)
2
,

so that

MSE =
1

N ·m

N∑
i=1

∥ŷi − yi∥22.

Root Mean Square Error (RMSE): it is the square root of MSE :

RMSE =
√
MSE.

Mean Absolute Error (MAE): dM in (16) is the distance induced by the 1−norm:

dM (ŷi,yi) =
1

m
∥ŷi − yi∥1 =

1

m

m∑
j=1

|(ŷi)j − (yi)j | ,

so that

MAE =
1

N ·m

N∑
i=1

∥ŷi − yi∥1.

Cross–Entropy (CE): dM in (16) is defined by

dM (ŷi,yi) = −
m∑
j=1

(ŷi)j log(yi)j , with (ŷi)j =

1 if sample i

belongs to class j

0 otherwise,

so that

CE = − 1

N

N∑
i=1

m∑
j=1

(ŷi)j log(yi)j . (17)

This metric derives from the Maximum Likelihood Estimator for categorical variables.

While MSE, RMSE, and MAE are typically used to measure the performance of regression tasks, CE is
used for classification.

3.2.4 Machine Learning Models

In abstract terms, an ML model is a mathematical function f that maps an input x belonging to a space
X ⊆ Rn into an output y ∈ Y ⊆ Rm and depends on a set of parameters w ∈M ⊆ RM :

f : X ×M ⊆ Rn+M → Y ⊆ Rm. (18)

X is named input space, Y target space, while XY is the space of all functions f : X → Y. There are
infinitely many different ways to define a function f ∈ XY , thus typically, the search of the model is
limited to a set H ⊂ XY named hypothesis space (in the seminal book [167], the hypothesis was what
now we call the model). We list here some common choices used in ML for the hypothesis space.

Linear models are largely used in regression tasks to predict the behaviour of systems, from biological
to environmental and social sciences to business. They take the form f(x;w) = Wx + b, with
W ∈ Rm×n and b ∈ Rm; the parameters’ array w collects all the entries of both W and b, i.e.,
w = {W11, W12, . . . ,Wmn, b1, . . . , bm};

Polynomial models are used in regression tasks when the data do not fit a linear model. They take the
form (considering for simplicity the case when n = 1) f(x;w) = a0 + a1x+ a2x

2 + . . .+ aqx
q, with

ai ∈ R for i = 1, . . . , q ∈ N, here w = (a0, a1, . . . , aq). These models are also linear with respect
to the parameters;

17

Age

40− 49

smoker

no

low

yes

pressure

< 150

low

> 150

cholesterol

< 220

medium

> 220

high

50− 59

smoker

no

pressure

< 150

low

> 150

cholesterol

< 220

medium

> 220

high

yes

pressure

< 150

cholesterol

< 220

medium

> 220

high

> 150

high

60− 69

smoker

no

pressure

< 150

cholesterol

< 220

medium

> 220

high

> 150

high

yes

high

Figure 3: A simplified example of a decision tree to predict the cardiovascular risk for a diabetic man
between 40 and 69 years old

Decision trees are non–parametric supervised learning methods used for classification and regression.
They provide an answer based on a series of binary decisions inferred from the data features. The
picture in Fig. 3 provides a simplified example of a decision tree to predict the cardiovascular risk
for a diabetic man between 40 and 69 years old.

Unfortunately, these models are generally not robust with respect to different sets of data;

Random forests represent an improvement of decision trees for both classification and regression tasks.
They construct multiple decision trees by choosing subsets of data in the training set randomly
and with repetition (a technique named bootstrapping in statistics), then they average the output
model (this strategy is named “bootstrap aggregating” or, more simply, bagging). Despite their
complexity, random forests provide robust and accurate models with reduced variance and reduced
overfitting (the issue of overfitting models will be extensively analysed in the following);

Maximal Margin Classifiers (MMC) are ML methods for classification. In the simpler case of separating
a set of data into two classes, they find a hyperplane H = {x ∈ Rn : β0 + β · x}, with β0 ∈ R
and β ∈ Rn, to classify the points xi of a dataset by maximizing the margin, i.e., the minimum
distance between the points of the two classes of the training set and the hyperplane itself. The
points of the training set realizing the margin are called “support vectors”. Introducing the array
w = [β0,β], the model reads f(x;w) = β0 + β · x, if f(x;w) > 0 the point x belongs to a class,
otherwise to the other. This classifier cannot be applied to most data sets, since very often data
belonging to different classes are not separable by a linear manifold;

Support Vector Machines (SVM) generalize the idea of MMC to the situation of classes not separable by
a linear manifold. The idea consists of expanding the vector β (which is the normal vector to the

hyperplane) with respect to N training points xi, i.e., β =
∑N

i=1 αixi so that β ·x =
∑N

i=1 αixi ·x,
and in replacing the inner product xi · x with a suitable non–linear kernel κ(xi,x). Then, the

hyperplane is replaced by the surface H = {x ∈ Rn : β0 +
∑N

i=1 αiκ(xi,x) = 0} and the model is

f(x;w) = β0 +
∑N

i=1 αiκ(xi,x). Notice that H is the zero level set of f(x;w). Now, the parameter
array w includes β0, the coefficients αi and the parameters defining the kernel that would be
polynomial, radial, or of other suitable types [122].

Artificial Neural Networks (NN) are non–linear models whose elementary core is the perceptron, the
artificial neuron introduced in 1958 by Rosenblatt, which in turn generalized the first artificial
neuron invented in 1943 by Warren McCulloch and Walter Pitts. In both cases, artificial neurons
mimic the logical behavior of a biological neuron. A biological neuron receives impulses from other

18

connected neurons through dendrites, elaborates the information in its nucleus, and if the result
of this elaboration exceeds a determined threshold, a new impulse is sent to subsequent neurons
through the axon, otherwise, the signal is stopped (see Fig.4 left).

A perceptron (see Fig. 4, right) is a mathematical model which receives one or more inputs xj ,
computes the quantity

z =
∑
j

wjxj + b, (19)

where wj are named weights and b is the so–called bias, and returns the output

y = σ(z), (20)

where σ, called activation function, is typically a continuous and regular function approximating
the Heavyside function

H(z) =

{
1 if z > 0
0 otherwise.

(21)

In this context, the weights wj represent the strength of the connections between neurons, mod-
ulating the influence of each input xj on the final output. The bias b can be interpreted as the
activation threshold, but with the opposite sign: if the weighted sum of the inputs exceeds −b, the
neuron fires and returns 1; if the weighted sum is less than −b, the neuron remains inactive and
returns 0. The bias allows the neuron to shift its activation threshold.

While the perceptron draws inspiration from the functioning of biological neurons, it is a highly
simplified model compared to their actual behaviour. Advanced models of biological neurons
account for the intricate ionic dynamics through differential equations (similar to those discussed
in Sec. 5.1), which are compactly represented here by the activation function. They also consider
diffusive processes using diffusion–reaction PDEs (as further detailed in Sec. 5.1), which in this case
are approximated by simple linear combinations. However, the analogy with biological neurons
serves only as an inspiration, and the simplicity of this model is seen as an advantage in the ML
context. This simplicity enables indeed the training of models with very large dimensions, given
the low computational cost of each individual neuron. As we will see, the preferred approach is
often to design architectures with a very high number of simple units, rather than a small number
of complex units.

Figure 4: A biological neuron (left) and the perceptron (right)

In the original model of McCulloch and Pitts (1943) named threshold logic unit, the input and
output were binary values 0/1, the weights were all equal to 1 and the activation function was the
Heaviside function.

Different types of activation functions are shown in Fig. 5, the most common are:

– Rectified Linear Unit (ReLU): σ(z) = ReLU(z) = max{0, z};
– Sigmoid (or Logistic): σ(z) =

1

1 + e−z
. Its derivative σ′(z) = σ(z)(1 − σ(z)) is very easy to

evaluate and this makes the sigmoid function very attractive for the loss function minimization
process;

19

(a) (b) (c) (d)

Figure 5: Activation functions: the Heaviside function (a), ReLU (b), sigmoid (c), and hyperbolic tangent
(d)

– Hyperbolic tangent: σ(z) = tanh(z),

and their relative performance is application–specific.

We may alter the transition’s steepness and location in the sigmoid function by scaling and shifting
the argument or, in the language of neural networks, by weighting and biasing the input, see Fig.
6

Figure 6: The sigmoid function with different transitions’ steepness and location

The mathematical model associated with the perceptron reads

y = f(x;w) = σ

∑
j

wjxj + b

 (22)

where w = [w1, w2, . . . , wn, b] is the parameters’ array.

A Feed Forward Neural Network (FFNN) (or multilayer perceptron) is a network composed of more
layers each one including one or more perceptrons (which are usually named neurons) so that the
outputs of the neurons of one layer become the inputs for the neurons of the next layer. The
first and the last layers are the input layer and output layer, respectively, while the intermediate
ones are named hidden layers (see Fig. 7). Let L denote the total number of layers excluding
the input one and Nℓ the number of neurons of the generic layer ℓ ∈ {0, . . . , L}. We denote by
W [ℓ] ∈ RNℓ×Nℓ−1 , b[ℓ] ∈ RNℓ the matrix of the weights and biases of the neurons in layer ℓ and
by w = {(W [1],b[1]), . . . , (W [L],b[L])} the list of all matrices and vectors containing weights and
biases of all neurons. Finally, σ is the activation function that, when applied to an array, works
simultaneously on each component. The mathematical model of a FFNN is a function

f(·;w) : Rn → Rm (23)

that, given an instance of the parameters w, takes the input x̂ ∈ Rn and computes the output y
by following the instructions of algorithm 1. f is also called realization function of the NN.

The function f can be written as a composition of functions

f = T[L] ◦ . . . ◦ σ ◦T[ℓ] ◦ . . . ◦ σ ◦T[1], (24)

where, for any ℓ = 1, . . . , L, T[ℓ] : RNℓ−1 → RNℓ is defined by T[ℓ](x) = W [ℓ]x + b[ℓ].

FFNNs are typically characterized by the following indices:

20

Figure 7: A Feed Forward Neural Network with L = 3 and the zoom on a neuron at the layer ℓ = 2.

Algorithm 1 Feed Forward Neural Network

procedure FFNN (x̂, w)
a[0] = x̂
for ℓ = 1, . . . , L do

z[ℓ] = W [ℓ]a[ℓ−1] + b[ℓ]

a[ℓ] = σ(z[ℓ])
end for
return y = f(x̂;w) = a[L]

end procedure

– the total number of neurons N(w) =

L∑
ℓ=0

Nℓ,

– the width of the network Nmax(w) = max
ℓ=0,...,L

Nℓ,

– the total number of non–null weights and biases M(w) =

L∑
ℓ=0

Mj(w).

In the example of Fig. 7 we have N(w) = 13 and a total of M(w) = 46 weights and biases, 16 in
the layer 1, 20 in the layer 2 and 10 in the layer 3.

FFNNs with L = 2 (only one hidden layer) are named shallow NNs, while when L > 2 (at least
two hidden layers) we speak about Deep Neural Networks (DNNs).

The number L of layers and the numbers Nℓ of neurons per layer (jointly with the activation
function σ) characterize the architecture of a NN and are usually named hyperparameters of the
NN.

On the contrary, weights and biases, usually named parameters of the NN, are not given a–priori,
and the challenge for NNs is to determine the parameters values that minimize the loss function
and guarantee the best performance. Especially in deep NNs, this optimization problem is highly
non–linear and non–convex, making classical global optimization algorithms cumbersome and in-
efficient. Starting from the straightforward but winning observation that partial derivatives of the
loss function with respect to weights and biases can be calculated by using the chain rule and
automatic differentiation [90, 97] (such a differentiation technique is known as backpropagation in
the ML community), more efficient gradient–based methods have superseded classical optimization
algorithms, giving a tremendous boost to NNs (see Sect. 3.2.6).

NNs based on the threshold logic unit of McCulloch and Pitts represent the first generation of NNs.
They are not learnable because there are no weights or biases. NNs based on Rosenblatt’s sigmoid
neuron represent the second generation of NNs. With respect to the first generation, they are
learnable, but they are again fundamentally different from biological neurons. In fact, they model
input and output in a continuous setting instead of spikes, and they process signals synchronously
instead of taking care of spike timing and frequency. A third generation of NNs, based on spiking

21

neurons was introduced in 1997 [156]. These NNs can process spikes coming from different neurons
at different times and the spike timing itself plays a fundamental role in overcoming the threshold
function and generating the action potential for successive neurons. Different spiking neuron models
have been proposed so far. The most biologically plausible one, but at the same time very expensive
and infeasible in large–scale simulations, is based on the Hodgkin—Huxley model [111]. Cheaper
models, but poorer from a biological viewpoint, are the Integrate and Fire ones [156, 258]. Despite
2nd generation NNS, spiking NNs still do not have solid training methods [258].

Convolutional Neural Networks (CNN) are very effective NNs typically employed for signal processing
and computer vision tasks. In CNNs, the weight matrices are circulating matrices whose kernels
act as filters on the inputs and allow the extraction of typical features from the signal.

In addition to those contained in this list, far from being exhaustive, numerous other ML models
are available depending on the specific application – such as signal analysis, image analysis, and text
analysis. The range of models in the literature continues to expand rapidly. Finding a model means,
first of all, choosing the hypothesis space (see Sect. 3.2.5 and 3.2.9) and then characterizing the model
itself by determining its parameters w by invoking optimization methods (see Sect. 3.2.6).

3.2.5 Setting of supervised learning and error analysis

Starting from a finite set of samples representing inputs and targets (the training set), we are interested in
finding a function that models the unknown relation between them, with the ultimate goal of predicting
the output once a new input is provided. To move on we need the following ingredients:

1. an input space X ⊆ Rn, a target space Y ⊆ Rm, and the space YX of all the functions f : X → Y,

2. a hypothesis space H ⊂ YX where the model is searched for,

3. a joint probability distribution function PX ,Y defined on some σ-algebra on X × Y that simulta-
neously represents the distribution of inputs as well as the conditional probability of the target y
being appropriate for an input x,

4. a loss metric2 dM : Y ×Y → [0,+∞] measuring the mismatch between the output provided by the
function f and the target,

5. the expected risk

R(f) = E[dM (y, f(x))] =

∫
X×Y

dM (y, f(x))dPX ,Y(x,y), (25)

i.e., the expected value of the loss metric when applied to the whole space X × Y. It is a measure
of how well a model performs on average when making predictions,

6. a training set S = {(x̂i, ŷi), i = 1, . . . , N} with x̂i ∈ X and ŷi ∈ Y,

7. the empirical risk

RS,N (f) =
1

N

N∑
i=1

dM (ŷi, f(x̂i)) (26)

that represents an approximation of the expected risk R(f) evaluated on the training set S.

The ideal goal would consist of finding a function f̂ ∈ YX that minimizes the expected risk, i.e.,

f̂ = argmin
f∈YX

R(f). (27)

Such function f̂ is the optimal (in the sense of (27)) input–output relationship corresponding to the joint

probability distribution PX ,Y . However, looking for the unknown model f̂ in the space YX is unfeasible

2the term “loss” is used for the metric as well as to define the loss function (11), however, the loss metric dM can be
different from the metric d in the loss function.

22

Figure 8: The ideal model f̂ and the really computed model f̂∗H,S

because of the infinite dimension of the space itself, thus a first approximation of (27) consists in looking
for a model in a suitable hypothesis space H subset of YX , that is, computing

f̂H = argmin
f∈H

R(f). (28)

Unfortunately, (28) is unfeasible too because the expected risk would require both sampling the whole

space X × Y and explicitly knowing the probability distribution function PX×Y . So a new model f̂H,S

that relies solely on the training set S is defined by solving the surrogate minimization problem

f̂H,S = argmin
f∈H

RS,N (f). (29)

Because f̂H,S is typically searched for by iterative optimization procedures, we finally find an approxi-

mation f̂∗H,S of it (see Fig. 8).

We can measure the overall error between the ideal model f̂ and the computed model f̂∗H,S by

evaluating the difference between the corresponding expected risks |R(f̂)−R(f̂∗H,S)|, that results in the
sum of three different errors [30, 94]:

|R(f̂)−R(f̂∗H,S)| ≤ |R(f̂)−R(f̂H)| (approximation error)

+ |R(f̂H)−RS,N (f̂H)| (generalization error)

+ |RS,N (f̂H)−RS,N (f̂∗H,S)| (optimization error)

+ |RS,N (f̂∗H,S)−R(f̂∗H,S)| (bounded by the uniform

generalization error).

(30)

The approximation error measures how well the hypothesis space H approximates the functional space
YX , the generalization error measures the gap between the performance of a neural network on the
training set and unseen data, indicating how accurately the network can predict outcome values for
previously unobserved inputs, while the optimization error is related to the minimization algorithm.
The fourth term in (30) can be bounded by the uniform generalization error [30]

sup
f∈H
|R(f)−RS,N (f)|. (31)

Thus, the design of a successful ML model is based on three ingredients: the hypothesis space, the
training set, and the optimization algorithm.

The approximation error. It measures the expressivity of the ML model, i.e. how well a given
input–output function can be approximated by functions belonging to the hypothesis space. We recall
here a few fundamental results about approximation error in FFNNs, distinguishing between shallow and
deep FFNNs, while we refer to [91] and the references therein for an in–depth discussion of this topic.

Shallow FFNNs (those with L = 2, one hidden layer) are universal approximators thanks to the
“Universal Approximation Theorem” of Cybenko [59]. This means that, under suitable regularity as-
sumptions on the activation function, any continuous function on a compact set can be approximated by
a suitable shallow FFNN up to an arbitrary precision. The following definition serves in the statement
of Cybenko’s theorem.

23

Definition 3.1. [59] Let K ⊂ Rn be a compact set. A continuous function σ : R→ R is said discrimi-
natory with respect to K if, for every finite, signed, regular Borel measure µ on K, we have that(∫

K

σ(w · x + b)dµ(x) = 0, for all w ∈ Rn and b ∈ R
)
⇒ µ = 0.

Examples of discriminatory functions are the sigmoid and ReLU, while polynomials are not discrim-
inatory.

Theorem 3.1 (Cybenko (1989)). [59, Thm 1] Let K ⊂ Rn be a compact set and σ ∈ C(R) a discrimi-

natory activation function on K. Then, given any real–valued function f̂ continuous on K and tolerance
ε > 0, there exists a shallow FFNN with weights and biases w = {(W [1],b[1]), (W [2],b[2])} and real

output y = f(·;w) such that ∥f̂ − f(·;w)∥∞ ≤ ε.

Denoting by N1 the number of hidden neurons, Cybenko’s theorem ensures that the larger the number
N1 of parameters, the lower the tolerance ε. But, how does N1 depend on ε? The following theorem,
which summarizes the results of [157, 158, 162] (see also [94, Thm 3.6 and 3.8]) provides lower and upper
bounds for N1 versus the tolerance ε.

Theorem 3.2 (Lower and upper complexity bound for shallow NNs). Let n ≥ 2, s ∈ N, I an open real
interval, σ : R → R such that σ|I ∈ C∞(I) and σ(k)(x0) ̸= 0 for some x0 ∈ I and all integers k ≥ 1.

Then, for any ε > 0 and for any f̂ ∈W s,2((0, 1)n) with ∥f̂∥W s,2((0,1)n) ≤ 1, there exists a shallow FFNN

with weights w = {(W [1],b[1]), (W [2],b[2])} depending on f̂ and ε, real output y = f(·;w), and N1 hidden

neurons such that ∥f̂ − f(·;w)∥2 ≤ ε and(
1

ε

)(n−1)/s

≲ N1 ≲

(
1

ε

)n/s

. (32)

The estimate (32) is sharp for functions in W s,2((0, 1)n), but it can be improved if f̂ is analytic [162].
We conclude that the smaller the tolerance ε, the larger the number N1 of hidden neurons. Moreover,
for fixed ε:

– the higher the regularity s of f̂ , the lower the number N1 of hidden neurons,
– the larger the input dimension n, the larger the number N1 of hidden neurons that guarantee the

approximation error is lower than ε.

The latter observation highlights that shallow FFNNs suffer from the curse of dimensionality, i.e. the
number of parameters of a shallow FFNN grows exponentially in the input dimension n.

In the case of deep FFNNs (L > 2) with ReLU activation function, the following theorem by Yarotsky
states that any function in W s,∞([0, 1]n) with bounded norm can be approximated by a suitable deep
ReLU network.

Theorem 3.3 (Yarotsky (2017)). [260, Thm 1] For any n, s ∈ Ns≥1, and for any ε ∈ (0, 1), there exists
a network architecture with ReLU activation function σ, L ≲ 1 + loge

1
ε layers, M ≲ ε−n/s

(
1 + loge

1
ε

)
non–null parameters, and real output such that, for any f̂ ∈ W s,∞([0, 1]n) with ∥f̂∥W s,∞([0,1]n) ≤ 1,

there exist parameters w = {(W [1],b[1]), . . . , (W [L],b[L])} depending on f̂ and ε, such that, denoting

with y = f(·;w) the output of the NN, it holds ∥f̂ − f(·;w)∥∞ ≤ ε.

The next theorem extends Yarotsky’s result to functions belonging to more general Sobolev spaces
and provides an upper complexity bound of the NN.

Theorem 3.4 (Güring, Kutyniok, Petersen (2020)). [93, Thm. 4.1] Let n ∈ N, k ∈ Nk≥2, p ∈ [1,∞],
B > 0, and s ∈ [0, 1]. For any ε ∈ (0, 1/2), there exists a network architecture with ReLU activation
function σ, real output, L ≲ log2 ε

−k/(k−s) layers, M ≲ ε−n/(k−s) log2(ε−k/(k−s)) non–null parameters,

N ≲ ε−n/(k−s) log2(ε−k/(k−s)) neurons such that, for any f̂ ∈ W k,p((0, 1)n) with ∥f̂∥Wk,p((0,1)n) ≤ B,

there exist parameters w = {(W [1],b[1]), . . . , (W [L],b[L])}, depending on f̂ and ε and it holds ∥f̂ −
f(·;w)∥W s,p((0,1)n) ≤ ε.

24

Figure 9: Underfitting (left), optimal fitting (centre), and overfitting (right) for a classification task

A lower complexity bound for deep NNs is stated by the following theorem, which is a generalization
of [260, Thm. 4a].

Theorem 3.5 (Güring, Kutyniok, Petersen (2020)). [93, Thm. 4.3] Let n ∈ N, k ∈ Nk≥2, B >
0, and s ∈ {0, 1}. If ε ∈ (0, 1/2), and there exists a ReLU network architecture with real output,

L layers, M non–null parameters such that for any f̂ ∈ W k,∞((0, 1)n) with ∥f̂∥Wk,∞((0,1)n) ≤ B it

holds ∥f̂ − f(·;w)∥W s,p((0,1)n) ≤ ε, then the architecture must have at least M = c ε−n/(2k−2s) non–null
parameters, where c is a positive constant depending on n, k, B, and s.

Deep FFNNs do not break the curse of dimensionality, however, they can represent some functions
that shallow FFNNs cannot (e.g. compactly supported functions [180]). Deep FFNNs are typically more
efficient in approximating functions, i.e., for a given tolerance, the required total number M of non–null
parameters is lower than in shallow FFNNs, and with the same number M of parameters, deep FFNNs
can represent more complex functions than shallow FFNNs.

The generalization error. This is the central and crucial aspect of ML algorithms: we want our
model to be able to predict the outcome value for unobserved inputs and not only for training data.
The ability of an ML algorithm to perform well on previously unobserved inputs is called generalization
[86]. In designing an ML algorithm, we have two goals to bear in mind which, unfortunately, are often
in competition with each other:

1. minimizing the empirical risk RS,N (f̂H,S) (see (26)) (also known as training error),

2. minimizing the gap |R(f̂H) − RS,N (f̂H)|, i.e. the generalization error, between the expected risk

and the empirical risk, for any f̂H in the hypothesis space H.

The first goal can be accomplished by enriching the hypothesis space H, but if H fits too much the
training set S we can incur in what is named overfitting. This means that the network performs very
accurately on the training data but cannot generalize well to new data, because the fitting process has
focused too heavily on the unimportant and unrepresentative “noise” in the given training set. Overfitting
would generate a large gap between empirical risk and expected risk, i.e., a large generalization error. On
the contrary, when the hypothesis space is too coarse and the model is unable to represent the relation
between inputs and targets accurately, we speak about underfitting, here the empirical risk is large. A
graphical interpretation of overfitting and underfitting is reported in Fig. 9 relatively to a classification
task.

A possible indicator of the flexibility and ability of a model to fit diverse data is called capacity.
It suggests how rich the hypothesis space H must be in the whole space YX to model accurately the
relation between inputs and targets. Small capacity corresponds to inaccurate fitting of the training data
(underfitting), while high capacity may induce overfitting.

The capacity is determined by the choice of the so–called hyperparameters, like for example, the
polynomial degree for polynomial models, or the number of neurons and layers for NNs (notice that
hyperparameters are different from the parameters w that characterize the NN and are not optimized
during the training). Thus, the capacity increases with the polynomial degree in polynomial models, or
with the number of neurons and layers in NNs. The larger the capacity of the model, the smaller the
empirical risk RS,N (f̂H,S) (see the blue curve in Fig. 10). The expected risk instead increases with the
capacity when the latter is too large (red curve in Fig. 10) and features a minimum, in correspondence
with which the fitting (and consequently the capacity) is optimal.

25

0 0.5 1 1.5 2 2.5 3 3.5 4
capacity

0

2

4

6

8

10

underfitting overfitting

optimal

fitting

generalization

error

Empirical risk

Expected risk

Figure 10: The empirical risk (training error), the expected risk, and the generalization error versus the
capacity of the hypothesis space H

Cross–validation. A useful technique to combat overfitting, avoiding the (very cumbersome and often

impossible) evaluation of the generalization error, consists of splitting a given data set Ŝ = {(x̂i, ŷi), i =

1, . . . , N̂} into two distinct groups:

– the training set S = {(x̂i, ŷi), i = 1, . . . , N}, used to drive the process that iteratively updates
weights and biases of the NN by minimizing the empirical risk on it,

– the validation set Svalid = {(x̂i, ŷi), i = N + 1, . . . , N + Nvalid(= N̂)}, used to judge the perfor-
mance of the current network.

We define the training error

Etrain = RS,N (f) =
1

N

N∑
i=1

dM (ŷi, f(x̂i;w)) (33)

and the validation error

Evalid = RSvalid,Nvalid
(f) =

1

Nvalid

N+Nvalid∑
i=N+1

dM (ŷi, f(x̂i;w)). (34)

Underfitting corresponds to large training errors Etrain and can be mitigated by increasing the model
capacity, i.e., by augmenting the number of parameters.

Overfitting corresponds to the situation where the optimization process is driving down the training
error, but the validation error Evalid is no longer decreasing (so the performance on unseen data does not
improve), see Fig. 11. It is reasonable to stop the optimization process at a stage where no improvement
is seen in the validation error. Overfitting corresponds to large values for Etest−Evalid and can be treated
in different ways: by increasing the cardinality of the set S, or decreasing the capacity of the model (we
speak about regularization by parsimony), or again by employing regularization techniques [86, Ch. 5].

In the framework of binary classification, the generalization error can be estimated by exploiting the
Vapnik–Chervonenkis (VC) dimension of the hypothesis space [242]. Following [167], the VC dimension
measures the complexity of the hypothesis space H over an instance space S, not by the number of
distinct models in H, but instead by the number of distinct points from S that can be completely
discriminated using H.

We say that a set of points S is shattered by a hypothesis space H if there exists a model in H that
correctly classifies all the points of S, whatever their labels are. The VC dimension dH of a hypothesis
space H is the largest cardinality of a set S that is shattered by H [180, 91, 167]. For instance, if S ⊂ R2

and H is the set of linear binary classifiers, then dH = 3, because any set of three points labelled by 0 or
1 can be correctly discriminated by a line, while not all the sets of four points labelled by 0 or 1 can.

26

capacity

cardinality of S

increasing

Figure 11: Train and validation errors versus the capacity of the hypothesis space H

The following results bound the generalization error in terms of the cardinality of the set S and the
VC dimension dH. With probability at least (1− η) one has [35]

sup
f∈H
|R(f)−RS,N (f)| ≲

√
1

2N
log

2

η
+

dH
N

log
N

dH
. (35)

This important estimate shows that:

– if dH is fixed the generalization error vanishes when N → +∞, i.e., when the cardinality of the
training set increases;

– if N is fixed, the generalization error increases when dH → +∞, i.e., too large capacity is bad if
the training set is not large enough;

– the cardinality N of S and the VC dimension dH should increase at the same rate to maintain the
same gap and guarantee the best performance.

3.2.6 Optimization methods for training

It is worth noticing that ML is strongly rooted in optimization algorithms, in a way that is far more
complex than for classical optimization. Indeed, the ideal goal of the training step would be to reach the
best performance measure P of the model. This would imply minimizing the expected risk R among all
the functions f̂ belonging to the hypothesis space H. However, this would involve an intractable integral
on the input–output space X ×Y, and neither it is possible to restrict the analysis to the test set because
the only set we can use in this phase is the training one. Thus, what we can actually do during the
training is to minimize the loss function, that is the empirical risk RS,N by exploiting the samples of the
training set. We can thus optimize the performance only indirectly.

Given the training set S = {(x̂i, ŷi), i = 1, . . . , N} ⊂ Rn × Rm, let us consider the loss function

L(w) =
1

N

N∑
i=1

1

2
[d(ŷi, f(x̂i;w))]2, (36)

where d : Rm × Rm → R+ is a suitable distance, and its optimal solution

w∗ = argmin
w∈RM

L(w). (37)

To find w∗, typically, descent methods are invoked (see, e.g., [172, 190, 159]). For a given initial guess
w(0), construct recursively a sequence {w(k)}k≥0 such that

w(k+1) = w(k) + ηkd
(k), k ≥ 1, (38)

where d(k) is a descent direction that leads towards the minimum of L and ηk ∈ R is the step–size
(named learning rate in the ML community). The iterations are stopped when a suitable error estimator

27

descent direction d(k)

gradient: −∇L(w(k)),
conjugate–gradient: −∇L(w(k))+βkd

(k−1), with βk depending on∇L(w(k)) and∇L(w(k−1)),
Newton: −(HL(w(k)))−1∇L(w(k)), with HL the Hessian of L,
quasi–Newton: −H−1

k ∇L(w(k)), with Hk a suitable approximation of HL (an example is
the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method).

Table 1: Different descent directions in classical optimization methods

(typically the norm of the residual or the norm of the increment between two iterates) is less than a
given tolerance ε, or when a maximum number of iterations has been reached.

If L is strictly convex on its domain (then L admits a unique minimizer), the sequence {w(k)} con-
verges to w∗ for k →∞ for any w(0) ∈ RM . Notice that, whenever L is only convex in a neighbourhood
of w∗, the convergence is ensured if w(0) is chosen sufficiently close to the solution. A loss function which
is not globally strictly convex can future many local minimizers, see Fig. 12. In such a case, descent
methods can converge to any such minimizer, not necessarily to the one realizing minw∈RM L(w). This
would depend on the choice of the initial guess.

Different criteria for choosing d(k) are known in the literature. The most commonly used in classical
optimization methods are reported in Tab 1 [172, 190]. Because ∇L(w(k)) points out the direction along
which the function exhibits the steepest positive variation starting from w(k), −∇L(w(k)) leads towards
a local minimizer of L. Thus, all the directions listed in Tab. 1 are descent directions, provided that L
is strictly convex.

The choice that requires the lowest computational cost at each iteration is the gradient one, although
it does not necessarily provide the fastest convergence (i.e. the smallest number of iterations to converge
up to a given tolerance ε). Conjugate–gradient directions require a slightly greater effort, but typically
outperform gradient ones, while both Newton and quasi–Newton directions are more expensive, although
they provide quadratic and superlinear convergence, respectively.

In classical optimization algorithms, the learning rate can be chosen dynamically by a line–search
strategy [172, 62] or taken constant during the iterations, i.e., ηk ≡ η for any k ≥ 0. The high cost of
determining accurately a dynamic ηk by, e.g., a line–search method or the trust method [62, 172], can
be paid off by a faster convergence rate of the descent method. However, when the size of the problem is
very large it could be more convenient to use a constant learning rate that, however, must be calibrated
accurately, as we can see in Fig. 12, right: too small or too large learning rates can drastically slow down
the convergence rate of the descent method.

We further remark that when the loss function is globally strictly convex, finding its global minimizer
is an achievable goal, although it could be costly. When instead, the loss function is not globally
strictly convex, like in the left picture of Fig. 12, finding the global minimizer is typically unfeasible

Figure 12: (Left) One update of the descent method with the descent direction given by the opposite
of the gradient of the loss function. This function shows two local minima, the one close to (−1,−1) is
global while the other is local. (Right) Two non–adequate choices for the learning rate: one too small
providing the yellow sequence and the other too large providing the blue one. Both of them make the
convergence rate of the descent method very slow

28

Algorithm 2 Gradient Descent

procedure GradientDescent (training set S, w(0) ∈ RM)
for k = 0, . . . , until convergence do

compute the learning rate ηk
w(k+1) = w(k) − ηk∇L(w(k))

end for
end procedure

or too computationally expensive and it is not worth looking for it (always bear in mind that we are
minimizing the loss function, but the real goal should be optimizing the performance measure).

Thus, instead of searching for the global minimizer of the loss function, we settle for looking for a
“good enough” solution, i.e., a local minimizer featuring a low value of L, or, to facilitate the solution
process, it is often common to regularize the non–convex loss function by a strongly convex function (see
Sect. 3.2.8).

In the next sections, we recall the descent methods most widely used in ML optimization algorithms.
The following notation will be useful for all methods: let

Li(w) =
1

2
[d(ŷi, f(x̂i;w))]2, (39)

be the individual loss, i.e., the contribution to the loss function of the i−th sample of S, so that (36) can
be interpreted as the arithmetic mean of the individual gradients, i.e.,

L(w) =
1

N

N∑
i=1

Li(w). (40)

Gradient Descent. The Gradient Descent (GD) method, also known as Steepest Descent, Full
Gradient, or, again, Batch Gradient, is a descent method of the form (38), where the descent directions
are chosen equal to the opposite of the gradient, i.e., d(k) = −∇L(w(k)). The learning rate can be chosen
constant, i.e. ηk = η for any k ≥ 0, or dynamically. In the latter case, a convenient strategy consists of
choosing a monotone decreasing sequence ηk → 0+ when k →∞. When chosen constant, η represents a
hyperparameter of the NN. The GD algorithm is sketched in Algorithm 2.

Stochastic Gradient Descent (SGD). When N ≫ 1 the computation of the full gradient∇L(w(k))
might be costly, thus a much cheaper alternative is to replace the mean of the individual gradients com-
puted over all training points by the individual gradient at a single, randomly chosen, training point,
i.e., choose randomly i ∈ {1, . . . , N} and consider the approximation

∇L(w(k)) =
1

N

N∑
j=1

∇Lj(w
(k)) ∼ ∇Li(w

(k)). (41)

This strategy can be intuitively justified thinking that it corresponds to restricting the training set S to
a single sample at each iteration. Such an approach can be interpreted as the limiting case of splitting
the original sampling set into smaller and smaller training sets [35].

Moreover, we remark once more that even the full gradient of the loss function L used by GD is an
approximation of the gradient of the expected risk R whose minimization should be our goal, thus, both
∇L and ∇Li are a stochastic sampling of the gradient of the expected risk R.

SGD was first proposed in [211] and, since then, many different variants of it have been derived.
The simplest implementation consists of making a “sampling with replacement”, i.e., the same “i” can
be chosen at two successive steps, as done in Algorithm 3. Another implementation consists of making
“sampling without replacement” up to N iterations, where N is exactly the number of training samples.
The cycle of N iterations is named epoch, see Algorithm 4.

Choice of the learning rate. The most popular and simple setting for the learning rate in SGD
consists of taking a constant value for it: ηk = η ∀k. As already hinted before, choosing a suitable value

29

Algorithm 3 Stochastic Gradient Descent (sampling with replacement)

procedure StochasticGradientDescent (training set S, w(0) ∈ RM)
for k = 0, . . . , until convergence do

choose i uniformly random from {1, 2, . . . , N}
compute the learning rate ηk
w(k+1) = w(k) − ηk∇Li(w

(k))
end for

end procedure

Algorithm 4 Stochastic Gradient Descent (sampling without replacement)

procedure StochasticGradientDescent (training set S, w(0) ∈ RM)
k = 0
for k = 0, . . . , nepochs − 1 do

shuffle the integers {1, 2, . . . , N} into a new order {k1, . . . , kN}
next loop is an epoch
for i = 1, . . . , N do

compute the learning rate ηk
w(k+1) = w(k) − ηk∇Lki

(w(k))
k = k + 1

end for
end for

end procedure

for the learning rate is a major issue: too small or too large learning rates could be ineffective. In [35,
Thm 4.6], the authors proved that, if L is strictly convex, if η is not too large, then, in expectation,
the sequence of function values {L(w(k))} converges near the optimal value, i.e., there exists a positive
constant C depending on L and its gradient, such that (see Fig. 13)

E[L(w(k))− L(w∗)]
k→∞−−−−→ η C, (42)

where E[L(w(k)) − L(w∗)] denotes the total expectation of L(w(k)) − L(w∗) taken with respect to the
joint distribution of all random variables (i.e. the stochastic choices of the samples) involved during the
iterations from 1 to k. From (42), we can conclude that the smaller the learning rate, the higher the
accuracy. However, decreasing the learning rate reduces the convergence speed, as illustrated in Fig. 13.

To avoid very slow convergence, a strategy often employed in practice in SGD methods consists of
starting with a large η0 and reducing it progressively, for instance by halving ηk when the loss function

Figure 13: E[L(w(k))− L(w∗)] for the SDG method with two different constant choices of the learning
rate η.

30

features a plateau, or reducing it with an inverse decay or an exponential rule:

ηk =
β

γ + k
(inverse decay) (43)

ηk = η0e
−γ k (exponential decay) (44)

where γ is a positive hyperparameter [35, 7].

GD vs SGD: costs and convergence rates. Under the assumption that L is strongly convex, it
is well known that GD features a linear convergence, i.e., there exists ρ ∈ (0, 1) such that, for all k ∈ N

|L(w(k))− L(w∗)| ≲ ρk, (45)

meaning that at each iteration the error is reduced by a factor ρ and, the lower ρ, the greater the reduction
of the error. In the ML community, this type of convergence is known as “geometric convergence”. If
the iterations are stopped when the estimator of the error is less than a given tolerance ε, the total
number of iterations required to guarantee ρk ≤ ε is proportional to log(1/ε). Denoting by C the cost
for computing ∇Li(w

(k)), the cost of each iteration is about N · C and the total cost of GD is

cost of GD ∝ N · C · log
1

ε
. (46)

For the SGD method, in [35, Thm 4.7] the authors proved that, if L is strictly convex, for sampling
without replacement and a learning rate is chosen as in (43), then

E[L(w(k))− L(w∗)] ≲
1

k
, (47)

i.e., SGD features sublinear convergence.
The minimum number of iterations needed to satisfy convergence up to tolerance ε is then proportional

to 1/ε (we iterate until 1/k ≤ ε). However, the cost for each iteration now is independent of the training
set size N , thus, if C always denotes the cost of computing ∇Li, the total cost of SGD is

cost of SGD ∝ C

ε
. (48)

We can conclude that GD is more convenient when N is moderate, SGD when N is large.
Denoting by fk = f(·;w(k)) the model obtained after k iterations of SGD, it is also possible to prove

[35] that, in the limit N → +∞,

E[R(fk)−R(f̂H)] ≲
1

k
, (49)

i.e., SGD provides on the expected risk R the same sublinear convergence of (47), meaning that, if N is
large enough with respect to k, SGD behaves similarly on both the expected and empirical risks. This
suggests that SGD is less susceptible to overfitting than GD.

Minibatch SGD and other noise reduction methods. SGD suffers from noisy gradient estimates
that prevent the method from converging to the desired solution when the learning rates ηk are taken
constant, or provide sublinear convergence for a decreasing sequence ηk, for k ≥ 1. One possible strategy
to overcome this drawback consists of approximating ∇L(w(k)) with the linear combination of a small
number Nb of individual gradients (the so–called minibatch):

∇L(w(k)) ∼ 1

Nb

Nb∑
j=1

∇Lkj
(w(k)), (50)

whose indices kj are randomly chosen in the set {1, . . . , N}, as in Algorithm 5. This is a compromise
between the full gradient method and the stochastic one to incorporate new gradient information and
construct a more trustworthy step.

The convergence analysis provided in [35] with a constant learning rate and Nb ≪ N shows that SDG
and Minibatch SGD have comparable costs. However, Minibatch SGD can better benefit from GPU

31

Algorithm 5 Minibatch SGD

procedure MinibatchSGD (training set S, w(0) ∈ RM)
for k = 0, . . . , until convergence do

choose Nb integers k1, . . . , kNb
uniformly random in {1, 2, . . . , N}

compute the learning rate ηk

w(k+1) = w(k) − ηk
1

Nb

Nb∑
j=1

∇Lkj
(w(k))

end for
end procedure

processors by adjusting the minibatch size to match the capacity of the GPU registers and optimizing
data loading from the GPU memory to individual GPU cores.

Other methods aimed at reducing noisy gradient estimates and improving the rate of convergence
from sublinear to linear regimes are the Dynamic Sample Size and the Gradient Aggregation methods.

Like Minibatch SDG, also Dynamic Sample Size (DSS) methods use minibatches to approximate the
gradient, but while in Minibatch SGD the minibatch size Nb is constant during the iterations, in DSS it
gradually increases (geometrically as a function of the iteration counter k) thus employing more and more
accurate gradient information as the iterations proceed: given τ > 1, at the iteration k, the minibatch
size is defined by Nb,k ≈ τk−1. Under the assumption that L is strictly convex, the convergence order of
the resulting method is linear by maintaining the same computational complexity of SGD [35, Cor. 5.2,
Thm 5.3].

Gradient Aggregation (GA) methods reuse and/or revise gradient information computed and stored
during previous iterations: the new descent direction is computed as a weighted average of the new
direction with the old ones. An instance of these methods is the Stochastic Variance Reduced Gradient
(SVRG) [124, 35].

SGD methods with momentum. Typically, (stochastic) gradient directions result in a zigzag
behaviour thus cancelling the progress made in the previous steps. This is not surprising because, even
in the simpler case of solving symmetric positive definite linear systems, full gradient directions can
repeat after a few steps (they are linearly dependent), making the convergence of the gradient method
very slow. On the contrary, conjugate–gradient directions (see Tab. 1), with βk computed optimally,
result all linearly independent and, if the matrix is symmetric and positive definite, the convergence of
the Conjugate Gradient method is guaranteed at most in N iterations if N is the size of the system [189].

While in SGD the descent direction is simply the stochastic gradient, in SGD with momentum the
descent direction is a linear combination of the stochastic gradient and the previous descent direction,
which in the ML community is named momentum, resulting in a method very close to the Conjugate
Gradient method.

The additional cost is due to the introduction of another hyperparameter ρ ∈ [0, 1), named smoothing
parameter (or momentum parameter), which prevents GD from slowing down in flat regions of the loss
function and getting trapped around local minima. SGD with momentum is reported in Algorithm 6.

Notice that v(k) is aligned with the descent conjugate–gradient direction of Tab. 1 and, when ρ = 0,
we recover Minibatch SGD. Moreover, the updating of w(k+1) in Algorithm 6 can be equivalently written
as

w(k+1) = w(k) − ηkg
(k) + ρk(w(k) −w(k−1)). (51)

When ηk = η, ρk = ρ for each k ≥ 0, this method reduces to the heavy ball method [185, 35] that
outperforms the steepest descent for certain functions. Moreover, if L is strictly convex quadratic and
ηk and ρk are chosen optimally at each iteration, i.e., they are the values that minimize L(w(k+1)), then
SGD with momentum coincides with the Conjugate Gradient method [35].

Nesterov momentum method. It is a variant of SGD with momentum and it was proposed in
[171]. The gradient of the loss function is computed not on the last iteration w(k), but on a linear
combination of the two last iterations, as shown in Algorithm 7. This method performs well when it
is applied to the full gradient descent method (i.e. Nb = N) as it improves the convergence rate from

32

Algorithm 6 SGD with momentum

procedure SGDwithMomentum (training set S, w(0) ∈ RM , momentum parameter ρ ∈ (0, 1))
v(0) = 0
for k = 0, . . . , nepochs − 1 do

choose Nb integers k1, . . . , kNb
uniformly random in {1, 2, . . . , N}

g(k+1) =
1

Nb

Nb∑
i=1

∇Lki
(w(k))

compute the learning rate ηk
v(k+1) = −ηkg(k) + ρv(k)

w(k+1) = w(k) + v(k+1)

end for
end procedure

Algorithm 7 Nesterov momentum

procedure Nesterov (training set S, w(0) ∈ RM)
for k = 0, . . . , nepochs − 1 do

w̃(k) = w(k) + ρk(w(k) −w(k−1))
choose Nb integers k1, . . . , kNb

uniformly random in {1, 2, . . . , N}

g(k+1) =
1

Nb

Nb∑
i=1

∇Lki(w̃
(k))

compute the learning rate ηk
v(k+1) = −ηkg(k) + ρkv

(k) with ρk ∈ [0, 1)
w(k+1) = w̃(k) − ηkg

(k)

end for
end procedure

O(1/k) to O(1/k2), while when Nb ≪ N the Nesterov momentum method behaves like SGD.

Adaptive learning rate. The convergence rate of descent methods, and consequently the model’s
performance, is strongly sensitive to the learning rate η. Descent methods with momentum mitigate this
drawback but at the price of introducing a second hyperparameter ρ.

A reliable alternative consists of considering diagonal scaling matrices that calibrate the learning rate
to the descent direction component–wise. The purpose is to weigh less the larger components of the
gradient (if along a direction the loss function decreases very rapidly we want to take a small step) and
more the smaller ones (along the direction where the loss function features a weaker variation we are
allowed to take a longer step).

The first method designed with this strategy is the AdaGrad method, introduced in [68]. It defines the
scaling matrix by accumulating, element–by–element, the square of each component of the gradient g(ℓ)

at all previous iterations ℓ ≤ k. However, the accumulation of gradient information from the beginning
of the iterations reduces the learning step too quickly, thus AdaGrad works well when the loss function
is convex, but its performance is not so good for non–convex problems.

The Root Mean Square Propagation (RMSProp) method, proposed in [109], unlike AdaGrad, discards
the oldest part of the gradient history so that when it falls into a convex bowl, the convergence gets
faster. It results that RSMProp works better than AdaGrad, especially for non–convex functions and it
is effective for many deep NNs. RMSProp is reported in Algorithm 8 in its original form. We notice that
divisions and square roots in the expression η/(δ +

√
r(k+1)) are applied element by element so that the

result of this operation is an array of the same dimension of g(k). Typical choices for the hyperparameters
are ρ = 0.9 and δ = 10−7, while (u⊙v)j = ujvj denotes the Hadamard product between the two vectors.

Adam (Adaptive Moments) method. This method was proposed in [132] it uses moments and shares
some similarities with RMSProp. Adam considers both the first and second–order moments of the
gradient and incorporates momentum with exponential weighting in both moments, see Algorithm 9. It
requires four hyperparameters whose typical values are β1 = 0.9, β2 = 0.999, ε = 10−8, η = 10−3.

33

Algorithm 8 RMSProp

procedure RMSProp (training set S, w(0) ∈ RM , hyperparameters η, ρ, δ ∈ R)
r(0) = 0
for k = 0, . . . , nepochs − 1 do

choose Nb integers k1, . . . , kNb
uniformly random in {1, 2, . . . , N}

g(k+1) =
1

Nb

Nb∑
i=1

∇Lki
(w(k))

r(k+1) = ρr(k) + (1− ρ)g(k) ⊙ g(k)

w(k+1) = w(k) − η

δ +
√
r(k+1)

⊙ g(k)

end for
end procedure

Algorithm 9 Adam

procedure Adam (training set S, w(0) ∈ RM , hyperparameters β1, β2 ∈ (0, 1), ε, η > 0)

m
(0)
1 = m

(0)
2 = 0 ∈ RM ,

for k = 0, . . . , until convergence do
choose Nb integers k1, . . . , kNb

uniformly at random in {1, 2, . . . , N}
g(k) = 1

Nb

∑Nb

i=1∇Lki(w
(k))

m
(k+1)
1 = β1m

(k)
1 + (1− β1)g(k) (1st order moment)

m
(k+1)
2 = β2m

(k)
2 + (1− β2)g(k) ⊙ g(k) (2nd order moment)

m̂
(k+1)
1 = m

(k+1)
1 /(1− βk+1

1)

m̂
(k+1)
2 = m

(k+1)
2 /(1− βk+1

2)

w(k+1) = w(k) − η

ε+

√
m̂

(k+1)
2

⊙ m̂
(k+1)
1

end for
end procedure

It is computationally efficient and features little memory requirement and it is appropriate for prob-
lems with very noisy and/or sparse gradients.

Second–order and other methods. Loss functions in deep NNs often suffer from high non–
linearity and ill–conditioning, the latter to be understood as instability with respect to data: in corre-
spondence with small variations of the parameters the loss function might feature strong variations. We
can think that the loss function can show cliffs preceded by gentle hills. This makes the convergence
of first–order methods very slow because the gradient alone does not give very accurate information to
achieve the minimum.

Methods using second–order derivatives of the loss function overcome such a drawback by capturing
essential information about the curvature of the loss function. Examples include: Newton, Hessian–free
Inexact Newton, Stochastic Quasi–Newton, and Gauss–Newton [35]. However, these methods are far less
successful than gradient descent methods in deep NNs training for many reasons, above all the difficulty
of scaling to large NNs and the presence of many saddle points. We refer to [86, 35] and the references
therein for their description.

Stochastic Trust Region Methods (STRM) [32, 58, 25] are alternatives to descent methods. While the
latter compute the descent direction and the learning rate separately, STRMs define a quadratic model
that locally approximates the loss function and directly provide the displacement from the last iterate,
thus including both direction and step–length. Under suitable probabilistic assumptions, these methods
find (in expectation) an ε−approximate minimizer at most in O(ε−2) inexact evaluations of the function
and its derivatives [25].

34

3.2.7 Backpropagation

As already pointed out, given a generic input x̂ ∈ Rn and a corresponding target ŷ, provided that the
weights and biases stored in w = {(W [1],b[1]), . . . , (W [L],b[L])} are known, we can compute the output
y = f(x̂;w) = a[L] of the Feed Forward Neural Network (FFNN) with Algorithm 1. For the sake of
simplicity, we assume that the distance d used to define the loss function (36) is the Euclidean norm,
i.e., d(y1,y2) = ∥y1 − y2∥2.

The backpropagation technique is a method to compute efficiently the gradients of the individual
losses (39) during the training of a NN in order to determine the unknown weights and biases that
minimize the loss function. For any x̂ in the input space, define

Lx̂(w) =
1

2
∥ŷ − f(x̂;w)∥22 =

1

2
∥ŷ − a[L]∥22, (52)

which can be seen as a particular instance of the individual loss (39).
The idea of backpropagation consists of applying the chain rule for computing the partial derivatives

of Lx̂ with respect to weights and biases, starting from the output a[L] of the last layer L and proceeding
backwards, layer by layer with ℓ = L−1, L−2, . . . , 1, and leveraging both the variables z[ℓ] = W [ℓ]a[ℓ−1]+
b[ℓ] introduced in Algorithm 1 and the activation function σ. The superindex ℓ stands for the number

of the layer, more precisely w
[ℓ]
jk is the coefficient that weighs the output a

[ℓ−1]
k (of the neuron k of the

layer ℓ− 1) playing the role of input of the neuron j of the layer ℓ, while b
[ℓ]
j is the bias of the neuron j

at layer ℓ.
The use of backpropagation to compute gradients fits into a very general framework of techniques

known as automatic differentiation or algorithmic differentiation [97, 89, 251].
Following [108] and recalling that W [ℓ] ∈ RNℓ×Nℓ−1 , the component j of the array z[ℓ], i.e.,

z
[ℓ]
j =

Nℓ−1∑
k=1

w
[ℓ]
jka

[ℓ−1]
k + b

[ℓ]
j with j = 1, . . . , Nℓ (53)

is referred as the weighted input for neuron j at layer ℓ (see Fig. 7), while the quantity

δ
[ℓ]
j =

∂Lx̂

∂z
[ℓ]
j

(54)

measures the sensitivity of the loss function Lx̂ to the weighted input for the neuron j at layer ℓ. Then,
let δ[ℓ] ∈ RNℓ be the array with entries given by (54). As a consequence of the chain rule, the following
relations hold [108, Lemma 5.1]:

δ[L] = σ′(z[L])⊙ (a[L] − ŷ)

δ[ℓ] = σ′(z[ℓ])⊙ (W [ℓ+1])T δ[ℓ+1] for 1 ≤ ℓ ≤ L− 1

∂Lx̂

∂b
[ℓ]
j

= δ
[ℓ]
j for 1 ≤ ℓ ≤ L

∂Lx̂

∂w
[ℓ]
jk

= δ
[ℓ]
j a

[ℓ−1]
k for 1 ≤ ℓ ≤ L,

(55)

where the first derivative σ′ of the activation function is evaluated component–wise on z[ℓ] and u⊙ v is
the Hadamard product defined by (u⊙ v)i = ui vi.

The derivative ∂Lx̂/∂w
[ℓ]
jk measures how much Lx̂ changes when we make a small perturbation on

w
[ℓ]
jk and, similarly, ∂Lx̂/∂b

[ℓ]
j .

Formulas (55) can be rewritten in a backward loop as described in Algorithm 10, while in Algorithm 11
we train a NN by combining the basic version of Stochastic Gradient Descent (sampling with replacement,
see Algorithm 3) with constant learning rate and backpropagation. For safe of clarity, we omitted the
iteration index k on the weight matrices W [ℓ] and biases arrays b[ℓ].

35

Algorithm 10 BackPropagation

procedure BackPropagation (ŷ, z[ℓ],a[ℓ], W [ℓ] for ℓ = 1, . . . , L)

δ[L] = σ′(z[L])⊙ (a[L] − ŷ)
∂Lx̂

∂b
[L]
j

= δ
[L]
j ,

∂Lx̂

∂w
[L]
jk

= δ
[L]
j a

[L−1]
k

for ℓ = L− 1, . . . , 1 do
δ[ℓ] = σ′(z[ℓ])⊙ (W [ℓ+1])T δ[ℓ+1]

∂Lx̂

∂b
[ℓ]
j

= δ
[ℓ]
j ,

∂Lx̂

∂w
[ℓ]
jk

= δ
[ℓ]
j a

[ℓ−1]
k

end for
end procedure

Algorithm 11 Stochastic Gradient Descent with Backpropagation

procedure SgdBackProp (training set S, initial guesses for W [ℓ], b[ℓ] for ℓ = 1, . . . , L, constant
learning rate η)

for k = 1, . . . , niter do
choose i uniformly random in {1, . . . , N}
xi is the current training data point

feed forward step
a[0] = xi

for ℓ = 1, . . . L do
z[ℓ] = W [ℓ]a[ℓ−1] + b[ℓ]

a[ℓ] = σ(z[ℓ])
s[ℓ] = σ′(z[ℓ])

end for

backpropagation step
δ[ℓ] = s[ℓ] ⊙ (a[ℓ] − yi)
for ℓ = L− 1, . . . , 1 do

δ[ℓ] = s[ℓ] ⊙ ((W [ℓ+1])T δ[ℓ+1])
end for

SGD update
for ℓ = L, . . . , 1 do

W [ℓ] ←W [ℓ] − ηδ[ℓ](a[ℓ−1])T

b[ℓ] ← b[ℓ] − ηδ[ℓ]

end for
end for

end procedure

3.2.8 Penalty–based regularization

Regularizing a loss function aims to reduce overfitting, the typical approach consists of adding a strictly
convex term to the loss as follows

L(w) =
1

N

N∑
i=1

1

2
∥ŷi − f(x̂i;w)∥22 + λH(w), (56)

where λ > 0 is the regularization parameter and H is the so–called regularization term.
The most common choices for H are the Tichonov regularization (also known as L2−regularization)

H(w) = ∥w∥22 =

M∑
j=1

w2
j (57)

36

Data set Ŝ

Training set S

Training set Strain

(without validation)
Validation set Svalid

Test set Stest

Figure 14: Subdivision of the dataset in training, test and validation sets

and the Least Absolute Shrinkage and Selection Operator (LASSO) (L1−regularization)

H(w) = ∥w∥1 =

M∑
j=1

|wj |. (58)

Because large weights may lead to neurons that are too sensitive to their inputs and, hence, less
reliable when unseen data are presented, the idea is to penalize them by introducing a regularization
term. Typically the regularization is only applied to weights, but not to biases.

From the accuracy point of view, the L2−regularization usually outperforms the L1−regularization,
nevertheless, the latter produces sparse solutions, i.e., most of the weights found are null or very small
(compared to machine precision), meaning that the corresponding input or neuron is meaningless and
can be dropped from the network. Thus, L1−regularization can be used to estimate the features (corre-
sponding to non–null weights) which characterize the application [7].

From the computational point of view, we notice that regularization makes a very minor and inex-
pensive change to the backpropagation algorithm.

3.2.9 Tuning of hyperparameters

Hyperparameters in ML are parameters used to control the behaviour of NNs and optimization algorithms
and must be distinguished from the “parameters” (weights and biases) of the NN. We can distinguish
between hyperparameters that control the capacity of the hypothesis space H, such as:

– number of layers of a NN,
– number of neurons per layer,

and hyperparameters that control the optimization process, such as:

– number of iterations,
– number of epochs,
– size of the minibatches (if used),
– learning rate in SGD if it is taken constant,
– momentum constant ρ,
– type of regularization,
– regularization coefficient.

Hyperparameters are not subject to the same optimization process of weights and biases, but their
tuning is performed either manually by trial and error analysis, by exploiting experience or literature
data, or automatically by exploiting further (computationally intensive) optimization algorithms. In this
latter case, we speak about encapsulating tuning.

Let us consider the manual tuning of the hyperparameters controlling the hypothesis space. The idea
consists of extracting from the training set S a subset Svalid, named validation set of Nvalid samples to be
used to monitor the performance of the models depending on different instances of the hyperparameters,
and then in reducing the real training set to Strain = S \ Svalid (see Fig. 14)

37

capacity

e
rr

o
rs

optimal choice

Figure 15: Comparison of training and validation empirical risks for hyperparameters tuning

By comparing the empirical risks

Etrain = RStrain,Ntrain
(f) =

1

Ntrain

Ntrain∑
i=1

dM (ŷi, f(x̂i)) (59)

Evalid = RSvalid,Nvalid
(f) =

1

Nvalid

Ntrain+Nvalid∑
i=Ntrain+1

dM (ŷi, f(x̂i)) (60)

of training and validation sets versus the capacity of the hypothesis space (see Fig. 15), typically it
happens that, while the training error is almost decreasing versus the capacity of H, the validation error
initially decreases and then grows up. We can identify the optimal values of the hyperparameters as
those providing the minimum validation error. For larger capacity, we fall into the overfitting regime.

Once the hyperparameters have been chosen, the test set Stest (which contains samples unseen from
the set S) is used to estimate the expected risk for the corresponding model.

It is not rare that the dataset, from which we extract the training, the validation, and the test sets, is
small. In this case, splitting the dataset into fixed subsets can be problematic because of the statistical
uncertainty around the estimated average errors.

k−fold cross–validation is a way to overcome this problem. In the case of hyperparameters tuning, for
a fixed instance of the hyperparameters, it consists of repeating the training and validation on different
disjoint couples of training and validation subsets chosen within the dataset, and then computing the
average of the validation errors. Repeating the procedure on different instances of the hyperparameters,
the optimal choice is the one providing the smallest averaged validation error. A similar procedure can
be used to optimize the hyperparameters controlling the optimization solver.

Let us denote by ϑ the array collecting all the unknown hyperparameters and Θ = {ϑ} the set of
all the instances ϑ we want to consider. Algorithm 12 reports a version of k−fold cross–validation with
given instances of the hyperparameters. Alternatively, starting from an instance of ϑ, after the loop on j,
we can compute a new value of ϑ with some heuristics or optimization algorithms and repeat lines from
4 to 10 with the new hyperparameters. Once ϑ∗ has been found, the model with this hyperparameters
setting is trained on the original training set S.

Common techniques to choose the hyperparameters to test include grid search, which exhaustively
tries combinations of hyperparameters, and random search, where random configurations are sampled.
More advanced methods, such as Bayesian optimization, adaptively focus the search based on previous
results, often leading to faster convergence to optimal hyperparameters.

It is important to note that different metrics can be used for evaluating model performance during
training and validation phases, depending on the specific task or the goal of the model. For instance,
during training, a loss function such as mean squared error (MSE) or cross–entropy might be minimized,
while during validation, one might monitor metrics such as accuracy, precision, recall, or F1–score [86].
These validation metrics offer more meaningful insights, especially for imbalanced datasets or tasks with
varying class distributions.

3.3 A quick glance at Deep Learning models

Deep Neural Networks (DNNs) can be designed with layers of several types, each with a specific task.

38

Algorithm 12 k−fold cross validation

1: procedure kFoldCrossValidation (dataset S, hyperparameters set Θ, k ∈ N)
2: Split S in k non–overlapping subsets, such that S = ∪jSj

3: for ϑ ∈ Θ do
4: for j = 1, . . . , k do
5: Svalid = Sj (validation set)
6: Strain = S \ Svalid (training set)
7: train the model on Strain

8: validate the model on Svalid and compute Evalid(j,ϑ)
9: end for

10: Evalid(ϑ) = 1
k

∑k
j=1 Evalid(j,ϑ) (averaged validation error)

11: end for
12: return ϑ∗ = argmin

ϑ∈Θ
Evalid(ϑ)

13: end procedure

3.3.1 Model components

In this Section, we briefly resume the most common types of layers that constitute a deep learning model.
From a mathematical perspective, a layer is a linear or non–linear operator that maps inputs (the output
of the previous layer) to outputs (the input of the next layer). A layer may or may not depend on
parameters and/or hyperparameters. In general, a model is the composition of several layers. Far from
being exhaustive, we refer e.g. to [86, 7, 77] for an in–depth description of these topics.

Fully connected layers. Its neurons receive the output indiscriminately from all the neurons of the pre-
vious layer and completely ignore a possible signal structure, without putting any restrictions on
which connections are possible and which are not. At the algebraic level, they implement the basic
affine transformation (53). Typically, they are followed by a non–linear transformation (activation
function), acting component–wise. See Fig. 16 (a).

Convolutional layers. They are designed to extract features from grid–structured inputs (e.g., 2D image,
but also text, time–series and sequences) which have strong spatial dependences in local regions of
the grid. They extract similar feature values from local regions with similar patterns, by applying
repeatedly a kernel matrix to the input signal. For instance, let us consider a digital image of
32 × 32 pixels and denote by X ∈ R32×32 the array whose entries are the colour intensity (for
simplicity, we suppose that the image has only one channel, i.e., it is a grey-scale image). The
kernel is a small matrix K ∈ Rk×k, with k much smaller than both the width and height of X and
whose entries are optimized during the training of the NN, i.e., they are the trainable parameters.
Let us take k = 3, add a ring of null elements to the matrix X (this operation is named padding),
and call with X̃ the extended matrix whose indices go from 0 to 33. The kernel K interacts with
each sub–matrix X̃ij of size 3 × 3 of X̃, centred at the pixel (i, j) with i, j = 1, . . . , 32 and stride
s, as follows:

cı̂ȷ̂ =

k∑
m=1

k∑
n=1

KmnX̃
ij
mn, with ı̂ =

i− 1

s
+ 1, ȷ̂ =

j − 1

s
+ 1. (61)

Then the values cı̂ȷ̂ are stored in a new array containing the output of the layer. In Fig. 16 (b) the

blue sub–matrix is X̃ij , while the red pixel is the corresponding cı̂ȷ̂. In more general situations,
the size k of the kernel, the number of added rings during the padding operation, and the stride s
used to go through the matrix X can be arbitrary values and are hyperparameters of the network.

Pooling. It is a strategy to reduce the signal size (and the number of neurons of the successive layer).
Ideally, it summarizes the information from more neurons, for example by extracting the maximum
from a set or computing the average. See Fig. 16 (c).

Dropout. It is a layer that provides regularization through random and independent removal of some
neurons from the network [225]. The goal is to reduce overfitting and prevent neurons from being

39

Input

Hidden Hidden Hidden

Output

(a)

kernel

input output

(b)

3

5

9

8

1 4

5

8

3

2x2 pooling

9

6 5

89

9

2

6

12

12

10 15

12

12

15

stride = 2

average pooling

max pooling

(c)

Input

Hidden Hidden Hidden

Output

(d)

Figure 16: Some of the most common model layers in NNs. Fully connected layers (a), a convolutional
layer (b), pooling (c) and dropout (d).

too specialized. This layer is only applied during the training phase and can also be interpreted as
a noise injection, making the training step more robust. It requires a hyperparameter p expressing
the percentage of neurons that are turned off. See Fig. 16 (d).

Normalizing layers. They facilitate the training by forcing the empirical mean and the variance of the
output to 0 and 1, respectively. In particular, we refer to batch normalization layers introduced in
[120].

Attention layers. They model dependencies between tokens in a sequence. A token could be a unit of
text (such as a word, punctuation mark, or even a subword) or a numeric array. Each token inter-
acts with every other token, allowing the model to compute the importance (or “attention weight”)
of each one relative to others, regardless of their position in the sequence. They are mainly used in
Large Language Models (to make grammatical or semantic decisions in Natural Language Process-
ing), but also in Graph Neural Networks and image processing [153]. The attention mechanisms
have been introduced in [15] in the context of Recurrent Neural Networks (see next paragraph)
for translation tasks. Since then, the idea of attention has evolved and has been generalized to
multi–head attention mechanisms for the design of the Transformer in [243] and later to image pro-
cessing as in the Swin Transformer [153]. Among attention mechanisms, there are self–attention
ones, whose goal is to compute a representation of the input sentence.

An attention layer acts as follows. Given a sentence made of n tokens, the first step consists of
converting each token into its corresponding word embedding, which is a real array of fixed length
nmodel. During this step, called embedding, a matrix X ∈ Rn×dmodel is created, by using ad–hoc
NNs (like Word2Vec [163] and GloVe [177]) or precomputed vocabularies available on the web.
Word embeddings are generated with the goal that similarity between words is measured by a
suitable distance between the corresponding word embedding vectors.

Unfortunately, the word embedding matrix X is oblivious to the absolute position of the tokens in
the sentence, which is instead crucial information to analyse the input correctly. This drawback is
overcome by adding to the i−th row of X the positional encoding of the i−th token of the sentence:
given n vectors of length d, the associated positional encoding PEi of the token i is a row vector
of length d that can be defined by [243]:

PEi,j =

{
sin

(
i

T j/d

)
for 0 ≤ j ≤ d− 1 even

cos
(

i
T (j−1)/d

)
for 1 ≤ j ≤ d− 1 odd,

(62)

40

where T = 104. Alternatively, positional encodings could be learned during the training, however,
in [243] it is shown that the latter approach produces nearly identical results to those obtained
with (62).

The second step consists of building three matrices: the queries Q, the keys K and the values V .
In the case of self–attention mechanisms, they are generated by projecting the word embeddings
matrix X onto three linear spaces using three trainable matrices W̃Q, W̃K ∈ Rdmodel×dk and

W̃V ∈ Rdmodel×dv so that

Q = X W̃Q, K = X W̃K , V = X W̃V . (63)

Q ∈ Rn×dk is the query matrix, K ∈ Rn×dk the key matrix, and V ∈ Rn×dv the value matrix. In
other attention mechanisms, Q, K, and V can be computed starting from different sources.

Let us consider the attention layer introduced in [243]: given the matrices Q, K, and V , the output
of the attention layer is the matrix A ∈ Rn×dv

A = Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V. (64)

Given an array x ∈ Rn, the softmax function is defined by

(softmax(x))i =
exi∑
j e

x
j

, i = 1, . . . , n. (65)

In (64), the softmax acts row by row on the matrix argument. A representation of the attention
layer is given in Fig. 17, left. By computing the matrix product QKT (i.e., the dot products
between any possible pairs of vectors of Q and K), we are evaluating the (dis)similarity between
queries and keys, then the product between the softmax result and the matrix V provides the
projection on the values set. The attention layer (64) is also named Scaled Dot–Product Attention.

In multi–head attention layers, nh attention outputs Ai are computed as in (64) after projecting
Q, K and V on nh different corresponding spaces:

for i = 1, . . . , nh,

Ai = Attention(QWQ
i ,KWK

i , V WW
i),

(66)

where WQ
i , WK

i ∈ Rdmodel×dk , and WV
i ∈ Rdmodel×dv are trainable arrays. Then, the outputs Ai

are concatenated and projected on the ultimate space as follows:

H = MultiHeadAttention(Q,K, V) = concat(A1, . . . , Anh
)WO, (67)

where WO ∈ Rnhdv×dmodel is another trainable array, see Fig. 17, right. The idea of multi–head
attention mechanisms is that each set {WQ

i , WK
i , WV

i }might incorporate different representations
of the input (as different heads elaborate them) allowing a deeper and complete analysis of the
data.

3.3.2 Architectures

In this Section, we review the most acclaimed deep learning architectures nowadays. We classify them
starting from the learning type: supervised and unsupervised. The major domains of applications are
Natural Language Processing (NLP) and Computer Vision.

A remark is appropriate before presenting the list: the vast diversity of neural network architectures
makes it challenging to apply rigid classifications, as many models defy straightforward categorization.
Architectures traditionally associated with supervised learning, such as fully connected or convolutional
networks, are also frequently found in unsupervised or semi-supervised contexts. Similarly, layers initially
designed for one specific task can often be repurposed or combined within different learning paradigms,
as seen with autoencoders, which can integrate a variety of layers–fully connected, convolutional, or
graph neural layers–despite their unsupervised training approach. This fluidity illustrates that any

41

Figure 17: Scaled Dot–Product Attention layer (64) on the left, and Multi–Head Attention layer (66)–
(67) on the right

Figure 18: An example of Convolutional Neural Network

classification scheme for neural networks should be approached with flexibility and a recognition of the
inherent overlaps across architectures. Rather than a rigid taxonomy, it may be more accurate to view
these categories as guiding frameworks, acknowledging that combinations and adaptations will often
transcend traditional boundaries.

Supervised learning architectures.

Feed Forward Neural Networks (FFNN) are the simplest NNs. They are formed by fully connected lay-
ers in which connections between neurons do not form cycles, see Sect. 3.2.4. Applications are
classification, regression, and pattern recognition tasks (see Fig. 16 (a)).

Convolutional Neural Networks (CNN) are designed to work with grid-structured inputs which have
strong spatial dependences in local regions of the grid (e.g. 2D image, but also text, time–series
and sequences). The goal is to extract features from inputs and CNNs tend to create similar
feature values from local regions with similar patterns. CNNs are mainly composed of convolutional
layers, but also of fully connected layers, pooling and dropout, see Fig. 18. Applications are image
classification, object detection, and facial recognition. Instances are: LeNet (1998, used for digit
recognition), AlexNet (2012), VGG16 (2014), ResNet (2015), GoogLeNet/InceptionV1 (2014).

Recurrent Neural Networks (RNN) are designed to process sequential data of any length. They factor
the computation in time–steps at which a hidden state ht is generated as a function of both the
previous state ht−1 and input xt. The hidden state ht implicitly keeps the memory of the whole
history of the process and contributes to generating the output yt. More precisely, at the generic

42

h0 h1

x1

y1

xt

htht−1

xt−1

yt−1 yt yt+1

ht+1

xt+1

Figure 19: The graph of a traditional Recurrent Neural Network

time t, a traditional RNN computes

ht = σ(Wht−1 + Uxt + b)

ot = V ht + c

yt = softmax(ot),

where the softmax function has been defined in (65) and is used to interpret the entries of yt as
probabilities. The trainable weights matrices W , U , and V , as well as the biases b and c, are the
same for any t, thus the total number of trainable parameters remains fixed even for longer inputs,
see Fig. 19.

Let us suppose that the RNN has to foresee the word of a sentence in position t, this means that
we have t inputs x1, . . . ,xt that are word embeddings and we want to foresee the next word xt+1.
The output yt is a vector whose generic entry (yt)i is the probability of the i−th word of the
vocabulary to be the next word. This is an example of sequence–aligned RNN (at each time–step
the input is required and the output is produced), while other examples of RNNs can contemplate
input only at the first time–step (a possible application is in music generation) or output only at
the last (a possible application is in sentiment classification).

Unfortunately, training traditional RNNs using backpropagation is cumbersome because the loss
function suffers from exploding and vanishing gradients, especially when dealing with long sen-
tences. Gated RNNs, Long Short–Term Memory (LSTM, 1997), and Gated Recurrent Units
(GRU, 2014) bypass such drawbacks, however, the sequential nature of RNNs precludes paral-
lelization within training. Applications of RNNs are time series prediction, language modelling,
machine translation, music generation, and speech recognition. They can also be considered to
simulate dynamical systems and solve time–dependent differential equations (see Sect. 4.3.3).

Autoregressive models are architectures with a structure similar to that of RNNs. However, while RNNs
feature an internal variable ht which keeps the memory of the system, i.e. for any t, ht feeds ht+1,
in autoregressive models the system’s memory is explicitly transferred by the output variable.
This means that the output yt+1 explicitly depends on previous outputs typically belonging to a
temporal window of fixed length k, i.e., yt+1 = f(yt, yt−1, . . . , ytk).

Graph Neural Networks (GNN) are designed to work directly on graph–structured data, where nodes
represent objects or concepts and edges represent relationships between them. We refer to [253] for
a survey on GNNs. They are applied to detect objects in images, analyse social networks, develop
recommendation systems, and study and design compounds in chemistry and biology. Examples of
GNNs are Graph Convolutional Networks (2016), Graph Attention Networks (2017), and Message
Passing Neural Networks (2017).

To briefly present GNNs, we follow the setting of [88, 218]. GNNs work on data represented in
graph domains G = (N,E), where N and E are the sets of nodes and edges, respectively. To give
an example, in object detection tasks, a node represents a homogeneous region of the image, while
an edge is established between adjacent regions. Typically, some labels expressing features are

43

associated with nodes and edges, like, e.g. the area or the colour of a homogeneous region. Labels
are stored in an array ℓ and ℓS denotes the labels of all the entities of the subset S of the graph.
Finally, each node n is characterized by a state xn, which is an array that contains a representation
of the associated object or concept.

The state xn depends on the states and labels of the neighbouring nodes and edges, thus all states
are strictly related one each other. We denote by ne[n] the set of nodes in the neighbourhood of
the node n, and by co[n] the set of the edges having the node n as an endpoint. Then, we express
relations between the entities of the graph by

xn = fw(ℓn, ℓco[n],xne[n], ℓco[n]). (68)

fw is the so–called local transition function depending on a set of learnable weights w, typically it is
implemented by a feed–forward NN. Then, a learnable local output function gw, again implemented
by a feed–forward NN, provides the output on of the node n:

on = gw(xn, ℓn). (69)

For instance, in object detection tasks, we have to recognize which nodes of the graph G belong to
a sub–graph S of G, so the output on will be equal to 1 if the node n belongs to S, 0 otherwise.

By stacking all the states, output, labels and labels of the nodes into the arrays x, o, ℓ, and ℓN ,
respectively, the equations

x = Fw(x, ℓ)
o = Gw(x, ℓN)

(70)

provide the state and output of each node of the graph. Fw and Gw are the global transition
function and global output function, respectively. Notice that the output on of the node n only
depends on its states and labels. See Fig. 20.

Provided that Fw is a contraction, (70)1 admits a unique solution x that is the unique fixed point
of Fw which is the limit for t→∞ of the fixed point iterations{

x(0) given
x(t+1) = Fw(x(t), ℓ) t ≥ 0.

(71)

Solving these iterations up to time T (each step t plays the role of a pseudo time instant), the
solution x(T) is taken as an approximation of x.

When fw and gw are implemented by a feed–forward NN, the connections between neurons of the
global network can be divided into internal and external. The internal ones are determined by the
functions fw and gw used to implement each single unit (68) and (69), while the external ones are
determined by the edges of the graph.

Parameters learning is achieved by minimizing the Mean Square Error ew between target and
computed values. A gradient–descent method with backpropagation (as seen in Sects. 3.2.6 and
3.2.7) can be applied. The fixed point iterations (71) constitute the forward step inside each
iteration of the gradient method as described in Algorithm 13. A Graph Neural layer corresponds
to a time instant and contains a copy of all the entities of the network.

Encoder–decoder is a neural network architecture used to transform an input sequence into an output
sequence. The encoder compresses the input into an intermediate representation (typically named
code), and the decoder generates the output from this encoded representation. It is used in tasks
such as automatic translation and text summarization, but also in more complex architectures with
different purposes. See Fig. 21.

Attention models use (self–)attention mechanisms to process input data, they can be composed of multi–
head attention layers, FFNNs, and, typically, feature an encoder–decoder structure. The most
famous attention model is the Transformer [243] that, with its multi–head attention layers, can
exploit parallelism and be highly efficient and scalable. Attention models outperform RNNs, which
instead have a sequential structure.

44

Algorithm 13 The GNN model

function Main
η hyperparameter
initialize w
compute x=Forward(w)
repeat

compute ∇ew=Backpropagation(x,w)
update the weights w = w − η∇ew
compute x=Forward(w)

until a stopping criterion
end function
function Forward(w)

εF hyperparameter
initialize x(0), t = 0, err = εF + 1
while err ≥ εF do

x(t+1) = Fw(x(t), ℓ)
err = ∥x(t+1) − x(t)∥
t = t + 1

end while
return x(t)

end function

Figure 20: Graph Neural Network. Different coloured regions of an image are associated with the nodes
of a graph, the edges express contact between two different regions. The grey box represents the equation
(70), where fw and gw are feed–forward NNs.

Applications are Natural Language Processing (NLP), machine translation, text generation, and
image classification. Examples are Transformer (2017), BERT (Bidirectional Encoder Represen-
tations from Transformers, 2018), GPT (Generative Pre-trained Transformer, 2018), ViT (Vision
Transformer, 2020), GPT–3 (2020), PaLM (2022), LaMDA (2022), GPT–4 (2023). BERT, GPT–x,
LaMDA are instances of Large Language Models (LMM), i.e., deep NNs able to achieve general–
purpose language generation and other natural language processing tasks such as classification.
Recently they have been used in the context of Scientific Machine Learning [104].

Among the attention models, we briefly describe the Transformer, designed for natural language
processing, and the Swin Transformer, for image processing.

The Transformer is a transduction model introduced in [243] relying entirely on self–attention mecha-
nisms to compute a representation of its input and output, without using RNNs or convolution.
It has an encoder–decoder structure and it is depicted in Fig. 22. These architectures have been
introduced in the context of generative AI, but recently they have also been employed in Scientific
Machine Learning (SciML). An example of a transformer in SciML is the architecture Poseidon
[104] described in Sect. 4.3.

A transformer is a complex architecture which includes many layers of different nature, like, e.g.,
fully connected, normalization, projection, and multi–head attention layers. It acts as follows.

45

Figure 21: Encoder–decoder architecture

First, in the input embedding phase, the input sentence is decomposed into n tokens which are
transformed into the corresponding word embeddings of fixed length dmodel. The matrix X con-
taining the word embeddings is added to the positional encoding matrix PE (see 62) of the tokens
and the sum becomes the input of the encoder. The encoder is made of N blocks, each one com-
posed of two sub–layers: one multi–head attention layer (66)–(67) and one feed–forward layer,
both of them combined with a residual connection and followed by a normalization layer. If the
output of the sub–layer is y = S(x), applying a residual connection to the sub–layer itself means
replacing y = S(x) with y = x+ S(x). Residual connections were introduced in [100] to accelerate
the backpropagation phase during the optimization process and to address the vanishing gradient
problem.

The decoding phase is an iterative process that stops when the last output token is produced. At
each iteration, the input of the decoder is composed of the full output of the encoder and the
(partial) output of the previous iteration of the decoder phase (at each iteration, one new token is
produced). More precisely, the previous iteration’s output is transformed into the corresponding
word embeddings and added to its positional encoding before entering the decoder phase. The
decoder is composed of N equal sub–blocks, each one composed of three sub–layers. The first
one is a masked multi–head attention layer with a residual connection followed by a normalization
layer, its input is the output of the decoder at the previous iteration and the masked attribute
means that each input token can only interact with the ones on its left. The second sub–layer
is another multi–head attention layer with residual connection, followed by a normalization layer.
The output of the first sub–layer is used to generate the query matrix, while the full output of the
encoder is used to generate the key and value matrices. The third and last sub–layer of each block
is a feed–forward layer with a residual connection followed by a normalization layer. At the end of
the N blocks, a linear transformation (projection layer) maps the decoder’s output dimension to
the size of the vocabulary. Successively, a softmax layer provides the probabilities associated with
each token of the vocabulary and the next token is selected for the translation.

The base model of the Transformer has N = 6 blocks in both the encoder and the decoder, and
has been trained on a dataset of about 4.5 million sentence pairs which required about 3.3 · 1018

floating point operations. The Adam method has been used to minimize the loss function.

Vision Transformer (ViT) is a transformer applied to 2D images to answer tasks like image classification,
object detection, and semantic segmentation [67]. The idea is as follows: a 2D image x of H ×W
pixels and C channels is first reshaped into a sequence of N = HW/P 2 patches of size P × P (for

instance P = 4) and C channels, then the patches are flattened to 1D arrays x
(i)
p ∈ R1×(P 2·C) which

play the role of tokens that feed a traditional transformer. A trainable vector xclass ∈ R1×(P 2·C)

is usually prepend to the patches x
(i)
p , to achieve the image classification task (like in the BERT

model). Then, tokens are projected onto a linear space of dimension D by a matrix E ∈ RD×(P 2·C)

and the output is added to the positional encodings Epos ∈ R(N+1)×D of the tokens, like in the
Transformer. Denoting by L the total number of layers, by MSA a Multi–Head Self–Attention
layer (see Algorithm 14), by LN a normalization layer, and by MLP a MultiLayerPerceptron with
one hidden layer, the ViT model reads as in Algorithm 15.

46

Figure 22: The Transformer[243]

Algorithm 14 The Multi–Head Self–Attention layer: H = MSA(X)

Self–Attention Projection
Q = X W̃Q, K = X W̃K , V = X W̃V

Multi–Head Attention
for i = 1, . . . , nh do

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i

Ai = Attention(Qi,Ki, Vi) = softmax
(

QiK
T
i√

dk

)
Vi

end for
H = concat(A1, . . . , Anh

)WO

Algorithm 15 The ViT model: Y = V iT (x1
p, . . . ,x

(N)
p)

Z0 = [xclass; x
(1)
p E; . . . ;x

(N)
p E] + Epos

for ℓ = 1, . . . , L do
Ẑℓ = MSA(LN(Zℓ−1)) + Zℓ−1

Zℓ = MLP(LN(Ẑℓ)) + Ẑℓ

end for
Y = LN((ZL)1j)

Swin Transformer (Shifted Windows Transformer) is a vision transformer, proposed in [153], designed
to be a general–purpose backbone network for both image classification and dense recognition
tasks. It introduces two new ideas compared to ViT: (i) it considers two different partitions
of the input image in non–overlapping windows (one, named regular, and the other one shifted
compared to the regular) containing M × M patches (see Fig. 23 (b) and (c)) and compute
self–attention locally within the non–overlapping windows. These two window partitions are used
alternately in consecutive blocks so that the shifted partition allows the detection of connections
between the neighbouring non–overlapping windows of the regular one; (ii) it uses a hierarchical
representation of the image, to capture features at different scales, see Fig. 23 (a). Starting from

47

Algorithm 16 The Window Multi–Head Self–Attention layer: H = W-MSA(X), with X =
concat(X1, . . . , XnW) and Xw features in the w−th window

for w = 1, . . . , nW do (w = index of the window)

Q = Xw (W̃Q)w, K = Xw (W̃K)w, V = Xw (W̃V)w

Multi–Head Attention
for i = 1, . . . , nh do (i = index of the head)

Qw
i = Q(WQ)wi , Kw

i = K(WK)wi , Vi = V (WV)wi

Aw
i = Attention(Qw

i ,K
w
i , V w

i) = softmax
(

Qw
i (Kw

i)T√
dk

+ Bw
i

)
V w
i

end for
Hw = concat(Aw

1 , . . . , A
w
nh

)(WO)w

end for
H = concat(H1, . . . ,HnW)

Algorithm 17 Two successive Swin Transformer Blocks at a fixed stage. nW denotes the number of
non–overlapping windows of the regular partition, nSW that of the shifted partition

regular windows partition
Ẑ = W-MSA(LN(X)) + X
Z = MLP(LN(Ẑ)) + Ẑ
shifted windows partition
Ŷ = SW-MSA(LN(Z)) + Z
Y = MLP(LN(Ŷ)) + Ŷ

an initial partition of the original image in P × P patches of 4 × 4 pixels, they are grouped in
non–overlapping windows of M × M patches (for both the regular and shifted partitions). At
the next level, patches are merged by concatenating features of each group of 2 × 2 neighbouring
patches, while the number of patches inside each window is kept fixed and equal to M ×M . The
Swin Transformer architecture is composed of a fixed number of stages, each one corresponding
to a level of the hierarchical partition. The larger the number of hierarchical levels, deeper the
network. The first stage contains a linear embedding layer followed by an even number of Swin
Transformer Blocks (STB), while the successive stages contain a patch merging layer followed by
an even number of Swin Transformer Blocks (STB). In Algorithm 17 a pair of two consecutive
STBs, the first on the regular partition and the second on the shifted one, is formulated. Then let
LN be a normalization layer, W-MSA a Window Multi–Head Self–Attention layer applied to the
regular partition, MLP (Multi Layer Perceptron) a 2–layer feed–forward NN with GELU activation
function3, and SW-MSA a Shifted Window Multi–Head Self–Attention layer similar to W-MSA,
but applied to the shifted partition. Notice that each window of the two partitions, as well as each
head of the multi–head attention layer, has independent trainable matrices and biases. Different
to ViT, no absolute positional encoding Epos is applied. However, both W-MSA and SW-MSA
include trainable relative position bias matrices Bw

i in the attention layer.

SwinV2 Transformer has been proposed in [152] as an improvement of the Swin Transformer, to over-
come training instabilities due to exploding activation values and gradients in the presence of deep
networks and large images. More precisely, in SwinV2: (i) the normalization layers LN are post-
poned to both the MLP layer and the attention layers W-MHA, SW-MHA; (ii) the scaled dot
product QKT /

√
dk in the attention layer (see row 6 of Algorithm 16) is replaced by a scaled cosine

attention approach:

Aw
i = Attention(Qw

i ,K
w
i , V w

i) = softmax

(
cos(Qw

i (Kw
i)T)

τ
+ Bw

i

)
V w
i (72)

where given two matrices A and B of the same size and denoting by ai and bj their row vectors,

cos(A,B) is a matrix whose entries are (cos(A,B))jk =
aj ·bk

∥aj∥ ∥bk∥ ; τ is a learnable parameter,

3GELU(x) = x
∫ x
−∞ f(t) dt, where f(t) is the normal probability density function. It is approximated by the formula

GELU(x) = 0.5x (1 + tanh[
√
2π (x+ 0.044715x3)])

48

(a) (b) (c)

Figure 23: Swin Transformer. (a) The hierarchical partition in the Swin Transformer. Red lines bound
the windows, while black lines the patches. The first level is the lower one, the number of windows is
reduced by 1/4 moving from one level to the next and the number of features of each patch inside a
window is doubled compared to the previous level. (b) The regular partition in windows of 4×4 patches
and (c) the corresponding shifted partition.

Algorithm 18 Two successive SwinV2 Transformer Blocks at a fixed stage. nW denotes the number
of non–overlapping windows of the regular partition, nSW that of the shifted partition. W-MSAcos is
analogous to Algorithm 16, but with row 6 replaced by (72). SW-MSAcos is analogous to W-MSAcos,
but on the shifted windows partition.

regular windows partition
Ẑ = LN(W-MSAcos(X)) + X
Z = LN(MLP(Ẑ)) + Ẑ
shifted windows partition
Ŷ = LN(SW-MSAcos(Z)) + Z
Y = LN(MLP(Ŷ)) + Ŷ

and Bw
i is the relative position bias between pixels inside the window; (iii) a log–spaced position

bias approach is adopted, so that the relative position biases can be smoothly transferred across
windows resolutions. SwinV2 also uses a self–supervised pretraining method (SimMIM) to reduce
the need for vast labelled images.

Unsupervised learning architectures.

Generative Adversarial Networks (GANs) [87] consist of two networks, a generator and a discriminator,
that are trained together. Given a training set, the generator creates fake samples that mimic the
distribution of the training set, starting from a latent space. The discriminator tries to distinguish
between real and generated data. They compete with each other in the form of a zero–sum game:
one agent’s gain corresponds to the other agent’s loss. See Fig. 24. GANs can generate new content
that seems original (it preserves statistical similarities). Applications are image generation, style
transfer, data augmentation, and image super–resolution. Examples are Vanilla GAN (2014),
DCGAN (2015), CycleGAN (2017), and StyleGAN (2018).

Autoencoders are special instances of encoder–decoder architectures trained to attend to reconstruct
their input after having reduced it to a lower dimension. They learn to compress/reduce the data
(encoding) and then reconstruct them (decoding), see Fig. 21. Applications are dimensionality
reduction, anomaly detection, data compression, and generative modelling. Examples are Vanilla
Autoencoder (developed in the 80s), Sparse Autoencoder (2006), Denoising Autoencoder (2008),
and Variational Autoencoder (VAE, 2013).

Reinforcement learning architectures. They focus on learning policies for decision–making
by interacting with an environment. Applications are game playing (e.g., AlphaGo (2015)), robotics,

49

Figure 24: Generative Adversarial Network

autonomous vehicles, and resource management. Examples of these architectures are Deep Q–Networks
(DQN, 2015), Policy Gradient Methods, and Actor–Critic Methods.

Hybrid architectures. Finally, hybrid architectures (supervised and unsupervised) combine ele-
ments from different types of networks to leverage each one’s strengths. Applications are complex tasks
requiring a mix of techniques, such as video analysis, multimodal learning, and more. Examples are
attention–based CNNs, which combine CNNs with attention mechanisms for better feature extraction,
and Transformer–CNN Hybrids, which are used in vision tasks and combine local feature extraction with
global context awareness.

Needless to say, good deep architectures should exhibit good trade–offs among multiple criteria[77]:

1. easiness of training,
2. accuracy of prediction,
3. memory footprint,
4. computational cost,
5. scalability.

To give an idea of the complexity of some deep NNs, AlphaGo, developed by the Google DeepMind
team in 2016 to play the board game Go, is composed by 2 NNs with 13 and 15 layers each, convolutional
and fully connected, involving millions of parameters. The Large Language Model GPT–3 (produced by
Microsoft’s Turing Natural Language Generation team in 2020) is composed of 96 layers and has 175
billion parameters, while GPT-4 (the next generation of GPT–3, published in 2023) has 120 layers and
1500 billion parameters. In Fig. 25, the number of unknown parameters for some of the most known
NNs is shown.

Clearly, the greater the complexity of the algorithm, the more powerful the hardware to train the
NN. In Fig. 26 we show the training costs in the number of FLoating Point Operations (FLOP) for
notable deep learning models (data from [8]).

3.3.3 Ultimate generation hardware: GPUs and TPUs

The most suitable hardware to train neural networks are those equipped with GPUs (Graphics Processing
Units) with tensor cores and TPUs (Tensor Processing Units).

GPUs are specialized and very efficient hardware processors originally designed to handle complex
graphics, but then became crucial in artificial intelligence too, for training NNs. They are typically used
when repeated matrix–vector operations are required, like, e.g., in the computation of weighted inputs
(53), the realization of convolution layers, or the backpropagation phase and, more in general for any
specific tasks requiring massive data processing. Multiple GPUs can be used to scale up processing
power, allowing for the fastest computations. The most powerful architectures, like e.g. those used to
train GPT–4, feature several thousand parallel units and fast small local memories. Nevertheless, the
huge number of GPUs is not sufficient to guarantee that the hardware is highly efficient. Indeed, it is
essential that communication between GPU and CPU memories, often referred to as “data transfer”, be

50

Figure 25: Number of trainable parameters for notable AI models. GPT-4 (2023) with 1020 trainable
parameters is out of range. Data from epochai.org [8]

Figure 26: Training compute of notable models in the number of FLoating Point Operations (FLOP).
Data from epochai.org [8]

51

as small as possible for several reasons, e.g., latency, bandwidth limitation, synchronization overhead,
memory coherency issues, and, last but not least, power consumption.

To move towards an energy–efficient computing (especially for training and inference of large AI
models), recently NVIDIA GPUs have been equipped with dedicated tensor cores, while Google Cloud
has designed custom AI accelerators (Tensor Processing Units – TPUs), specifically designed to accelerate
the computation of tensor operations4.

3.4 Topics related to Machine Learning not covered in this paper

For the sake of space, we had to select specific topics to discuss in this paper. However, we believe it
is useful to bring to the reader’s attention some other relevant topics in the context of ML. Interested
readers are encouraged to explore these references for a deeper understanding.

Proper initialization of neural network parameters is crucial for effective training. Techniques such as
Xavier initialization [84] and He initialization [101] help mitigate the shortcoming of vanishing/exploding
gradients, a common issue in training deep neural networks where gradients can become too small or too
large, hindering effective learning [26].

Transfer learning involves transferring knowledge from one model trained on a specific task to another
model for a different but related task, significantly reducing the training time and improving performance
[175]. Federated learning is a decentralized approach to ML where models are trained across multiple
devices or servers holding local data samples, without exchanging them [125].

Explainable AI encompasses methods and techniques developed to make the outputs of ML models
understandable to humans, enhancing trust and transparency [21, 255, 169].

Neural Tangent Kernel (NTK) theory provides a theoretical framework that helps in understanding
the behaviour of infinitely wide neural networks during training [121]. Overparameterization and double–
descent describe the phenomenon where increasing the number of parameters in a model beyond a certain
point can improve performance, contrary to traditional bias–variance trade–off expectations [24].

4 Scientific Machine Learning

Many definitions of Scientific Machine Learning (SciML) can be found, more or less definite. We report
some of them expressing different points of view. The one given in a report of 2021 by the US Department
of Energy [17] envisions scientific computing as fully supporting AI and states

“SciML is a core component of Artificial Intelligence (AI) and a computational technology
that can be trained, with scientific data, to augment or automate human skills.”

The next two definitions put scientific computing and AI on the same level and perceive advantages for
both disciplines. The first one reads

“SciML is a merge of computational sciences and data–driven machine learning, implemented
in software as a set of abstractions to leverage existing domain knowledge and physics models
within learning schemes and accelerated computing platforms.”

This definition has been published in a 2024 workshop abstract [119], while the following one is part of
a 2022 booklet [219]:

“SciML is a combination of Scientific Computing and ML, combining mathematical models
with data–based reasoning, presented as a unified set of abstractions and a high-performance
implementation. In this new area of research, many successes have already been found, with
tools like physics–informed neural networks, universal differential equations, deep backward
stochastic differential equation solvers for high dimensional partial differential equations, and
neural surrogates, showcasing how deep learning can greatly improve scientific modelling prac-
tice.”

The next one, reported on the web page of Oden Institute at Austin (Texas) [220], highlights the
range of applicability and the power of SciML to tackle the social challenges of the third millennium:

4Tensors are used to represent signals, trainable parameters, and intermediate quantities.

52

Scientific Machine Learning brings together the complementary perspectives of computational
science and computer science to craft a new generation of machine learning methods for com-
plex applications across science and engineering. In these applications, dynamics are complex
and multiscale, data are sparse and expensive to acquire, decisions have high consequences,
and uncertainty quantification is essential. The greatest challenges facing society (clean en-
ergy, climate change, sustainable urban infrastructure, access to clean water, personalized
medicine and more) by their very nature require predictions that go well beyond the avail-
able data. Scientific machine learning achieves this by incorporating the predictive power,
interpretability and domain knowledge of physics–based models.

We know that many problems can be tackled and solved by AI alone (image recognition, text gen-
eration, recommendation systems, ...) whereas many engineering problems can be effectively tackled by
digital models alone (the computation of the response of an electric circuit, or that of the flow rate of a
water network, problems from structural mechanics, fluid dynamics, just to mention a few).

There are, however, very complex problems that until recently have been solved only thanks to digital
models, which today can take advantage of the mutual interaction between Machine Learning (ML)
algorithms and the knowledge of physical processes underpinning digital models to drive the learning
process of ML algorithms.

Generally speaking, SciML emerges when physics exhibits intricate and multiscale behaviours, datasets
are sparse and costly to obtain, decisions carry significant consequences, or we need to quantify uncer-
tainty.

There are in fact many reasons to regard SciML as a successful cooperative game between Digital
Models (DM) and ML algorithms (see Fig. 27). For instance, we can use ML algorithms in favour of
DMs:

– to recover (unknown) constitutive laws that are not known yet by using discrete input–output
functions, and to enhance descriptive properties of DMs,

– to estimate and calibrate parameters by solving multi–query and inverse problems,
– to understand which parameters are more/less sensitive,
– to achieve model reduction,
– to improve the efficiency of DMs by accelerating solver methods with cheaper (quicker) ML algo-

rithms (curse of dimensionality).

On the other side, we can use DMs to empower ML applications with a deeper awareness of the problem
structure, for instance, to accomplish the following tasks:

– to regularize ML algorithms by penalizing the cost function and avoid overfitting,
– to augment data for the (otherwise scarce) training set, by adding solutions obtained from numerical

algorithms,
– to feed the operator learning process,
– to improve the analytical and predictive power of ML and maximize its impact on science and

engineering applications.

Domain knowledge. Scientific knowledge is essential to describe phenomena of a certain complex-
ity and we believe that data–driven models alone cannot yet completely replace digital models in these
cases. For instance, in the case of the digital heart modelling [187] that we will briefly review in Sec. 5,
multi–physics simulations are needed to unravel the complex interactions among electrophysiology, heart
mechanics and blood fluid dynamics and they are complex amalgams of biology, physical laws, mathe-
matics, statistics, and computer science. Scientists (here mathematicians, engineers, and doctors) utilize
their deep subject expertise, extensive experience, and finely–tuned intuition to formulate hypotheses
and design analytical methodologies aimed at either confirming or disproving them. As noticed in Sect.
3, data–driven models may fit training data very well, but at the same time, they might not be able
to generalize (i.e., predict outcome values for previously unobserved inputs) with comparable accuracy.
Rather, they might provide results on previously unseen data that would be physically unacceptable and
meaningless in the absence of outside oversight by scientists or, more in general, physical principles.

Awareness of domain knowledge can enrich the quality of domain–agnostic data, reduce the amount
of data needed while accelerating both training and predictive tasks, enhance the robustness and gener-
alization properties in ML, and improve the accuracy, interpretability, and defensibility of SciML models.

53

Figure 27: Cooperation between Digital Models and Machine Learning algorithms

By leveraging insights that transcend the limitation of available data, SciML can amalgamate the pre-
dictive capacity, interpretative abilities, and domain expertise intrinsic to physics–based models to make
predictions that overstep the limitation of existing data.

Domain knowledge manifests in various forms, including physical principles (e.g., ab initio or first–
principles physics), constraints (e.g., symmetries, invariances), and structural configurations (e.g., dis-
crete, graph–like, non-smooth data).

Various theoretical frameworks and computational tools, including solvers and simulations, are avail-
able to streamline the incorporation of domain knowledge, enhancing efforts in SciML. Leveraging do-
main knowledge aids both supervised and unsupervised ML, as well as synthetic data generation (e.g.,
through constrained generative adversarial networks (GANs)) and reinforcement learning. Although sci-
entific data may adhere, albeit imperfectly, to underlying physical laws, the direct application of domain
knowledge empowers the learning process to address more intricate and computationally demanding
phenomena using fewer labelled data points.

Many mathematical and, more in general, scientific areas are involved in SciML. Some, like functional
analysis, geometry, and linear algebra, are more theoretical and are invoked to formulate and study the
well–posedeness of the mathematical model and to accomplish parameter identification. Others are more
applicative: with physics, we formulate constitutive laws, numerical analysis lets us discretize models,
probability and statistics allow us to deal with data assimilation, control problems and optimization help
us find optimal parameters providing the required output, and computer science is the cornerstone for
implementing computer simulations and designing efficient neural networks and training algorithms that
deliver the desired results.

We can identify some of the main challenges of SciML as follows: (i) empower ML applications
with a deeper understanding of the problem structure, (ii) exploit the analytical and predictive power
of ML to enhance descriptive properties and efficiency of physics–based (digital) models and maximize
its impact on science and engineering applications, (iii) operate in physical environments marked by
large–scale, 3D, multi–modal data streams that are confounded with noise, sparsity, irregularities and
other complexities that are common with machines and sensors interacting with the real world.

Domain knowledge vs data exploitation. As remarked in [127], knowledge of physics and
availability of data play a complementary role and can guide our approach towards SciML. More precisely,
we can distinguish three regimes:

(i) we know enough about the physics and we need very few data to solve the problem. An example is

54

Figure 28: Physics–based approaches, how ML algorithms can improve digital models

given when we want to model the dynamics of water in a channel: the model is provided by the
incompressible Navier–Stokes equations and we only require to know the geometry of the channel,
a set of initial conditions, the boundary data, and the density and viscosity of the water. In this
case, digital models are typically used without the need to exploit ML algorithms;

(ii) we have partial knowledge of physics and/or the corresponding data. An example is given when we
want to describe the ionic dynamics of the cardiac cells in order to model cardiac electrophysiology
and only noisy or deficient data are available to estimate the parameters involved in the equations.
The physical model is given by a set of non–linear differential equations whose parameters are not
known and need to be suitably calibrated on a patient–specific basis. At the same time in realistic
scenarios the needed data are not easily measurable [199] and the underlying process itself is not
fully understood (only phenomenological models are available). This is the most frequent situation
in practice, in this case, digital models are combined with ML algorithms to predict the results;

(iii) we know very little or nothing about physics but we dispose of a huge amount of data. In this
case data–driven methods can help us understand the process, or more precisely, the input–output
function that maps data into solution.

How physics–driven digital models and data–driven models interact. The learning process
of Neural Networks (NNs) used in SciML is typically supervised and the training is almost governed by
physics and/or digital models (DM). Although there are many possibilities for combining ML, physics,
and digital models, for the sake of exposition, we identify below two possible paradigms summarized in
Fig. 28 and 29.

In physics–based approaches, the main process is ruled by the mathematical model, fed by suitable data
(like initial conditions (IC), boundary conditions (BC), forcing terms, etc.), which in turn feeds the digital
model to obtain the physics–based solution. ML algorithms can provide missing data and constitutive
laws, help to learn differential or integral operators, identify the latent dynamics of phenomena, and
provide Reduced Order Models to improve the efficiency of digital models. We notice that the interplay
between ML and DMs could involve either the whole simulation or only specific components of the
process.

In data–driven approaches, the main process is ruled by a ML algorithm whose learning process is
fed by training and validation datasets. DMs can be used to enrich datasets for learning by generating
pairs of high–fidelity input–output data, so that the NN embeds physical principles. This approach has
been considered since the 90s, see for example [115, 197, 196], and later adopted by several authors.

DMs can be also used to replace some components of a ML algorithm, once again incorporating
physical principles. For example, inside autoencoders, a NN can be replaced by a reduced order model
whose snapshots have been obtained by a high–fidelity digital model, see [236].

The loss function of the ML algorithm can incorporate information provided by the mathematical
model of a physical problem in the form of equations residuals. Initially proposed in [141, 140], this
approach has been reconsidered and widely developed more recently under the name of Physics Informed
Neural Network (PINN) [194, 127, 222], see Sec. 4.2.1. Suitable modifications are Variational PINN, see

55

Figure 29: Data–driven based approaches, how digital models can improve ML algorithms

Sec. 4.2.2, and Deep Ritz Methods, see Sect. 4.2.3.
We warn the reader that this classification is not rigid and should be taken with a grain of salt,

the literature is filled with ad–hoc approaches where the interplay between DMs and ML is variably
implemented.

Biases. The concept of bias was introduced by Mitchell in [166] as follows: the term bias is used
to refer to any basis for choosing one generalization over another, other than strict consistency with
the observed training instances. Following [127], we can distinguish among observational, inductive and
learning biases.

Observational biases are the input–output pairs provided by a high–fidelity DM and used to enrich the
training set of a ML algorithm. They are weak mechanisms for embedding physical principles into
ML models during training. The drawback is that a lot of data is typically needed.

Inductive biases drive a learning algorithm to prioritize one solution over another, independent of the
observed data [22, 167]. They can be introduced through the choice of the hypothesis space, or by
designing specialized ML architectures to embed tailored building blocks. The most widespread
examples are convolutional NNs [143], Graph NNs [88, 218] and Neural ODEs [51]. We find earlier
architectures that mimic particular discretization approaches like Finite Elements for PDEs or
Finite Differences for ODEs in [234, 195].

Learning biases are introduced into the loss function and soft penalty constraints and steer the learning
process towards predictions that weakly (approximately) satisfy the physical principles. We find
them in the “physics–informed learning” paradigm presented in the previous paragraph.

When we solve Partial Differential Equations (PDE) with numerical methods, we typically ask how
reliable an algorithm is for a given type and quantity of data, how robust a solution is to slight variations
in data or the addition of noise, and how rigorously the assumptions and underlying theories have been
defined and validated. For classical techniques, these questions lead to familiar concepts, including well–
posedness, stability, numerical approximation, and uncertainty quantification (see Sect. 2). However,
this is not the case when ML algorithms are involved.

Although SciML interests more and more researchers and the number of published papers on the
subject grows exponentially [105], a clear and representative description of the state of the art is almost
impossible. In the next subsections, we present some of the most widespread paradigms in the field of
SciML for PDEs, without pretending to be comprehensive of all the literature devoted to the topic.

4.1 Surrogate modelling of high–fidelity DM

Let us consider the general formulation of a boundary–value problem{
P(z, u) = 0 (physics–based model)
y = O(z) (observation),

56

where u ∈ U is the input which can include constant parameters and/or space dependent functions
representing boundary conditions, forcing terms, material coefficients, viscosities, conductivity, and so
on, z ∈ Z is the state, i.e., the solution, and y ∈ Y is the output, which depends on the state. For
instance, when we solve Navier–Stokes equations around the wing of an aeroplane, we typically compute
drag and lift coefficients (output) which depend on the velocity and pressure (state).

We can represent the data–to–solution map as a function M : U → Y which maps the input space
into the output one such that M : u 7→ y. Then, we discretize it by a numerical model Mh : U → Yh

named full–order model (FOM), such that Mh : u 7→ yh ≃ y. The approximate solution yh is typically
named high–fidelity solution because, potentially, it can be as much accurate as needed. However,
FOM are often associated with large computational costs, which often represent serious obstacles in
practical applications. This motivates the construction of fast (albeit less accurate) models, termed
surrogate models (SM) or emulators. These surrogate models are learned based on a set of precomputed
simulations, obtained thanks to the FOM itself.

Specifically, given N instances of the input {ui}Ni=1 ⊂ U that are chosen by sampling U with a goal–
driven strategy, we compute the corresponding solutions (yh)i =Mh(ui) by the numerical FOM to form
the training set S = {(ui, (yh)i), i = 1, . . . , N}. Then, we choose the hypothesis space H ⊂ {f : U → Y }
of the surrogate model MSM and we look for the optimal surrogate model

M∗
SM = argmin

MSM∈H

N∑
i=1

∥(yh)i −MSM (ui)∥2Y (73)

that minimizes the discrepancy between the FOM targets (yh)i and the outputsMSM (ui) of the surrogate
model.

Computational costs. Once the surrogate model has been trained, typically, the time TSM required
to compute the SM solution is much smaller than the time TFOM required to compute the FOM solution.
However, we must keep in mind that the training phase is usually very expensive and exceeds the cost of a
simple FOM resolution. Thus, should we have to solve a single direct PDE, at the moment, high–fidelity
DMs have no competitors in the ML world. If, instead, our interest is in solving inverse problems, having
real–time solutions, or estimating parameters, the use of SM can be advantageous. Indeed, in this case,
the time spent to solve many FOM problems can be balanced by that required to train the NN. We could
find ourselves in the following situations:

Many–query scenarios. If we need to solve nquery ≫ 1 problems that differ in the choice of parameters
and apply FOM to compute their solutions, the total time required would be nquery · TFOM . If
instead we train the surrogate model with N full order model solutions and then solve the surrogate
model nquery times, denoting by Ttraining the time required to train the surrogate model, the SM
solution is convenient whenever

N · TFOM + nquery · TSM + Ttraining < nquery · TFOM . (74)

As the leading term of the left-hand side is typically N · TFOM , invoking a SM is advantageous
whenever nquery > N .

Many–query scenarios can occur in sensitivity analysis, scenario analysis (what happens if we
change coefficients or boundary conditions, for instance), parameter estimation (in particular
Bayesian parameter estimation), uncertainty quantification (forward and/or backward), multiscale
problems, and more. Sometimes, the SM can be used together with the FOM, in a multifidelity
framework.

Real–time solutions. Many real-world applications require real-time solutions. Notable examples are
robotic-assisted surgery and continuous patient monitoring in intensive care units, where system
responsiveness is crucial for timely interventions. In this case, the expensive training can be
performed offline, while the cheaper SM solution is achieved online, to respond rapidly to real-time
demands.

In addition to real–time solutions and many–query scenarios, SM can also be useful in other contexts.

57

Figure 30: The computational domain and setting for problem 75

One important use of SM is in creating differentiable or interpretable approximations of black–box
solvers. For example, when working with an “oracle” or proprietary software that provides solutions
without exposing internal calculations or logic, surrogate models that approximate the input–output
behaviour of the black–box solver can in fact deliver a differentiable model, which is essential for op-
timization tasks and sensitivity analysis. This also enables further insights into the solution dynamics
that the original solver does not reveal.

Surrogate models are generated similarly to data–driven models (see Sect. 3), they both are fed
by data and trained. However, to train classic data–driven models only pure experimental data are
considered. Moreover, the physics behind the input–output map is unknown. Instead, surrogate models
are trained using input–output pairs provided by FOM which express an a–priori known physics.

Example: a parametric PDE. Let us consider the steady Navier–Stokes equations in a converging
channel Ω ⊂ R3 to predict the pressure p at any point x ∈ Ω (the output), given the parameters
u = (µ1, µ2) ∈ R2 (the input) that modulate the inflow velocities from two inlets, see Fig. 30. The
physical problem reads

−ν∆v + (v · ∇)v + 1
ρ∇p = 0 in Ω

∇ · v = 0 in Ω

v = µ1v
1
in on Γ1

v = µ2v
2
in on Γ2

−ν∇v · n + 1
ρpn = 0 on Γ3

v = 0 on Γwall.

(75)

The vector z = (v, p) represents the state. We choose a Finite Element Method (FEM) solver as
FOM, so that we can expand the discretized pressure

ph(x) =

Nh∑
j=1

pjφj(x)

with respect to the finite–dimensional Lagrange basis function and we denote by p = [pj] ∈ RNh the
vector of the nodal values of p, i.e., pj = ph(xj).

Chosen N training input samples {ui = (µ1,i, µ2,i)}Ni=1, for every i we compute the corresponding
FOM solution and we define the discrete input–output mapMh : ui 7→ pi. In this case, the training set
is defined by S = {(ui,pi), i = 1, . . . , N}.

This is an example of supervised learning, we are using a DM to feed a NN and we are introducing
observational biases. We can follow two different strategies to design a NN to compute the SM solution,
as drawn in Fig. 31.

The first approach consists of taking inputs of n = 2 values (the physical parameters), m = Nh

outputs that are the values of the pressure at all FEM mesh nodes, and M trainable parameters, then

58

Figure 31: Two possible FFNNs for the parametric Navier–Stokes equation (75)

we design the neural network NN 1 : R2+M → RNh such that

w∗ = argmin
w∈RM

N∑
i=1

∥NN 1(ui;w)− pi∥22, (76)

see Fig. 31, left.
The second approach consists of choosing Npo points xj ∈ Ω ⊂ R3 and evaluating the pressure at

those points. More precisely, for any sample i = 1, . . . , N and any point xj with j = 1, . . . , Npo, we take
inputs of n = 5 values given by the two physical parameters and the 3 coordinates of the point xj . The
output of size m = 1 is the value of the pressure at the chosen node xj while the trainable parameters
are M . Then we design the FFNN NN 2 : R5+M → R such that (see Fig. 31, right):

w∗ = argmin
w∈RM

N∑
i=1

Npo∑
j=1

|NN 2(ui,xj ;w)− ph(xj)|2. (77)

In comparison with (76), the approach (77) has the advantage of using a resolution–invariant and mesh–
less representation, and thus is particularly flexible to handle cases where training data are available at
different resolutions. In addition, the NN obtained in (77) is typically very lightweight since input and
output are of much lower dimensionality than (76). This results in a much smaller number of trainable
parameters, which often leads to better generalization for the same amount of data available for training
[209].

In Sec. 4.3 a more complex scenario will be addressed in which the solution of the differential problem
does not depend simply on scalar parameters but also on functions. However, before we will discuss how
to embed the knowledge of the physics governing the problem at hand into the learning process.

4.2 Physics–Informed learning

The approaches presented in the previous section leverage DMs with the sole purpose of generating
training data for ML algorithms. The physics is incorporated as observational biases. Note that using
observational biases does not require knowing the underlying physical problem. Indeed, data could be
generated by a black–box solver.

In contrast, Physics–Informed Machine Learning methods aim to incorporate physical principles into
the learning process. This is achieved by embedding the governing equations of the physical model into
the loss function of the ML algorithm, i.e., we are adding learning biases into the system.

Physics–informed learning can serve a variety of purposes, with the flexibility to adapt the same
method to different use cases by making minor adjustments to the list of trainable variables and the
terms comprising the loss function. For instance, these methods can be applied to solve PDEs (forward
solutions), estimate parameters, address inverse problems, fit experimental measurements, or enhance
the resolution in case of noisy data. In this discussion, we will begin by examining the simplest case
(solving PDEs) and then extend the approach to other applications. To illustrate this general framework,
we consider a simple PDE as an example.

FEM approximation of a PDE. Let Ω ⊂ Rd, with d = 2, 3, be an open bounded domain, with
Lipschitz boundary. Given f : Ω → R and g : ∂Ω → R regular enough and a real coefficient γ > 0, we

59

Figure 32: A computational mesh made of triangles (left), a P1−FEM hat function (centre), a function
of Vh (right)

look for the solution u : Ω→ R of the second–order elliptic equation with Neumann boundary conditions{
−∆u + γu = f in Ω

∇u · n = g on ∂Ω.
(78)

After introducing the Sobolev space H1(Ω) = {v : Ω→ R s.t.
∫
Ω
v2 + |∇v|2 < +∞}, its weak form reads

find u ∈ V :

∫
Ω

(∇u · ∇v + γuv) dΩ =

∫
Ω

fvdΩ +

∫
∂Ω

gv d∂Ω ∀v ∈ V (79)

or, equivalently,
find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (80)

where a : V ×V → R defined by a(u, v) =
∫
Ω

(∇u · ∇v + γuv) dΩ is a coercive, symmetric, and continuous
bilinear form, and F : V → R defined by F (v) =

∫
Ω
fvdΩ +

∫
∂Ω

gv d∂Ω is a linear and continuous
functional. If f ∈ L2(Ω)and g ∈ L2(∂Ω), this problem admits a unique solution [191].

Classical methods to discretize problem (80) are the Galerkin methods [191], for which, after intro-
ducing a discretization parameter h > 0 and the finite–dimensional space Vh ⊂ V , with Nh = dim(Vh),
we look for uh ∈ Vh such that

a(uh, vh) = F (vh) ∀vh ∈ Vh. (81)

The Galerkin solution uh is an approximation of u.
The space Vh is the test space (i.e. the space to which the test functions vh belong) and the trial

space (i.e. the space to which the solution uh belongs) at the same time. After choosing a basis of

functions {φj(x)}Nh
j=1 in Vh, the approximate solution uh can be written as uh(x) =

∑Nh

j=1 ujφj(x) and
(81) becomes

find u1, . . . , uNh
:

Nh∑
j=1

uja(φj , φi) = F (φi) ∀j = 1, . . . , Nh. (82)

Thus, by setting Aij = a(φj , φi), bi = F (φi), we have A = [aij] ∈ RNh×Nh , u = [uj] ∈ RNh×1, and
b = [bi] ∈ RNh×1 and the algebraic formulation of (82) reads Au = b. The unknowns uj are named
degrees of freedom, while the array b is the right–hand side.

Finite Elements are a special case of Galerkin methods. Given the parameter h > 0, a mesh5 Th on
Ω is built. When simplexes are chosen and Vh is defined by

Vh =
{
vh ∈ C0(Ω) s.t. v|Tk

∈ P1 ∀Tk ∈ Th
}
, (83)

we are implementing linear P1−FEM, and the basis functions φj are hat functions like that drawn in
the central picture of Fig. 32. The functions of Vh are linear combinations of hat functions, the one in
the right picture of Fig. 32 is an example.

5A mesh is a conforming partition of Ω in triangles/quadrilaterals when d = 2, or in tetrahedra/hexahedra when d = 3,
all with diameter less than h (the mesh–size), see Fig. 32, left.

60

space solution input unknown parameters

Vh u(x) =

Nh∑
j=1

uj φj(x) x u = [u1, . . . , uNh
]t ∈ RNh

VNN uNN (x;w) x w ∈ RN

Table 2: Analogy between FEM and FFNNs

Towards NNs. We notice that the trial space Vh of Galerkin methods and the space VNN of feed–
forward neural networks (FFNN) with a fixed architecture play a similar role: Vh is the space in which
we look for the FEM solution, VNN is the space in which we look for the solution provided by FFNNs.
Moreover, we can think that the trainable parameters w which characterize a FFNN are analogous to
the unknown degrees of freedom u that identify the FEM solution (see Tab. 2).

Thus, we could think of using the space VNN as the trial solution space for PDEs. This could be
explained as follows. First of all, FFNNs are very efficient in approximating functions, we recall the
universal approximation theorem 3.1. Second, one of the most expensive parts of a Finite Elements code
is the construction of the mesh, while FFNNs are mesh–free. Nevertheless, although the PDE is linear,
FFNNs are not linear models and this brings complications: VNN is not a linear space and it is not a
good candidate to be the test space for a Galerkin formulation.

Recently, many approaches have been proposed that follow alternative paradigms to the Galerkin
one, we cite the three most widespread ones. The first one consists of working on the strong form of the
PDE and leads to Physics–Informed Neural Networks (PINNs) [194, 127, 57, 222]. However, when the
coefficients of the PDE are discontinuous and/or pointwise loads are given, solutions in a strong sense of
PDE do not always exist. A possible alternative consists of considering the weak form of the PDE and
applying a Petrov–Galerkin approach (with different trial and test spaces) leading to Variational PINNs
(VPINNs) [130, 131]. A third alternative makes use of the energy form of the PDE and provides the
Deep Ritz method [70]. We refer to [222] for an overview of further extensions of PINNs.

4.2.1 Physics–Informed Neural Networks (PINNs)

PINNs allow us to reconstruct physical fields modelled by PDEs, by integrating the information from
the PDE (learning biases) into the loss function. In principle, many types of PDEs can be approximated
by PINNs: integer–order PDEs, integro–differential equations, fractional PDEs, and stochastic PDEs.
PINNs can be used as direct solvers of PDEs, especially to address the case when we miss data (e.g.,
boundary or initial conditions, forcing terms, operator coefficients) which would be essential to approxi-
mate the problem in a classical sense. In addition, they can be even used to solve inverse problems.

PINNs as PDE solvers. We start by examining the case where PINNs are used to solve a PDE.
Let us consider, as an example, the PDE (78) in strong form, PINNs are implemented by following these
steps [222]:

1. define the residuals of the differential equation (78)1 and of the boundary condition (78)2:

ResPDE [u(x)] = −∆u(x) + γu(x)− f(x) x ∈ Ω

ResBC [u(x)] = ∇u(x) · n− g(x) x ∈ ∂Ω,
(84)

2. choose a set of collocation points xPDE
i ∈ Ω (the blue ones in the left picture of Fig. 33) and

another set of points xBC
i ∈ ∂Ω (the red ones), set {xi} = {xPDE

i }∪{xBC
i }, and provide the value

ui of the solution at the collocation node xi for any i = 1, . . . , N , computed, for instance, by FEM.

3. design the FFNN like, e.g., in the right picture of Fig. 33,

4. train the NN: given the pairs (xi, ui) for i = 1, . . . , N , look for the minimizer

w∗ = argmin
w∈RM

L(w), (85)

61

Figure 33: The collocation nodes (left) and the PINN (right). We follow the branch ResPDE if the input
xi belongs to the interior of the domain and the branch ResBC if xi is on the boundary

Figure 34: The minimization process in PINNs

where the loss function is
L(w) = LPDE(w) + αBCLBC(w)

with

LPDE(w) =
1

2NPDE

NPDE∑
i=1

(
ResPDE [uNN (xPDE

i ;w)]
)2

(86)

LBC(w) =
1

2NBC

NBC∑
i=1

(
ResBC [uNN (xBC

i ;w)]
)2

, (87)

and αBC ∈ R is a suitable hyper–parameter.

5. take uNN (x;w∗) as the PINN solution.

In Fig. 34, the iterative process to minimize the loss function is drawn.
Provided that the activation function is regular (notice that, if σ ∈ C∞(R), then uNN ∈ C∞ on the

input space X ⊂ Rn) and noticing that uNN can be written as a composition of functions like in (24),
partial derivatives in the residuals are evaluated through automatic differentiation similarly to what done
in Sec. 3.2.7. Then, the loss function can be minimized via gradient–based methods as seen in Sec. 3.2.6.

The summations in (86) and (87) can be interpreted as approximations of integrals, i.e.

1

N

N∑
i=1

(Res[uNN (xi;w)])
2

︸ ︷︷ ︸
IN

≃
∫
Ω

(Res[uNN (x;w)])
2
dΩ︸ ︷︷ ︸

Iex

.

If the nodes are randomly chosen, this corresponds to using the Monte Carlo quadrature rule, which
provides an error |Iex − IN | ≈ N−1/2. Alternatively, if we choose the nodes more carefully and replace

the arithmetic average with a weighted sum Iex ≃ IN,ω =
∑N

i=1 ωi (Res[uNN (xi;w)])
2

[190, Ch. 4], we
might obtain higher accuracy |Iex − IN,ω| ≤ CN−s with s ≥ 1 depending on the regularity of both data
and solution and possibly on the space dimension.

One of the main strengths of PINNs is their mesh–free nature. This makes them particularly appealing
because they bypass the often lengthy and tedious process of mesh generation. Indeed, PINNs can be

62

effectively applied to irregular and complex domains [140, 127]. Additionally, the availability of many
open–source machine learning platforms, which are highly optimized for modern hardware, has made
the implementation of PINNs very straightforward. Full utilization of the computational power offered
by GPUs allows for realising very efficient PINN architectures. Automatic differentiation makes PINNs
easily applicable to non–linear PDEs. More precisely, while solving a non–linear PDE with FEM requires
modifying heavily the code designed for linear problems (we have to compute the residual of the PDE
and apply Newton–like methods), PINNs are straightforward to implement and only those lines of the
code performing the calculation of the residual have to be changed.

On the other hand, computing the optimal parameters w∗ involves solving an optimization problem,
making the computational cost of PINNs typically higher than that of FEMs, even for linear PDEs.
Thus, traditional numerical methods usually outperform PINNs in solving well–posed forward problems.
However, in cases involving PDEs in high–dimensional spaces, where mesh construction becomes chal-
lenging and is affected by the curse of dimensionality, PINNs offer a compelling alternative. This is due
to the neural networks’ ability to efficiently approximate functions in high–dimensional spaces.

A critical aspect of PINNs is that, when the solution of the PDE contains high–frequencies or multi-
scale features, PINNs using fully connected architectures struggle to converge during the training [248].
This is a consequence of the so–called spectral bias, a phenomenon where neural networks tend to rep-
resent low–frequency components more effectively than high–frequency ones [248]. This limitation poses
challenges in accurately solving problems with solutions characterized by high–frequency components,
such as wave–like behaviours or sharp discontinuities. To address this issue, several solutions have been
proposed in the literature. These include using periodic activation functions, such as Fourier Features
[235], which enhance the network’s ability to capture high frequencies, and adaptive or weighted loss
functions [247], which balance the representation across different spectral scales. These approaches have
shown promise in mitigating the effects of spectral bias, thereby improving the capability of PINNs to
solve complex problems.

Since PINNs represent a method that has spread to the scientific community relatively recently, its
theoretical understanding is less mature than for other methods, although much progress has been made
recently. Some aspects remain to be clarified, and in practical contexts very often empirical tests are
needed to find the best configuration. In the following section, we discuss some of the theoretical results
that pose a mathematically sound basis for using PINNs.

A posteriori error bound. Approximation properties of PINNs have been studied in [221, 168,
164, 165]. We report here the results proved in [168, 165] about the generalization error for feed–forward
PINNs.

Let us consider a regular domain Ω ⊂ Rd, a Banach space V (for second–order elliptic PDEs, a typical
choice is H2(Ω)), a boundary operator B : V → L2(∂Ω), f ∈ L2(Ω), g ∈ L2(∂Ω), and the problem of
finding u ∈ V solution of {

D(u) = f in Ω
B(u) = g on ∂Ω.

(88)

Let us assume that (88) admits a unique solution. We define the loss function

L(w) = LPDE(w) + αBCLBC(w), (89)

where αBC ∈ R is a suitable weight, while LPDE and LBC are defined by

LPDE(w) =
1

2

NPDE∑
i=1

ωPDE
i |D(uNN (xPDE

i ;w))− f(xPDE
i)|2

LBC(w) =
1

2

NBC∑
i=1

ωBC
i |B(uNN (xBC

i ;w))− g(xBC
i)|2

with ωPDE
i and ωBC

i suitable quadrature weights. In the case of the Monte Carlo formula, we have
ωPDE
i = 1/NPDE , ωBC

i = 1/NBC . We assume that, when increasing the number of collocation nodes,
we keep constant the ratio between the number of nodes in the interior and on the boundary, so that we
can define a single parameter N such that NPDE ≈ N and NBC ≈ N .

63

Then, we train the network by looking for w∗ solution of

w∗ = argmin
w∈RM

L(w),

and define u∗ = uNN (·;w∗) as the PINN solution.
The following theorem is adapted from [165, 168]:

Theorem 4.1. Provided that the following stability assumption

∥v1 − v2∥V ≤ CPDE(∥v1∥V , ∥v2∥V) ·
[
∥D(v1)−D(v2)∥2L2(Ω)

+αBC∥B(v1)− B(v2)∥2L2(∂Ω)

]1/2
,

holds for any v1, v2 belonging to a closed subspace of V , then there exist two positive constants c1 and
c2 such that

∥u∗ − u∥V ≤ c1L(w∗)1/2 + c2N
−s/2, (90)

where s is the accuracy order of the quadrature formula.

The term ∥u∗−u∥V represents the generalization error, L(w∗)1/2 is the training error, while c2N
−s/2

bounds the quadrature error. The constant c1 depends on the exact solution, the NN solution and the
PINN architecture (i.e., the number of layers, neurons and training collocation points), while c2 depends
on the exact solution and the quadrature formula.

The error estimate (90) establishes that minimizing the residual of the PDE (including the residual of
boundary conditions) leads to the control of the generalization error, provided that a sufficient number
of collocation nodes is employed. We refer to [165, 168] for a more in–depth analysis of this topic.

PINNs for inverse problems. As anticipated, the scope of PINNs is not limited to the solution
of PDEs. They can be effectively employed in a variety of scenarios, including the solution of inverse
problems. In the following, we illustrate how PINNs can be used to address the identification of param-
eters of a PDE, starting from some suitable measures on the solution. Let us consider the problem (78),
we know the functions f and g and want to estimate the parameter γ ∈ R starting from Nobs observa-
tions uobs

i = u(xobs
i), with i = 1, . . . , Nobs. This is an instance of inverse problem and, in particular, a

parameter identification problem.
Should we apply a classical approach based on FEM, we should face the constrained minimization

problem

min
γ>0, uh∈Vh

Nobs∑
i=1

|uobs
i − uh(xobs

i)|2

s.t.

∫
Ω

∇uh · ∇vh +

∫
Ω

γuhvh =

∫
Ω

fvh +

∫
∂Ω

gvh ∀vh ∈ Vh,

(91)

for a convenient finite dimensional subspace Vh of the Sobolev space H1(Ω). Then, we could invoke
standard algorithms for constrained optimization (like, e.g., those based on the “trust region” or the
“interior point” methods [172]) or resort to the optimal control theory [149] and solve the related op-
timality system. In the latter case, if we adopted an iterative solver to solve the optimality system, at
each iteration we should solve two FEM problems: one primal (i.e. problem (91)2) and one adjoint of
(91)2, see [149, 159].

Instead, the PINN approach consists of defining the loss function

L(w, γ) = Lobs(w) + αPDELPDE(w, γ) + αBCLBC(w) (92)

with

Lobs(w) =
1

Nobs

Nobs∑
i=1

|uobs
i − uNN (xobs

i ;w)|2,

LPDE(w, γ) =
1

2

NPDE∑
i=1

ωPDE
i |D(uNN (xPDE

i ;w); γ)− f(xPDE
i)|,

64

and LBC(w) as in (87), and computing

w∗, γ∗ = argmin
w∈RM ,γ∈R+

L(w, γ).

The advantages of PINNs compared with the classical approach are that only a minimal modification
with respect to the direct problem is required (we have added a new parameter to the array w of the NN
parameters and the term Lobs to the loss function.). Moreover, PINNs also work in case of defective data,
for instance, when some of the boundary conditions are missing. The flexibility of PINNs in seamlessly
addressing different types of problems is a key feature that makes them particularly appealing in the
context of inverse problems.

In general terms, the problem of parameter estimation with PINNs can be framed as follows:

w∗,γ∗ = argmin
w∈RM ,γ∈RP

[
1

Nobs

Nobs∑
i=1

∣∣uobs
i − uNN (xobs

i ;w)
∣∣2 + Lphys(uNN (·;w),γ)

]
, (93)

where the physics–based regularization term is defined as

Lphys(u,γ) =
αPDE

2NPDE

NPDE∑
i=1

(
ResPDE [u(xPDE

i);γ]
)2

+
αBC

2NBC

NBC∑
i=1

(
ResBC [u(xBC

i);γ]
)2
.

(94)

Multifidelity PINNs. Inverse problems are often ill–posed due to data scarcity. Sometimes a
surplus of boundary conditions is given on a small subset Γ of the boundary ∂Ω, while no information is
available on ∂Ω\Γ. Other times, boundary data are completely missing, while only measurements inside
the domain are available. Consequently, multiple local minima and challenging optimization landscapes
occur. In these circumstances, despite the physics–informed regularization, achieving convergence and
stability remains difficult. To address this issue, a multi–fidelity approach can be introduced [161],
leveraging a combination of low– and high–fidelity models. The purpose is to enhance convergence of the
optimization process and improve robustness with respect to noise. Two different datasets are typically
used. The first one (xobs

i , uobs
i) with i = 1, . . . , Nobs, feeds the high–fidelity model. The second one,

(xlow
i , ulow

i), for i = 1, . . . , Nlow, feeds the low–fidelity model and is typically characterized by a larger
number of data but lower fidelity, such as those collected from numerous low–quality sensors.

Typically, the low–fidelity model uL(x;wL) is a standard FFNN. The high–fidelity model uH can be
expressed generally as:

uH(x;w) = LH(x, uL(x;wL);wH) +NNH(x, uL(x;wL);wH), (95)

where LH is a linear transformation of uL, and NNH is a neural network correcting the low–order model
uL. The rationale for this linear/non–linear splitting is that, if the low–fidelity model is well–designed,
one would expect a strong linear correlation between uH and uL; by explicitly incorporating a linear
correlation term, the learning process is guided to more effectively capture this type of relationship.
Here, w = [wL,wH] encapsulates the parameters of both low– and high–fidelity models.

The optimization problem in the multi–fidelity setting becomes:

w∗,γ∗ = argmin
w∈RM ,γ∈RP

[1

Nobs

Nobs∑
i=1

∣∣uobs
i − uH(xobs

i ;w)
∣∣2 + Lphys(uH(·;w),γ)

+
αlow

Nlow

Nlow∑
i=1

∣∣ulow
i − uL(xlow

i ;wL)
∣∣2],

where uH is given by (95). Here, the low–fidelity term αlow

Nlow

∑
|ulow

i − uL|2 incorporates additional
information into the optimization, improving the model’s ability to generalize even with sparse high–
fidelity data.

65

A more advanced multi–fidelity approach [207] involves leveraging a surrogate model trained on data
generated through a numerical solver, by following e.g. the methods described in Sec. 4.1. This allows
us to capture parametric dependencies in the solution. The corresponding optimization problem for
training uL is:

w∗
L = argmin

wL∈RML

[
1

Nlow

Nlow∑
i=1

∣∣ulow
i − uL(xlow

i ,γlow
i ;wL)

∣∣2 + R(wL)

]
,

where R(wL) is a regularization term that may include physics–based constraints. Once trained, the
parametrized low–fidelity model uL is fixed (i.e., its parameters are kept equal to w∗

L) and used as a
prior for the high–fidelity model:

uH(x,γ;wH) = LH(x, uL(x,γ;w∗
L);wH) +NNH(x, uL(x,γ;w∗

L);wH).

where one often sets LH(x, uL;wH) ≡ uL to enforce the low-fidelity model as a prior. We remark that,
unlike in (95), the multi–fidelity expression accounts for the parametric dependence of the solution, that
is the NN explicitly depends on the parameters γ.

The final optimization for the inverse problem becomes:

w∗
H ,γ∗ = argmin

wH∈RMH ,γ∈RP

[1

Nobs

Nobs∑
i=1

∣∣uobs
i − uH(xobs

i ,γ;wH)
∣∣2

+Lphys(uH(·,γ;wH),γ)
]
.

(96)

This approach leverages the strengths of both low– and high–fidelity models, balancing computa-
tional efficiency with accuracy. It is particularly advantageous in settings where parametric variations
significantly influence the solution (see e.g. the application reported in Sec. 5.2).

PINNs for data fitting. Very frequently, observations are affected by noise, so we might be
interested in estimating the denoised solution of a PDE, starting from noising data. This represents
another type of problem that can be effectively addressed by PINNs. Let us consider the example of
estimating the blood velocity u in a vessel. Let Ω ⊂ R3 be the computational domain (modelled by a
curved cylinder), with Γwall, Γin and Γout representing impermeable, inflow, and outflow boundaries,
respectively. For any time t ∈ (0, T) of the simulation, the velocity u = u(x, t) satisfies the Navier–Stokes
equation

LM (u, p) := ρ∂u
∂t − µ∆u + ρ(u · ∇)u +∇p = 0 in Ω

LD(u) := ∇ · u = 0 in Ω

u = 0 on Γwall,

(97)

and we dispose of the noisy observation uobs
i ≃ u(xobs

i , tobsi) for i = 1, . . . , Nobs, with xobs
i ∈ Ω and

tobsi ∈ (0, T). We are interested in estimating the velocity of the blood at certain points of the inflow
and outflow boundaries and at given times, by using a PINN.

We might design a single NN that, given in input the independent variables x ∈ R3 and t ∈ R,
provides both the velocity u and the pressure p as outputs; otherwise, we might use two different NNs,
one providing the velocity and the other the pressure. In both cases, we denote by uNN (x, t;w) and
pNN (x, t;w) the solution computed by the PINN, and denote by IM and ID two (not necessarily disjoint)
subsets of the indices set Iobs = {1, . . . , Nobs}. Then we define the losses

Lobs(w) =
1

Nobs

∑
i∈Iobs

∥uobs
i − uNN (xobs

i , tobsi ;w)∥2,

LM (w) =
1

|IM |
∑
i∈IM

∥LM (uNN (xM
i , tMi ;w), pNN (xM

i , tMi ;w))∥2,

LD(w) =
1

|ID|
∑
i∈ID

(LD(uNN (xD
i , tDi ;w)))2,

66

and look for
w∗ = argmin

w∈RM

[Lobs(w) + αMLM (w) + αDLD(w)] ,

with αM and αD suitable weights. The term Lobs of the loss function incorporates data, while LM and
LD encode the learning biases. One way to interpret this approach is to view it as a fitting problem,
where the terms incorporating physics act as regularization terms, favouring solutions that adhere to
known physical principles.

We observe that also in this case the formulation of the problem is very similar to that of the direct
one.

Thanks to their flexibility, PINNs can be applied even when boundary conditions or initial conditions
are missing or not completely known. PINNs can be effective for ill–posed problems and in the small
data regime (indeed when data are scarce, learning biases supersede missing measurements).

Enforcement of Dirichlet boundary conditions. We now discuss how to enforce Dirichlet
boundary conditions in the PINN framework. The approaches discussed here can be applied to the
different types of problems we have discussed so far, including the resolution of PDE, inverse problems
and data fitting. Let us consider the second–order elliptic equation (78) but with Dirichlet boundary
conditions instead of the Neumann ones:{

−∆u + γu = f in Ω

u = g on ∂Ω.
(98)

We may work following different approaches.
The first way consists of defining the residual corresponding to the boundary condition as

ResBC [u(x)] = u(x)− g(x) x ∈ ∂Ω (99)

and using this one instead of 842 inside the definition of (87) [140].
This approach could be interpreted as analogous of the penalty method of Babuška [14] in the Galerkin

framework, for which we look for u ∈ V = H1(Ω) such that∫
Ω

(∇u · ∇v + γuv − fv) + αBC

∫
∂Ω

(u− g)v = 0 ∀v ∈ V,

where αBC > 0 is a suitable penalization parameter.

A second way [141] consists of defining the solution as

uNN (x;w) = G(x) + A(x)ũNN (x;w) (100)

where G(x) is a lifting of g(x) to Ω, i.e. a function G : Ω → R such that G|∂Ω = g and contains no
adjustable parameters; A(x) is a function named mask defined on Ω such that A|∂Ω = 0 (for instance,
if Ω = (0, 1)2, we could take A(x) = x1x2(1 − x1)(1 − x2)); while ũNN (x;w) is a single–output FFNN
with parameters w and input x.

The optimal values of the parameters are computed by minimizing the loss function

L(w) = LPDE(w) =
1

2NPDE

NPDE∑
i=1

(ResPDE(uNN (xPDE
i ;w))2. (101)

Other strategies to impose Dirichlet conditions rely on formulating the problem as a constrained opti-
mization problem via the augmented Lagrangian method (see [222] and the references therein).

4.2.2 Variational PINNs (VPINNs)

Let us consider the elliptic problem (80) with Neumann boundary conditions, the NN space VNN ={
u(x) = uNN (x;w), with w ∈ RM

}
and the FEM space Vh =

{
u(x) =

∑Nh

j=1 uj φj(x)
}

. The Petrov–
Galerkin formulation of (80) reads: find

uNN ∈ VNN s.t. a(uNN , vh) = F (vh) ∀vh ∈ Vh. (102)

67

Looking for the solution of (80) with VPINN means to minimize the residual of the Petrov–Galerkin
equation (102), that is we look for [130, 131]

w∗ = argmin
w∈RM

1

2Nh

Nh∑
i=1

|F (φi)− a(uNN (·;w), φi)|2. (103)

This weak formulation has many advantages with respect to the strong one. First of all, reducing the
derivative order by integration by parts leads to less computationally expensive algorithms. Moreover,
in some particular cases, the loss function can be expressed analytically, making it possible to obtain
more accurate estimates than those obtained for PINNs. Finally, ad–hoc quadrature formulas require a
number of quadrature nodes noticeably lower than those required by PINNs to compute the residuals in
strong form.

We notice that standard PINNs can be seen as a special kind of VPINNs, with basis functions equal
to Dirac deltas centred at collocation points.

4.2.3 Deep Ritz Method (DRM)

When the bilinear form a associated with the differential operator is symmetric like the one of the
problem (78), the weak form of the PDE can be interpreted as the Euler–Lagrange equation of an
energy–functional. In particular, the weak equation (79) is the Euler–Lagrange equation of the energy–
functional

E(v) =
1

2

∫
Ω

|∇v|2 +
γ

2

∫
Ω

|v|2 −
∫
Ω

fv −
∫
∂Ω

gv ∀v ∈ V = H1(Ω), (104)

so that u = argmin
v∈V

E(v).

Chosen NPDE points xPDE
i in Ω and NBC points xBC

i on ∂Ω randomly sampled, the Deep Ritz
Method [70] looks for the parameters

w∗ = argmin
w∈RM

L(w) (105)

where the loss function is defined by

L(w) =
1

NPDE

NPDE∑
i=1

[1

2
|∇uNN (xPDE

i ;w)|2

+
γ

2
|uNN (xPDE

i ;w)|2 − f(xPDE
i)uNN (xPDE

i ;w)
]

− 1

NBC

NBC∑
i=1

g(xBC
i)uNN (xBC

i ;w).

The solution uNN is a deep neural network and it is used to evaluate the loss function (see Fig. 35).
As for PINNs, partial derivatives are computed by automatic differentiation recalling that uNN can be
written as a composition of functions like in (24). In [70] the authors designed a NN with an arbitrary
number of blocks (it will be a hyperparameter), each one composed of two layers with the corresponding
activation function and an identity map (like in ResNet [102]) put in parallel.

As said before, not all PDEs admit an energy formulation, so DRM has limited applicability. Similarly
to PINNs, also DRM leads to non–linear problems (in w) even when the PDE is linear (in u), so in such
cases, classical Galerkin methods typically outperform DRM. Moreover, even when the energy functional
E is convex, the loss function is non–convex and can feature local minima.

Comparing DRM with PINNs, we notice that: (i) DRM does not include hyperparameters (weights of
the residuals for PINNs), so it is not subject to the tuning issue; (ii) the treatment of Dirichlet boundary
conditions is less easy than for PINNs, however, the formulation (100) with lifting and mask does work;
(iii) the extension to defective and inverse problems is not easy.

4.2.4 Optimizing a DIscrete Loss (ODIL)

The Optimizing DIscrete Loss (ODIL) method introduced in [126] computes the solution of a PDE as
the minimizer of a loss function which is the sum of discrete residuals of the PDE at a set of points.

68

Figure 35: Deep Ritz Models

While PINNs evaluate residuals only by using automatic differentiation and do not discretize the PDE,
ODIL first discretizes the PDE by a grid method (a Full Order Method), e.g., finite differences or finite
volumes, so that the residuals of the discrete system are algebraic expressions. To minimize the loss
function, ODIL exploits algorithms typically used in ML, like the Adam method (see Sect. 3.2.6), or
Gauss–Newton [263, 150] and quasi–Newton methods [172, 190]. In all cases, gradients are evaulated
by automatic differentiation. To model unknown coefficient functions of the PDE, feed forward neural
networks are employed.

ODIL shares common features with the least–squares finite element method and the discretize–then–
differentiate approach for PDE–constrained optimization problems [34, 95].

By minimizing the discrete loss function, ODIL maintains the accuracy and conservation properties
of the full order discretization method employed. It has been used to solve both forward and inverse
problems, like field reconstruction and body shape inferring, both starting from noisy data [126].

ODIL is formulated as follows. After discretizing the PDE with a grid method, let u ∈ RNu be
the array of the unknown degrees of freedom and w ∈ RNw the array of unknown parameters. w could
include coefficients of PDEs, like e.g., the constant γ of (78), or parameters of a neural network modelling
coefficient functions of PDEs, like conductivity function in the heat equation (see (108)).

Let Fi(u,w) = 0 for i = 1, . . . , NF be the residuals associated with the discretized PDE, boundary
conditions, initial conditions evaluated at some specified (either internal or boundary) grid–points, or
other constraints. We define the loss function as

L(u;w) =
1

NF

NF∑
i=1

[Fi(u;w)]2 (106)

and we look for
u∗, w∗ = argmin

u∈RNu , w∈RNw

L(u;w). (107)

As an example, let us consider the heat equation
∂u

∂t
− ∂

∂x

(
k(u)

∂u

∂x

)
= 0 in (0, L)× (0, T)

u(0, t) = u(L, t) = 0 in (0, T)
u(x, 0) = u0(x) in (0, L)

(108)

modelling the temperature u(x, t) in a bar of length L on the time interval (0, T), starting from the initial
temperature u0(x). We want to infer the conductivity k(u) of the medium, provided that we know the
temperature Uk at a finite set of points (x̃k, t̃k) for k = 1, . . . , Nobs, i.e., u(x̃k, t̃k) = u0,k. We split the
space interval (0, L) into Nx cells of length h and the time interval (0, T) in Nt time–intervals of length
∆t. Then, we discretize (108)1 with centred finite deferences in space and the Crank–Nicolson method
in time. Moreover, we model the unknown conductivity function k with a feed–forward neural network
with one input (temperature u at a point), one output (value of conductivity at the same point) and
parameters w, i.e., k = k(u;w).

We denote by u = [un
j]j=0,...,Nx, n=0,...,Nt

the global array of degrees of freedom and by un =
[un

j]j=0,...,Nx
the array of degrees of freedom at time tn.

69

For any j = 1, . . . , Nx − 1 and n = 1, . . . , Nt, we define the discrete residuals

Fn
j (u;w) =

un+1
j − un

j

∆t
− 1

2
[Gj(u

n;w) + Gj(u
n+1;w)], (109)

where

Gj(u
n;w) =

1

h2

[
k

(
un
j+1 + un

j

2
;w

)
(un

j+1 − un
j)− k

(
un
j + un

j−1

2
;w

)
(un

j − un
j−1)

]
.

The boundary and initial conditions un
0 = 0, un

Nx
= 0 for n = 1, . . . , Nt and u0

j = u0(xj , 0) for j =
1, . . . , Nx − 1 are exploited in (109). Finally, the loss function is defined by

L(u;w) =
1

NxNt

Nx∑
j=1

Nt∑
n=1

[Fn
j (u;w)]2 +

wobs

Nobs

Nobs∑
k=1

(u
n(k)
j(k) − u0,k)2, (110)

where j(k) and n(k) are the space and time indices of the cell containing the measurement point (x̃k, t̃k),
while wobs ∈ R is a suitable weight.

In [126] the authors compare ODIL and PINNs on three forward problems (1D wave equation,2D
Poisson equation, and 2D lid–driven cavity problem) and one inverse problem (inferring conductivity
from temperature, 1D problem) showing that, on these tests, ODIL outperforms PINNs in terms of
accuracy and computational costs.

4.3 Operator learning

ML algorithms have primarily been developed for learning mappings between finite–dimensional spaces,
specifically the input and output spaces X ⊆ Rn and Y ⊆ Rm within the supervised learning frame-
work of Sec. 3.2.5. However, in problems arising in the realm of Scientific Computing, one has often
to deal with maps between infinite dimensional functional spaces. Pivotal examples are represented by
the data-to-solution maps underlying PDEs, where – for example – one is interested in the map from
a forcing term to the solution of an elliptic PDE, or from a time-dependent boundary condition to the
solution of a hyperbolic PDE. Traditional machine learning algorithms (e.g., FFNNs) do not generalize
straightforwardly, as they are designed for finite–dimensional spaces. The emerging field of Operator
learning focuses on ML algorithms capable of learning operators, understood as mappings between func-
tion spaces.

Operator learning represents an approach used in the framework described in Sec. 4.1 to develop
surrogate models of high-fidelity DMs, by leveraging training data that are obtained as solutions of the
high–fidelity DM itself. Once trained, these surrogate models can replace high–fidelity DMs to deliver
rapid approximations of physical problems, particularly in many-query scenarios where computational
cost is a concern.

We are therefore interested in approximating either a linear or a non–linear operator that can be
written as a mapping from one functional space to another. To outline the key–points of this topic, let
us start with a simple example. Let us suppose we want to learn the differential operator that governs
a linear second–order elliptic PDE given on the domain Ω ⊂ Rd, with d = 1, 2, 3, with homogeneous
Dirichlet boundary conditions. Given the functions µ1 : Ω → R+ and µ2 : Ω → R, the strong form of
the PDE reads: find the solution y : Ω→ R such that{

−∇ · (µ1(x)∇y(x)) = µ2(x) ∀x ∈ Ω

y(x) = 0 ∀x ∈ ∂Ω.
(111)

Let the parameter functions be sufficiently regular, i.e.,

u = (µ1, µ2) ∈ Vu := {µ1 ∈ L∞(Ω) : µ1 ≥ µ1 > 0 a.e. Ω} × L2(Ω), (112)

then we can write the weak form of (111): find y ∈ Vy := H1
0 (Ω) such that∫

Ω

µ1∇y ∇ŷ dΩ =

∫
Ω

µ2ŷ dΩ ∀ŷ ∈ Vy. (113)

70

subnetwork

1−layer

2−layers subnetwork

2−layers subnetwork

2−layers subnetwork

...
...

b1

bN

...

u(xm)

Gw(u)(z) =
N∑
k=1

bktk(z)

t1(z)

tN(z)

u(x1)

z

Figure 36: The NN by Chen and Chen approximating any (non)linear continuous operator [229]

This solution exists and is unique ([191]).
The goal now is to approximate the operator

G : Vu → Vy : u 7→ y = G(u) (114)

that maps the infinite–dimensional input space Vu to the infinite–dimensional solution space Vy, and
not only the values of the solution y at some given points. The operator learning theory aims at gener-
alizing feed–forward neural networks, which typically operate on finite–dimensional spaces, to infinite–
dimensional spaces.

These new NNs are particularly useful in contexts where one wants to solve a PDE many times for
different types of boundary conditions or different discretizations, avoiding solving the PDE numerically
from scratch or training a new FFNN each time. Indeed, standard NN architectures strongly depend on
the discretization and the type of boundary conditions used to produce the training data.

4.3.1 Deep Operator Networks (DeepONet)

An early paper on operator learning is that of Chen and Chen in 1995 [229]. Therein, the authors proved
that, under regularity assumptions on both parameters and solution, for any continuous operator G (either
linear or non–linear) and any required precision ε we can find a neural network Gw approximating G and
depending on the parameters w. The authors also provide the NN architecture of Gw.

Theorem 4.2 (Universal approximation theorem for non–linear operators). [229] Let X be a Banach
space, K1 ⊆ X compact, K2 ⊆ Rd compact, Vu ⊂ C0(K1) compact, and G : Vu → C0(K2) a continuous
operator (either linear or non–linear). Let σ be a sigmoid function (i.e. a bounded function σ : R → R
such that limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1). Then for any ε > 0, there are positive integers
M, N, m, real numbers cki , ζk, ξkij, and points ωk ∈ Rd, xj ∈ K1, i = 1, . . . ,M , k = 1, . . . , N ,
j = 1, . . . ,m, such that∣∣∣∣∣∣∣∣∣∣∣

G(u)(z)−
N∑

k=1

 M∑

i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

σ(ωk · z + ζk)

︸ ︷︷ ︸
Gw(u)(z)

∣∣∣∣∣∣∣∣∣∣∣
< ε (115)

holds for all u ∈ Vu and z ∈ K2.

Although the input of the operator consists of a function, to feed the neural network we have to
evaluate it at a finite set of points that are named sensors, namely the m points xj ∈ K1. The point
z ∈ Rd instead, used to evaluate the solution y = G(u) ∈ C0(K2), is not fixed, and can be varied after
the training stage. The array parameter w contains the real numbers cki , ζk, ξkij .

71

The neural network is composed of two subnetworks, exploiting the same activation function σ. The
first subnetwork (the term between square brackets in (115)) is a stack of N two–layers networks acting
on the values of the parameter functions at the sensors, the second one (σ(ωk · z + ζk)) is a one–layer
network acting on the variable z at which we want to evaluate the solution function. The results of the
two subnetworks are combined to provide the final output which is the value of Gw(u)(z) ≃ y(z).

The universal approximation theorem 4.2 guarantees a small approximation error for a sufficiently rich
network requiring a large number of sensors. However, as we have seen in Sect. 3.2.5, the approximation
error alone does not guarantee the efficacy of a NN, since also optimization and generalization errors
contribute to making a NN effective.

In [155], the authors propose Deep Operator Networks (DeepONets) which improve the NN pro-
posed by Chen and Chen in [229]. More precisely, the two shallow subnetworks of [229] are replaced in
DeepONet by deep neural subnetworks, so that a limited number of sensors is required to ensure low
generalization and optimization errors and low computational costs.

The subnetwork acting on z is named trunk net and predicts the values of p shape functions
{t1, t2, . . . , tp} at the point z, while the subnetwork acting on the values [u(x1), . . . , u(xm)] is named
branch net (it is a unique unstacked subnetwork) and predicts the values of the problem–specific coeffi-
cients bk such that y(z) ≃ Gw(u)(z) =

∑p
k=1 bktk(z), see Fig. 37.

The operator Gw does not provide the analytic expression of an approximation of the solution y
but approximates the value of y at given points z, leveraging the shape functions tk(z) that replace
high–fidelity (e.g. FEM) shape functions.

The following generalized universal approximation theorem for operators, that is an immediate con-
sequence of Theorem 4.2, has been stated in [155].

Theorem 4.3. Suppose that X is a Banach space, K1 ⊂ X, K2 ⊂ Rd are two compact sets in X
and Rd, respectively, Vu is a compact set in C0(K1). Assume that G : Vu → C0(K2) is a non–linear
continuous operator. Then, for any ε > 0, there exist positive integers m, p, continuous vector functions
g : Rm → Rp, f : Rd → Rp, and x1, x2, . . . ,xm ∈ K1 such that∣∣∣∣∣∣G(u)(z)− ⟨g(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

, f(z)︸︷︷︸
trunk

⟩

∣∣∣∣∣∣ < ε

holds for all u ∈ Vu and z ∈ K2 , where ⟨·, ·⟩ denotes the dot product in Rp. Furthermore, the functions
g and f can be chosen as diverse classes of neural networks, which satisfy the classical universal approx-
imation theorem of functions, for example, (stacked/unstacked) fully connected neural networks, residual
neural networks and convolutional neural networks.

As stated in the previous theorem, DeepONet is a high–level network architecture, and the architec-
tures of its inner trunk and branch networks are not defined a–priori. Finally, we notice that the branch
net constrains the input to a fixed location (otherwise all the parameters will have to be recalculated),
however, it is possible to make DeepONet discretization invariant [60].

4.3.2 Neural Operators

A FFNN transforms a vector x ∈ Rn into a vector y ∈ Rm. This process operates sequentially, by trans-
forming at each step a vector into another vector (namely the vector a[ℓ−1] into a[ℓ], see Algorithm 1).
Neural Operators generalize this vector–to–vector transformation process to a function–to–function trans-
formation [137]. The key observation underlying this generalization is that a vector a[ℓ] ∈ RNℓ can be
interpreted as the values of a function from the discrete domain Ωℓ = {1, 2, . . . , Nℓ} into R. This suggests
defining a Neural Operator as a generalized FFNN, where we set instead Ωℓ = Rd in each layer (i.e. for
any ℓ). Thus, the Neural Operator will map an input function u : Rd → Rnu into an output function
v : Rd → Rnv , by sequentially transforming it through a series of intermediate functions a[ℓ] : Rd → RMℓ .
This enables neural operators to naturally handle problems with inputs and outputs defined on continu-
ous domains, such as those encountered in physics-informed modelling or solutions to partial differential
equations. The sequential mapping of functions at each layer mirrors the structure of FFNNs but extends
their applicability to infinite-dimensional spaces.

To achieve this generalization, the standard FFNN update equation, a[ℓ] = σ(W [ℓ]a[ℓ−1] +b[ℓ]), is re-
placed with its infinite-dimensional counterpart. Specifically, the matrix-vector multiplication W [ℓ]a[ℓ−1]

72

trunk

branch

net

net

...

...

b1

bp

...
u(x1)

u(xm)

z

t1(z)

tp(z)

Gw(u)(z) =
p∑

k=1

bktk(z)

Figure 37: A Deep Operator Network (DeepONet)

is replaced by a kernel convolution
∫
Ω
κ(x, x̂)a[ℓ−1](x̂)dx̂. Notably, in the discrete case (Ωℓ = {1, 2, . . . , Nℓ}),

the kernel integral reduces to a matrix multiplication, ensuring consistency between discrete and con-
tinuous formulations. In practice, using the same idea from the ResNet architecture [102], an additional
term is summed before applying the non–linear activation function, yielding the expression:

a[ℓ](x) = σℓ

(∫
Ω

κ(x, x̂)a[ℓ−1](x̂)dx̂ + b[ℓ](x) + W [ℓ]a[ℓ−1](x)

)
, (116)

where W [ℓ] ∈ RMℓ×Mℓ−1 represents a matrix. Finally, a lifting operator (P : Rnu → RM0) is applied
to the input to map it into a higher–dimensional space suitable for the model. Similarly, a projection
operator (Q : RML → Rnv) is applied to the output of the last layer to map it back to the original space.
Both operators act pointwise.

The complete Neural Operator Gw is therefore expressed as:

Gw = Q ◦ σL ◦ T [L] ◦ . . . ◦ σℓ ◦ T [ℓ] ◦ . . . ◦ σ1 ◦ T [1] ◦ P (117)

where, for any ℓ = 1, . . . , L, b[ℓ] is the bias function and σℓ the activation function of the layer ℓ. The
linear transformation T [ℓ](a[ℓ−1]) is defined as T [ℓ](a[ℓ−1]) = W [L]a[ℓ−1] + K[L](a[ℓ−1]) + b[L], where K[ℓ]

is a kernel operator associated with κ(x, x̂).
The most notable properties of these networks are that they are discretization–invariant and guarantee

universal approximation.
Discretization invariance means that neural operators keep the same model parameters even if the

discretization of the underlying functional spaces is varied. More precisely, a discretization–invariant
model with a fixed number of parameters satisfies the following rules [137]: (i) acts on any discretization
of the input function, i.e. accepts any set of points in the input domain; (ii) can be evaluated at any point
of the output domain; (iii) converges to an infinite–dimensional operator as the discretization is refined.
The last property guarantees consistency in the limit with the continuous PDE as the discretization is
refined.

Universal approximation guarantees that any continuous operator can be approximated by a neural
operator up to a given tolerance. This property is ensured even though the internal layers only perform
linear (actually, affine) operations, thanks to the presence of non–linear activation functions.

The parameter vector w is the concatenation of the parameters of P, Q, W [ℓ], K[ℓ], and b[ℓ] for any
ℓ and it is computed by standard gradient–based minimization algorithms. We notice that both inputs
and all the functions entering the loss function need to be discretized, but, in view of the discretization
invariance, the learned parameters w may be used with other discretization.

The kernel κ(x, x̂) takes care of the non–local properties of the solution that the differential equation,
by its definition, would not be able to describe. We refer to [137] for a detailed description of neural
operators.

The integrals in (116) need to be approximated, and different strategies can be adopted, from Monte
Carlo method, to averaging aggregation, to more sophisticated quadrature formulas. In [137], four classes

73

u

W
σ

Layer 1 Layer 2P vLayer L Q

∫
Ω κ(x, x̂)a[1](x̂) dx̂+ b(x)

a[1]

Figure 38: A Neural Operator

u

W
σ

Layer 1 Layer 2P vLayer L Q

(F−1(KF(a[1])))(x) + b(x)
a[1]

Figure 39: A Fourier Neural Operator

of efficient parametrizations are described: graph neural operators, multi–pole graph neural operators,
low–rank neural operators, and Fourier neural operators.

Fourier Neural Operators (FNO). FNO were proposed in [145]. Instead of working in the physical
domain, here the kernel is parametrized in the frequency space, and a Fourier transform and its inverse
are applied on the right and the left of the kernel, respectively.

Each layer, named Fourier layer takes the form

a[ℓ](x) = σℓ

(
W [ℓ]a[ℓ−1](x) + (F−1(K [ℓ]F(a[ℓ−1]))(x) + b[ℓ](x)

)
, (118)

where K [ℓ] is a tensor (representing the kernel in the frequency space) which is learnable like the lin-
ear operators W [ℓ] and the bias function b[ℓ], while F denotes the Fourier transform along the spatial
dimension x and F−1 its inverse.

Integrals in the Fourier transform are computationally expensive, thus a Fourier Fast Transform FFT
can be employed, provided that the kernels are invariant to translations. A drawback of FNO is that
the number of parameters grows very fast unless the Fourier coefficients of the output decay very fast,
but fortunately, this is typically the case in PDEs.

FNO enjoys the universal approximation property [136] and, are discretization invariant. FNO is
significantly more capable than convolutional neural networks of learning low–frequencies and demon-
strates larger errors in higher frequencies than in lower frequencies [186]. To improve the capability of
FNO in capturing even high frequencies, in [186] a second FNO is trained to predict the residual of the
first FNO’s predictions.

4.3.3 Operator learning for time–dependent problems

Operator learning methods apply to operators between functional spaces. Often, the independent variable
is the spatial coordinate, as in stationary PDEs. However, in many cases, the independent variable is
time, as in evolutionary PDEs (e.g. parabolic or hyperbolic). A straightforward approach to handling
time-dependent problems with operator learning is treating the time variable as a generic independent
variable, akin to the (d + 1)–th spatial coordinate. In this case, DeepONets or Neural Operators can
be used, although they do not account for the sequential nature of time. Other methods, often based
on recurrent (RNN), and autoregressive architectures (see Sect. 3.3.2), have been developed ad–hoc to
incorporate temporal sequentiality. These methods are the main focus of this section.

Rather than listing every single method as done thus far, in Secs. 4.3.3–4.3.4–4.3.5 we will instead
focus on addressing different approaches to specific tasks. For each approach, we will discuss advantages

74

and disadvantages and refer to the most significant contributions in the literature. For the various tasks,
we will highlight some of the many possible methods that leverage diverse combinations of fundamental
components such as the time advancement scheme, the loss function, and the neural network architecture.

Neural ODEs to learn dynamical systems. Let us consider a generic time–dependent model, in
the form:

d

dt
y(t) = f(y(t),u(t)) t ∈ (0, T)

y(0) = y0,
(119)

where y ∈ RNy is the vector of state variables, which in this case coincides with the output of interest,
while u ∈ RNu contains the input variables. The latter are either time–dependent or constant (in which
case, they are typically called parameters). The (generally non–linear) term f governs the temporal
evolution of the system. Suppose we know a set of temporal trajectories ŷj(t), which we call samples,
each one corresponding to a given input ûj(t) and an initial condition ŷj

0, where j = 1, . . . , NS represents
the sample index. Operator learning for this kind of time–dependent problems consists of learning, from
the training samples, an operator that maps a given initial condition and an input trajectory to an
output trajectory.

In practice, we suppose that both the input and the output are sampled at time intervals (0 =
t0, t1, . . . , tNT

= T). Using the notation ûj
i = ûj(ti) and ŷj

i = ŷj(ti), to denote input and output

training trajectories, our training dataset consists of {(ûj
i , ŷ

j
i)}j=0,...,NS

i=0,...,NT
.

A successful approach to tackle this operator learning problem is to use neural networks of recurrent
nature (see Sec. 3.3.2). Here we consider the case of Neural ODEs [51], which approximate the dynamics
through the following system of ODEs:

d

dt
y(t) = NN dyn(y(t),u(t);wdyn) t ∈ (0, T)

y(0) = y0

(120)

where NN dyn is a neural network (typically a FFNN), which receives as input the vector of state variables
y(t) concatenated with the vector of input variables u(t), and returns an approximation of the vector of
temporal derivatives d

dty(t). The trainable parameters of the neural network are collected in wdyn.
The system of ODEs (120) is approximated by means of suitable numerical methods. A common

choice is the Forward Euler method, due to its computational convenience, which results in the following
scheme: {

y(k+1) = y(k) + ∆tNN dyn(y(k),u(k∆t);wdyn) k = 0, . . . , T/∆t− 1

y(0) = y0.
(121)

Note that the integration time step ∆t does not need to match the sampling time step (i.e. ∆tsampling
j =

tj+1−tj). Should the input u be unavailable at specific time points k∆t, interpolation of the input values
can be performed during both training and testing phases. For applications requiring high numerical
accuracy, more advanced methods such as Runge–Kutta schemes are often preferred [51].

Derivative–based vs trajectory–based training. To obtain the parameters wdyn, a supervised

learning strategy is used, given that we have a labelled dataset (i.e., the data ûj
i and ŷj

i) There are
mainly two possible approaches for training. Note that the two approaches differ solely on the way the
training is carried out.

The first approach called derivative–based training minimizes the difference between the temporal
derivative computed by the neural network and the temporal derivative approximated directly from
training data. The latter can be obtained through finite differences, e.g. defining

δyj
i :=

ŷj
i+1 − ŷj

i

ti+1 − ti
,

or by using higher–order formulas. The minimization problem then becomes:

w∗
dyn = argmin

wdyn

NS∑
j=1

NT−1∑
i=0

∥∥∥δyj
i −NN dyn(ŷj

i , û
j
i ;wdyn)

∥∥∥2 . (122)

75

The second approach called trajectory–based training instead minimizes the difference between the tem-
poral trajectory yj(t) approximated by the Neural ODE through numerical integration (like, e.g., in (121)
and the temporal trajectory available from training data. The minimization problem then becomes:

w∗
dyn = argmin

wdyn

NS∑
j=1

NT∑
i=0

∥∥∥ŷj
i − yj(ti)

∥∥∥2 . (123)

When the sampling time step ∆tsampling
j is not a multiple of the integration time step ∆t, the values

yj(ti) are computed by interpolating those provided by (121). Note that the loss function in (123)
implicitly depends on wdyn, as yj

i itself depends on wdyn through the numerical solution of (120). This
approach is also known as end–to–end training, as the numerical approximation of the ODE system is
incorporated into the training process.

Trajectory–based training is computationally more challenging than derivative–based training, as
it requires the numerical solution of an ODE system for each sample. Additionally, this process is
incorporated into the calculation of the loss function, and therefore the automatic differentiation engine
must be able to compute the gradient of the loss function with respect to the parameters wdyn across the
numerical solution of an ODE system. This process requires particular attention, especially if implicit
advancement schemes, which require the solution of non–linear equation systems, are used. For this
reason, explicit solvers, such as Forward Euler or Runge-Kutta, are often preferred in this context. Note,
however, that modern automatic differentiation tools, contained in the most popular ML libraries, can
handle these complexities transparently, although this potentially leads to deep computational graphs,
which can require a lot of memory in the case of many data. Alternatively to black–box automatic
differentiation, the adjoint method proposed in [51] significantly reduces the memory footprint of the
gradient calculation, as it avoids the need to store the entire computational graph, but reconstructs the
gradient through the solution of an adjoint ODE system.

On the other hand, derivative–based training is characterized by a very shallow computational graph,
as each term that contributes to the loss function does not depend on the other ones. This makes the
gradient calculation much more efficient, although less accurate, especially if the data are noisy. In such
cases, the finite difference operation can amplify the noise present in the data, and therefore the estimate
of the temporal derivative can be very unstable. Furthermore, at testing time, when the model is used to
make predictions by numerically integrating the Neural ODE, such errors can accumulate unpredictably,
leading to solutions that diverge significantly from the expected trajectories. The trajectory–based
approach performs the integration of the ODE at training time, hence it allows controlling error accu-
mulation and is therefore more robust to the presence of noise in the data. To mitigate the effect of noise
within the derivative–based approach, more robust temporal derivative reconstruction techniques, such
as total–variation regularization [49], can be used. However, in the presence of noisy data, and especially
for long–term predictions, trajectory–based training is typically the more robust choice.

Comparison with methods that do not consider time–dependence. Now that we have
introduced operator learning for time–dependent problems using autoregressive models such as Neural
ODEs, it is useful to compare them with techniques that do not account for the temporal nature of
the problem. Indeed, the operator that maps the time–dependent function u(t) to the time–dependent
function y(t) can also be learned using other operator learning methods, such as DeepONets and Neural
Operators. However, as anticipated above, these methods do not account for the sequential nature of time
and, therefore, cannot capture the temporal dependence of the variables. In particular, these methods
do not guarantee consistency with the arrow of time, meaning that the temporal evolution of a system
is unidirectional. This implies that, although these methods can approximate the dynamics of a system,
they cannot guarantee that the prediction of y(t) at a given time t ∈ (0, T) solely depends on the input
u(t′) for t′ ≤ t. This property is instead guaranteed by Neural ODEs, which can capture the temporal
dependence of the variables and, therefore, ensure consistency with the arrow of time.

Another advantage of using autoregressive models, compared to general–purpose operator learning
methods, is their ability to handle time series of variable length. In particular, they can perform time
extrapolation, i.e., predict the temporal evolution of the system even outside the time range in which
the data were sampled. This is possible due to the autoregressive nature of the model, which allows
integrating the temporal dynamics of the system from an initial condition for arbitrary times. Clearly,

76

this capability is limited by the quality of the training data and the type of dynamics under consideration.
Training data ought be representative of the system’s dynamics over long periods. Indeed, due to the
data-driven nature of the approach used, the predictions are reliable as long as they do not deviate too
far from the regions in the state space covered by the training data. For example, let us suppose we are
learning in a data–driven manner the dynamics of a robotic arm, as a function of external stimuli and of
the power applied to the joints. The learned data-driven model might be able to predict the temporal
evolution of the arm even for longer times than those used to train the model. However, if the long–term
dynamics cause the arm to move to positions far from those covered by the training data, the model
likely provides inaccurate predictions. This is an intrinsic limitation of all data–driven methods, and
therefore it is important that the training data are representative of the system’s dynamics for which
predictions are to be made.

It should be noted that the above observations are not limited to Neural ODEs but also apply to
other neural network architectures such as RNNs, LSTM, and GRU (see Sec. 3.3.2) that account for the
temporal nature of the problem and can be used as alternatives to Neural ODEs. One advantage of Neural
ODEs, however, is their flexibility when time sampling is non-uniform, whereas other autoregressive
methods may require pre–processing of data to uniform temporal sampling.

Sparse Identification of non–linear Dynamics (SINDy). Sparse Identification of non–linear
Dynamics (SINDy) is a method aimed at data–driven identification of a dynamical system, with the
goal of obtaining a parsimonious model that captures the fundamental phenomena of the system [40].
Like Neural ODEs, SINDy can capture the temporal dependence of variables, thus ensuring consistency
with the arrow of time. Unlike Neural ODEs, however, the right–hand side of the ODE system is not
approximated with a neural network but through a linear combination of a set of candidate functions,
which can be polynomials, trigonometric functions, exponentials, etc. The learned model is therefore
interpretable, as the identified terms retain physical meaning (e.g., dissipation, reaction, forcing terms).
The method is designed so that the resulting combination is parsimonious, meaning that only a few
significant terms are present.

SINDy requires a library of candidate functions, representing the possible terms that may appear
in the right–hand side of ODE system. A vector θ(y,u) is defined, containing Nθ candidate functions
(polynomials, trigonometric functions, exponentials, etc.) in terms of y and u. For example, if y =
(y1, y2) and u = (u1), a library of functions can be:

θ(y,u) =
[

1, y1, y2, u1, y
2
1 , y1y2, sin(y2), e−y1u1, . . .

]
.

Multiplicity and type of candidates determine both expressive capacity and risk of overfitting.
Next, a model is sought in the form of

d

dt
y(t) = Wθ(y(t),u(t)) t ∈ (0, T)

y(0) = y0

(124)

where W ∈ RNy×Nθ is a matrix of unknown coefficients that defines the active terms of θ in each row
of the ODE system. The problem of identifying the dynamical system thus becomes a generalized linear
regression problem. Specifically, sparse regression techniques are used to promote solutions where many
elements of W are zero. This yields a parsimonious and interpretable model, where only a few terms are
significant, drawing inspiration from the field of compressed sensing [18, 19]. An approach that exploits
the derivative–based loss consists of solving the following optimization problem:

W∗ = argmin
W

NS∑
j=1

NT−1∑
i=0

∥∥∥δyj
i −Wθ(ŷj

i , û
j
i)
∥∥∥2
2

+ λ ∥W∥0 , (125)

for a suitable hyperparameter λ, where ∥ · ∥0 is the norm that counts the number of non-zero elements in
a matrix. Since the problem would require an intractable combinatorial search, ∥ ·∥1 norm regularization
or a sequential thresholding procedure is used in place of the zero norm. [40, 39].

Once the coefficients W∗ are identified, a parsimonious model is obtained that uses only the columns
of θ corresponding to the non-zero coefficients. To evaluate the quality of this model, the predicted

77

dynamics are compared with those measured from the test dataset. It is essential to verify the model’s
robustness to noise and small variations in the data, as well as its extrapolation capability on trajectories
not included in the training set.

The SINDy method is particularly effective when the true dynamics are sparse, meaning that only
a few terms in the governing equations are significant. By leveraging sparsity, SINDy can identify
interpretable models that provide insights into the underlying physical processes. Although lacking any
NN component, this method is however driven by data. This is why we deem it appropriate to present
it under the SciML heading.

4.3.4 Intrinsic or hidden dynamics discovery

The methods described in Sec. 4.3.3 are aimed at learning the dynamics of a system from a dataset of
trajectories of the system state. However, very often this state has a huge dimensionality, so that instead
of learning the dynamics in the state space, it is preferred to learn an intrinsic or essential dynamics that
takes place in a low–dimensional space. In other cases, it is needed to discover hidden dynamics that are
not directly observable in the data. We will start by considering the first case and then move on to the
second.

When the system state has a very high dimensionality (typically when Ny is of the order of 102

or higher), instead of learning the dynamics in the state space, one could reduce the dimensionality of
the variables at hand and find a low–dimensional representation that nonetheless captures the intrinsic
dynamics of the system. This can unveil relationships between state variables and identify the most
relevant variables, finding an essential and therefore more interpretable representation of the system,
ultimately improving our understanding of the system dynamics. An extra benefit is the reduction of the
computational cost associated with the numerical approximation of a high–dimensional system, especially
in contexts where real–time predictions are necessary. Notable instances are system control and creation
of digital twins [107, 176]. A paradigmatic example is when the dynamical system under consideration
arises from semi-discretization in space of a mathematical model based on PDEs, as described in Sec. 2.2
(see e.g. (5)), where the state variable is a high–dimensional vector representing the discretized solution
of the PDE.

Projection based methods. Projection–based ROMs (Reduced Order Models) consist of project-
ing the system’s dynamics into a low–dimensional subspace [27, 107]. The latter is defined as a linear
subspace of dimension Ns ≪ Ny of the state space of the full–order model (FOM). Let W ∈ RNy×Ns

be a matrix whose columns contain an orthonormal basis of the reduced space. The state variable of
the ROM, denoted by s ∈ RNs , is related to the state variable of the FOM y ∈ RNy through the rela-
tions s = WTy and y ≃ W s. By projecting the FOM (119) into the reduced subspace, we obtain the
corresponding ROM:

d

dt
s(t) = WT f(W s(t),u(t)) t ∈ (0, T)

s(0) = WTy0.
(126)

An example in the case where FOM arises from the semi-discretization in space of a differential model
is provided in (10).

As anticipated in Sec. 2.2, to define the matrix W , the most common approaches are greedy algorithms
and POD (Proper Orthogonal Decomposition) [106, 188]. The latter consists of collecting the snapshots
of the training dataset into a matrix

Y =
[
ŷ1
1|ŷ1

2| . . . |ŷ1
NT
|ŷ2

1|ŷ2
2| . . . |ŷ2

NT
| . . . |ŷNS

1 |ŷ
NS
2 | . . . |ŷ

NS

NT

]
,

where NS represents the number of training samples, while NT is the number of time–steps, and then
defining W as the matrix whose columns are the first Ns eigenvectors associated with the Ns largest
eigenvalues of the covariance matrix Y Y T . From a computational point of view, these eigenvectors can
be obtained in an efficient and numerically stable manner through the Singular Value Decomposition
(SVD) of the matrix Y (see, e.g., [190, Ch. 4]).

Projection–based approaches perform well when the system’s dynamics is dominated by a few modes
that can be captured in a low–dimensional space. However, many systems are not suitable to be com-
pactly described through a linear projection. A useful concept to quantify the suitability of a linear

78

projection to approximate the solution manifold is the Kolmogorov n-width [135]. Let M ⊂ RNy be
the solution manifold associated with the dynamical system. In this case, the Kolmogorov n−width is
defined as

dn(M) = inf
W∈RNy×n

sup
y∈M

inf
s∈Rn

∥y −W s∥. (127)

In words, the Kolmogorov n−width is the minimum distance of the solution manifold from linear sub-
spaces of dimension n. Intuitively, the Kolmogorov n−width measures the best approximation error that
can be obtained by approximating the solution manifold with a linear subspace of dimension n.

In many cases, the Kolmogorov n−width decreases slowly with n, indicating that a very high–
dimensional subspace is needed to obtain a good approximation, making projection–based ROMs inef-
fective. This happens for systems characterized by complex and non–linear dynamics, turbulent flows,
and systems with multiscale dynamics, where linear dimensionality reduction may not be sufficient to
capture all the essential features of the system. Moreover, even linear equations can present a solution
manifold with a slowly decreasing Kolmogorov n–width. An example is given by travelling wave solutions
like wave equation.

Furthermore, when the function f is non–linear, numerically approximating the equation (126) re-
quires projecting the reduced state back to the full space each time, thus losing any computational
advantage. To overcome such a drawback, hyper–reduction techniques are necessary, aiming to reduce
computational cost while maintaining acceptable accuracy. Hyper–reduction techniques include methods
such as the Discrete Empirical Interpolation Method (DEIM) [50], which seeks to approximate non–linear
terms using a reduced number of sampling points. However, finding a good compromise between accu-
racy and computational cost is challenging, as excessive reduction in the number of sampling points
can lead to significant loss of accuracy, while too many sampling points can annihilate the benefits of
dimensionality reduction.

Autoencoder–based methods. To overcome limitations of projection–based dimensionality reduc-
tion techniques, system reduction can be achieved via non–linear transformations [129, 99, 144]. These
approaches rely on replacing the transformations s = WTy and y ≃ W s by successive application of
two non–linear maps, an encoder s = NN enc(y;wenc) and a decoder y ≃ NN dec(s;wdec), where NN enc

and NN dec are neural networks with trainable parameters wenc and wdec, respectively. Decoders and
encoders are typically made of FFNNs, or, when the variable y consists of values of a spatial field sampled
on a Cartesian grid convolutional neural networks (CNNs).

The sequential application of networks NN enc and NN dec constitutes an autoencoder (see Sec. 3.3.2):
the dimension of the reduced state variable s is lower than that of y, so that autoencoders learn a compact
representation of data. Thanks to their ability to represent non–linear relationships, autoencoders can
capture compact representations much more efficiently than linear dimension reduction methods. As
a matter of fact, linear dimensionality reduction underlying projection–based ROMs can be seen as
a special case of autoencoders, where both the encoding function (s = WTy) and decoding function
(y ≃W s) are linear.

Autoencoders are trained to minimize the reconstruction error, i.e., the discrepancy between original
data and data reconstructed starting from encoded reduced state variable. In other words, an autoencoder
is trained by simultaneously training the two NNs, through the following optimization problem:

w∗
enc,w

∗
dec = argmin

wenc,wdec

NS∑
j=1

NT∑
i=0

∥∥∥ŷj
i −NN dec(NN enc(ŷ

j
i ;wenc);wdec)

∥∥∥2 . (128)

Once autoencoder is trained and thus able to extract a compact representation s ∈ RNs , often called
latent variable, of the state y ∈ RNy , it is necessary to learn dynamics in the reduced space RNs (also
called latent space). This can be done, similarly to projection–based ROMs, by projecting dynamics onto
the tangent space of the non–linear manifold, although this operation can frustrate benefits of reduction
due to high computational costs of this operation [144]. A generally more effective alternative is to
learn dynamics directly in the reduced space, by training a time–dependent model (e.g., based on Neural
ODEs, RNNs, or LSTM [151, 160, 246], see Sect. 4.3.3) as follows:

d

dt
s(t) = NN dyn(s(t),u(t);wdyn) t ∈ (0, T)

s(0) = NN enc(y0;wenc).
(129)

79

This model is trained to reproduce trajectories obtained by encoding training data, i.e., the trajectories
defined by sji = NN enc(y

j
i ;wenc). Similarly to the case considered in Sec. 4.3.3, the model (129) can be

trained using either a derivative–based or trajectory–based approach, and the trade–offs described above
apply. Additionally, the SINDy method can also be used in combination with autoencoders to obtain
parsimonious and interpretable models of the system’s intrinsic dynamics [48]. Whatever model is used
to describe dynamics in the reduced space, the predicted output of interest is then obtained by decoding
the reduced state variable, i.e., y(t) = NN dec(s(t);wdec).

Typically, the autoencoder model is trained prior to the time–dependent model, and the latter uses
optimal parameters of encoder and decoder. An alternative is to perform training jointly, the so–
called end–to–end approach, where autoencoder and time–dependent model are trained simultaneously
to minimize reconstruction error and dynamics prediction error, respectively. The end–to–end approach
can lead to better generalization of the model, as the autoencoder can learn a representation more suited
to the system’s dynamics. The price to pay is greater computational complexity, as end–to–end training
is characterized by a deeper computational graph and a larger parameter space.

Model learning with latent variables. The methods described in the previous paragraph explic-
itly construct a compact representation of the state variable y(t) using an encoder and a decoder. An
alternative approach is to learn the system’s dynamics directly in a latent space, without explicitly con-
structing the encoding function. This approach, introduced in [204] under the name of model learning,
consists of learning a model like

d

dt
s(t) = NN dyn(s(t),u(t);wdyn) t ∈ (0, T)

y(t) = NN dec(s(t);wdec) t ∈ (0, T)

s(0) = s0

(130)

where NN dyn and NN dec are neural networks with trainable parameters wdyn and wdec, respectively.
The latent variable s provides a compact and meaningful representation of the data, but it is not explicitly
constructed through an encoding function, as in the case of autoencoder–based methods. As we will see
later, this approach features several advantages over autoencoder–based methods.

The model is trained in an end–to–end manner, minimizing the prediction error of the observed
variable y, through the following optimization problem:

w∗
dyn,w

∗
dec = argmin

wdyn,wdec

NS∑
j=1

NT∑
i=0

∥∥∥ŷj
i −NN dec(s

j(ti);wdec)
∥∥∥2 , (131)

where sj(ti) represents the latent variable obtained by solving the ODE (130) for sample j at time ti.
The loss function implicitly depends on wdec, as sj(ti) depends on wdyn through the numerical solution
of (130). We note that the approach followed here uses a trajectory-based loss function, combined with
the decoder. We remark that, clearly, the derivative–based loss function is not compatible with the
presence of latent variables, since their trajectories are not known a priori.

Special attention must be given to the treatment of initial conditions, due to the lack of an encoder
that maps the initial condition y0 to the corresponding latent variable s0. In many cases, the samples
start from a common state: in this case, it can be assumed without loss of generality that s0 = 0.
Otherwise, the initial condition associated with each training sample can be treated as an additional
parameter to be optimized, along with the model parameters. During inference, the initial condition
is then estimated through data assimilation from the observation of some time instances of the system
outputs (see [206, 264] for more details).

Model learning with latent variables is particularly effective because the latent space is not fixed a
priori, as it is when using a pre–trained autoencoder, but is discovered simultaneously with the dynamics.
This leads to discovering a latent space that can not only accurately reconstruct the original system
variable but also predict the intrinsic dynamics. A two–step training, on the other hand, tends to favour
an encoding that is functional to the state reconstruction but may overlook features that are essential
for capturing the dynamics. Compared to end–to–end training with autoencoders, model learning with
latent variables is generally computationally convenient, as it does not require an encoder and thus has
fewer trainable parameters [209]. Moreover, the model learning approach with latent variables shows

80

great flexibility, for example, when the variable to be reconstructed has a non–uniform spatial sampling
(a situation where it is not possible to apply an encoder) as we will show in Sec. 4.3.5. Additionally,
the model learning approach with latent variables can naturally capture hidden dynamics and handle
non–Markovian systems (i.e., systems in which the state at time ti+1 may depend on other previous
states other than that at time ti), as we will see in the next paragraph.

Hidden dynamics discovery. Another context in which the methods described in Sec. 4.3.3 may
not be sufficiently descriptive is when the observable variables available for training do not contain enough
information to fully capture the system’s dynamics. In particular this is the case of non-Markovian
systems, where the system’s evolution depends not only on the observed variable y(t) and the input
u(t), but also on additional unobserved internal variables which encode the system’s history. In these
contexts, methods capable of discovering hidden dynamics, not directly observable in the data, are
necessary.

To exemplify, let us consider a system whose dynamics are governed by the following system of ODE
d

dt
z(t) = f(z(t),u(t)) t ∈ (0, T)

y(t) = g(z(t)) t ∈ (0, T)

z(0) = z0,

(132)

where z(t) ∈ RNz is an internal state variable not observable, y(t) ∈ RNy is the observable variable, and
u(t) ∈ RNu is the input. The evolution of the state variable z(t) is governed by the function f , while the
observable variable y(t) is obtained through the observation function g. In this context, we talk about
hidden dynamics discovery because the goal is to reconstruct the system’s dynamics from observations of
pairs (y(t),u(t)), without access neither to FOM equations (132) nor observations of the state variable
z(t).

Interestingly, the model learning method with latent variables can discover hidden dynamics of the
system without requiring any modifications. In fact, the model (130) can discover compact representa-
tions of the data, which can include hidden information, and learn the system’s dynamics directly in this
latent space. In this way, the model can capture the hidden dynamics of the system, even if not directly
observable, thus capturing non–Markovian effects.

Autoencoder–based methods, on the other hand, are not suitable, as the reduced state s is defined
by encoding the observed variable y, and therefore may not contain all the information necessary to
capture the hidden dynamics. In this context, one approach is to augment the state variable obtained
through the encoder with latent variables, aimed at capturing non–Markovian effects [246]. Another
approach is to use a time–delay embedding of the observed variable y(t), defined as ỹ(t) := (y(t),y(t +
∆tsampling), . . . ,y(t + (q − 1)∆tsampling)] and applying the autoencoder to this delay–augmented space
of dimensions q · Ny [16]. This approach is rooted in Takens’ theorem [233], which states that under
certain assumptions, the delay–augmented state has an attractor that is diffeomorphic (i.e., deformable
in a continuously differentiable manner) to the attractor of the underlying, although unobserved, state.
Clearly, this requires that the observations are sampled at constant intervals ∆tsampling.

4.3.5 Space-time operator learning

The methods described in Secs. 4.3.3 and 4.3.4 aim to learn the temporal dynamics of a system from a
dataset of trajectories. In many cases, systems of practical interest exhibit not only temporal but also
spatial dependence. Examples include models of fluids, structures, and populations, which are typically
described by PDEs whose solutions are functions of both space and time. In these cases, it is necessary
to learn the relationship between the spatial and temporal fields of the system and problem data. This
task is known as space-time operator learning.

Consider the following abstract spatio–temporal problem, defined in the spatial domain Ω ⊂ Rd and
in the time interval (0, T):

dz

dt
(x, t) = F(x, z,u) x ∈ Ω, t ∈ (0, T)

y(x, t) = G(x, z) x ∈ Ω, t ∈ (0, T)

z(x, 0) = z0(x)

(133)

81

where z(x, t) ∈ RNz is the state variable of the problem, which we generally assume to be unobservable,
while y(x, t) ∈ RNy is the observable output. Clearly, the case when the internal state is fully observable
is encompassed in this framework, as the particular case when the observation operator G is the identity
operator. Typically, we assume that, at each time, the solution of the problem belongs to a certain
functional space that we denote by Y, typically L2(Ω) or H1(Ω). Thus, we have y(·, t) ∈ Y for every
t ∈ (0, T). Additionally, u(t) ∈ RNu is a vector that collects the inputs (which for simplicity we assume
to depend on time but not on space), which can represent forcing terms, coefficients of the PDE, possibly
including the boundary conditions. Note that this also includes the case of inputs that are constant in
time, i.e., scalar parameters that influence the system’s dynamics. We denote by F a differential operator
that may include spatial derivatives with respect to the space variable x and incorporate in its definition
suitable boundary conditions. The goal of space-time operator learning is to learn the operator that
maps z(x, t) and u(t), for x ∈ Ω and t ∈ (0, T), to the spatio–temporal dynamics of y(x, t).

It is worth noting that space–time operator learning can be addressed by methods such as DeepONets
and Neural Operators, treating the time variable as if it were an additional spatial variable. However, as
already noted in Sec. 4.3.3, the time variable has a different nature compared to spatial variables, and it
can be advantageous to treat it differently, in order to learn models that are inherently consistent with
the arrow of time and invariant with respect to temporal translations. Additionally, using methods that
account for the special nature of the time variable can allow for time extrapolation and, in general, enjoy
better generalization properties.

Discretize in space and learn in time. A widely used approach for performing space–time
operator learning involves first semi–discretizing the solution in space, thus encoding the output y(·, t)
at a fixed time into a vector (typically of very high dimensionality) Y(t) ∈ RNh . In this way, the space–
time problem (133) is reduced to a time–dependent problem, which can be addressed using the methods
described in Sec. 4.3.3 and Sec. 4.3.4.

Space discretization is performed through a discretization operatorA : Y → RNh , where Nh ≫ 1 is the
dimension of the vector Y(t). The discretization operator can be constructed in various ways, depending
on the nature of the problem. Typically, it is constructed through the pointwise evaluation of the solution
on a spatial grid of nodes. Alternatively, it can be defined through the coefficients associated with the
expansion with respect to a set of basis functions, such as the Finite Element expansion reported in (7).
An alternative is to consider the coefficients associated with the expansion with respect to a Fourier basis,
which involves performing the discrete Fourier transform of the solution and considering the coefficients
associated with the transform. In any case, the result is a high-dimensional vector of dimension Nh that
represents the spatial solution at a fixed time. The subscript h refers to the characteristic size associated
with the discretization (e.g., the mesh element size for a grid–based discretization; the sampling period
in the case of the discrete Fourier transform).

Once the discretization operator A is defined, the space–time problem (133) is reduced to learning the
dynamics of the vector Y(t) = A(y(·, t)), using e.g. the methods described in Sec. 4.3.3 and Sec. 4.3.4.
Specifically, the discretized vector Y(t) is typically first encoded into a reduced variable s(t) using an
autoencoder [144, 246, 174] or POD [249], and then the dynamics in the reduced space are learned using
a time–dependent model. The output of the model is then decoded back into the high–dimensional space,
obtaining the predicted solution at a fixed time. Note that, in the case of autoencoder–based methods,
the autoencoder can be chosen in a way reminiscent of the spatial structure of the problem, for example
using a convolutional network [174, 246, 144]. However, this approach is confined to Cartesian grids on
simple–shaped domains. Generalizations to arbitrarily shaped domains can instead be based on graph
convolutional neural networks [253, 181]. The dynamics in the reduced space can be learned by using
either RNNs [151], LSTMs [160, 246, 249], neural ODEs [148], or the SINDy method, should one be
interested in learning an interpretable dynamics [48]. As an alternative, methods that do not account
for the arrow of time can be used to learn the dynamics in the reduced space, such as simple FFNNs [78]
or DeepONets [174].

The discretize in space and learn in time approach thus allows reducing the space–time problem
to a temporal problem, significantly simplifying the problem. However, this simplification could ignore
important information, particularly those related to the spatial structure of the problem. Additionally,
the semi–discretization in space can lead to high–dimensionality problems, which can be challenging to
handle by standard methods.

82

Latent Dynamics Networks (LDNets). The Latent Dynamics Networks (LDNets) method,
proposed in [209], is based on the idea of learning the spatio–temporal dynamics directly in a latent
space, without performing a spatial semi–discretization. Instead of discretizing the output field with
respect to a fixed grid and storing it as a high–dimensional vector, LDNets represent the field as a
continuous function. This function consists of a neural network (typically, a FFNN), which takes spatial
coordinates (e.g. x, y and z) as input while the output is the corresponding value of the field at those
coordinates. The field is evaluated at any point in space and is not limited to a predefined grid resolution.
This eliminates the trade-off between resolution and memory usage which affects grid–based methods.
Additionally, the neural network takes as additional input the latent state: the field is in this way
conditioned on (that is subject to) the latent state, meaning that for a fixed latent state, the output
field is represented as a continuous function of the spatial coordinates, but when the latent state varies,
the output field changes accordingly. This allows the latent state to capture the essential dynamics of
the system in a compact form, reducing the dimensionality of the problem while still enabling accurate
representation of complex spatio–temporal patterns. The LDNet model is defined as follows:

d

dt
s(t) = NN dyn(s(t),u(t);wdyn) t ∈ (0, T)

y(x, t) = NN dec(x, s(t);wdec) x ∈ Ω, t ∈ (0, T)

s(0) = s0

(134)

where NN dyn and NN dec are neural networks with parameters wdyn and wdec, respectively. The latent
variable s ∈ RNs represents a compact and meaningful representation of the spatial field. The LDNet
method can be seen as a generalization to the case of spatio–temporal problems of model learning with
latent variables (see Sec. 4.3.4): also in this case, the latent variable is not fixed a priori, as it is when using
a pre–trained autoencoder, but is discovered simultaneously with the dynamics, so it can also discover
hidden information that is not directly observable in the data. In this way, the LDNet model can capture
non–Markovian dynamics, as the latent variable can represent hidden information that influences the
system’s dynamics.

Training is performed through the following optimization problem, which simultaneously trains the
two neural networks:

w∗
dyn,w

∗
dec = argmin

wdyn,wdec

NS∑
j=1

Nobs∑
i=0

∥∥∥ŷj
i −NN dec(xi, s

j(ti);wdec)
∥∥∥2 , (135)

where sj(ti) represents the latent variable obtained by solving the ODE (134)1 for sample j at time ti,
and ŷj

i is the observed output corresponding to the pair (xi, ti), for i = 0, . . . , Nobs.
The continuous spatial representation allows capturing the spatial structure of the problem without

the need for semi-discretization, thus obtaining a mesh-less and resolution-invariant method of great
flexibility. Indeed, as can be seen from the loss function (135), the training does not require the training
data to be sampled on a fixed grid, but data with variable sampling between time instances and even
between samples can be used. Additionally, the ability to obtain the output at any point, on a query
basis, allows the use of stochastic training methods, thus lightening the computational burden associated
with training, which would not be the case if the decoder returned the entire batch of evaluations. It is
also important to note that the decoder–only nature of LDNets, combined with the continuous spatial
representation, allows LDNets to perform training working only in low–dimensional spaces: both NN dyn

and NN dec have typically low-dimensional inputs and outputs, and in any case independent of the
spatial resolution of the problem (associated with Nh, in the case where the data are generated through,
e.g., Finite Element simulations). This makes LDNets computationally efficient, easily scalable, and
especially – thanks to their parsimonious structure – very efficient at generalizing. Indeed, in the test
cases considered in [209], LDNets have shown greater accuracy compared to autoencoder–based methods,
with orders of magnitude fewer trainable parameters.

4.3.6 Foundation models for operator learning

Foundation models are generalist models that are pretrained on vast amounts of data extracted from
heterogeneous distributions. Subsequently, they can optionally be finetuned on a few task–specific sam-
ples. Pretraining allows them to exploit available non–specific data, and finetuning makes them adapt

83

Figure 40: (a) The scalable Operator Transformer scOT that is the backbone of Poseidon, (b) one of the
two blocks of the SwinV2 transformer, (c) regular and shift window partitions, (d) the all2all training
strategy: light–blue lines refer to the pairs with k = 0 and k̄ ≥ k, black lines refer to the pairs with k̄
given and k ≤ k̄.

to several downstream tasks. Foundation models can find fertile ground in the field of PDEs because
(i) different PDEs share features or kernels that can be learned in the pretraining phase, (ii) often,
the high–quality samples needed to train a specific PDE are few and these could be only used in the
finetuning phase, (iii) foundation models show a high capacity to generalize to unseen and (apparently)
unrelated PDEs.

Poseidon. Poseidon [104] is a foundation model, designed to learn PDE solution operators. Let us
consider the Initial Boundary Value Problem (2), let X ⊂ Lp(Ω;Rm) for some 1 ≤ p <∞ be a functional
space and u ∈ C([0, T],X) be the solution of (2). We are interested in looking for the solution operator
S : [0, T] × X → X such that u(t) = S(t, u0) is the solution of (2) at any time t ∈ [0, T]. Given a data
distribution µ ∈ Prob(X), the Operator Learning Task reads:

Given any initial datum u0 ∼ µ, find an approximation S∗ ≈ S to the solution operator S of
(2), in order to generate the entire solution trajectory {S∗(t, u0)} forall t ∈ [0, T].

The backbone of Poseidon, named scalable Operator Transformer (scOT) is a hierarchical multiscale
vision transformer based on SwinV2 [152] (see Sect. 3.2.4) and with lead–time conditioning, see Fig. 40.
ScOT is a U–Net style [212, 46] encoder–decoder architecture whose basic blocks are Shifted Windows
Version2 (SwinV2) transformer blocks (see Sect. 3.2.4). U–Nets are characterized by a downscaling
phase (in the encoder) and an upscaling phase (in the decoder). The downscaling is implemented by
patch mergings, while upscaling is by patch expansions. Patches are the basic units into which an image
is split up and play the role of tokens in transformer architecture. We recall that SwinV2 considers two
different partitions of the image in windows (a window is a cluster of patches), one regular and the other
shifted to the regular, and then it applies self–attention models to each window, locally. Alternating
between regular and shifted partitions ensures that adjacent patches belonging to different windows can
relate to each other during the attention mechanism. Indeed, such an interaction would be absent if only
the regular partition were used. Moreover, ConvNeXT blocks (i.e., deep CNNs with GELU6 activation
function) connect the encoder and decoder at intermediate points.

Following [178], to enable continuous–in–time evaluation, scOT replaces all standard normalization

6GELU(x) = x
∫ x
−∞ f(t) dt, where f(t) is the normal probability density function. It is approximated by the formula

GELU(x) = 0.5x (1 + tanh[
√
2π (x+ 0.044715x3)])

84

layers inside the SwinV2 blocks with the so–called lead–time conditioned layer norm

LNα(t),β(t)(v)(x) = α(t)⊙ v(x)− µv(x)

σv(x)
+ β(t), (136)

where µv and σ2
v are the mean and variance of v, while α(t) = α1t + α2, and β(t) = β1t + β2 are affine

functions in t with αi, βi learnable parameters.
Poseidon is based on a novel training strategy, named all2all, in which the ground truth training

data are given in the form of trajectories and the loss function is defined by exploiting the semi–group
property satisfied by the solution operator S. More precisely, let {S(tk, u0,i)} (with k = 0, . . . ,K and
ai ∼ µ, i = 1, . . . ,M) be the ground truth training data. Denoting with θ the array of the learnable
parameters, the loss function is defined by

L̂(θ) =
1

MK̂

M∑
i=1

K∑
k̄=0

k̄∑
k=0

∥S(tk̄ − tk, ui(tk))− S∗θ (tk̄ − tk, ui(tk))∥pLp(Ω), (137)

where ui(tk) = S(tk, u0,i) (approximately) and K̂ = (K + 1)(K + 2)/2 is the total number of pairs (k, k̄)
with k ≤ k̄. In fact, (137) exploits the fact that the solution operator S of (2) has the semi–group
property

u(t̄) = S(t̄, u0) = S(t̄− t, u(t)) = S(t̄− t,S(t, u0)), (138)

for any t, t̄ ∈ [0, T] and for any initial condition u0. We notice that, at each time step tk̄, all the previous
values ui(tk) with k ≤ k̄ are used to evaluate the loss.

In [104], the data for the pretraining have been produced by solving both incompressible Navier–
Stokes and compressible Euler equations with periodic boundary conditions on Ω = [0, 1]2, along the
time interval (0, 1). Two and four different types of initial conditions have been considered for the
Navier–Stokes and Euler equations, respectively, to represent a large variety of dynamics. Navier–Stokes
equations have been solved by Fourier Spectral methods on a grid of 128× 128 frequencies and 21 time–
steps. Euler equations have been solved by a high–order finite volume scheme on a grid of 512 × 512
cells, (later downsampled to 128× 128) and 21 time–steps.

The pretraining dataset contains 77840 trajectories, 720 of which are for the test set and 1440 for the
validation set. Each trajectory is uniformly sampled at eleven time–steps (with every other time–step
selected).

Fifteen downstream tasks have been solved, going from Navier–Stokes and compressible Euler equa-
tions with periodic boundary conditions (like in the pertaining step), to partially or totally new physics.
Among the new physics, they considered: Navier–Stokes equations enriched with an advection–diffusion
equation modelling the transport of a passive tracer; Navier–Stokes equation with a forcing term; com-
pressible Euler equation with gravitation; the wave equation with homogeneous Dirichlet boundary
conditions; the Allen-Cahan equation for phase transition; the steady state compressible Euler equation
around an airfoil by using a non–cartesian mesh; the Poisson equation with homogeneous Dirichlet condi-
tions and Gaussian bumps forcing term; the Helmholtz equation in the frequency domain with Dirichlet
boundary conditions.

The downstream tasks have been solved with finite difference schemes, finite volumes, finite elements,
or Fourier spectral methods. From 1260 to 20000 trajectories have been produced to finetuning each
task.

To finetune the pretrained foundation model for any downstream task, the vector of learnable param-
eters is split into two parts. The parameters associated with the initial embedding and final recovery are
randomly initialized and trained, while those associated with the U–Net (SWin2, patch merging, patch
expansion, and ConvNeXt layers) are initialized by transferring the corresponding parameters from the
pretrained model.

Numerical results show that Poseidon can learn effective representations from a small set of PDEs
during the pretraining and generalize well to unseen and unrelated physics downstream [104].

In–Context Operator Networks (ICON). In–context learning refers to the ability of a generative
language model to learn or perform a specific task without re–training or fine–tuning, but solely by
specifying the context, which is the description of the task jointly with some examples related to that
task [66].

85

Figure 41: The neural network architecture of ICON

In [259], the idea of in–context learning has been extended to learn operators that underlie differential
equations. An In–Context Operator Newtowrks ICON model is a transformer encoder–decoder architec-
ture [243] (see Sect. 3.3.2 and Fig. 22) designed to learn operators acting on mathematical functions.
Functions are expressed discretely as sets of key–value pairs, where, keys are the input (selected values of
the independent variables) and values are the outputs (corresponding values of the dependent variables)
of the function.

Inputs and outputs of the operators to be learned are named conditions and quantities of interest
(QoIs), respectively. For instance, in a forward differential problem, conditions are the coefficient func-
tions, or the initial/boundary conditions, while the QoI is the problem solution. In an inverse problem,
the QoI could be a parameter function, while the solution of the differential equation, or even an observed
variable, is the condition.

A pair of one condition and the corresponding QoI is called example, while the condition that we want
ICON to return the corresponding QoI is named question condition. A collection of examples plus the
question condition compose a prompt of an ICON model. Since the QoI is a function, we must provide
the model with a set of queries, which are the keys with which we want to evaluate the QoI returned by
the model.

The transformer encoder takes the prompt as an input and returns the operator and question em-
bedding (i.e. the internal representation of both the learned operator and question), which, jointly with
the queries, are the inputs for the transformer decoder. Finally, the decoder provides the values of the
question QoI (see Fig. 41).

The ICON architecture can process input sequences of any length and a variable number of examples.
Moreover, it accepts key–value pairs of different lengths for each condition/QoI function.

Training data can contain numerical solutions to different kinds of differential problems. At each
iteration of the training process, a random batch of prompts, queries, and labels is built, and the batch
can contain data relative to different operators. The loss function is the Mean Square Error between
the NN’s answers and the labels. The training set presented in [259] includes linear first–order ODEs,
a damped oscillator, the Poisson equation, and linear and non–linear reaction–diffusion equations, all as
forward and inverse problems in one variable, as long as a mean–field control problem in one and two
dimensions.

After the training, the NN is used to predict the question QoI, based on the question condition and
a few examples describing the operator. In a forward pass, ICON learns the operator from the examples
and applies it to return the question QoI without updating its weights or fine–tuning.

Numerical results reported in [259] show that ICON can generalize to either finer or smaller meshes
than those used with respect to the size of the key–value pairs used for the training, as well as to operators

86

outside the distribution of operators observed during the training. Moreover, it can learn operators of
new forms that were never seen in training data (for instance, obtained by adding a linear term to known
operators).

4.4 Topics related to Scientific Machine Learning not covered in this paper

The field of SciML is rapidly expanding, with new research directions continuously emerging. We have
decided to make a selection of the topics covered in this document, without any intention of labelling
these topics as more important than others, but rather following a criterion of thematic coherence. As
done in Section 3.4, here we also provide a quick glance at topics not covered in this document, so that
interested readers can explore them independently. Indeed, the strategies that enable the combination of
data–driven and physics–based methods are virtually limitless, both from a methodological perspective
and in relation to the specific thematic or application.

Among the emerging topics in the field of SciML, we mention the data–driven discovery of constitutive
laws, which aims to identify complex material relationships from data [133, 173, 76, 230, 147]. A field
of great interest for many application area is learning the solution operators of PDEs accounting for
the variability of the computational domain [128, 208, 261]. Another research direction concerns the
acceleration of traditional scientific computing algorithms, where machine learning techniques are used
to improve computational efficiency, e.g. by learning artificial viscosity models or optimal stabilization
parameters [146, 254, 45]. Additionally, SciML for linear algebra and domain decomposition, [103, 134,
11, 44], represents an area of emerging interest. Finally, we mention the learning of correction terms with
respect to existing physical models aimed at improving the accuracy of models through the integration
of empirical data [69], and the interplay between machine learning and control theory [213, 214].

5 SciML for the iHeart simulator

In this section, we apply some of the SciML techniques presented in this work to computational cardiology,
a field of great socio-economic relevance which poses numerous challenges for both the mathematical and
computational sides. In Sec. 5.1 we first present the integrated heart model that describes in detail
the functioning of the human heart, and show how it can be used to simulate the heartbeat and its
interactions with the rest of the body. In Sec. 5 we then show how SciML techniques can be used
to accelerate its numerical resolution and support sensitivity analysis and patient–specific calibration
procedures, ultimately addressing questions of research and clinical relevance. The numerical simulations
presented in this section were obtained thanks to lifex, a high–performance software library for solving
multiphysics and multiscale problems, particularly specialized in computational cardiology [2, 3, 5, 42].

5.1 The integrated heart model

The heart is a muscular organ consisting of four chambers (two atria on top and two ventricles below)
and functions as the body’s pump, making blood circulate throughout the body via the circulatory
system. Essential for sustaining life, it works tirelessly, contracting and relaxing in a rhythmic cycle to
deliver oxygen–rich blood to tissues and organs and to expel waste products such as carbon dioxide and
metabolic waste.

For every second of our life, a spontaneous electrical stimulus starts at the sinoatrial node, a small
cluster of specialized cells located in the right atrium of the heart that serves as a natural pacemaker
(see Fig. 42). This stimulus generates an electric current that propagates in every cell of the heart, the
cardiomyocytes, first spreading in the upper part, the atria, and then, after reaching the atrioventricular
node, located between atria and ventricles, in the lower part, the ventricles. The electric current is due
to the movement of several ions (mainly sodium, calcium, and potassium) across cells’ membrane and
the whole phenomenon, known as action potential, is studied by the branch of cardiac electrophysiology.

Among the various ions that come into play, calcium induces a force (named active force) in ev-
ery single cardiomyocyte, making the latter relax and contrive synchronously. Cardiomyocytes can be
thought of as one–dimensional microscopic structures which deform longitudinally and create a train of
waves that propagate from one cardiomyocyte to the other. Thanks to a transmission process across
different space–time scales, the force generated in the cardiomyocytes induces a deformation of the entire

87

Figure 42: The heart, the cardiac muscle’s cells (cardiomyocytes), and a sarcomere, the fundamental
unit of a muscle’s striated tissue, responsible for its contraction

myocardial tissue providing the contraction of the ventricles and atria. This third important process is
named tissue mechanics.

Due to the presence of blood in the four chambers, tissue mechanics induces blood dynamics: from
the right atrium the blood moves into the right ventricle crossing the tricuspid valve and, thanks to the
pulmonary circulation, it reaches the lungs to be purified; then it re–enters the left atrium, moves into
the left ventricle crossing the mitral valve, and finally, it is injected into the aorta to reach every cell of
the body through the systemic circulation. The valve dynamics is regulated by the blood dynamics, in
particular by the different values the blood pressure assumes inside the chambers and the large arteries,
and by the tissue mechanics.

Besides reaching all the cells of the body, the oxygenated blood must also reach the cells of the
cardiac muscle to make it function properly and maintain its continuous pumping action. This process,
known as heart’s perfusion, occurs thanks to the presence of the coronary arteries which are supplied by
ascending aorta.

Finally, cardiac electrophysiology is combined with the propagation of the electric signal through the
torso to compute high–quality electrocardiograms, with the ultimate goal of validating the calibrated
models.

The complex interactions among all the processes listed above are schematically represented in Fig.
43.

Modelling cardiac electrophysiology. The driver of the cardiac function is electrophysiology, i.e.,
the result of chemical and electrical processes taking place at different spatial scales, from the subcellular
to the whole organ scale.

The propagation of action potentials and the excitation of cardiac cells throughout the whole cardiac
tissue is modelled by either the monodomain or bidomain partial differential equations. These equations
are complemented by appropriate ionic models that provide information on the ionic currents and sub–
cellular mechanisms responsible for excitation.

The bidomain model complemented with suitable ionic models [54, 187] is the richest mathematical

88

calcium

deformation

flow,
pressure

deformation

velocity
stresses

Electro-
physiology

Force
generation

Torso
potential

Tissue
mechanics

Myocardial
perfusion

Valve
dynamics

Blood
dynamics

External
circulation

Figure 43: Interactions among fundamental processes occurring in the cardiac function

model describing cardiac electrophysiology and reads as follows, where Ω̂ ⊂ R3 is the space occupied by
the heart muscle at rest. We look for the extracellular transmembrane potential ve, the transmembrane
potential v (that is the difference between the intracellular potential vi and the extracellular one) and the
ionic variables zion (describing ion channels, concentrations, or phenomenological variables) such that

χCm
∂v

∂t
−∇ ·

(
JF−1DiF

−T∇(v + ve)
)

+ χIion(v, zion) = Iapp(x, t) in Ω̂× (0, T)

−∇ ·
(
JF−1DiF

−T∇v
)
−∇ ·

(
JF−1(Di + De)F

−T∇ve
)

= 0 in Ω̂× (0, T)

∂zion
∂t

= Φion(v, zion) in Ω̂× (0, T)

v(x, 0) = v0(x), zion(x, 0) = zion,0(x), in Ω̂.

(139)

The parabolic and elliptic equations in (139) are supplemented with homogeneous Neumann boundary
conditions to guarantee uniqueness of solution. The coefficient Cm is the capacitance per unit area,
while χ is the surface–to–volume ratio of the membrane. F = I+∇d is the deformation gradient tensor
depending on the displacement d of the myocardium (which is determined by solving the mechanics
model) with J = det(F), while Di and De are the intracellular and extracellular conductivity tensors,
respectively, that characterize the electrical properties of the tissue and are responsible for the correct
propagation of the action potential. They are anisotropic to take into account that the electrical signal
propagates with a greater velocity along the direction of muscle fibers compared to the other orthogonal
directions [182, 4] and are defined by

D⋆ = σ⋆
f

Ff0 ⊗ Ff0
|Ff0|2

+ σ⋆
s

Fs0 ⊗ Fs0
|Fs0|2

+ σ⋆
n

Fn0 ⊗ Fn0

|Fn0|2
, ⋆ ∈ {i, e}. (140)

f0, s0, and n0 are the fibers, sheets, and cross–fibers directions, while σ⋆
f , σ

⋆
s , and σ⋆

n are the corresponding
conductivity coefficients along the three directions.

The mathematical expressions of the function Φion(v, zion) (which describes the dynamics of gating
variables and ionic concentrations) and the ionic current Iion(v, zion) strictly depend on the choice of the
ionic model [239, 56]. Finally, Iapp is the external current triggering the action potential.

One of the most important ionic species in zion is the intracellular calcium concentration [Ca2+]i, a
pivotal factor in the excitation–contraction coupling that triggers contractile force generation by muscle
cells.

Modelling active force generation. Cardiomyocytes are organized in sarcomeres, cylinder–shaped
elements composed of two families of thick and thin filaments that are made of proteins (see Fig. 42,
(c)). A particular role is played by the proteins myosin and actin: they belong to the two different types

89

of filaments and, as a result of the action of calcium, they interact making the filaments mutually slide
and causing contractions and elongations of sarcomeres [123, 116, 117].

At any time t during the heartbeat, force generation models can be written in the general form

dzact
dt

= Φact

(
zact, [Ca2+]i, SL,

d SL

dt

)
, Ta = Ψact(zact), (141)

where zact denotes a vector collecting the state variables associated with the dynamics of the contractile
proteins, [Ca2+]i is the local calcium concentration, SL is the sarcomere length, while Ta denotes the
generated active force per unit area. In [198, 200, 201, 203] a highly detailed model that explicitly
describes sub–cellular mechanisms at the microscale level driven by both calcium concentration and
sarcomere length has been proposed and studied extensively.

Modelling cardiac mechanics. The cardiomyocytes’ contraction and the pressure exerted by the
blood onto the endocardium induce during each heartbeat large deformations of the heart muscle, which
can be up to a few centimeters. Denoting by Ω̂ ⊂ R3 the space occupied by the heart muscle at rest, the
myocardium deformation is modelled by solving the momentum balance equation whose unknown is the
displacement d of the tissue with respect to the rest position:

ρ
∂2d

∂t2
−∇ ·P(d, zact) = 0 in Ω̂× (0, T), (142)

where ρ is the mass density of the body. The first Piola–Kirchhoff stress tensor P models the stresses
acting on the body and embeds both active and passive mechanical properties

P(d, zact) = Pact(d, zact) + Ppass(d). (143)

The active part Pact(d, zact) directly depends on the active force Ta and must be constitutively defined
by suitably upscaling the microscopically generated stress at the level of the sarcomere. The passive part
Ppass(d) is related to the passive mechanical response of the heart, it is obtained as the derivative of
a strain energy function that characterizes the mechanical properties of the material and incorporates
orthotropic hyperelastic constitutive laws [75, 205, 240, 92].

The displacement d of the myocardium affects cardiac electrophysiology through the so–called electro–
mechanical feedback by entering the definition of the conductivity tensors Di and De (indeed, the defor-
mation gradient tensor F involved in the definition (140) refers to the displacement d solution of (142)),
as well as the blood dynamics through the fluid–structure interaction between the muscle and the blood.

To guarantee the well–posedness of the momentum balance equation (142), suitable initial conditions

must be defined in Ω̂ and boundary conditions must be supplemented on the external epicardium and
internal endocardium surfaces of the heart muscle. On the epicardium, a generalized visco–elastic Robin
boundary condition can be imposed to take into account a frictionless contact with the pericardium and
surrounding tissues [41], while the boundary condition on the endocardium arises from the interaction
with the blood dynamics inside the four chambers of the heart.

Modelling blood and valves dynamics. The heartbeat is the result of the coordinated interaction
of the four chambers, involving two primary phases: the ventricular systole and the ventricular diastole.
The ventricular systole includes an isochoric phase and a subsequent ventricular contraction phase,
which leads to the opening of aortic and pulmonary valves when ventricular pressure surpasses aortic and
pulmonary pressures and facilitates blood ejection into the systemic circulation. The ventricular diastole,
or relaxation phase, includes a second isochoric phase due to the closure of all heart valves, followed by
the opening of mitral and tricuspid valves, ventricular expansion, and gradual filling. This phase also
encompasses atrial systole, contributing to ventricular filling. These processes are described using the
incompressible Navier–Stokes equations in a moving domain by following the Arbitrary Lagrangian–
Eulerian (ALE) framework [41], while the Resistive Immersed Implicit Surface (RIIS) method is used to
incorporate cardiac valves [266, 265, 74, 79, 80].

More precisely, let Ω̂f denote the fluid dynamics domain in its reference configuration (including the

four chambers of the heart as well as the first tract of the main vessels connected to the heart) and Σ̂ be
the interface between the reference fluid domain (chambers) and the structure domain (muscle). First,

90

we define the displacement dALE = dALE(t) of the fluid domain at time t ∈ (0, T) as the solution of the
non–linear equation

−∇ ·PALE(dALE) = 0 in Ω̂,

in which an elastic constitutive law is used to define the tensor PALE [112] and which is supplemented

with the adherence condition between blood and muscle dALE = d on Σ̂ (d is the solution of (142)).
Then, denoting by uALE = ∂dALE/∂t the rate of deformation of the fluid domain and by Ωt

f the fluid

dynamics domain at time t, obtained as the image of the reference domain Ω̂f through the map Lf :
(x̂, t)→ x = x̂ + dALE, the Navier–Stokes equations ρf

[
∂u

∂t
+ ((u− uALE) · ∇)u

]
−∇ · σf(u, p) + R(u,uALE) = 0 in Ωt

f × (0, T)

∇ · u = 0 in Ωt
f × (0, T)

(144)

provide the velocity u and the pressure p of the fluid, where ρf is the density of the fluid, and σf is the
Cauchy stress tensor. The term

R(u, uALE) =
∑
k∈V

Rk

εk
δεk

(
φt
k(x)

)
(u− uALE − uΓk

)

is a resistive term that aims at modelling the effects of valves’ dynamics on the blood at the macroscopic
level. More precisely, V is the set of indices of heart valves, Rk are resistance coefficients, εk valve
half–thicknesses, δεk smoothed Dirac functions with φt

k(x) the distance with a sign from the surface Γk

of the valve, and uΓk
the velocity of the valve with respect to the moving domain Ωt

f .
The coupling between the blood and the muscle is completed by imposing the kinematic condition

u ◦ Lf =
∂d

∂t
on Σ̂,

and the dynamic condition
σs(d, zact) = σf(u, p) on Σ̂,

where σs is the Cauchy stress tensor related to the first Piola–Kirchhoff tensor P. This last condition
models the stress exerted on the myocardium by the blood contained in the chambers and it is used as
a boundary condition to close the system (142).

Inlet and outlet conditions for the Navier–Stokes equations (144) can be provided by solving the
blood dynamics in the circulatory system external to the heart.

Modelling blood circulation. Several blood circulation models, with different degrees of accuracy,
have been proposed in the literature. These range from three–dimensional fluid–structure interaction
models [179, 187, 231, 232, 245] to zero-dimensional models, also known as lumped parameters models,
whose variables only depend on time, but not on spatial coordinates [47, 82, 33, 110, 187, 205]. In
general terms, these models, which are derived by applying the principles of conservation of mass and
momentum, are written as systems of Ordinary Differential Equations, in the form

dzcirc
dt

= Φcirc(zcirc, t), (145)

where the vector zcirc(t) ∈ RNcirc collects the pressure and volumes in different compartments of the
circulatory system.

The coupling between the zero–dimensional model of blood circulation and the three–dimensional
model of the heart is achieved by imposing that the volume enclosed by the ventricular cavity, when the
domain Ω̂ is moved by the displacement d, equals the one predicted by the zero–dimensional circulation
model [205, 183].

Modelling the perfusion. The cardiac perfusion process represents blood and oxygen supply via
blood flow in the coronary tree, from epicardial coronary arteries to capillaries. The main coronary
arteries (those that are visible at the clinical level by imaging) are comparable to the organ scale and

91

are modelled by 3D incompressible Navier-Stokes equations, while the intramyocardial coronaries and
microcirculation, which are invisible at the imaging level, are comparable to the cellular scale and are
modelled as a porous media by a multi–compartment Darcy model [118, 65, 267].

Let ΩC ⊂ R3 denote the coronaries domain, which we suppose non–deformable and composed of J
main coronaries, ΩM ⊂ R3 the myocardial muscle, which we decompose in J non–overlapping subdomains
Ωj

M such that each main coronary feeds exactly one of them, and Γj the outflow boundary of the coronary
j ∈ {1, . . . , J}. The multi–compartment Darcy model [55] consists of three coexisting Darcy equations
in the whole myocardium ΩM, each of one characterized by a different permeability tensor Ki and
corresponding to a different length scale of capillaries. The first compartment is the one upstream and
is characterized by a volumetric source g1 that, by enforcing mass conservation, should be provided by
the outgoing coronary flow rate:

g1 =

J∑
j=1

χΩj
M

|Ωj
M|

∫
Γj

u · n,

where χΩj
M

denotes the characteristic function of the subregion Ωj
M. Always by enforcing mass conserva-

tion, the intermediate compartments feature null sources and sinks, while the farthest away compartment
(modelling the microvascolature) shows a sink volumetric term that models the coronary venous return.
By imposing a prescribed flow rate at the coronaries inflow and defective outflow conditions on Γj for
the Navier-Stokes equations [244], the coupled system reads:

ρf

(
∂u

∂t
+ (u · ∇)u

)
+ σf(u, p) = 0 in ΩC

(σf(u, p)n) · n +
1

αj

∫
Γj

u · n =
1

|Ωj
M|

∫
Ωj

M

pM,1 on Γj

uM,i + Ki∇pM,i = 0, i = 1, 2, 3 in ΩM

∇ · uM,1 = g1 − β1,2(pM,1 − pM,2) in ΩM

∇ · uM,2 = −β2,1(pM,2 − pM,1)− β2,3(pM,2 − pM,3) in ΩM

∇ · uM,3 = −γ(pM,3 − pveins)− β2,3(pM,3 − pM,2) in ΩM,

uM,i · n = 0, i = 1, 2, 3 on ∂ΩM,

where u and p are the velocity and pressure of the blood in the coronaries, uM,i and pM,i are Darcy
velocities and pressures in the compartments i ∈ {1, 2, 3}. The coefficients αj are the conductances
(supposed to be dependent on the perfusion region), βik ≥ 0 represent the inter–compartment pressure–
coupling coefficients, and in the last equation we have accounted for the coronary venous return through
the venous pressure pveins, with γ a suitable coefficient [65].

Modelling torso potential. Physics–based computational models of the cardiac function must
accurately simulate the patient’s electrophysiology to offer predictive support for clinical use. Validation
of the calibrated model on a specific patient also includes comparing the calculated electrocardiogram
(ECG) and the measured ECG. For this purpose, it is mandatory to reproduce the ECG waveform to a
high–quality standard and such a goal can be achieved by considering myocardial displacement in ECG
generation, i.e., by combining a cardiac electromechanical model with a simulation of the action potential
in the torso, and even, with the simulation of torso deformation induced by the myocardial displacement
[36, 83, 262].

Modelling the generation of electrophysiological clinical output typically involves an electrophysiology
solver (like, e.g., the bidomain model (139)) and a model, like an elliptic equation, to calculate the ECG
starting from the electrical signal propagation through the torso. Let us denote by ΩH ⊂ R3 the
computational domain corresponding to the heart muscle, by ΩT the surrounding torso domain, and by
Γ = ∂ΩH ∩ ∂ΩT their common interface. Denoting by DT the isotropic diffusion tensor in the torso, at
each time t ∈ (0, T) the electric potential vT in the torso is computed by solving the coupled system

electrophysiology model (139) in ΩH

−∇ · (DT∇vT) = 0 in ΩT

vT = ve on Γ
(DT∇vT) · n = (De∇ve) · n on Γ,

(146)

92

where ve is the extracellular potential in the heart muscle and De the extracellular diffusivity tensor
introduced in (139). Whether the displacement of the torso should be considered, (146) should be
enriched with an elastic model that provides the displacement dT of the torso, which, in turns, would
allow computing the corresponding deformation gradient FT (with JT = detFT) to replace DT in (146)
with JTF

−1
T DTF

−T
T [262].

5.2 Multifidelity PINNs for the estimation of ionic parameters

The theoretical framework of multifidelity PINNs, introduced in Section 4.2.1, provides a robust method-
ology for parameter estimation in systems governed by Ordinary Differential Equations (ODEs). This
approach is particularly relevant in cardiac electrophysiology, where estimating ionic parameters is cru-
cial for accurately modelling the electrical behaviour of cardiac cells. In this subsection, we present an
application of multifidelity PINNs to the Bueno-Orovio (BO) ionic model, which captures the dynamics
of cardiac cellular electrophysiology [207].

The Problem. The BO model describes the temporal evolution of the transmembrane potential
u(t) and the gating variables v(t), w(t), and s(t) through a system of non–linear ODEs:

du

dt
= −(Ifi + Iso + Isi) + Iapp

dv

dt
=

(1−H(u− θv))(v∞ − v)

τ−v
− H(u− θv)v

τ+v
dw

dt
=

(1−H(u− θw))(w∞ − w)

τ−w
− H(u− θw)w

τ+w
ds

dt
=

1

τs

(
1 + tanh(ks(u− us))

2
− s

)
.

(147)

where the ionic currents are defined as:

Ifi = −vH(u− θv)(u− θv)(uu − u)

τfi
,

Iso =
(u− uo)(1−H(u− θw))

τo
+

H(u− θw)

τso
,

Isi = −H(u− θw)ws

τsi
.

(148)

Here, H(·) is the Heaviside function, and the parameters τfi, τ±v , τ±w , τs, and others govern the dynamics
of the ionic currents and gating variables. Accurately estimating τfi is critical, as it directly influences
the action potential shape and duration. Note that, in this context, the dynamics depend solely on time,
as spatial variability is not considered.

Data generation. To generate the training dataset (whose input is the independent variable t and
the outputs are the values of both the transmembrane potential and gating variables at time t), we
employ a numerical solver based on the Finite Difference method to approximate the solution of the BO
model. The solver uses a time step of ∆t = 0.1 ms and simulates up to a final time of T = 0.8 s. The
resulting transmembrane potential u(t) is then subsampled at intervals of 25 ms, and Gaussian noise
with zero mean and standard deviation σ is artificially added to the data. In addition to measurements
of the transmembrane potential, we include data for the gating variables v(t), w(t), and s(t). However,
since acquiring these measurements is typically more challenging in practice, they are sampled much less
frequently, with one data point collected every 0.3 s. Further information on the dataset generation are
available in [199].

Methodology. We address the problem of identifying the parameter τfi starting from measurements
of the transmembrane potential u(t) and the gating variables v(t), w(t), and s(t). According to the
notation of Sec. 4.2.1, we have P = 1, that is a single unknown physical parameter, namely γ = τfi.
We solve this parameter estimation problem using both the standard PINN approach (Eq. (93)) and

93

the MPINN approach (Eq. (96)). As the differential problem at hand has four unknowns (u, v, w, s), we
employ a fully connected neural network with four output neurons, each corresponding to an unknown.
The input consists instead of the time variable t, namely the independent variable of the differential
problem (147). Hence, we will denote by uNN (t;w), vNN (t;w), wNN (t;w) and sNN (t;w) the four
output neurons of the fully connected NN, where w represents the network trainable parameters. Having
four unknowns, the data-fitting term in the loss function is also given by the sum of four terms:

Lobs(w) =
1

Nobs,u

Nobs,u∑
i=1

|uobs
i − uNN (tobs,ui ;w)|2

+
1

Nobs,gat

Nobs,gat∑
i=1

|vobsi − vNN (tobs,gati ;w)|2

+
1

Nobs,gat

Nobs,gat∑
i=1

|wobs
i − wNN (tobs,gati ;w)|2

+
1

Nobs,gat

Nobs,gat∑
i=1

|sobsi − sNN (tobs,gati ;w)|2

where tobs,ui for i = 1, . . . , Nobs,u are the time instants where observations of the transmembrane potential

are available, while tobs,gati for i = 1, . . . , Nobs,gat are the times where observations of the gating variables
are available. Similarly, the physics–informed term Lphys(w, γ) incorporates the residuals of all the
equations of the system (147), while the BC contribution is missing. For additional details, we refer the
interested reader to [207].

For the PINN setup, we use a feed–forward neural network (FFNN) with three hidden layers, contain-
ing 32, 24, and 16 neurons, respectively. In the MPINN framework, the high-fidelity correction network
NNH adopts the same architecture, while the low–fidelity parametric emulator uses three hidden layers
with 32, 16, and 8 neurons. Note that the configuration of decreasing layer sizes, commonly used in
practice as an alternative to constant–sized layers or layers that first increase and then decrease, is not
critical in this context, as the results would not vary significantly. The low–fidelity dataset consists of
75 numerical simulations, subsampled at 10 ms intervals.

Given the non–linear nature of the BO model, a one-shot training approach starting from a ran-
dom initialization of the NN parameters often leads to solutions far from the global minimum. If the
initial guess for the solution is significantly incorrect, the physics–based term in the loss function can
inadvertently drive the parameter estimation away from its true value.

To fix this shortcoming, both the PINN and MPINN methods employ a staged training strategy,
adjusting the relative contributions of the loss components over different phases. Initially, we perform
500 epochs with αPDE = 10−6, effectively treating the problem as a data–fitting task while using a
small physics weight to prevent the residuals from diverging. Once the data is reasonably well-fitted,
we increase the contribution of the physics-informed term, setting αPDE = 10−3, and perform 10 000
additional training epochs. For the MPINN method, an intermediate step is introduced between these
phases: 500 iterations are dedicated solely to optimizing the unknown parameter τfi, leveraging the
low-fidelity parametric map. This intermediate optimization step is computationally inexpensive, as it
involves adjusting a single variable, and provides a more informed initial guess for the parameter.

Results and Discussion. To evaluate the performance of the PINN and MPINN methods, we
conduct 10 independent training runs for each approach, using different random initializations of the NN
parameters. The experiments are repeated for two noise levels: σ = 0.05 and σ = 0.025. Table 3 reports
the relative errors in estimating τfi for the two methods under both noise conditions.

The results clearly demonstrate the superior performance of the MPINN approach, which achieves
significantly lower estimation errors for both noise levels. By leveraging the low-fidelity model as a prior,
the MPINN method not only improves accuracy but also accelerates convergence compared to standard
PINNs.

This study highlights the potential of multifidelity PINNs in parameter estimation problems, par-
ticularly in scenarios with noisy and sparse data. The ability to integrate information from multiple

94

Noise level (σ) 0.05 0.025
Error (PINN) 0.216 0.108
Error (MPINN) 0.013 0.005

Table 3: Comparison of average relative errors in the estimation of τfi between PINN and MPINN
methods for different noise levels.

fidelities, and to leverage the prior given by a surrogate model, offers a robust approach to tackling
highly non–linear parameter estimation problems, such as those encountered in cardiac modelling.

5.3 Physics–aware NNs for the inverse problem of electrocardiography

Electrocardiographic imaging (ECGI) is a novel technique to measure cardiac electric activity by exploit-
ing both body surface signals and thoracic CT–scans. ECGI is more accurate than solely plain body
surface signals like electrocardiograms (ECG) or body surface potential maps. In particular, the imaging
component allows us to determine the patient–specific organs’ geometries.

The problem. The mathematical model of ECGI is the so–called inverse problem of electrocardio-
graphy, its final goal is to look for the epicardial potential field v which generates body surface signals
y(v) as close as possible to some target ones z in the least–squares sense. More precisely, let ΩT ⊂ R3

be the computational domain corresponding to the torso, ΓB the body surface, Σ ⊂ ΓB the portion
of the body surface where measurements z are available, and ΓH the epicardium surface (see Fig. 44).
Given the epicardial potential v ∈ H1/2(ΓH) at a certain time t ∈ (0, T), let y(v) ∈ H1(ΩT) be the torso
potential, i.e., the solution of the forward elliptic problem −∇ · (DT∇y(v)) = 0 in ΩT

y(v) = v on ΓH

∇y(v) · nB = 0 on ΓB ,
(149)

where DT is the electrical conductivity tensor in ΩT , and nB is the outward normal unit vector to ΓB .
The inverse problem of electrocardiography reads: given a function z ∈ L2(Σ) representing the measured
electric potential on the body surface, look for the epicardial potential uH ∈ H1/2(ΓH) such that

uH = argmin
v∈H1/2(ΓH)

[
1

2

∫
Σ

|y(v)− z|2dσ + R(v)

]
(150)

and y(v) is the solution of (149). R(v) is a suitable regularization term which ensures the problem (150)
is well–posed and includes a penalization coefficient α which is hard to tune. α should be large enough
to guarantee that R(v) is effective, but at the same time, too large values provide inaccurate solutions.
Moreover, solving (149) requires evaluating the electric conductivity tensor DT which can be inferred
only through thoracic CT–scans, implying radiations on patients.

Methodology. In [236], the authors designed a physically informed deep learning model of autoen-
coder type, named Space Time–Reduced Basis–Deep Neural Network (ST–RB–DNN), as an alternative
to solving (149)–(150). The input is constructed starting from body surface signals z on Σ× (0, T), e.g.,
the ECG. The encoder is a FFNN which takes body surface signals in input and produces two kinds of
outputs. The first output is a reduced order spatio–temporal representation of the epicardial potential
v on ΓH × (0, T). It is named latent potential and is responsible for the signal z. The second output is
the set of the electric conductivities DT of the different organs considered in the torso. The decoder is
a deterministic (not trainable) tensorial reduced order model which takes electric conductivities, as well
as the latent spatio–temporal representation of the extracellular potential ve as Dirichlet datum on ΓH ,
expands the space–time reduced epicardial potentials along the time coordinate, and solves the problem
(149) for any t ∈ (0, T) to compute the reduced–in–space and full–order–in–time torso potential. Then
it reconstructs the body surface signals y(v)|Σ×(0,T) .

We note that the output of the whole ST–RB–DNN model is not limited to body surface signals, but
it also contains the reconstructed full order epicardial potential field.

95

Figure 44: On the left, the computational domain of the inverse problem of electrocar-
diography (Image elaborated starting from icons by https://www.flaticon.com/authors/bsd and
https://www.flaticon.com/authors/smashicons). On the right, scheme of the architecture of ST–RB–
DNN

The first way of training ST–RB–DNN treats it as a pure autoencoder (AE) architecture. Denoting
by w the array containing the trainable parameters of the encoder, the loss function is defined as

LAE(w) = Lsig(w) + Lreg(w) (151)

where Lsig is the Mean Square Error (MSE) (see Sect. 3.2.3) between the measured body surface signals
and those computed by the autoencoder, and Lreg is a regularization term which helps in preventing
overfitting. The training set is the collection of body surface signals.

Alternatively, ST–RB–DNN can be trained by minimizing the loss function

L(w) = wBCLBC(w) + Lsig(w) + Lreg(w), (152)

where LBC is the Mean Absolute Error (MAE) (see Sect. 3.2.3) between the target space–time reduced
epicardial potential field and the approximated one provided by the NN, while the parameter wBC ∈ R+

represents a weight. Now, the training set includes both body surface signals and the corresponding
epicardial potential fields. Because acquiring epicardial maps from clinical data requires invasive pro-
cedures, training and test datasets can be built in silico, i.e., by computing them numerically as the
solution of a mathematical model.

In [236], after introducing scalar parameters characterizing the problem setting, epicardial potentials
have been computed by solving the parametric form of the bidomain equation (139). Parameters have
been used to set initial activation patterns and cardiac conductivities, while the geometry of the heart
was fixed and the heart has been assumed to be isolated from the torso. Considering the parametric
nature of the problem, the authors employed the spatio–temporal Reduced Basis solver proposed in
[52] which allows encoding space–time–dependent fields into a very low number of coefficients, almost
independent of the grid refinement along both the spatial and temporal coordinates.

The isolated heart assumption expressed by the homogenous Neumann condition on the epicardium
offers the advantage of getting a one–way coupling between the bidomain equations and the torso problem
(149). This means that currents are not required to be continuous at the epicardial surface and torso
potential has no effect on the heart electrical activity. Although not physically supported, this assumption
has negligible impact on the activation pattern at the epicardium.

Two different ways have been considered to organize input body surface signals: in the form of
time series and as low–frequency Discrete Fourier Transform (DFT) coefficients. Consequently, the NN
architecture of the encoder has been designed differently in the two cases. Notice that time–series–based
ST–RB–DNN model can only work at a fixed acquisition frequency, while DFT–based model does not
have this limitation.

Results and discussion. Numerical results presented in [236] refer to a benchmark test case where
both the train and test datasets have been generated numerically. The bidomain equation, coupled with

96

the Aliev Panvilov ionic model [10], has been solved on a reference biventricular geometry, while the
torso has been modelled as a homogeneous and isotropic medium. Snapshots for Reduced Basis spaces
have been computed by the finite element method in space and finite differences in time.

400 data points were employed to form the dataset. Hyperparameters of the encoder and the weights
in the loss function were selected using a grid search process (see Sect. 3.2.9). Numerical results show
that, after selecting the best values of hyperparameters, the first training procedures (151) provides
slightly lower errors on the 12–lead ECG signals compared to the second training strategy (152). On the
contrary, the latter is more accurate in predicting epicardial activation maps. When the model is trained
with 12–lead ECG signals, the signal preprocessing via DFT improves model performances. More details
on numerical results are given in [236].

5.4 Learning the microscopic dynamics in the framework of a coupled mul-
tiscale problem

We now illustrate how operator learning methods for time–dependent problems, described in Sec. 4.3.3,
can be used in a multiscale context where a PDE model at the macroscale is coupled to an ODE model
at the microscale. The microscopic model must be solved a large number of times (typically, once for
each node of the mesh describing the macroscopic scale), besides being characterized by a large number
of unknowns and very fine time scales. This results in a high computational cost, often unsustainable.

This represents a typical situation where operator learning can be used to learn efficient surrogates
of the microscopic model which will be then coupled with the original, high-fidelity model. This hybrid
model faithfully captures the multiscale dynamics while being computationally efficient.

The problem. The specific example that we consider is the multiscale problem of cardiac elec-
tromechanics described in Sec. 5.1. In this case, the macroscopic dynamics are described by the electro-
physiology model (139) coupled with the mechanics model (142). The microscopic dynamics are instead
described by an active force generation model, which accounts for subcellular biochemical mechanisms,
a system of ODEs that involves a large number of unknowns and very fine time scales. For the reader’s
convenience, we report here the general expression of the active force generation model, which can be
written in the form

dzact
dt

(t) = Φact

(
zact(t), [Ca2+]i(t), SL(t),

d SL

dt
(t)

)
t ∈ (0, T]

Ta(t) = Ψact(zact(t)) t ∈ (0, T]

zact(0) = zact,0

(153)

where zact is the vector that collects the state variables associated with the dynamics of the contractile
proteins, [Ca2+]i is the local calcium concentration, SL is the sarcomere length, while Ta denotes the
active tension generated, and represents the output of interest of the microscopic model, which allows
it to be linked to the macroscopic dynamics. Biophysically detailed force generation models can have
many state variables and require a very fine time step to capture the rapid dynamics associated with
biochemical mechanisms. For example, the RDQ18 model [200] is characterized by 2176 state variables
and a characteristic time step of 2.5× 10−5 s. This means that if the macroscopic mesh is composed of,
say, 106 nodes, the number of variables used to describe the microscopic dynamics would be on the order
of 109.

Methodology. To reduce the computational cost associated with approximating a multiscale cardiac
model where the fine scale is described by models of the type (153), in [202] it was proposed to use an
operator learning method that allows for the construction of an efficient surrogate of the microscale
model, trained from a dataset of precomputed simulations using numerical approximation of the FOM
(153). Note that, since we only want to surrogate the microscale model here, the generation of the
training data can be done by considering the model (153) uncoupled from the macroscale model. In this
way, the training dataset can be generated with a much lower computational effort compared to the cost
of a full multiscale simulation.

The training dataset consists of a set of NS trajectories (ûj(t), T̂a

j
(t)), j = 1, . . . , NS , where the

input u(t) ∈ R2 is composed of [Ca2+]i(t) and SL(t), since the RDQ18 model considered here does

97

not explicitly depend on d SL
dt [200]. All samples of the training dataset start from equilibrium initial

conditions, associated with an input value u0 corresponding to the conditions present at the beginning of
the cardiac cycle (tele-diastolic condition). To generate the training dataset, we consider: 50 double step
inputs, from u0 to a random value, and then back to u0; 45 oscillatory inputs, where range and frequency
are randomly sampled; 60 random walk inputs, for a total of NS = 155 training samples (see [202] for
more details). These inputs are chosen to cover different response ranges of the system to different types
of inputs. The trajectories are sampled at a time step of ∆t = 1 × 10−2 s, defining the time instants
ti = i∆t, i = 0, . . . , N j

T , where N j
T = Tj/∆t is the number of time instants for the j-th sample and Tj

the corresponding duration.
Due to the strong nonlinearity of the FOM dynamics, projection-based reduced order modelling

methods are ineffective in this case, as shown in [198]. Therefore, to achieve a drastic dimensionality
reduction of the model, we use an operator learning approach based on model learning with latent
variables, as described in Sec. 4.3.4. In particular, the surrogate model is constructed as:

ds

dt
(t) = NN dyn (s(t),u(t);wdyn) t ∈ (0, T]

Ta(t) = s(t) · e1 t ∈ (0, T]

s(0) = s0

(154)

where s(t) ∈ RNs represents the latent state, whose dimension Ns is tuned together with the other
hyperparameters, and NN dyn represents a neural network with trainable parameters wdyn. The term
e1 denotes the first vector of the canonical basis of RNs , ensuring that the output Ta of the surrogate
model coincides with the first component of the latent state. This approach, referred to as output-inside-
the-state in [204], is particularly useful when the number of state variables is low (as in this case, where
there is only one output variable), and it allows for training a single neural network instead of two, as
required in the standard formulation (130).

The initial condition of the latent variable is set to s0 = (T̄a, 0, . . . , 0)T , where T̄a = Ψact(zact,0)
represents the active tension associated with the tele–diastolic condition from which the samples originate.

For training the surrogate model, we use a semi-physical approach, leveraging the physical knowledge
of the model to guide the training of the neural network. In particular, the loss function used for
training the surrogate model consists of two terms. First, we have a data-fitting term that penalizes the
discrepancy between the output of the surrogate model and the output of the FOM:

Ldata(wdyn) =
1

NS

NS∑
j=1

1

N j
T

Nj
T∑

i=0

∣∣∣T̂a

j
(ti)− s(ti;wdyn) · e1

∣∣∣2 .
To this term, we add a term that forces the latent state variable to return to the initial condition s0 at
the end of the trajectories for which the FOM also returns to the tele–diastolic condition. Denoting by
Jcycle the set of samples for which the trajectory returns to the tele–diastolic condition (associated with
the 50 double-step inputs mentioned above), the additional loss term is defined as:

Lcycle(wdyn) =
1

|Jcycle|
∑

j∈Jcycle

∥s(Tj)− s0∥2

1

Nj
T

∑Nj
T

i=0 ∥s(ti)− s0∥2

This term enhances the stability of the surrogate model over a large number of cycles, as is of interest in
the context of cardiac mechanics, and prevents the neural network-based model from deviating too far
from the FOM dynamics.

Finally, we introduce another bias into the learning process, namely that the system’s initial condition
constitutes an equilibrium point. Formally, this translates for the system (154) into the constraint
NN dyn(s0,u0;wdyn) = 0 that can be enforced through an additional loss term, of the type

Leq(wdyn) = ∥NN dyn(s0,u0;wdyn)∥2.

Alternatively to this weak enforcement of the constraint, we can modify the model architecture to strongly
impose the constraint directly in the neural network, replacing the right-hand side of (154) by

NN dyn(s,u;wdyn) = ÑN dyn(s,u;wdyn)− ÑN dyn(s0,u0;wdyn), (155)

98

Equilibrium condition Cycle condition Training error Test error

- - 1.62× 10−2 2.66× 10−2

weak (λeq = 10−1) - 1.52× 10−2 2.10× 10−2

strong - 1.70× 10−2 3.10× 10−2

weak (λeq = 10−1) λcycle = 10−1 1.48× 10−2 2.35× 10−2

strong λcycle = 10−1 1.44× 10−2 1.97× 10−2

Table 4: Training and test relative errors obtained by training the surrogate model (154) with or without
imposition of the equilibrium condition (in either weak or strong form) and with or without imposition
of the cycle condition.

where ÑN dyn represents a neural network with trainable parameters wdyn. This approach forces the
output to coincide with 0 when the input is s0 and u0.

In conclusion, the training consists of the following minimization problem:

w∗
dyn = argmin

wdyn

[Ldata(wdyn) + λcycleLcycle(wdyn) + λeqLeq(wdyn)] ,

where λcycle and λeq are hyperparameters that balance the contributions of the different loss terms,
whose tuning is done along with the other hyperparameters. The equilibrium condition can be imposed
weakly by setting λeq > 0, or strongly as in (155) and setting λeq = 0.

Results and discussion. The numerical tests presented in [202] show that the operator learning
approach can accurately and reliably learn the dynamics of the microscale model with only Ns = 2
variables in the reduced model and 2 hidden layers with 6 neurons each. Once the training is completed,
the surrogate model is validated by comparing its predictions with those of the FOM model on a set of
tests, including different types of tests from those used for training, such as steady-state tests, isometric
and shortening twitches with physiological calcium transients, and long-term simulations to test the
stability of the surrogate model over a large number of cycles. The results show that the surrogate
model can faithfully capture the dynamics of the FOM model and generalize well on test data not used
during training, with an average error of less than 2% compared to the FOM model. Remarkably, the
surrogate model allows for numerical resolution over 1000 times faster than the corresponding FOM
model.

An ablation test conducted in [202] highlights the effect of the different loss terms and the choice
between the weak and strong imposition of the equilibrium condition on the generalization ability of the
surrogate model (see Tab. 4). The results show that adding both terms enforcing prior knowledge (cycle
condition and equilibrium condition) in the loss function yields a more stable and accurate surrogate
model than the one trained only with the data-fitting term, and the best results are obtained with the
strong imposition of the equilibrium condition.

The surrogate model can be used to calculate the active tension generated at each node of the
macroscale mesh, significantly reducing the computational cost associated with solving the multiscale
model (see Fig. 45). An interesting aspect is that the stabilizing nature of the interaction between the
scales in cardiac mechanics causes force fluctuations to be dampened thanks to feedback mechanisms
(see [202] for a detailed mathematical treatment). This phenomenon has the beneficial effect of also
damping the errors due to the approximation of the surrogate model compared to the FOM. Indeed,
when the surrogate model is coupled with the macroscale model, the overall error of the multiscale model
in calculating the main biomarkers is even lower than that of the standalone force generation model
simulations, as shown in Tab. 5 for a left ventricle simulation, where errors are on the order of 10−3. The
obtained speed–up makes the cost associated with solving the activation model negligible compared to
that of other physics, and the dimensionality reduction of the state space significantly reduces the number
of variables in the multiscale model: from 2198 variables for each node of the macroscale mesh (18 ionic
variables, the transmembrane potential, 2176 activation variables, 3 components of the displacement) to
only 24 variables (18 + 1 + 2 + 3).

99

3D FEM
electromechanical

model

High-fidelity model

actin filament

myosin filament

Surrogate model

model-learning

Simulations database

Model
Learning

validation

a priori
knowledge

155 training samples

2174 state variables 2 state variables

Figure 45: Using model learning with latent variables to reduce the computational cost associated with
multiscale cardiac electromechanics models. From the high-fidelity model, a dataset of simulations is
constructed, which is then used – along with prior knowledge of the problem’s physics – to learn a
surrogate model. Once validated against the FOM, the model is deployed at each node of the computa-
tional mesh to obtain a hybrid multiscale model based on classical FEM modelling techniques and neural
network-based models.

Biomarker FOM (153) Surrogate model (154) Relative error

Stroke volume (mL) 56.64 56.39 4.33× 10−3

Ejection fraction (%) 44.48 44.29 4.33× 10−3

Maximum pressure (mmHg) 108.94 109.10 1.52× 10−3

Work (mJ) 662 659 4.85× 10−3

Table 5: Cardiac biomarkers obtained through multiscale simulations where active force generation is
modelled either by the FOM (153) or by the ROM (154), and associated relative errors.

100

5.5 Time-dependent operator learning for a multiphysics coupled problem

In the previous section, we saw how operator learning methods can be used to surrogate the fine-scale
dynamics in multiscale problems. Now we will see the application of operator learning in a different
context, namely for the coupling of multiphysics systems, through a use case proposed in [210]. Specif-
ically, we consider the problem of coupling the cardiac electromechanics model, described by equations
(139)-(141)–(142), with the blood circulation model, described by (145). This problem is characterized
by a strong interaction between the two scales, as the contraction of the cardiac muscle influences the
flows and pressures in the circulatory network, which in turn influences the deformation of the cardiac
muscle. The ultimate goal is to accelerate the evaluation of the input-output map associated with the
multiphysics model, in order to quickly explore the dependence between the multiple parameters of the
models and the outputs of clinical interest.

The problem. We consider the 3D cardiac electromechanics model described by equations (139)-
(141)–(142), coupled with the 0D blood circulation model described by (145). For simplicity, we consider
the case of a single cardiac chamber, specifically the left ventricle, but the extension to the case of multiple
chambers is possible, as discussed in [216]. The resulting coupled model can be written in the following
compact form:

dzem
dt

(x, t) = F(zem, pLV ,x, t,pem) x ∈ Ω, t ∈ (0, T)

dzcirc
dt

(t) = Φcirc(zcirc, pLV , t,pcirc), t ∈ (0, T]

V em
LV (zem) = V circ

LV (zcirc) t ∈ (0, T]

zem(x, 0) = zem,0(x) x ∈ Ω

zcirc(0) = zcirc,0

(156)

where zem represents the vector that collects the state variables of the electromechanics model, i.e.
ionic variables, transmembrane potentials, activation variables, tissue displacement, and velocity. The
vector zcirc represents instead the state vector of the blood circulation model. The two models are
coupled through the kinematic compatibility condition V em

LV = V circ
LV , where the two terms represent

the left ventricle volume calculated by the electromechanics model and by the blood circulation model,
respectively. This constraint is enforced by means of a Lagrange multiplier, namely the pressure of the
blood contained in the left ventricle pLV (t), which therefore appears as an input for both models. Both
models depend on a set of physical parameters, represented respectively by pem and pcirc. For example,
pem includes the electrical conductivity of the tissue, the angle formed by the fibers, the contractility of
the cardiomyocytes, while pcirc includes parameters such as the resistance and compliance of the blood
vessels.

In clinical applications, the pressure pLV (t) and the volume VLV (t) of the left ventricle represent the
quantities of fundamental importance for the diagnosis and therapy of cardiac pathologies, such as heart
failure, and for the evaluation of the effectiveness of pharmacological treatments or medical devices.
Developing computational tools capable of predicting both of them accurately and quickly in response
to variations in the physical parameters pem and pcirc is essential.

Methodology. The approach proposed in [210] is based on the idea of surrogating the computation-
ally expensive part of the multiphysics system (156), i.e., the 3D electromechanical model, while keeping
the 0D circulation model in its full-order form, as it is computationally inexpensive.

To train the surrogate model, we first collect a dataset of transients of volumes and pressures obtained
through the numerical approximation of the FOM model (156), by randomly sampling the physical
parameters pem and pcirc. The dataset consists of NS transients, each associated with the corresponding
physical parameters: (V̂ j

LV (t), p̂jLV (t), p̂j
em, p̂

j
circ), for j = 1, . . . , NS and for t ∈ (0, T).

The surrogate model is then defined by relying on the model learning approach with latent variables

101

(see Sec. 4.3.4), as the following system of ODEs:
d

dt
s(t) = NN dyn

(
s(t), pLV (t), cos

(
2πt

THB

)
, sin

(
2πt

THB

)
,pem;wdyn

)
t ∈ (0, T)

VLV (t) = V NN
LV (s(t)) := s(t) · e1 t ∈ (0, T)

s(0) = s0

(157)

where s(t) ∈ RNs represents the latent variables, NN dyn represents a neural network with trainable
parameters wdyn, and e1 denotes the first vector of the canonical basis of RNs . We are thus using the
output-inside-the-state approach to reduce the number of neural networks to be trained, as in Sec. 5.4.
Consistently, the initial condition of the latent variables is set to s0 = (V em

LV (zem,0), 0, . . . , 0)T . Ad-
ditionally, to leverage our physical knowledge of the system, since we know that the non-autonomous
component in (156) corresponds to the electrical stimulus that periodically activates the cardiac tissue,
we introduce two additional inputs to the neural network NN dyn, consisting of the coordinates of a point
rotating on the unit circle with the same period THB as the heartbeat, thus informing the surrogate model
of the stimulus’ periodicity. Finally, the model also receives the values of the physical parameters pem

as input, so that during training it can learn how the system dynamics depend on these parameters.
Training is then performed with a trajectory-based loss function (see Sect. 4.3.3) through the following

minimization problem:

w∗
dyn = argmin

wdyn

 1

NS NT

NS∑
j=1

NT∑
i=0

∣∣∣V̂ j(ti)− V NN
LV (sj(ti))

∣∣∣2 + λ∥wdyn∥2,

 ,

where sj is obtained by numerically integrating the system (157) from the initial condition s0, by con-
sidering the physical parameters p̂j

em and by imposing the input pressure equal to p̂jLV (t). Note that
during training, the model (157) is solved independently of the circulation model to which it will later
be coupled: in particular, the pressure transient is provided here as input and is not determined by the
interaction with the circulation model. This strategy allows constructing a surrogate model of the 3D
components of the model (i.e., the dynamics of the variables zem) without having to simultaneously learn
the dynamics of the variables zcirc.

To mitigate overfitting, we use Tikhonov regularization (see Sec. 3.2.8), where λ is a hyperparameter
that controls the regularization of the neural network weights.

Once the NN–based model has been trained, i.e., the optimal values w∗
dyn have been determined, it

can be coupled with the blood circulation model to obtain a hybrid model that can be used to evaluate
the input-output map associated with the multiphysics model in a computationally efficient manner, by
numerically approximating the following system of equations:

d

dt
s(t) = NN dyn

(
s(t), pLV (t), cos

(
2πt

THB

)
, sin

(
2πt

THB

)
,pem;w∗

dyn

)
, t ∈ (0, T)

dzcirc
dt

= Φcirc(zcirc, pLV (t), t,pcirc), t ∈ (0, T]

V NN
LV (s(t)) = V circ

LV (zcirc(t)) t ∈ (0, T]

s(0) = s0

zcirc(0) = zcirc,0

(158)

Results and discussion. In [210], two test cases were considered. In the first one, the variability
with respect to a single parameter of the electromechanical model, namely the contractility called aXB ,
is considered, i.e., setting pem = (aXB). In the second one, four parameters relevant to different aspects
of the electromechanical model dynamics are considered instead, namely the electrical conductivity of
the tissue in the fiber direction σf , the transmural fiber rotation angle α, the tissue stiffness C, and again
the contractility aXB , i.e., setting pem = (σf , α, C, aXB)T . The number of samples used for training is
NS = 30 for the 1-parameter case, NS = 40 for the 4-parameter case. In all cases, simulations containing
5 heartbeats each are considered.

In Tab. 6, we present the errors quantifying the accuracy of the surrogate model coupled with the
circulation model (158) in reproducing the results of the full-order model (FOM) (156), for both the

102

5 heartbeats
pLV(t) VLV(t) pmin

LV pmax
LV V min

LV V max
LV

1-parameter
relative error 0.0336 0.0090 0.0097 0.0046 0.0139 0.0035
R2 0.9969 0.9986 0.9990 0.9995

4-parameter
relative error 0.0620 0.0285 0.0517 0.0272 0.0471 0.0127
R2 0.9437 0.9530 0.9594 0.9706

10 heartbeats
pLV(t) VLV(t) pmin

LV pmax
LV V min

LV V max
LV

1-parameter
relative error 0.0293 0.0071 0.0113 0.0037 0.0096 0.0031
R2 0.9992 0.9998 0.9985 0.9994

4-parameter
relative error 0.0631 0.0265 0.0442 0.0147 0.0382 0.0122
R2 0.9223 0.9996 0.9923 0.9906

Table 6: Accuracy of the surrogate model coupled with the circulation model (158) in reproducing the
results of the FOM (156), in 5 heartbeats long (top) and 10 heartbeats long (bottom) simulations. For
PLV (t) and VLV(t) transients we report the relative L2 error in time, while for scalar biomarkers, such
as minimum and maximum pressure (i.e. pmin

LV and pmax
LV) and volume (i.e. V min

LV and V max
LV), we report

the relative error and the R2 coefficient of determination. We consider both the 1-parameter and the
4-parameter cases, as indicated in the first column.

1-parameter and 4-parameter cases. The table reports errors calculated from simulations lasting 5
heartbeats (the same duration as in the training set) and from simulations lasting 10 heartbeats, to assess
the surrogate model’s ability to generalize to longer simulations. The results show no significant difference
between the two cases. This ability to extrapolate in time is particularly notable, as the simulations in the
training dataset did not reach a limit cycle, meaning the model did not have the opportunity to observe
full transients for most parameter values. Nonetheless, the surrogate model coupled with the circulation
model is able to provide accurate results even in this context. This capability is important in clinical
applications, where it is essential to evaluate the model’s behaviour under limit-cycle conditions (the
only ones of clinical relevance). However, achieving such a limit cycle can often require many heartbeats,
presenting significant computational challenges [13].

A common approach in computational cardiology for making rapid predictions of the input-output
map that links the parameters of the electromechanical model to variables of interest (such as pmin

LV , pmax
LV ,

V min
LV , and V max

LV) is to train a static emulator that directly learns the mapping between the parameters
pem and pcirc and the variables of interest, typically using a FFNN [154, 43]. However, since such
emulators must simultaneously capture the dependence of the output on both the electromechanical and
circulation model parameters, they often require a significantly large number of training samples (on
the order of 1000 or more). Moreover, they fail to capture the temporal dynamics of the system. In
contrast, the approach proposed in [210], which leverages time-dependent operator learning, allows the
model to surrogate only the computationally expensive part, drastically reducing the number of training
simulations and providing accurate predictions even for long simulations.

Once trained, the reduced-order model (ROM) in (158) offers a substantial computational advantage
compared to the full-order model (FOM) in (156): the FOM takes approximately 4 hours of computation
on 32 cores for each heartbeat, while the ROM requires less than a second on a single core of a standard
laptop. This speed–up – over a factor of 105 – is made possible by the surrogate model’s ability to learn
the essential dynamics of the FOM from the training data and generalize to new data, enabling accurate
results in dramatically reduced computational times. However, when evaluating the computational
advantages, the cost of generating the training dataset must be considered. Despite the approach’s
ability to achieve accurate predictions with relatively few training samples, the computational cost of
generating the training data is significant. Additionally, the training time should be accounted for.

Therefore, the surrogate model proves particularly advantageous for applications requiring the ex-
ploration of the model’s behaviour across a wide range of parameters, such as sensitivity studies and
parameter estimation, in order to recompense the computational effort required by the construction of
the surrogate model, as outlined in (74). The next two sections delve into two such applications.

103

5.6 NN–based surrogate models for global sensitivity analysis

The problem. In this section, we focus on the application of surrogate models for global sensitivity
analysis (GSA) of cardiac electromechanics models. GSA is a fundamental tool for understanding the
behaviour of complex systems, such as cardiac models, by quantifying the influence of the model’s pa-
rameters on some output quantities of interest (QoIs). However, performing GSA on cardiac models is
computationally expensive, as it requires evaluating the model for a large number of parameter combina-
tions. Surrogate models can significantly reduce the computational cost by providing fast and accurate
predictions of the model’s output for a wide range of parameters.

Methodology. GSA is commonly performed by sampling the parameter space and calculating
appropriate indicators, such as Borgonovo indices [184], Morris elementary effects [170], Sobol indices
[223, 114], and Kucherenko indices [139]. Here, we focus on variance-based sensitivity analysis, which
utilizes a probabilistic framework, however, this approach about surrogate models can also be applied in
combination with other sensitivity analysis methods.

Sobol indices measure the sensitivity of a quantity of interest (QoI), denoted by qj , to a specific
parameter, denoted by pi. The first-order Sobol index (denoted Sij) quantifies the effect when the
parameter varies independently over the changes in the other parameters:

Sij =
Varpi

[Ep∼i
[qj |pi]]

Var [qj]
,

where p∼i represents the set of all parameters except for the i-th one. In this expression, the expected
value Ep∼i

[qj |pi] represents the average value of qj when pi is fixed, while all other parameters p∼i

vary according to their distributions. Intuitively, this captures how the behaviour of the QoI depends
on the fixed value of pi while accounting for the variability due to all other parameters. The variance
Varpi

[Ep∼i
[qj |pi]] then measures how much this expected value changes as pi varies. This quantifies

the contribution of pi to the overall variability of the QoI. Finally, normalizing by the total variance
Var [qj] provides a relative measure of sensitivity, enabling comparison between different parameters.

To account for the combined effects of parameters, including their interactions, the total-effect Sobol
index ST

ij is used:

ST
ij =

Ep∼i
[Varpi

[qj |p∼i]]

Var [qj]
= 1− Varp∼i

[Epi
[qj |p∼i]]

Var [qj]
.

This index captures the influence of a parameter when it varies on its own as well as in conjunction with
other parameters [223].

The Saltelli method [114, 215] provides a way to estimate the Sobol indices by employing Sobol quasi-
random sequences to approximate the necessary integrals. In practice, this method involves evaluating
the model across a large number of parameter combinations and subsequently processing the resulting
QoIs to estimate the Sobol indices.

In [210], variance-based GSA of the electromechanics-circulation model is performed on the surrogate
model (158) to approximate the evaluation of the QoIs, by simultaneously considering the variability
with respect to the circulation model parameters pcirc and the electromechanical model parameters pem

(that is, we set p = (pT
em,p

T
circ)

T). A set of 20 QoIs is considered, including the maximum and minimum
pressures and volumes associated with the cardiac chambers and the arterial systemic circulation along
the heartbeat. For each parameter choice, the surrogate model is used to simulate the electromechanical
model for a certain number of heartbeats, until a limit cycle is reached, and the QoIs are calculated
with respect to the last heartbeat. The Saltelli method is then applied to estimate the Sobol indices, by
evaluating the surrogate model at a set of parameter combinations generated by the Sobol quasi-random
sequence.

Results and discussion. For the sake of space, we do not report the estimated Sobol indices (for
more details, the interested reader is referred to [210]). Instead, we focus on the computational benefits of
using surrogate models for GSA. For this, we consider a realistic scenario to performing GSA on a cardiac
electromechanics model using a 160-core cluster. Computational times were measured on Intel Xeon E5-
2640 v4 2.4 GHz CPUs. In this case, conducting the GSA would require simulating 74 000 parameter
sets to achieve accurate results. On average, the system reaches a limit cycle after 10 heartbeats, leading

104

to a total of 740 000 heartbeats that need to be simulated. Running this large number of simulations
with the full-order model (FOM) would be practically impossible, as it would take around 68 years of
continuous computation on the 160-core cluster. In contrast, using the surrogate model allows for the
estimation of the Sobol indices in just 7.5 days. This includes 6.7 days to generate the training dataset,
18 hours to train the model, and 1 hour and 17 minutes to compute the QoIs required by the Saltelli
method. As a result, employing the surrogate model provides a remarkable speed–up of 3 300 times.

5.7 NN–based surrogate models for Bayesian parameter estimation

The problem. Personalizing a cardiac electromechanical model for a specific patient involves more than
just using geometry obtained from imaging data. It also requires estimating the model’s key parameters
based on available clinical measurements. However, these measurements often consist of only a few scalar
values, and solving the inverse problem (i.e., determining the physical parameters p from the observed
QoIs q) must account for the noise inherent in these measurements, which introduces uncertainty into
the parameter estimates.

Methodology. Bayesian methods, such as Markov Chain Monte Carlo (MCMC) [38] and Varia-
tional Inference [113], address these challenges within a robust statistical framework. These methods
compute the likelihood, representing the probability distribution of the desired parameter values given the
observed QoIs (qobs). Unlike optimization techniques that yield point estimates, Bayesian approaches
provide a probability distribution over the parameter space, reflecting the credibility of different param-
eter combinations.

This credibility assessment integrates measurement uncertainty – modelled as noise with covariance
matrix Σ – and prior knowledge about the parameters, encoded in a prior distribution πprior(p). Using
the parameters-to-QoIs map F : p 7→ q, the observed QoIs are expressed as qobs = F(p) + ϵ, where ϵ ∼
N (·|0,Σ) represents Gaussian measurement noise. Bayes’ theorem provides the posterior distribution,
which quantifies the belief in parameter values after observing qobs:

πpost(p) =
1

Z
N (qobs|F(p),Σ)πprior(p),

where the normalization constant Z is given by:

Z =

∫
P

N (qobs|F(p̂),Σ) dπprior(p̂).

Computing πpost is computationally intractable because it involves approximating the integral defining
Z. MCMC provides an efficient way to approximate πpost with moderate computational effort.

Similar to the Saltelli method used in sensitivity analysis, MCMC requires numerous model evalu-
ations for various parameter values. Importantly, this method is non-intrusive, i.e. it does not require
knowledge of the underlying mathematical model, but relies solely on evaluations of the map F : p 7→ q.
To reduce computational costs, we can therefore replace the FOM with a surrogate model that signif-
icantly accelerates the process, enabling efficient computation of the posterior distribution while main-
taining accuracy.

The Bayesian framework also enables a rigorous treatment of the approximation error introduced
when the high-fidelity model (156) is replaced by its surrogate (158). Let F̃ represent the approximated
parameters-to-QoIs map defined by the surrogate model (158). In this context, the high-fidelity map can

be expressed as F(p) = F̃(p) + ϵROM, where ϵROM denotes the surrogate model’s approximation error.

Consequently, the observed QoIs can be expressed by qobs = F̃(p)+ϵROM+ϵexp, where ϵexp accounts
for the experimental measurement error. Assuming that the two error sources are independent, the
covariance of the total error ϵ = ϵROM + ϵexp satisfies Σ = ΣROM + Σexp. Here, ΣROM represents
the covariance of the surrogate model’s approximation error, which can be estimated using a validation
set, while Σexp corresponds to the covariance of the experimental error, determined by the specific
measurement protocol. This formulation ensures that the surrogate model’s approximation error is
appropriately accounted for during parameter estimation.

105

0.45 0.50 0.55 0.60 0.65 0.70 0.75

systemic arterial resistance

125

150

175

200

225

250

275

300

325
co

n
tr

a
ct

il
it

y
noise: σ2

exp = 0.0 mmHg2

True value
90

0.45 0.50 0.55 0.60 0.65 0.70 0.75

systemic arterial resistance

noise: σ2
exp = 0.1 mmHg2

True value
90

0.45 0.50 0.55 0.60 0.65 0.70 0.75

systemic arterial resistance

noise: σ2
exp = 1.0 mmHg2

True value
90

Figure 46: Output of the Bayesian estimation presented in Sec. 5.7. We depict the posterior distribution
πpost, estimated by means of the MCMC method, for σ2

exp = 0 (left), σ2
exp = 0.1 mmHg2 (middle) and

σ2
exp = 1 mmHg2 (right). The blue lines show the 90% credibility regions, while the red stars represent

the exact value of the unknown parameters.

Results and discussion. To evaluate the surrogate model’s ability to accelerate parameter esti-
mation for multiscale cardiac electromechanical models, the following test was performed in [210]. A
high-fidelity simulation using (156) was first conducted to generate a pair of QoIs qobs commonly mea-
sured in the clinical practice, namely maximum and minimum arterial pressures. Subsequently, the
surrogate model (158) was employed to approximate the high-fidelity model, and a Bayesian parameter
estimate was performed to reconstruct the value of two relevant parameters, namely the active contrac-
tility and the systemic arterial resistance, assuming the values of the remaining parameters to be known.
We note that the two parameters belong to different models: the active contractility is a parameter of the
electromechanical model (pem), while the systemic arterial resistance is a parameter of the circulation
model (pcirc). This test case demonstrates this approach ability to estimate parameters of both the
surrogated model (the electromechanical one) and the original, high fidelity circulation model. Finally,
the estimated parameters were validated against the true values used to produce qobs.

To simulate the presence of measurement errors, synthetic noise of varying magnitudes was artificially
added to the exact QoIs. Specifically, the noise was sampled from independent Gaussian distributions
with zero mean and variance σ2

exp. Three cases were considered: σ2
exp = 0 (i.e., no noise), σ2

exp =

0.1 mmHg2, and σ2
exp = 1 mmHg2. For both unknown parameters, a non-informative prior was adopted,

represented by a uniform distribution over the ranges used to train the ROM. The covariance of the
total error was thus defined as Σ = ΣROM + Σexp, where Σexp = σ2

exp I2 represents the experimental
measurement error covariance (I2 is the 2-by-2 identity matrix), and ΣROM is the ROM approximation
error covariance, estimated from its empirical statistical distribution on the validation set.

Figure 46 displays the posterior distribution πpost for the parameter pair under the three noise levels
considered. The blue line indicates the 90% credibility region, which is the region of the parameter
space with the highest posterior probability that encompasses 90% of πpost. In each noise scenario, the
credibility region includes the true parameter values, denoted by a blue star. As expected, higher noise
levels result in larger credibility regions, reflecting greater uncertainty in the parameter estimates.

One notable advantage of Bayesian parameter estimation methods, compared to deterministic ap-
proaches, lies in their ability to quantify the uncertainty associated with parameter estimates. Addi-
tionally, Bayesian methods capture correlations between parameters, as evidenced by the oblique shape
of the credibility regions. This correlation arises because changes in contractility and arterial resistance
can produce similar effects on the measured QoIs (minimum and maximum arterial pressures), leading
to highly correlated posterior distributions.

Similarly to the application to GSA, the use of NN–based surrogate models for Bayesian parameter
estimation results in remarkable computational savings. Specifically, the estimation process requires ap-
proximately 960 000 heartbeats to be simulated. Leveraging on the surrogate model, the entire procedure

106

– including the generation of the training dataset – can be completed in just 6 days and 8 hours. In
contrast, performing the same task with the FOM would take over 87 years on a 160-core cluster, yield-
ing a remarkable speed–up of 5 000x. As in the previous section, computational times were measured
on Intel Xeon E5-2640 v4 2.4 GHz CPUs. Furthermore, if Bayesian calibration needs to be repeated
for different datasets, the NN–based surrogate model does not need retraining. In such cases, only the
MCMC algorithm must be re-executed, which, thanks to the surrogate model, takes only 13 hours and
20 minutes – further emphasizing the efficiency and practicality of the proposed approach.

5.8 Latent Dynamics Networks to accelerate electrophysiology simulations

Simulating cardiac electrophysiology is critical for understanding and predicting the electrical behaviour
of cardiac tissue. Applications range from diagnosing arrhythmias to optimizing defibrillation and abla-
tion strategies. Clinically, these simulations can help personalize treatment plans, improve device design,
and support decision–making in emergency scenarios.

From a numerical perspective, electrophysiological models are characterized by steep gradients in
transmembrane potentials, nonlinearity, and multi–scale coupling. These features make them computa-
tionally expensive, especially when high–resolution meshes or long simulation times are required. This
computational burden limits the feasibility of traditional numerical methods in scenarios demanding
quick (real time, or nearly real time) responses.

Surrogate models offer approximations of the results of full-scale simulations with significantly lower
computational costs, thus enabling real-time predictions.

The Problem. We consider the Monodomain equation coupled with the Aliev–Panfilov model to
describe electrical signal propagation in cardiac tissue. The model equations are:

∂v

∂t
−D∆v = Kv(1− v)(v − α)− vw + Iapp(x, t) in Ω× (0, T)

∂w

∂t
=

(
γ +

µ1w

µ2 + v

)
(−w −Kv(v − b− 1)) in Ω× (0, T)

(D∇v)n = 0 in ∂Ω× (0, T)

v(x, 0) = 0, w(x, 0) = 0 in Ω

(159)

where v(x, t) is the transmembrane potential, w(x, t) is the recovery variable, and Iapp(x, t) represents
external electrical stimuli applied at specific locations. The problem features steep depolarization fronts
and wave collisions, making it a challenging test for space–time operator learning.

We consider two test cases. In the former, we consider the one-dimensional domain Ω = (0, L), and
two stimulation points located at x = 1/4L and x = 3/4L, where we apply square impulses to mimic the
action of a pacemaker. In the second test case, we consider a 2D square domain with a first wavefront
propagating to the right, followed by the application of a second circular stimulus, at the centre of
the square domain. Depending on the stimulus radius and the timing of its application, three distinct
outcomes can occur:

– tissue refractoriness: the circular stimulus fails to trigger a second activation because it is applied
while the tissue remains in a refractory state;

– focal activation: a single focal activation arises when the circular stimulus is delivered after the
vulnerable window;

– re–entrant drivers: two self–sustained re–entrant drivers emerge, continuously reactivating the
tissue.

The second test case features for more intricate spatial patterns, including bifurcating phenomena, as
detailed above.

Methodology. For both test cases, in [209] different space-time operator learning methods were
compared. The methods considered were (see Sec. 4.3.5): a projection-based method, consisting of Proper
Orthogonal Decomposition (POD) combined with Discrete Empirical Interpolation Method (DEIM),

107

denoted as POD/DEIM; autoencoder-based methods, wherein the dynamics in the latent space is learned
either through a Neural ODE or an Long Short–Term Memory (LSTM, see Sect. 3.3.2), denoted by
AE/ODE and AE/LSTM, respectively; and Latent Dynamics Networks (LDNets). Furthermore, we
consider the case where after training of the models AE/ODE and AE/LSTM, their parameters are
further optimized in an end–to–end manner (see Sec. 4.3.4). These methods are denoted by AE/ODE–
e2e and AE/LSTM–e2e, respectively.

For all the methods considered, the same training dataset was generated by solving the governing
equations (159) using a numerical solver. It includes time series of the applied stimuli at specific locations,
and the models were trained to predict the transmembrane potential v(x, t). For the 1D test case, the
governing equations were approximated by means of the finite difference method both in space and time,
on a regular grid with ∆t = 10 µs and 800 points in space. Then, the space–time grid was subsampled
by retaining 500 time instants and 100 points in space. The 2D problem was numerically approximated
using the P1 finite element method on a structured grid with an element size of h = 0.5 mm. A semi-
implicit time–stepping scheme was employed, dividing the time domain into steps of ∆t = 0.25 ms. To
construct the datasets, the space–time grid was subsampled, retaining 2,694 spatial points and 180 time
instants. In the 1D test case, 100 training/validation samples and 100 test samples were considered,
while in the 2D test case, 200 training/validation samples and 75 test samples were used.

To ensure a fair comparison, an automatic tuning algorithm was used to select the optimal hyper-
parameter values for the different methods, with an upper bound of Ns ≤ 12 set on the latent space
dimension. Specifically, the Tree-structured Parzen Estimator (TPE) Bayesian algorithm [28, 9] is used
in conjunction with a k-fold cross-validation procedure (see Algorithm 12). The results reported are
obtained using the optimal hyperparameter configuration chosen by the tuning algorithm, independently
for each method.

Results and Discussion. The results obtained in both test cases and using the different methods
are reported in Tab. 7 (1D test case) and Tab. 8 (2D test case). For simplicity, in the 2D test case only
the methods that performed the best in the 1D case are considered.

Due to the presence of travelling wavefronts, this problem exhibits a slow decline in the Kolmogorov
n−width (see Sec. 4.3.4), which results in reduced accuracy when reconstructing the electrical potential
using the POD-DEIM method with 12 modes. Achieving satisfactory results requires more than 24
modes, but this leads to an increased computational cost during the prediction phase. Moreover, the
POD-DEIM method offers minimal speed-up compared to the other methods under consideration. This
limitation is due to the need for the POD-DEIM model to be solved using the same temporal discretiza-
tion as the high-fidelity model for numerical stability reasons. This requirement imposes a significant
constraint relative to the other methods considered in the comparison.

Better accuracy is attained by both autoencoder–based methods and LDNets, owing to their capacity
to model non–linear relationships between the latent states and the solution. Among these, LDNet pro-
vides superior performance, achieving a testing normalized RMSE of approximately 7×10−3 in both the
1D and 2D test cases. The testing normalized RMSE of the autoencoder–based methods is approximately
five times larger than that of LDNets or more. In the 2D case, which adds an extra spatial dimension
compared to the 1D case, the advantage of LDNets over the other methods is more pronounced. As
shown in [209], autoencoder–based methods display various artifacts in their solutions, particularly fail-
ing to accurately model scenarios where tissue refractoriness prevents signal propagation. In contrast,
LDNet’s predictions are nearly indistinguishable from those of the high-fidelity model, effectively cap-
turing the three distinct behaviours exhibited by the system in this test case. The LDNet method, in the
test cases considered in [209], achieves superior accuracy with a significantly smaller number of trainable
parameters: autoencoder–based methods require over ten times more parameters in the 1D case and
more than 400 times more in the 2D case.

6 Some final thoughts and concluding remarks

We would like to conclude this paper with a few considerations regarding both Machine Learning (ML)
and Scientific Machine Learning (SciML).

Our goal is to shed light on the truly distinctive features of ML and SciML models. From this
perspective, it will be helpful to use the well–known least–squares algorithm as a reference point, given

108

normalized RMSE Trainable parameters Wall time (s)
training testing offline online

FOM 37.321
POD-DEIM (Ns = 12) 4.05× 10−1 3.92× 10−1 797 5.839
POD-DEIM (Ns = 24) 3.59× 10−1 3.47× 10−1 799 7.720
POD-DEIM (Ns = 36) 1.71× 10−1 1.62× 10−1 861 7.442
POD-DEIM (Ns = 48) 7.48× 10−2 7.57× 10−2 1124 7.976
POD-DEIM (Ns = 60) 2.97× 10−2 2.90× 10−2 1242 8.408
AE/LSTM 1.90× 10−1 1.98× 10−1 17 933 11 009 0.005
AE/LSTM-e2e 2.05× 10−2 5.87× 10−2 17 933 33 851 0.005
AE/ODE 2.09× 10−2 4.58× 10−2 22 697 23 982 0.017
AE/ODE-e2e 1.78× 10−2 3.37× 10−2 22 697 97 821 0.017
LDNet 7.09× 10−3 7.37× 10−3 1708 22 887 0.014

Table 7: Training and test errors, the number of trainable parameters, and the computational times for
the offline and online phases are reported for the 1D test case described in Sec. 5.8. The computational
times were measured on an Intel Xeon Processor E5-2640 2.4GHz. The offline phase corresponds to
the model construction process. For the POD/DEIM method, this includes generating the basis for the
solution manifold and DEIM approximation. For the other methods, the offline phase involves neural
network training. Conversely, the online phase refers to predicting the system’s evolution for a new
sample after the model has been constructed.

normalized RMSE Trainable parameters Wall time (s)
training testing offline online

FOM 807.210
AE/ODE 6.96× 10−2 7.83× 10−2 1 193 732 75 315 0.191
AE/ODE-e2e 3.97× 10−2 4.23× 10−2 1 193 732 95 479 0.188
LDNet 7.31× 10−3 7.57× 10−3 2789 90 349 0.139

Table 8: Training and test errors, the number of trainable parameters, and the computational times for
the offline and online phases are reported for the 2D test case described in Sec. 5.8. See caption of Fig. 7
for more details.

109

its popularity in data fitting problems. Some of the conclusions will be quite surprising and go against
the common perceptions of artificial intelligence.

An essential component of the learning process is the choice of the model, that is, the function f
mapping inputs (training data) to outputs (the answer to our question). The model f is defined by a
set of parameters and possibly hyperparameters. The parameters are determined through a process of
minimization of an appropriate function L (called the loss function), while hyperparameters are specified
by the user.

It is worth noting that least–squares methods, widely used in the mathematical community centuries
before the advent of Machine Learning, can also be viewed as learning processes. As a matter of fact,
least–squares regression looks for the best parameters of a model f – typically a polynomial – by min-
imizing the Mean Square Error (MSE) between available target data and the values predicted by the
model itself. Like in Machine Learning, least–squares minimize a loss function (the MSE) and work on
a training dataset (the target data used to evaluate the loss). The choice of the model f can be driven
by physical knowledge of the process at hand. This ansatz can be accurate in some circumstances, and
inappropriate in others.

For example, suppose we aim to determine the constitutive stress–strain relationship of a material
from experimental data. After collecting a set of stress–strain data points we can fit a model – e.g. a
linear one – to the data. Afterwards, we can use the model to predict the stress associated with a strain
value not present in the training set. This is a typical example of a learning process, where the model
is trained on a set of data and then used to make predictions on new data. However, should the true
stress–strain curve be more complex than linear, e.g., of exponential type, the linear model would fail to
generalize effectively, i.e., it would not predict accurate stresses in correspondence of new strains.

The origins of the least-squares method trace back to Carl Friedrich Gauss, who applied it in 1795 to
predict the orbit of the asteroid Ceres [227] after it was no longer observable because hidden by the sun.
Assuming an elliptical orbit, Gauss fitted six orbital parameters to observational data [81]. Remarkably,
his predictions differed significantly from those of other astronomers yet proved almost exact when Ceres
was rediscovered after passing behind the sun, earning Gauss international acclaim [96]. This represents
one of the earliest examples of successful generalization in history.

It is worth noticing that assuming an elliptic orbit was a strong hypothesis that Gauss used to con-
strain the model. In the same way, fitting a stress–strain relationship with a linear or rather exponential
model relies on strong prior assumptions that the user imposes on the model. In typical Machine Learn-
ing applications, instead, one typically opts for a more complex model, such as a neural network (NN),
that can capture a wide range of input–output relationships without making any a–priori assumptions
on the law that has generated the training data.

For this reason, Machine Learning is often described as automatically discovering the best model for
the data. Strictly speaking, the model f is still chosen a priori by the user, but the hypothesis space is
so rich that, essentially, the algorithm autonomously discovers a model.

As for the more purely algorithmic aspects, we identify some differences between classical least–
squares approaches and Machine Learning algorithms, such as NNs, which are worth emphasizing.

In the case of linear least–squares methods, i.e., when the model f depends linearly on the parameters,
the minimization algorithm is deterministic: the gradient of the loss function is computed analytically,
and its nullification (∇L = 0) leads to a linear system (normal equations), which will then be solved
using algebraic techniques.

In the case of non–linear least–squares methods, f depends non–linearly on the parameters, thus the
resulting normal equations are nonlinear and, as such, they should be solved by an iterative method
which, typically, performs well on small–size systems.

If the learning model is based on NNs, due to the complex compositional structure of the model
function f , the minimization algorithm typically leverages backpropagation for gradient computation
(as now the analytical evaluation of ∇L is cumbersome to do with paper–and–pen, thus automatic
differentiation is preferable) and usually employs an iterative minimization algorithm based on stochastic
gradient descent. Hence, the deterministic nature of the process is lost. Nevertheless, it is worth noting
that, once trained via the minimization process, a NN is deterministic. This means that the associated
algorithm can be described unambiguously and, given the same input data, will always produce the
same output. Therefore, a NN retains the property of reproducibility. Considerations apart deserve the
cases of reinforcement learning, adversarial neural networks, and generative AI algorithms, where the
determinism is lost.

110

Another consideration concerns the problem size. Typically, a least–squares approach (whether linear
or non–linear) relies on a very limited number of parameters, unlike NN approaches which instead may
involve extraordinarily large numbers of parameters, alongside significantly larger training datasets. The
many parameters, together with the highly non–linear and compositional structure of NNs, enhance their
capability to represent highly complex and high–dimensional input–output processes (see, for instance,
Fig. 25). This is, e.g., the case of convolutional neural networks for image recognition, such as ResNet–50
(with 25 million parameters), and AlexNet (60 million parameters).

Further, a frequently debated aspect is the presumed lack of interpretability of ML algorithms based
on NN models. Strictly speaking, just as in the case of least–squares, NN models are in a certain sense
interpretable once training is complete: indeed, once parameters and hyperparameters are determined,
the input–output transfer function can be represented in finite and unambiguous terms. Of course, it
must be acknowledged that the “readability” of such a function can be highly problematic due to its
non–linear compositional form. In this respect, commonly used least–squares model functions are far
more readable and interpretable. To put it differently, identifying the role of each parameter in shaping
the NN response is very challenging.

Going back to the stress–strain fitting example, a linear relationship is easily interpretable: the slope
of the line is a measure of the stiffness of the material, while the intercept represents the residual stress at
zero strain. With a polynomial model, the interpretation becomes more complex but still manageable.
However, interpreting the parameters of a NN model is much more challenging, as the relationship
between the input and the output is not straightforward and depends on the entire network structure.
This is one of the reasons why NNs are often referred to as black–box models. However, it is important
to note that the distinction between interpretable and black–box models is not absolute. There exists a
spectrum of models going from simpler and more interpretable ones to others more complex yet richer and
harder to interpret. In this transition, there is a trade–off between interpretability and model complexity.
While simpler models offer clear, understandable relationships between inputs and outputs, they cannot
often capture intricate patterns within the data. On the other hand, more complex models, such as
neural networks, can handle highly non–linear and high–dimensional relationships, but at the cost of
losing interpretability. This balance is a key consideration when choosing the appropriate model to solve
a given problem.

Finally, turning to Scientific Machine Learning, a few observations are in order. The first one is that
SciML is a relatively new area, much is still a work in progress, and the most significant achievements
often result from trial and error rather than being situated within a rigorous and established theoretical
framework. Key characteristics of this area include the co–presence, in various forms, of physics–based
methods alongside ML algorithms. With some liberty, we could say that this falls within the domain
of “grey boxes”, which result from the fusion of white–box models (physics–based models that are
interpretable and explainable) and black–box models (those driven by data and that entirely ignore
the context that generated that data). Due to the almost complete arbitrariness with which these
combinations can be made, the classifications we have sketched in this paper should be considered a
preliminary attempt to outline some identifying elements that may begin to shed light on a still quite
obscure (albeit vibrant) field. We do not doubt that this attempt will soon require revision, given the
extraordinary interest we are experiencing in these topics.

Acknowledgments

This article draws inspiration from the content of short courses recently conducted by its authors, specif-
ically, by F.R. at Politecnico di Torino in Fall 2023, A.Q. at the University of Maryland in College
Park in Spring 2024, and A.Q. at Sorbonne Université in Fall 2024. A.Q. and F.R. acknowledge the
grant Dipartimento di Eccellenza 2023–2027 (Dipartimento di Matematica, Politecnico di Milano). A.Q.
acknowledges the financial support of the Brin Mathematics Research Center of the University of Mary-
land at College Park and the Laboratoire Jacques–Louis Lions of Sorbonne Université at Paris. For the
results on the cardiac model, the E.R.C. AdG n. 740132 is gratefully acknowledged. P.G. has received
support from the project PRIN, MUR, Italy, CUP 20227K44ME. F.R. has received support from the
project PRIN2022, MUR, Italy, 2023-2025, P2022N5ZNP “SIDDMs: shape-informed data–driven models
for parametrized PDEs, with application to computational cardiology”, funded by the European Union
(Next Generation EU, Mission 4 Component 2). P.G. and F.R. are members of the Gruppo Nazionale

111

Calcolo Scientifico – Istituto Nazionale di Alta Matematica (GNCS INdAM).

References

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro. Parallel multigrid smoothing: Polynomial versus
Gauss-Seidel. Journal of Computational Physics, 188(2):593 – 610, 2003.

[2] Pasquale Claudio Africa. lifex: A flexible, high performance library for the numerical solution of
complex finite element problems. SoftwareX, 20:101252, 2022.

[3] P.C. Africa, I. Fumagalli, M. Bucelli, A. Zingaro, M. Fedele, and A. Quarteroni. lifex-cfd: An
open-source computational fluid dynamics solver for cardiovascular applications. Computer Physics
Communications, 296:109039, 2024.

[4] P.C. Africa, R. Piersanti, M. Fedele, L. Dede’, and A. Quarteroni. lifex-fiber: an open tool for
myofibers generation in cardiac computational models. BMC Bioinformatics, 24(1):143, 2023.

[5] P.C. Africa, R. Piersanti, F. Regazzoni, M. Bucelli, M. Salvador, M. Fedele, S. Pagani, L. Dede’, and
A. Quarteroni. lifex-ep: a robust and efficient software for cardiac electrophysiology simulations.
BMC bioinformatics, 24(1):389, 2023.

[6] P.C. Africa, M. Salvador, P. Gervasio, L. Dede’, and A. Quarteroni. A matrix–free high–order
solver for the numerical solution of cardiac electrophysiology. Journal of Computational Physics,
478:111984, 2023.

[7] Charu C. Aggarwal. Neural Networks and Deep Learning. Springer Cham, 2023.

[8] Epoch AI. Data on Notable AI Models, 2024. https://epochai.org/data/notable-ai-models,
Accessed: 2024-09-24.

[9] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[10] R. R. Aliev and A. V. Panfilov. A simple two-variable model of cardiac excitation. Chaos, Solitons
& Fractals, 7(3):293–301, 1996.

[11] Paola F. Antonietti, Matteo Caldana, and Luca Dede’. Accelerating algebraic multigrid methods
via artificial neural networks. Vietnam Journal of Mathematics, 51(1):1–36, 2023.

[12] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley, New York, 1989.

[13] Christoph M. Augustin, Matthias A.F. Gsell, Elias Karabelas, Erik Willemen, Frits W. Prinzen,
Joost Lumens, Edward J. Vigmond, and Gernot Plank. A computationally efficient physiologically
comprehensive 3D–0D closed-loop model of the heart and circulation. Computer methods in applied
mechanics and engineering, 386:114092, 2021.

[14] Ivo Babuska. The finite element method with penalty. Mathematics of Computation, 27(122):221
– 228, 1973.

[15] Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, page 149801, 2015.

[16] Joseph Bakarji, Kathleen Champion, J. Nathan Kutz, and Steven L. Brunton. Discovering govern-
ing equations from partial measurements with deep delay autoencoders. Proceedings of the Royal
Society A, 479(2276):20230422, 2023.

112

https://epochai.org/data/notable-ai-models

[17] Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm,
Manish Parashar, Abani Patra, James Sethian, Stefan Wild, Karen Willcox, and Steven Lee.
Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies
for Artificial Intelligence. Technical report, U.S. Department of Energy Office of Scientific and
Technical Information, 2019. https://www.osti.gov/biblio/1478744.

[18] Richard G. Baraniuk. Compressive sensing [lecture notes]. IEEE signal processing magazine,
24(4):118–121, 2007.

[19] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay Hegde. Model-based com-
pressive sensing. IEEE Transactions on information theory, 56(4):1982–2001, 2010.

[20] Andrew T. Barker and Xiao-Chuan Cai. Scalable parallel methods for monolithic coupling in fluid-
structure interaction with application to blood flow modeling. Journal of Computational Physics,
229(3):642 – 659, 2010.

[21] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja
Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI. Information Fusion, 58:82 – 115, 2020.

[22] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Push-
meet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive
biases, deep learning, and graph networks, 2018.

[23] F. Ben Belgacem. The mortar finite element method with Lagrange multipliers. Numer. Math.,
84(2):173–197, 1999.

[24] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

[25] S. Bellavia, G. Gurioli, B. Morini, and Ph.L. Toint. Trust-region algorithms: Probabilistic com-
plexity and intrinsic noise with applications to subsampling techniques. EURO Journal on Com-
putational Optimization, 10:100043, 2022.

[26] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[27] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM Review, 57(4):483–531, 2015.

[28] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

[29] C. Bernardi, Y. Maday, and A.T. Patera. Domain decomposition by the mortar element method.
In Asymptotic and numerical methods for partial differential equations with critical parameters
(Beaune, 1992), volume 384 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 269–286.
Kluwer Acad. Publ., Dordrecht, 1993.

[30] Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The Modern Mathematics of
Deep Learning, pages 1–111. Cambridge University Press, 2022.

[31] David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathe-
matics, 6(1):1–8, 1956.

113

https://www.osti.gov/biblio/1478744

[32] Jose Blanchet, Coralia Cartis, Matt Menickelly, and Katya Scheinberg. Convergence rate analysis
of a stochastic trust-region method via supermartingales. INFORMS Journal on Optimization,
1(2):92–119, 2019.

[33] P. J. Blanco and R. A. Feijóo. A 3d-1d-0d computational model for the entire cardiovascular
system. Computational Mechanics, 24:5887–5911, 2010.

[34] Pavel B. Bochev and Max D. Gunzburger. Finite element methods of least–squares type. SIAM
Review, 40(4):789 – 837, 1998.

[35] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223 – 311, 2003.

[36] M. Boulakia, S. Cazeau, M. A. Fernández, J.-F. Gerbeau, and N. Zemzemi. Mathematical modeling
of electrocardiograms: a numerical study. Annals of Biomedical Engineering, 38(3):1071–1097,
2010.

[37] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15 of
Texts in Applied Mathematics. Springer, New York, third edition, 2008.

[38] Stephen Brooks. Markov chain Monte Carlo method and its application. Journal of the Royal
Statistical Society: series D (the Statistician), 47(1):69–100, 1998.

[39] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press, 2 edition, 2022.

[40] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy
of sciences, 113(15):3932–3937, 2016.

[41] M. Bucelli, A. Zingaro, P.C. Africa, I. Fumagalli, L. Dede’, and A. Quarteroni. A mathematical
model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to
the human left heart. International Journal for Numerical Methods in Biomedical Engineering,
39(3):39:e3678, 2023.

[42] Michele Bucelli. The lifex library version 2.0. arXiv preprint arXiv:2411.19624, 2024.

[43] L. Cai, L. Ren, Y. Wang, W. Xie, G. Zhu, and H. Gao. Surrogate models based on machine
learning methods for parameter estimation of left ventricular myocardium. Royal Society Open
Science, 8(1):201121, 2021.

[44] Matteo Caldana, Paola F. Antonietti, and Luca Dede’. A deep learning algorithm to accelerate
algebraic multigrid methods in finite element solvers of 3d elliptic pdes. Computers & Mathematics
with Applications, 167:217–231, 2024.

[45] Matteo Caldana, Paola F. Antonietti, and Luca Dede’. Discovering artificial viscosity models for
discontinuous galerkin approximation of conservation laws using physics-informed machine learn-
ing. Journal of Computational Physics, 520:113476, 2025.

[46] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning
Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint
arXiv:2105.05537, 2021.

[47] M. Caruel, R. Chabiniok, P. Moireau, Y. Lecarpentier, and D. Chapelle. Dimensional reduc-
tions of a cardiac model for effective validation and calibration. Biomechanics and Modeling in
Mechanobiology, 13(4):897–914, 2014.

[48] Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven dis-
covery of coordinates and governing equations. Proceedings of the National Academy of Sciences,
116(45):22445–22451, 2019.

114

[49] Rick Chartrand. Numerical differentiation of noisy, nonsmooth data. International Scholarly
Research Notices, 2011(1):164564, 2011.

[50] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical interpo-
lation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[51] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[52] Youngsoo Choi and Kevin Carlberg. Space-time least-squares Petrov-Galerkin projection for non-
linear model reduction. SIAM Journal on Scientific Computing, 41(1):A26 – A58, 2019.

[53] A. Cohen and R. DeVore. Approximation of high-dimensional parametric PDEs. Acta Numerica,
24:1 – 159, 2015.

[54] P. Colli Franzone, L. F. Pavarino, and S. Scacchi. Mathematical Cardiac Electrophysiology, vol-
ume 13 of MS&A. Modeling, Simulation and Applications. Springer, Cham, 2014.

[55] A.N. Cookson, J. Lee, C. Michler, R. Chabiniok, E. Hyde, D.A. Nordsletten, M. Sinclair, M. Siebes,
and N.P. Smith. A novel porous mechanical framework for modelling the interaction between
coronary perfusion and myocardial mechanics. Journal of Biomechanics, 45(5):850 – 855, 2012.

[56] M. Courtemanche, R.J. Ramirez, and S. Nattel. Ionic mechanisms underlying human atrial action
potential properties: insights from a mathematical model. American Journal of Physiology Heart
and Circulation Physiology, 275(1):H301–H321, 1998.

[57] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92:88, 2022.

[58] Frank E. Curtis, Katya Scheinberg, and Rui Shi. A stochastic trust region algorithm based on
careful step normalization. INFORMS Journal on Optimization, 1(3):200–220, 2019.

[59] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals
Systems, 4(2):303–314, 1989.

[60] Maarten V. de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M. Stuart. The
cost-accuracy trade–off in operator learning with neural networks. Journal of Machine Learning,
1(3):299–341, 2022.

[61] L. Dedè, A. Gerbi, and A. Quarteroni. Segregated algorithms for the numerical simulation of
cardiac electromechanics in the left human ventricle. Lecture Notes in Mathematics, 2260:81 – 116,
2020.

[62] J.E.Jr. Dennis and R.B. Schnabel. Numerical methods for unconstrained optimization and nonlinear
equations, volume 16 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1996. Corrected reprint of the 1983 original.

[63] S. Deparis, D. Forti, P. Gervasio, and A. Quarteroni. INTERNODES: an accurate interpolation--
based method for coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming
interfaces. Computers & Fluids, 141:22–41, 2016.

[64] S. Deparis, D. Forti, and A. Quarteroni. A fluid-structure interaction algorithm using radial basis
function interpolation between non-conforming interfaces, pages 439–450. Modeling and Simulation
in Science, Engineering and Technology. Springer, 2016.

[65] S. Di Gregorio, M. Fedele, G. Pontone, A.F. Corno, P. Zunino, C. Vergara, and A. Quarteroni. A
computational model applied to myocardial perfusion in the human heart: From large coronaries
to microvasculature. Journal of Computational Physics, 424:109836, 2021.

115

[66] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A Survey on In-context Learning. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pages 1107–1128, Miami, Florida, USA,
2024. Association for Computational Linguistics.

[67] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations, ICLR 2021, 2021.

[68] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121 – 2159, 2011.

[69] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age of data.
Annual review of fluid mechanics, 51(1):357–377, 2019.

[70] Weinan E and Bing Yu. The Deep Ritz Method: A deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics, 6(1):1 – 12, 2018.

[71] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equations. Cam-
bridge Univ. Press, Cambridge, 1996.

[72] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of Applied Math-
ematical Sciences. Springer-Verlag, New York, 2004.

[73] C. Farhat, S. Grimberg, A. Manzoni, and A. Quarteroni. Computational bottlenecks for proms:
Pre-computation and hyperreduction. In Handbook on Model Order Reduction, volume 2, page 182
– 244. De Gruyter, 2021.

[74] M. Fedele, E. Faggiano, L. Dedè, and A. Quarteroni. A patient-specific aortic valve model based
on moving resistive immersed implicit surfaces. Biomechanics and Modeling in Mechanobiology,
16(5):1779 – 1803, 2017.

[75] M. Fedele, R. Piersanti, F. Regazzoni, M. Salvador, P.C. Africa, M. Bucelli, A. Zingaro, L. Dede’,
and A. Quarteroni. A comprehensive and biophysically detailed computational model of the
whole human heart electromechanics. Computer Methods in Applied Mechanics and Engineering,
410:115983, 2023.

[76] Moritz Flaschel, Siddhant Kumar, and Laura De Lorenzis. Unsupervised discovery of inter-
pretable hyperelastic constitutive laws. Computer Methods in Applied Mechanics and Engineering,
381:113852, 2021.

[77] Francois Fleuret. The little book of Deep Learning, 2024. v. 1.2, https://fleuret.org/francois/
lbdl.html.

[78] Stefania Fresca, Andrea Manzoni, Luca Dedè, and Alfio Quarteroni. Deep learning-based reduced
order models in cardiac electrophysiology. PloS one, 15(10):e0239416, 2020.

[79] I. Fumagalli, M. Fedele, C. Vergara, L. Dede’, S. Ippolito, F. Nicolò, C. Antona, R. Scrofani, and
A. Quarteroni. An image-based computational hemodynamics study of the systolic anterior motion
of the mitral valve. Computers in Biology and Medicine, 123:103922, 2020.

[80] I. Fumagalli, P. Vitullo, C. Vergara, M. Fedele, A.F. Corno, S. Ippolito, R. Scrofani, and A. Quar-
teroni. Image-based computational hemodynamics analysis of systolic obstruction in hypertrophic
cardiomyopathy. Frontiers in Physiology, 12:787082, 2022.

[81] Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientium,
volume 7. FA Perthes, 1877.

[82] A. Gerbi, L. Dedè, and A. Quarteroni. A monolithic algorithm for the simulation of cardiac
electromechanics in the human left ventricle. Mathematics In Engineering, 1(1):1 – 37, 2019.

116

https://fleuret.org/francois/lbdl.html
https://fleuret.org/francois/lbdl.html

[83] K. Gillette, M.A.F. Gsell, M. Strocchi, T. Grandits, A. Neic, M. Manninger, D. Scherr, C.H. Roney,
A.J. Prassl, C.M. Augustin, E.J. Vigmond, and G. Plank. A personalized real-time virtual model
of whole heart electrophysiology. EP Europace, 25(Supplement 1):euad122.541, 2023.

[84] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[85] G.H. Golub and C.F. Van Loan. Matrix Computations. The John Hopkins Univ. Press, Baltimore
and London, 1989.

[86] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[87] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[88] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In Pro-
ceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pages
729–734 vol. 2, 2005.

[89] Andreas Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathematical
Programming: Recent Developments and Applications, pages 83–108. Kluwer Academic Publishers,
1989.

[90] Andreas Griewank. A mathematical view of automatic differentiation. Acta Numerica, 12:321 –
398, 2003.

[91] Philipp Grohs and Gitta Kutyniok, editors. Mathematical Aspects of Deep Learning. Cambridge
University Press, 2023.

[92] J. M. Guccione, A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ven-
tricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering,
113(1):42–55, 1991.

[93] Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approximations with deep
relu neural networks in w s, p norms. Analysis and Applications, 18(5):803 – 859, 2020.

[94] Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of Deep Neural Networks, pages
149–199. Cambridge University Press, 2022.

[95] Max D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, Philadelphia, 2002.

[96] Bertil Gustafsson. Scientific computing: a historical perspective, volume 17. Springer, 2018.

[97] Atılım Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research,
18:1 – 43, 2018.

[98] James Hannan. Approximation to bayes risk in repeated play. In Contributions to the Theory of
Games, volume III, pages 97–139. Princeton University Press, 1957.

[99] David Hartman and Lalit K. Mestha. A deep learning framework for model reduction of dynamical
systems. In 2017 IEEE Conference on Control Technology and Applications (CCTA), pages 1917–
1922. IEEE, 2017.

[100] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

117

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[101] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[102] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[103] Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber. Machine learning in adaptive
domain decomposition methods—predicting the geometric location of constraints. SIAM Journal
on Scientific Computing, 41(6):A3887–A3912, 2019.

[104] Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for PDEs, 2024.

[105] Leon Herrmann and Stefan Kollmannsberger. Deep learning in computational mechanics: a review.
Computational Mechanics, 74(2):281 – 331, 2024.

[106] J. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial
Differential Equations. Springer Cham, 2017.

[107] Jan S Hesthaven, Cecilia Pagliantini, and Gianluigi Rozza. Reduced basis methods for time-
dependent problems. Acta Numerica, 31:265–345, 2022.

[108] Catherine F. Higham and Desmond J. Higham. Deep learning: An introduction for applied math-
ematicians. SIAM Review, 61(4):860 – 891, 2019.

[109] G. Hinton. Neural networks for machine learning, 2012. Coursera, video lectures.

[110] M. Hirschvogel, M. Bassilious, L. Jagschies, S.M. Wildhirt, and M.W. Gee. A monolithic 3d-0d
coupled closed-loop model of the heart and the vascular system: experiment-based parameter esti-
mation for patient-specific cardiac mechanics. Int. J. Numer. Methods Biomed. Eng., 33(8):e2842,
22, 2017.

[111] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application
to conduction and excitation in nerve. The Journal of Physiology, 117(4):500 – 544, 1952.

[112] J. Hoffman, J. Jansson, and M. Stöckli. Unified continuum modeling of fluid-structure interaction.
Mathematical Models and Methods in Applied Sciences, 21(3):491 – 513, 2011.

[113] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 14(5):1303–1347, 2013.

[114] Toshimitsu Homma and Andrea Saltelli. Importance measures in global sensitivity analysis of
nonlinear models. Reliability Engineering & System Safety, 52(1):1–17, 1996.

[115] S.R.H. Hoole and M.K. Haldar. Optimization of electromagnetic devices: circuit models, neural
networks and gradient methods in concert. IEEE Transactions on Magnetics, 31(3):2016–2019,
1995.

[116] A.F. Huxley and R. Niedergerke. Structural changes in muscle during contraction: Interference
microscopy of living muscle fibres. Nature, 173(4412):971–973, 1954.

[117] H. Huxley and J. Hanson. Changes in the cross-striations of muscle during contraction and stretch
and their structural interpretation. Nature, 173(4412):973–976, 1954.

[118] E.R. Hyde, A.N. Cookson, J. Lee, C. Michler, A. Goyal, T. Sochi, R. Chabiniok, M. Sinclair,
D.A. Nordsletten, J. Spaan, J.P.H.M. Van Den Wijngaard, M. Siebes, and N.P. Smith. Multi-scale
parameterisation of a myocardial perfusion model using whole-organ arterial networks. Annals of
Biomedical Engineering, 42(4):797 – 811, 2014.

[119] The Industrialization of SciML, ICERM workshop, Brown University. https://icerm.brown.

edu/events/htw-24-sciml.

118

https://icerm.brown.edu/events/htw-24-sciml
https://icerm.brown.edu/events/htw-24-sciml

[120] Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

[121] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[122] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning.
Springer Texts in Statistics. Springer NY, 2021.

[123] G.W. Jenkins, C.P. Kemnitz, and G.J. Tortora. Anatomy and Physiology: from Science to Life.
Wiley, Hoboken, 2007.

[124] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[125] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

[126] Petr Karnakov, Sergey Litvinov, and Petros Koumoutsakos. Solving inverse problems in physics
by optimizing a discrete loss: Fast and accurate learning without neural networks. PNAS Nexus,
3(1):1–16, 2024.

[127] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422 – 440, 2021.

[128] Ali Kashefi, Davis Rempe, and Leonidas J. Guibas. A point-cloud deep learning framework for
prediction of fluid flow fields on irregular geometries. Physics of Fluids, 33(2):027104, 2021.

[129] Kenji Kashima. Nonlinear model reduction by deep autoencoder of noise response data. In 2016
IEEE 55th conference on decision and control (CDC), pages 5750–5755. IEEE, 2016.

[130] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed neural networks for
solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

[131] Ehsan Kharazmi, Zhongqiang Zhang, and George E.M. Karniadakis. hp–VPINNs: Variational
physics–informed neural networks with domain decomposition. Computer Methods in Applied
Mechanics and Engineering, 374:113547, 2021.

[132] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2015. 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings.

[133] Trenton Kirchdoerfer and Michael Ortiz. Data driven computing with noisy material data sets.
Computer Methods in Applied Mechanics and Engineering, 326:622–641, 2017.

[134] Axel Klawonn, Martin Lanser, and Janine Weber. Machine learning and domain decomposition
methods-a survey. Computational Science and Engineering, 1(1):2, 2024.

[135] A. Kolmogorov. Uber die beste Ann̈aherung von Funktionen einer gegebenen̈ Funktionenklasse.
Annals of Mathematics, 37(1):107–110, 1936.

[136] Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22:1–76, 2021.

[137] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 23:1–97, 2022.

119

[138] Martin Kronbichler and Karl Ljungkvist. Multigrid for Matrix-Free High-Order Finite Element
Computations on Graphics Processors. ACM Transactions on Parallel Computing, 6(1):1–32, 2019.

[139] Sergei Kucherenko, Stefano Tarantola, and Paola Annoni. Estimation of global sensitivity indices
for models with dependent variables. Computer physics communications, 183(4):937–946, 2012.

[140] I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods for boundary value
problems with irregular boundaries. IEEE Transactions on Neural Networks, 11(5):1041–1049,
2000.

[141] Isaac Elias Lagaris, Aristidis Likas, and Dimitrios I. Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987 –
1000, 1998.

[142] J.D. Lambert. Numerical Methods for Ordinary Differential Systems. John Wiley and Sons,
Chichester, 1991.

[143] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436 – 444,
2015.

[144] Kookjin Lee and Kevin T. Carlberg. Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

[145] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2021. ICLR 2021 - 9th International Conference on
Learning Representations.

[146] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155–166,
2016.

[147] Kevin Linka and Ellen Kuhl. A new family of Constitutive Artificial Neural Networks towards
automated model discovery. Computer Methods in Applied Mechanics and Engineering, 403:115731,
2023.

[148] Alec J. Linot and Michael D. Graham. Data-driven reduced-order modeling of spatiotemporal
chaos with neural ordinary differential equations. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 32(7), 2022.

[149] J.-L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. Springer
Verlag, New York, 1971.

[150] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1-3):503 – 528, 1989.

[151] Yuying Liu, J. Nathan Kutz, and Steven L. Brunton. Hierarchical deep learning of multi-
scale differential equation time-steppers. Philosophical Transactions of the Royal Society A,
380(2229):20210200, 2022.

[152] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and
resolution. arXiv preprint arXiv:2111.09883, 2022.

[153] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE
International Conference on Computer Vision, page 9992 – 10002, 2021.

[154] S. Longobardi, A. Lewalle, S. Coveney, I. Sjaastad, E. K. S. Espe, W. E. Louch, C. J. Musante,
A. Sher, and S. A. Niederer. Predicting left ventricular contractile function via gaussian process
emulation in aortic-banded rats. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 378(2173):20190334, 2020.

120

[155] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218 – 229, 2021.

[156] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10(9):1659 – 1671, 1997.

[157] V. Maiorov, R. Meir, and J. Ratsaby. On the approximation of functional classes equipped with a
uniform measure using ridge functions. J. Approx. Theory, 99(1):95–111, 1999.

[158] V. Maiorov and A. Pinkus. Lower bounds for approximation by mlp neural networks. Neurocom-
puting, 25(1–3):81–91, 1999.

[159] A. Manzoni, A. Quarteroni, and S. Salsa. Optimal Control of Partial Differential Equations.
Analysis, Approximation, and Applications. Springer Cham, 2022.

[160] Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. Reduced-order modeling of advection-
dominated systems with recurrent neural networks and convolutional autoencoders. Physics of
Fluids, 33(3):037106, 2021.

[161] Xuhui Meng and George Em Karniadakis. A composite neural network that learns from multi-
fidelity data: Application to function approximation and inverse pde problems. Journal of Com-
putational Physics, 401:109020, 2020.

[162] H. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions. Neural
Comp., 8(1):164–177, 1996.

[163] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013.

[164] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-
informed neural networks for approximating a class of inverse problems for PDEs. IMA Journal
of Numerical Analysis, 42(2):981 – 1022, 2022.

[165] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-
informed neural networks for approximating PDEs. IMA Journal of Numerical Analysis, 43(1):1–
43, 2023.

[166] T. M. Mitchell. The need for biases in learning generalizations. Technical report, Rutgers Univer-
sity, New Brunswick, NJ., 1980. Tech. rep. CBMTR-117.

[167] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[168] Roberto Molinaro. Applications of Deep Learning to Scientific Computing. PhD thesis, ETH
Zurich, 2023. https://www.research-collection.ethz.ch/handle/20.500.11850/646749.

[169] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and
understanding deep neural networks. Digital signal processing, 73:1–15, 2018.

[170] Max D Morris. Factorial sampling plans for preliminary computational experiments. Technomet-
rics, 33(2):161–174, 1991.

[171] Y. Nesterov. A method of solving a convex programming problem with convergence rate ≀(1/k2).
Soviet Mathematics Doklady, 27:372–376, 1983.

[172] J. Nocedal. Theory of algorithms for unconstrained optimization, pages 199–242. Cambridge
University Press, 1991.

[173] Atsuya Oishi and Genki Yagawa. Computational mechanics enhanced by deep learning. Computer
Methods in Applied Mechanics and Engineering, 327:327–351, 2017.

121

https://www.research-collection.ethz.ch/handle/20.500.11850/646749

[174] Vivek Oommen, Khemraj Shukla, Somdatta Goswami, Remi Dingreville, and George Em Kar-
niadakis. Learning two-phase microstructure evolution using neural operators and autoencoder
architectures. arXiv preprint arXiv:2204.07230, 2022.

[175] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

[176] M. Peirlinck, F. Sahli Costabal, J. Yao, J.M. Guccione, S. Tripathy, Y. Wang, D. Ozturk, P. Segars,
T.M. Morrison, S. Levine, and E. Kuhl. Precision medicine in human heart modeling: Perspectives,
challenges, and opportunities. Biomechanics and Modeling in Mechanobiology, 20(3):803 – 831,
2021.

[177] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[178] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film:
Visual reasoning with a general conditioning layer. In AAAI Conference on Artificial Intelligence,
2017.

[179] C.S. Peskin. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25(3):220–252, 1977.

[180] Philipp Petersen. Neural network theory, 2022. University of Vienna
http://pc-petersen.eu/Neural Network Theory.pdf.

[181] Federico Pichi, Beatriz Moya, and Jan S. Hesthaven. A graph convolutional autoencoder approach
to model order reduction for parametrized pdes. Journal of Computational Physics, 501:112762,
2024.

[182] R. Piersanti, P.C. Africa, M. Fedele, C. Vergara, L. Dede’, A.F. Corno, and A. Quarteroni. Modeling
cardiac muscle fibers in ventricular and atrial electrophysiology simulations. Computer Methods in
Applied Mechanics and Engineering, 373:113468, 2021.

[183] R. Piersanti, F. Regazzoni, M. Salvador, A.F. Corno, L. Dede’, C. Vergara, and A. Quarteroni.
3d–0d closed-loop model for the simulation of cardiac biventricular electromechanics. Computer
Methods in Applied Mechanics and Engineering, 391:114607, 2022.

[184] Elmar Plischke, Emanuele Borgonovo, and Curtis L Smith. Global sensitivity measures from given
data. European Journal of Operational Research, 226(3):536–550, 2013.

[185] B.T. Polyak. Some methods of speeding up the convergence of iteration methods. Comput. Math.
Math. Phys., 4:1–17, 1964.

[186] Shaoxiang Qin, Fuyuan Lyu, Wenhui Peng, Dingyang Geng, Ju Wang, Naiping Gao, Xue Liu, and
Liangzhu Leon Wang. Toward a better understanding of Fourier neural operators: Analysis and
improvement from a spectral perspective, 2024.

[187] A. Quarteroni, L. Dedè, A. Manzoni, and C. Vergara. Mathematical modelling of the human car-
diovascular system: Data, numerical approximation, clinical applications, volume 33 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University Press, 2019.

[188] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equations.
Springer Cham, 2015.

[189] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. 2nd edition. Texts in Applied
Mathematics. Springer-Verlag, Berlin, 2007.

[190] A. Quarteroni, F. Saleri, and P. Gervasio. Scientific Computing. 4th ed. Springer Berlin, Heidelberg,
2014.

[191] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer
Verlag, Heidelberg, 1994.

122

[192] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations.
Oxford Science Publications, 1999.

[193] Alfio Quarteroni. Numerical Models for Differential Problems. 3rd edition. MS&A. Springer, 2017.

[194] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686 – 707, 2019.

[195] Pradeep Ramuhalli, Lalita Udpa, and Satish S. Udpa. Finite-element neural networks for solving
differential equations. IEEE Transactions on Neural Networks, 16(6):1381 – 1392, 2005.

[196] H.S. Rao and A. Mukherjee. Artificial neural networks for predicting the macromechanical be-
haviour of ceramic-matrix composites. Computational Materials Science, 5(4):307 – 322, 1996.

[197] I. Ratner, H.O. Ali, E.M. Petriu, and G. Eatherley. Neural network modelling of electromag-
netic field problems. Proceedings of International Workshop on Neural Networks for Identification,
Control, Robotics, and Signal/Image Processing, NICROSP, page 387 – 391, 1996.

[198] F. Regazzoni. Mathematical modeling and machine learning for the numerical simulation of cardiac
electromechanics. PhD thesis, Politecnico di Milano, 2020.

[199] F. Regazzoni, S. Pagani 1, A. Cosenza, and A. Lombardiand A. Quarteroni. A physics–informed
multi–fidelity approach for the estimation of differential equations parameters in low–data or large–
noise regimes. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche
e Naturali. Rendiconti Lincei – Matematica e Applicazioni, 32(3):437–370, 2021.

[200] F. Regazzoni, L. Dedè, and A. Quarteroni. Active contraction of cardiac cells: a reduced model for
sarcomere dynamics with cooperative interactions. Biomechanics and Modeling in Mechanobiology,
17:1663–1686, 2018.

[201] F. Regazzoni, L. Dedè, and A. Quarteroni. Biophysically detailed mathematical models of multi-
scale cardiac active mechanics. PLOS Computational Biology, 16(10):e1008294, 2020.

[202] F. Regazzoni, L. Dedè, and A. Quarteroni. Machine learning of multiscale active force generation
models for the efficient simulation of cardiac electromechanics. Comput. Methods Appl. Mech.
Engrg., 370:113268, 2020.

[203] F. Regazzoni, L. Dedè, and A. Quarteroni. Active force generation in cardiac muscle cells: math-
ematical modeling and numerical simulation of the actin-myosin interaction. Vietnam J. Math.,
49(1):87–118, 2021.

[204] F. Regazzoni, L. Dedè, and A. Quarteroni. Machine learning for fast and reliable solution of
time-dependent differential equations. Journal of Computational Physics, 397:108852, 2019.

[205] F. Regazzoni, M. Salvador, P.C. Africa, M. Fedele, L. Dedè, and A. Quarteroni. A cardiac elec-
tromechanical model coupled with a lumped-parameter model for closed-loop blood circulation.
Journal of Computational Physics, 457:111083, 2022.

[206] Francesco Regazzoni, Dominique Chapelle, and Philippe Moireau. Combining Data Assimilation
and Machine Learning to build data-driven models for unknown long time dynamics–Applications
in cardiovascular modeling. International Journal for Numerical Methods in Biomedical Engineer-
ing, page e3471, 2021.

[207] Francesco Regazzoni, Stefano Pagani, Alessandro Cosenza, Alessandro Lombardi, and Alfio Quar-
teroni. A physics-informed multi-fidelity approach for the estimation of differential equations pa-
rameters in low-data or large-noise regimes. Rendiconti Lincei, 32(3):437–470, 2021.

[208] Francesco Regazzoni, Stefano Pagani, and Alfio Quarteroni. Universal Solution Manifold Net-
works (USM-Nets): Non-Intrusive Mesh-Free Surrogate Models for Problems in Variable Domains.
Journal of Biomechanical Engineering, 144(12):121004, 09 2022. 121004.

123

[209] Francesco Regazzoni, Stefano Pagani, Matteo Salvador, Luca Dede’, and Alfio Quarteroni. Learning
the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks. Nature
Communications, 15(1):1834, 2024.

[210] Francesco Regazzoni, Matteo Salvador, Luca Dedè, and Alfio Quarteroni. A machine learning
method for real-time numerical simulations of cardiac electromechanics. Computer Methods in
Applied Mechanics and Engineering, 393:114825, 2022.

[211] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statist., 22:400 – 407,
1951.

[212] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham, 2015. Springer International Publishing.

[213] Domènec Ruiz-Balet and Enrique Zuazua. Neural ode control for classification, approximation,
and transport. SIAM Review, 65(3):735–773, 2023.

[214] Domènec Ruiz-Balet and Enrique Zuazua. Control of neural transport for normalising flows. Jour-
nal de Mathématiques Pures et Appliquées, 181:58–90, 2024.

[215] Andrea Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer
physics communications, 145(2):280–297, 2002.

[216] Matteo Salvador, Marina Strocchi, Francesco Regazzoni, Christoph M. Augustin, Luca Dede’,
Steven A. Niederer, and Alfio Quarteroni. Whole-heart electromechanical simulations using latent
neural ordinary differential equations. NPJ Digital Medicine, 7(1):90, 2024.

[217] Arthur L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3(3):210–229, 1959.

[218] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks,
20(1):81–102, 2009.

[219] AI and Mathematics, 2021. Booklet presented at the workshop “Computational Science and Ma-
chine Learning” held in the Lorentz Center in Leiden, The Netherlands, November 1–5, 2021.
https://platformwiskunde.nl/wp-content/uploads/2021/11/Math_KET_SciML.pdf.

[220] Scientific Machine Learning Research Area web–page, Oden Institute, Septem-
ber, 2024. https://oden.utexas.edu/research/crosscutting-research-areas/

scientific-machine-learning/.

[221] Yeonjong Shin, Jérôme Darbon, and George Em Karniadakis. On the convergence of physics
informed neural networks for linear second-order elliptic and parabolic type PDEs. Communications
in Computational Physics, 28(5):2042 – 2074, 2020.

[222] Yeonjong Shin, Zhongqiang Zhang, and George Em Karniadakis. Theoretical foundations of
physics-informed neural networks and deep neural operators: A brief review. In Siddhartha Mishra
and Alex Townsend, editors, Numerical Analysis Meets Machine Learning, volume 25 of Handbook
of Numerical Analysis, pages 293–358. Elsevier, 2024.

[223] Il’ya Meerovich Sobol’. On sensitivity estimation for nonlinear mathematical models. Matematich-
eskoe modelirovanie, 2(1):112–118, 1990.

[224] The Royal Society. Machine learning: the power and promise of computers that learn by example.
Technical report, The Royal Society, London, 2017.

[225] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

124

https://platformwiskunde.nl/wp-content/uploads/2021/11/Math_KET_SciML.pdf
https://oden.utexas.edu/research/crosscutting-research-areas/scientific-machine-learning/
https://oden.utexas.edu/research/crosscutting-research-areas/scientific-machine-learning/

[226] I. Stewart. In Pursuit of the Unknown: 17 Equations That Changed the World. Basic Books (AZ),
2012.

[227] Stephen M Stigler. Gauss and the invention of least squares. the Annals of Statistics, pages
465–474, 1981.

[228] H. Sundar, G. Stadler, and G. Biros. Comparison of multigrid algorithms for high-order continuous
finite element discretizations. Numerical Linear Algebra with Applications, 22(4):664–680, 2015.

[229] Chen T. and Chen H. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Trans Neural Netw.,
6(4):911–7, 1995.

[230] Vahidullah Tac, Francisco Sahli Costabal, and Adrian B. Tepole. Data-driven tissue mechanics
with polyconvex neural ordinary differential equations. Computer Methods in Applied Mechanics
and Engineering, 398:115248, 2022.

[231] A. Tagliabue, L. Dedè, and A. Quarteroni. Complex blood flow patterns in an idealized left
ventricle: a numerical study. Chaos, 27(9):093939, 2017.

[232] A. Tagliabue, L. Dedè, and A. Quarteroni. Fluid dynamics of an idealized left ventricle: the
extended Nitsche’s method for the treatment of heart valves as mixed time varying boundary
conditions. Internat. J. Numer. Methods Fluids, 85(3):135–164, 2017.

[233] Floris Takens. Dynamical systems and turbulence. Warwick, 1980, pages 366–381, 1981.

[234] Jun Takeuchi and Yukio Kosugi. Neural network representation of finite element method. Neural
Networks, 7(2):389 – 395, 1994.

[235] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 7537–7547. Curran Associates, Inc., 2020.

[236] Riccardo Tenderini, Stefano Pagani, Alfio Quarteroni, and Simone Deparis. PDE-aware deep
learning for inverse problems in cardiac electrophysiology. SIAM Journal on Scientific Computing,
44(3):B605 – B639, 2022.

[237] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume 34 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.

[238] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Elsevier Academic Press, London, UK,
2001.

[239] K.H.W.J. Ten Tusscher and A.V. Panfilov. Alternans and spiral breakup in a human ventricular
tissue model. American Journal of Physiology–Heart and Circulatory Physiology, 291(3):H1088–
H1100, 2006.

[240] T.P. Usyk, I.J. LeGrice, and A.D. McCulloch. Computational model of three-dimensional cardiac
electromechanics. Computing and Visualization in Science, 4(4):249–257, 2002.

[241] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

[242] V. N. Vapnik and A. Y. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974. (in
Russian).

[243] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

125

[244] C. Vergara. Nitsche’s method for defective boundary value problems in incompressibile fluid-
dynamics. Journal of Scientific Computing, 46:100–123, 2011.

[245] E. J. Vigmond, C. Clements, D. M. McQueen, and C. S. Peskin. Effect of bundle branch block
on cardiac output: a whole heart simulation study. Progress in Biophysics and Molecular Biology,
97(2-3):520–542, 2008.

[246] Pantelis R. Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale
simulations of complex systems by learning their effective dynamics. Nature Machine Intelligence,
4(4):359–366, 2022.

[247] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

[248] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

[249] Zheng Wang, Dunhui Xiao, Fangxin Fang, Rajesh Govindan, Christopher C. Pain, and Yike Guo.
Model identification of reduced order fluid dynamics systems using deep learning. International
Journal for Numerical Methods in Fluids, 86(4):255–268, 2018.

[250] A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015.

[251] R.E. Wengert. A simple automatic derivative evaluation program. Communications of the ACM,
7(8):463 – 464, 1964.

[252] B. I. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier.
SIAM J. Numer. Anal., 38:989–1012, 2000.

[253] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4 – 24, 2021.

[254] Tianbai Xiao and Martin Frank. Using neural networks to accelerate the solution of the boltzmann
equation. Journal of Computational Physics, 443:110521, 2021.

[255] Feiyu Xu, Hans Uszkoreit, Yangzhou Du, Wei Fan, Dongyan Zhao, and Jun Zhu. Explainable
AI: A brief survey on history, research areas, approaches and challenges. In Natural language
processing and Chinese computing: 8th cCF international conference, NLPCC 2019, dunhuang,
China, October 9–14, 2019, proceedings, part II 8, pages 563–574. Springer, 2019.

[256] J. Xu and L. Zikatanov. Algebraic multigrid methods. Acta Numerica, 26:591 – 721, 2017.

[257] Jinchao Xu and Jun Zou. Some nonoverlapping domain decomposition methods. SIAM Review,
40(4):857 – 914, 1998.

[258] Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain Sciences, 12(7):863, 2022.

[259] Liu Yang, Siting Liu, Tingwei Meng, and Stanley J. Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences of the
United States of America, 120(39):e2310142120, 2023.

[260] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103 – 114, 2017.

[261] Minglang Yin, Nicolas Charon, Ryan Brody, Lu Lu, Natalia Trayanova, and Mauro Maggioni.
Dimon: Learning solution operators of partial differential equations on a diffeomorphic family of
domains. arXiv preprint arXiv:2402.07250, 2024.

126

[262] Elena Zappon, Matteo Salvador, Roberto Piersanti, Francesco Regazzoni, Luca Dede’, and Alfio
Quarteroni. An integrated heart–torso electromechanical model for the simulation of electrophysi-
ological outputs accounting for myocardial deformation. Computer Methods in Applied Mechanics
and Engineering, 427:117077, 2024.

[263] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B: Fortran
Subroutines for Large-Scale Bound-Constrained Optimization. ACM Transactions on Mathematical
Software, 23(4):550 – 560, 1997.

[264] Giovanni Ziarelli, Stefano Pagani, Nicola Parolini, Francesco Regazzoni, and Marco Verani. A
model learning framework for inferring the dynamics of transmission rate depending on exogenous
variables for epidemic forecasts. arXiv preprint arXiv:2410.11545, 2024.

[265] A. Zingaro, M. Bucelli, I. Fumagalli, L. Dede’, and A. Quarteroni. Modeling isovolumetric phases
in cardiac flows by an augmented resistive immersed implicit surface method. International Journal
for Numerical Methods in Biomedical Engineering, 39(12):39:e3767, 2023.

[266] A. Zingaro, I. Fumagalli, L. Dede, M. Fedele, P.C. Africa, A.F. Corno, and A. Quarteroni. A
geometric multiscale model for the numerical simulation of blood flow in the human left heart.
Discrete and Continuous Dynamical Systems - Series S, 15(8):2391 – 2427, 2022.

[267] A. Zingaro, C. Vergara, L. Dede’, F. Regazzoni, and A. Quarteroni. A comprehensive mathematical
model for cardiac perfusion. Scientific Reports, 13(1):14220, 2023.

127

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

08/2025 Botti, M.; Fumagalli, I.; Mazzieri, I.

Polytopal discontinuous Galerkin methods for low-frequency poroelasticity coupled to unsteady

Stokes flow

07/2025 Patanè, G.; Nicolussi, F.; Krauth, A.; Gauglitz, G.; Colosimo, B. M.; Dede', L.; Menafoglio, A.

Functional-Ordinal Canonical Correlation Analysis With Application to Data from Optical

Sensors

06/2025 Torzoni, M.; Manzoni, A.; Mariani, A.

Enhancing Bayesian model updating in structural health monitoring via learnable mappings

04/2025 Andrini, D.; Magri, M.; Ciarletta, P.

Nonlinear morphoelastic theory of biological shallow shells with initial stress

05/2025 Buchwald, S.; Ciaramella, G.; Verani, M.

Greedy reconstruction algorithms for function approximation

02/2025 Corda, A.; Pagani, S.; Vergara, C.

Influence of patient-specific acute myocardial ischemia maps on arrhythmogenesis: a

computational study

01/2025 Dede', L.; Parolini, N.; Quarteroni, A.; Villani, G.; Ziarelli, G.

SEIHRDV: a multi-age multi-group epidemiological model and its validation on the COVID-19

epidemics in Italy

109/2024 Liverotti, L.; Ferro, N.; Matteucci, M.; Perotto, S.

A PCA and mesh adaptation-based format for high compression of Earth Observation optical

data with applications in agriculture

110/2024 Pederzoli, V.; Corti, M.; Riccobelli, D.; Antonietti, P.F.

A coupled mathematical and numerical model for protein spreading and tissue atrophy, applied

to Alzheimer's disease

108/2024 Arostica, R.; Nolte, D.; Brown, A.; Gebauer, A.; Karabelas, E.; Jilberto, J.; Salvador, M.; Bucelli,

M.; Piersanti, R.; Osouli, K.; Augustin, C.; Finsberg, H.; Shi, L.; Hirschvogel, M.; Pfaller, M.;

Africa, P.C.; Gsell, M.; Marsden, A.; Nordsletten, D.; Regazzoni, F.; Plank, G.; Sundnes, J.;

Dede’, L.; Peirlinck, M.; Vedula, V.; Wall, W.; Bertoglio, C.

A software benchmark for cardiac elastodynamics

	qmox09-copertina
	mox-20252310014
	Introduction
	Digital models
	Mathematical models
	Numerical models

	Data–driven models
	Artificial Intelligence
	Machine Learning
	Machine Learning Tasks
	Machine Learning Experience
	Machine Learning Performance measurement
	Machine Learning Models
	Setting of supervised learning and error analysis
	Optimization methods for training
	Backpropagation
	Penalty–based regularization
	Tuning of hyperparameters

	A quick glance at Deep Learning models
	Model components
	Architectures
	Ultimate generation hardware: GPUs and TPUs

	Topics related to Machine Learning not covered in this paper

	Scientific Machine Learning
	Surrogate modelling of high–fidelity DM
	Physics–Informed learning
	Physics–Informed Neural Networks (PINNs)
	Variational PINNs (VPINNs)
	Deep Ritz Method (DRM)
	Optimizing a DIscrete Loss (ODIL)

	Operator learning
	Deep Operator Networks (DeepONet)
	Neural Operators
	Operator learning for time–dependent problems
	Intrinsic or hidden dynamics discovery
	Space-time operator learning
	Foundation models for operator learning

	Topics related to Scientific Machine Learning not covered in this paper

	SciML for the iHeart simulator
	The integrated heart model
	Multifidelity PINNs for the estimation of ionic parameters
	Physics–aware NNs for the inverse problem of electrocardiography
	Learning the microscopic dynamics in the framework of a coupled multiscale problem
	Time-dependent operator learning for a multiphysics coupled problem
	NN–based surrogate models for global sensitivity analysis
	NN–based surrogate models for Bayesian parameter estimation
	Latent Dynamics Networks to accelerate electrophysiology simulations

	Some final thoughts and concluding remarks

	qmox09-terza_di_copertina

